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Preface

This is the second edition of Analysis and Evaluation of Pumping Test Data. Readers
familiar with the first edition and its subsequent impressions will note a number of
changes in the new edition. These changes involve the contents of the book, but not
the philosophy behind it, which is to be a practical guide to all who are organizing,
conducting, and interpreting pumping tests.

What changes have we made? In the first place, we have included the step-drawdown
test, the slug test, and the oscillation test. We have also added three chapters on pump-
ing tests in fractured rocks. This we have done because of comments from some of
our reviewers, who regretted that the first edition contained nothing about tests in
fractured rocks. It would be remiss of us, however, not to warn our readers that, in
spite of the intense research that fractured rocks have undergone in the last two de-
cades, the problem is still the subject of much debate. What we present are some of
the common methods, but are aware that they are based on ideal conditions which
are rarely met in nature. All the other methods, however, are so complex that one
needs a computer to apply them.

We have also updated the book in the light of developments that have taken place
since the first edition appeared some twenty years ago. We present, for instance, a
more modern method of analyzing pumping tests in unconfined aquifers with delayed
yield. We have also re-evaluated some of our earlier field examples and have added
several new ones.

Another change is that, more than before, we emphasize the intricacy of analyzing
field data, showing that the drawdown behaviour of totally different aquifer systems
can be very similar.

It has become a common practice nowadays to use computers in the analysis of
pumping tests. For this edition of our book, we seriously considered adding computer
codes, but eventually decided not to because they would have made the book too
voluminous and therefore too costly. Other reasons were the possible incompatibility
of computer codes and, what is even worse, many of the codes are based on ‘black
box’ methods which do not allow the quality of the field data to be checked. Interpret-
ing a pumping test is not a matter of feeding a set of field data into a computer, tapping
a few keys, and expecting the truth to appear. The only computer codes with merit
are those that take over the tedious work of plotting the field data and the type curves,
and display them on the screen. These computer techniques are advancing rapidly,
but we have refrained from including them. Besides, the next ILRI Publication (No.
48, SATEM: Selected Aquifer Test Evaluation Methods by J. Boonstra) presents the
most common well-flow equations in computerized form. As well, the International
Ground-Water Modelling Centre in Indianapolis, U.S.A., or its branch office in Delft,
The Netherlands, can provide all currently available information on computer codes.

Our wish to revise and update our book could never have been realized without the
support and help of many people. We are grateful to Mr. F. Walter, Director of TNO
Institute of Applied Geoscience, who made it possible for the first author and Ms



Hanneke Verwey to work on the book. We are also grateful to Brigadier (Retired)
K.G. Ahmad, General Manager (Water) of the Water and Power Development Au-
thority, Pakistan, for granting us permission to use pumping test data not officially
published by his organization.

We also express our thanks to Dr J.A.H. Hendriks, Director of ILRI, who allowed
the second author time to work on the book, and generously gave us the use of ILRI’s
facilities, including the services of Margaret Wiersma-Roche, who edited our manu-
script and corrected our often wordy English. We are indebted to Betty van Aarst
and Joop van Dijk for their meticulous drawings, and to Trudy Pleijsant-Paes for
her patience and perseverance in processing the words and the equations of the book.
Last, but by no means least, we thank ILRI’s geohydrologist, Dr J. Boonstra, for
his discussion of the three chapters on fractured rocks and his valuable contribution
to their final draft.

We hope that this revised and updated edition of Analysis and Evaluation of Pumping
Test Data will serve its readers as the first edition did. Any comments anyone would
care to make will be received with great interest.

G.P. Kruseman
N.A. de Ridder
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1 Basic concepts and definitions

When working on problems of groundwater flow, the geologist or engineer has to
find reliable values for the hydraulic characteristics of the geological formations
through which the groundwater is moving. Pumping tests have proved to be one of
the most effective ways of obtaining such values.

Analyzing and evaluating pumping test data, however, is as much an art as a science.
It is a science because it is based on theoretical models that the geologist or engineer
must understand and on thorough investigations that he must conduct into the geolog-
ical formations in the area of the test. It is an art because different types of aquifers
can exhibit similar drawdown behaviours, which demand interpretational skills on
the part of the geologist or engineer. We hope that this book will serve as a guide
in both the science and the art.

The equations we present in this book are from well hydraulics. We have omitted
any lengthy derivations of the equations because these can be found in the original
publications listed in our References. With some exceptions, we present the equations
in their final form, emphasizing the assumptions and conditions that underlie them,
and outlining the procedures that are to be followed for their successful application.

‘Hard rocks’, both as potential sources of water and depositories for chemical or
radioactive wastes, are receiving increasing attention in hydrogeology. We shall there-
fore be discussing some recent developments in the interpretation of pumping test
data from such rocks.

This chapter summarizes the basic concepts and definitions of terms relevant to
our subject. The next chapter describes how to conduct a pumping test. The remaining
chapters all deal with the analysis and evaluation of pumping test data from a variety
of aquifer types or aquifer systems, and from tests conducted under particular technical
conditions.

1.1 Aquifer, aquitard, and aquiclude

An aquifer is defined as a saturated permeable geological unit that is permeable enough
to yield economic quantities of water to wells. The most common aquifers are unconso-
lidated sand and gravels, but permeable sedimentary rocks such as sandstone and
limestone, and heavily fractured or weathered volcanic and crystalline rocks can also
be classified as aquifers.

An aquitard is a geological unit that is permeable enough to transmit water in signifi-
cant quantities when viewed over large areas and long periods, but its permeability
is not sufficient to justify production wells being placed in it. Clays, loams and shales
are typical aquitards.

An aquiclude is an impermeable geological unit that does not transmit water at
all. Dense unfractured igneous or metamorphic rocks are typical aquicludes. In nature,
truly impermeable geological units seldom occur; all of them leak to some extent,
and must therefore be classified as aquitards. In practice, however, geological units
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can be classified as aquicludes when their permeability is several orders of magnitude
lower than that of an overlying or underlying aquifer.

The reader will note that the above definitions are relative ones; they are purposely
imprecise with respect to permeability.

1.2 Aquifer types
There are three main types of aquifer: confined, unconfined, and leaky (Figure 1.1).
1.2.1 Confined aquifer

A confined aquifer (Figure 1.1A) is bounded above and below by an aquiclude. In
a confined aquifer, the pressure of the water is usually higher than that of the atmo-
sphere, so that if a well taps the aquifer, the water in it stands above the top of the
aquifer, or even above the ground surface. We then speak of a free-flowing or artesian
well.

1.2.2  Unconfined aquifer

An unconfined aquifer (Figure 1.1B), also known as a watertable aquifer, is bounded
below by an aquiclude, but is not restricted by any confining layer above it. Its upper
boundary is the watertable, which is free to rise and fall. Water in a well penetrating
an unconfined aquifer is at atmospheric pressure and does not rise above the water-
table.

1.2.3  Leaky aquifer

A leaky aquifer (Figure 1.1C and D), also known as a semi-confined aquifer, is an
aquifer whose upper and lower boundaries are aquitards, or one boundary is an aqui-
tard and the other is an aquiclude. Water is free to move through the aquitards, either
upward or downward. If a leaky aquifer is in hydrological equilibrium, the water level
in a well tapping it may coincide with the watertable. The water level may also stand
above or below the watertable, depending on the recharge and discharge conditions.

In deep sedimentary basins, an interbedded system of permeable and less permeable
layers that form a multi-layered aquifer system (Figure 1.1E), is very common. But
such an aquifer system is more a succession of leaky aquifers, separated by aquitards,
rather than a main aquifer type.

1.3 Anisotropy and heterogeneity
Most well hydraulics equations are based on the assumption that aquifers and aqui-
tards are homogeneous and isotropic. This means that the hydraulic conductivity is

the same throughout the geological formation and is the same in all directions (Figure
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CONFINED AQUIFER
A water level

UNCONFINED AQUIFER

B water level

aquiclude
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Figure 1.1 Different types of aquifers
A. Confined aquifer
B. Unconfined aquifer
C. and D. Leaky aquifers
E. Multi-layered leaky aquifer
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1.2A). The individual particles of a geological formation, however, are seldom spheri-
cal so that, when deposited under water, they tend to settle on their flat sides. Such
a formation can still be homogeneous, but its hydraulic conductivity in horizontal
direction, K, will be significantly greater than its hydraulic conductivity in vertical
direction, K, (Figure 1.2B). This phenomenon is called anisotropy.

The lithology of most geological formations tends to vary significantly, both hori-
zontally and vertically. Consequently, geological formations are seldom homoge-
neous. Figure 1.2C is an example of layered heterogeneity. Heterogeneity occurs not
only in the way shown in the figure: individual layers may pinch out; their grain size
may vary in horizontal direction; they may contain lenses of other grain sizes; or they
may be discontinuous by faulting or scour-and-fill structures. In horizontally-stratified
alluvial formations, the K, /K, ratios range from 2 to 10, but values as high as 100
can occur, especially where clay layers are present.

Anisotropy is a common property of fractured rocks (Figure 1.2D). The hydraulic
conductivity in the direction of the main fractures is usually significantly greater than
that normal to those fractures.

HOMOGENEOUS AQUIFER HETEROGENEOUS AQUIFER

isotropic aquifer stratified aquifer
B D

W // /7
anisotropic aquifer fractured aquifer

Figure 1.2 Homogeneous and heterogeneous aquifers, isotropic and anisotropic
A. Homogeneous aquifer, isotropic
B. Homogeneous aquifer, anisotropic
C. Heterogeneous aquifer, stratified
D. Heterogeneous aquifer, fractured
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If the principal directions of anisotropy are known, one can transform an anisotro-
pic system into an isotropic system by changing the coordinates. In the new coordinate
system, the basic well-flow equation is again isotropic and the common equations
can be used.

1.4 Bounded aquifers

Another common assumption in well hydraulics is that the pumped aquifer is horizon-
tal and of infinite extent. But, viewed on a regional scale, some aquifers slope, and
none of them extend to infinity because complex geological processes cause interfinger-
ing of layers and pinchouts of both aquifers and aquitards. At some places, aquifers
and aquitards are cut by deeply incised channels, estuaries, or the ocean. In other
words, aquifers and aquitards are laterally bounded in one way or another. Figure
1.3 shows some examples. The interpretation of pumping tests conducted in the vicinity
of such boundaries requires special techniques, which we shall be discussing.

. | |
barrier boundary | recharge boundary
A 2 B =3

bounded aquifer |

aquifer of non-uniform thickness

Figure 1.3 Bounded aquifers
A,B,and C

1.5 Steady and unsteady flow

There are two types of well-hydraulics equations: those that describe steady-state flow
towards a pumped well and those that describe the unsteady-state flow.

Steady-state flow is independent of time. This means that the water level in the
pumped well and in surrounding piezometers does not change with time. Steady-state
flow occurs, for instance, when the pumped aquifer is recharged by an outside source,
which may be rainfall, leakage through aquitards from overlying and/or underlying
unpumped aquifers, or from a body of open water that is in direct hydraulic contact
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with the pumped aquifer. In practice, it is said that steady-state flow is attained if
the changes in the water level in the well and piezometers have become so small with
time that they can be neglected. As pumping continues, the water level may drop fur-
ther, but the hydraulic gradient induced by the pumping will not change. In other
words, the flow towards the well has attained a pseudo-steady-state.

In well hydraulics of fractured aquifers, the term pseudo-steady-state is used for
the interporosity flow from the matrix blocks to the fractures. This flow occurs in
response to the difference between the average hydraulic head in the matrix blocks
and the average hydraulic head in the fractures. Spatial variation in hydraulic head
gradients in the matrix blocks is ignored and the flow through the fractures to the
well is radial and unsteady.

Unsteady-state flow occurs from the moment pumping starts until steady-state flow
is reached. Consequently, if an infinite, horizontal, completely confined aquifer of
constant thickness is pumped at a constant rate, there will always be unsteady-state
flow. In practice, the flow is considered to be unsteady as long as the changes in water
level in the well and piezometers are measurable or, in other words, as long as the
hydraulic gradient is changing in a measurable way.

1.6 Darcy’s law

Darcy’s law states that the rate of flow through a porous medium is proportional
to the loss of head, and inversely proportional to the length of the flow path, or

Ah

V= KTI (1.1)
or, in differential form
dh
v = Ka (1.2)

where v = Q/A, which is the specific discharge, also known as the Darcy velocity
or Darcy flux (Length/Time), Q = volume rate of flow (Length’/Time), A = cross-
sectional area normal to flow direction (Length?), Ah = h, — h,, which is the head
loss, whereby h, and h, are the hydraulic heads measured at Points 1 and 2 (Length),
Al = the distance between Points 1 and 2 (Length), dh/dl = i, which is the hydraulic
gradient (dimensionless), and K = constant of proportionality known as the hydraulic
conductivity (Length/Time).

Alternatively, Darcy’s law can be written as

dh
Q=KEA (1.3)

Note that the specific discharge v has the dimensions of a velocity, i.e. Length/Time.
The concept specific discharge assumes that the water is moving through the entire
porous medium, solid particles as well as pores, and is thus a macroscopic concept.
The great advantage of this concept is that the specific discharge can be easily mea-
sured. It must, however, be clearly differentiated from the microscopic velocities,
which are real velocities. Hence, if we are interested in real flow velocities, as in prob-
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lems of groundwater pollution and solute transport, we must consider the actual paths
of individual water particles as they find their way through the pores of the medium.
In other words, we must consider the porosity of the transmitting medium and can
write

va:%orvﬁ% (1.4)
where v, = real velocity of the flow, and n = porosity of the water-transmitting medi-
um.

In using Darcy’s law, one must know the range of its validity. After all, Darcy (1856)
conducted his experiments on sand samples in the laboratory. So, Darcy’s law is valid
for laminar flow, but not for turbulent flow, as may happen in cavernous limestone
or fractured basalt. In case of doubt, one can use the Reynolds number as a criterion
to distinguish between laminar and turbulent flow. The Reynolds number is expressed
as

Np =p m (1.5)
where p is the fluid density, v is the specific discharge, p is the viscosity of the fluid,
and d is a representative length dimension of the porous medium, usually taken as
a mean grain diameter or a mean pore diameter.

Experiments have shown that Darcy’s law is valid for Ny < 1 and that no serious
errors are created up to Ny = 10. This value thus represents an upper limit to the
validity of Darcy’s law. It should not be considered a unique limit, however, because
turbulence occurs gradually. At full turbulence (N < 100), the head loss varies ap-
proximately with the second power of the velocity rather than linearly. Fortunately,
most groundwater flow occurs with Ny < 1 so that Darcy’s law applies. Only in excep-
tional situations, as in a rock with wide openings, or where steep hydraulic gradients
exist, as in the near vicinity of a pumped well, will the criterion of laminar flow not
be satisfied and Darcy’s law will be invalid.

Darcy’s law is also invalid at low hydraulic gradients, as may occur in compact
clays, because, for low values of i, the relation between v and i is not linear. It is
impossible to give a unique lower limit to the hydraulic gradients at which Darcy’s
law is still valid, because the values of i vary with the type and structure of the clay,
while the mineral content of the water also plays a role (De Marsily 1986).

1.7 Physical properties
In the equations describing the flow to a pumped well, various physical properties
and parameters of aquifers and aquitards appear. These will be discussed below.

1.7.1 Porosity (n)

The porosity of a rock is its property of containing pores or voids. If we divide the
total unit volume V; of an unconsolidated material into the volume of its solid portion
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V, and the volume of its voids V,, we can define the porosity as n = V,/Vy. Porosity
is usually expressed as a decimal fraction or as a percentage.

With consolidated and hard rocks, a distinction is usually made between primary
porosity, which is present when the rock is formed, and secondary porosity, which
develops later as a result of solution or fracturing. As Figure 1.4 shows, fractures
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Figure 1.4 Porosity systems
A. Single porosity
B. Microfissures
C. Double porosity

can be oriented in three main directions, which cut the rock into blocks. In theory,
the primary porosity of a dense solid rock may be zero and the rock matrix will be
impermeable. Such a rock can be regarded as a single-porosity system (Figure 1.4A).
In some rocks, notably crystalline rocks, the main fractures are accompanied by a
dense system of microfissures, which considerably increase the porosity of the rock
matrix (Figure 1.4B). In contrast, the primary porosity of granular geological forma-
tions (e.g. sandstone) can be quite significant (Figure 1.4C). When such a formation
is fractured, it can be regarded as a double-porosity system because the two types
of porosities coexist: the primary or matrix porosity and the secondary or fracture
porosity.
Table 1.1 gives some porosity values for unconsolidated materials and rocks.

Table 1.1 Range of porosity values (n) in percentages

Rocks Unconsolidated materials
Sandstone 5-30 Gravel 25-40
Limestone 0-20 Sand 25-50
Karstic limestone 5-50 Silt 35-50
Shale 0-10 Clay 40-70
Basalt, fractured 5-50

Crystalline rock 0-5

Crystalline rock, fractured 0-10
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1.7.2  Hydraulic conductivity (K)

The hydraulic conductivity is the constant of proportionality in Darcy’s law (Equation
1.3). It is defined as the volume of water that will move through a porous medium
in unit time under a unit hydraulic gradient through a unit area measured at right
angles to the direction of flow. Hydraulic conductivity can have any units of Length/
Time, for example m/d.

The hydraulic conductivity of fractured rocks depends largely on the density of
the fractures and the width of their apertures. Fractures can increase the hydraulic
conductivity of solid rocks by several orders or magnitude.

The significant effect that fractures can have on the hydraulic conductivity of hard
rocks has been treated by various authors. Maini and Hocking (1977), for example,
as quoted by De Marsily (1986), give the equivalence between the hydraulic conductivi-
ty of a fractured rock and that of a porous (granular) aquifer. From their diagram,
it follows that the flow through, say, a 100 m thick cross-section of a porous medium
with a hydraulic conductivity of 10> m/d could, in a fractured medium with an imper-
meable rock matrix, also come from one single fracture only 0.2 mm wide.

For orders of magnitude of K for different materials, see Table 1.2.

Table 1.2 Order of magnitude of K for different kinds of rock (from Bouwer 1978)

Geological classification K
(m/d)

Unconsolidated materials:

Clay 108 -107?

Fine sand 1 -5

Medium sand 5 — 2x10!

Coarse sand 2 x 101 -10?

Gravel 10? -10°

Sand and gravel mixes 5 -10?

Clay, sand, gravel mixes (e.g. till) 1073 ~107!
Rocks:

Sandstone 1073 -1

Carbonate rock with secondary porosity 1072 -1

Shale 10”7

Dense solid rock <107

Fractured or weathered rock
(Core samples)
Volcanic rock

Almost0— 3 x 10?
Almost 0—10°

1.7.3  Interporosity flow coefficient (1)

When a confined fractured aquifer of the double-porosity type is pumped, the interpor-
osity flow coefficient controls the flow in the aquifer. It indicates how easily water
can flow from the aquifer matrix blocks into the fractures, and is defined as

K

— 2 m
A =oar K, (1.6)
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where o is a shape factor that reflects the geometry of the matrix blocks, ris the distance
to the well, K is hydraulic conductivity, f is the fracture, and m is matrix block. The
dimension of A is reciprocal area.

1.7.4  Compressibility (o and B)

Compressibility is an important material and fluid property in the analysis of unsteady
flow to wells. It describes the change in volume or the strain induced in an aquifer
(or aquitard) under a given stress, or
_ —dVy/Vy

o= do, (1.7)
where V; is the total volume of a given mass of material and do, is the change in
effective stress. Compressibility is expressed in m?/N or Pa'. Its value for clay ranges
from 107 to 10°%, for sand from 107 to 10, for gravel and fractured rock from 10~
to 10719 m?/N.

Similarly, the compressibility of water is defined as

p=—"g " (18)

A change in the water pressure dp induces a change in the volume V,, of a given mass
of water. The compressibility of groundwater under the range of temperatures that
are usually encountered can be taken constant as 4.4 x 107'°m?/N (or Pa™).

1.7.5 Transmissivity (KD or T)

Transmissivity is the product of the average hydraulic conductivity K and the saturat-
ed thickness of the aquifer D. Consequently, transmissivity is the rate of flow under
aunit hydraulic gradient through a cross-section of unit width over the whole saturated
thickness of the aquifer. The effective transmissivity, as used for fractured media, is
defined as

T = Tf(X)Tf(y) (1 .9)

where f refers to the fractures and x and y to the principal axes of permeability.
Transmissivity has the dimensions of Length’/Time x Length or Length?/Time and
is, for example, expressed in m?/d or m?/s.

1.7.6 Specific storage (S,)

The specific storage of a saturated confined aquifer is the volume of water that a
unit volume of aquifer releases from storage under a unit decline in hydraulic head.
This release of water from storage under conditions of decreasing head h stems from
the compaction of the aquifer due to increasing effective stress o, and the expansion
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of the water due to decreasing pressure p. Hence, the earlier-defined compressibilities
of material and water play a role in these two mechanisms. The specific storage is
defined as

S, = pg(a + np) (1.10)

where p is the mass density of water (M/L?%), g is the acceleration due to gravity (N/L%),
and the other symbols are as defined earlier. The dimension of specific storage is
Length.

1.7.7 Storativity (S)

The storativity of a saturated confined aquifer of thickness D is the volume of water
released from storage per unit surface area of the aquifer per unit decline in the compo-
nent of hydraulic head normal to that surface. In a vertical column of unit area extend-
ing through the confined aquifer, the storativity S equals the volume of water released
from the aquifer when the piezometric surface drops over a unit distance. Storativity
is defined as

S = pgD(a + nP) = S,D (1.11)

As storativity involves a volume of water per volume of aquifer, it is a dimensionless
quantity. Its values in confined aquifers range from 5 x 10°to 5 x 1073

1.7.8  Storativity ratio (®)

The storativity ratio is a parameter that controls the flow from the aquifer matrix
blocks into the fractures of a confined fractured aquifer of the double-porosity type.
(See also Sections 1.7.1 and 1.7.3.) It is defined as

_ Sf
TS+ S,

where S is the storativity and f is fracture and m is matrix block. Being a ratio, ®
is dimensionless.

o (1.12)

1.7.9 Specific yield (S,)

The specific yield is the volume of water that an unconfined aquifer releases from
storage per unit surface area of aquifer per unit decline of the watertable. The values
of the specific yield range from 0.01 to 0.30 and are much higher than the storativities
of confined aquifers. In unconfined aquifers, the effects of the elasticity of the aquifer
matrix and of the water are generally negligible. Specific yield is sometimes called
effective porosity, unconfined storativity, or drainable pore space. Small interstices
do not contribute to the effective porosity because the retention forces in them are
greater than the weight of water. Hence, no groundwater will be released from small
interstices by gravity drainage.
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It is obvious that water can only move through pores that are interconnected. Hard
rocks may contain numerous unconnected pores in which the water is stagnant. The
most common example is that of secondary dolomite. Dolomitization increases the
porosity because the diagenetic transformation of calcite into dolomite is accompanied
by a 13% reduction in volume of the rock (Matthess 1982). The porosity of secondary
dolomite is high, 20 to 30%, but the effective porosity is low because the pores are
seldom interconnected. Water in ‘dead-end’ pores is also almost stagnant, so such
pores are excluded from the effective porosity. They do play a role, of course, when
one is studying the mechanisms of compressibility and solute transport in porous
media.

In fractured rocks, water only moves through the fractures, even if the unfractured
matrix blocks are porous. This means that the effective porosity of the rock mass
is linked to the volume of these fractures. A fractured granite, for example, has a
matrix porosity of 1 to 2 %, but its effective porosity is less than 1% because the matrix
itself has a very low permeability (De Marsily 1986).

Table 1.3 gives some representative values of specific yields for different materials.

Table 1.3 Representative values of specific yield (Johnson 1967)

Material S, Material S,
Coarse gravel 23 Limestone 14
Medium gravel 24 Dune sand 38
Fine gravel 25 Loess 18
Coarse sand 27 Peat 44
Medium sand 28 Schist 26
Fine sand 23 Siltstone 12
Silt 8 Silty till 6
Clay 3 Sandy till 16
Fine-grained sandstone 21 Gravelly till 16
Medium-grained sandstone 27 Tuff 21

1.7.10  Diffusivity (KD/S)

The hydraulic diffusivity is the ratio of the transmissivity and the storativity of a satu-
rated aquifer. It governs the propagation of changes in hydraulic head in the aquifer.
Diffusivity has the dimension of Length?/Time.

1.7.11 Hydraulic resistance (c)

The hydraulic resistance characterizes the resistance of an aquitard to vertical flow,
either upward or downward. It is the reciprocal of the leakage or leakage coefficient
K’/D’ in Darcy’s law when this law is used to characterize the amount of leakage
through the aquitard; K’ = the hydraulic conductivity of the aquitard for vertical flow,
and D’= the thickness of the aquitard. The hydraulic resistance is thus defined as
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D/

C=-I<~,

(1.13)

and has the dimension of Time. It is often expressed in days. Values of ¢ vary widely,
from some hundreds of days to several ten thousand days; for aquicludes, ¢ is infinite.

1.7.12 Leakage factor (L)

The leakage factor, or characteristic length, is a measure for the spatial distribution
of the leakage through an aquitard into a leaky aquifer and vice versa. It is defined
as

L = ./KDc (1.14)

Large values of L indicate a low leakage rate through the aquitard, whereas small
values of L mean a high leakage rate. The leakage factor has the dimension of Length,
expressed, for example, in metres.
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2 Pumping tests

2.1 The principle

The principle of a pumping test is that if we pump water from a well and measure
the discharge of the well and the drawdown in the well and in piezometers at known
distances from the well, we can substitute these measurements into an appropriate
well-flow equation and can calculate the hydraulic characteristics of the aquifer (Fig-
ure 2.1).

2.2 Preliminary studies

Before a pumping test is conducted, geological and hydrological information on the

following should be collected:

— The geological characteristics of the subsurface (i.e. all those lithological, strati-
graphic, and structural features that may influence the flow of groundwater);

— The type of aquifer and confining beds;

— The thickness and lateral extent of the aquifer and confining beds:

* The aquifer may be bounded laterally by barrier boundaries of impermeable mate-
rial (e.g. the bedrock sides of a buried valley, a fault, or simply lateral changes
in the lithology of the aquifer material);

¢ Of equal importance are any lateral recharge boundaries (e.g. where the aquifer
is in direct hydraulic contact with a deeply incised perennial river or canal, a lake,
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Figure 2.1 Drawdown in a pumped aquifer
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or the ocean) or any horizontal recharge boundaries (e.g. where percolating rain
or irrigation water causes the watertable of an unconfined aquifer to rise, or where
an aquitard leaks and recharges the aquifer);

— Data on the groundwater-flow system: horizontal or vertical flow of groundwater,
watertable gradients, and regional trends in groundwater levels;

— Any existing wells in the area. From the logs of these wells, it may be possible to
derive approximate values of the aquifer’s transmissivity and storativity and their
spatial variation. It may even be possible to use one of those wells for the test,
thereby reducing the cost of field work. Sometimes, however, such a well may pro-

duce uncertain results because details of its construction and condition are not avail-
able.

2.3 Selecting the site for the well

When an existing well is to be used for the test or when the hydraulic characteristics

of a specific location are required, the well site is predetermined and one cannot move

to another, possibly more suitable site. When one has the freedom to choose, however,

the following points should be kept in mind:

— The hydrogeological conditions should not change over short distances and should
be representative of the area under consideration, or at least a large part of it;

— The site should not be near railways or motorways where passing trains or heavy

traffic might produce measurable fluctuations in the hydraulic head of a confined

aquifer;

The site should not be in the vicinity of existing discharging wells;

— The pumped water should be discharged in a way that prevents its return to the

aquifer;

The gradient of the watertable or piezometric surface should be low;

— Manpower and equipment must be able to reach the site easily.

2.4 The well

After the well site has been chosen, drilling operations can begin. The well will consist
of an open-ended pipe, perforated or fitted with a screen in the aquifer to allow water
to enter the pipe, and equipped with a pump to lift the water to the surface. For the
design and construction of wells, we refer to Driscoll (1986), Groundwater Manual
(1981), and Genetier (1984), where full details are given. Some of the major points
are summarized below.

2.4.1 Well diameter

A pumping test does not require expensive large-diameter wells. If a suction pump
placed on the ground surface is used, as in shallow watertable areas, the diameter
of the well can be small. A submersible pump requires a well diameter large enough
to accommodate the pump.
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The diameter of the well can be varied without greatly affecting the yield of the
well. Doubling the diameter would only increase the yield by about 10 per cent, other
things being equal.

2.4.2  Well depth

The depth of the well will usually be determined from the log of an exploratory bore
hole or from the logs of nearby existing wells, if any. The well should be drilled to
the bottom of the aquifer, if possible, because this has various advantages, one of
which is that it allows a longer well screen to be placed, which will result in a higher
well yield.

During drilling operations, samples of the geological formations that are pierced
should be collected and described lithologically. Records should be kept of these litho-
logical descriptions, and the samples themselves should be stored for possible future
reference.

2.4.3 Well screen

The length of the well screen and the depth at which it is placed will largely be decided
by the depth at which the coarsest materials are found. In the lithological descriptions,
therefore, special attention should be given to the grain size of the various materials.
If geophysical well logs are run immediately after the completion of drilling, a prelimin-
ary interpretation of those logs will help greatly in determining the proper depth at
which to place the screen.

If the aquifer consists of coarse gravel, the screen can be made locally by sawing,
drilling, punching, or cutting openings in the pipe. In finer formations, finer openings
are needed. These may vary in size from some tenths of a millimetre to several milli-
metres. Such precision-made openings can only be obtained in factory-made screens.
To prevent the blocking of well screen openings by spherical grains, long narrow slits
are preferable. The slots should retain 30 to 50 per cent of the aquifer material, depend-
ing on the uniformity coefficient of the aquifer sample. (For details, see Driscoll 1986;
Huisman 1972.)

The well screen should be slotted or perforated over no more than 30 to 40 per
cent of its circumference to keep the entrance velocity low, say less than about 3 cm/s.
At this velocity, the friction losses in the screen openings are small and may even
be negligible.

A general rule is to screen the well over at least 80 per cent of the aquifer thickness
because this makes it possible to obtain about 90 per cent or more of the maximum
yield that could be obtained if the entire aquifer were screened. Another even more
important advantage of this screen length is that the groundwater flow towards the
well can be assumed to be horizontal, an assumption that underlies almost all well-flow
equations (Figure 2.2A).

There are some exceptions to the general rule:
— In unconfined aquifers, it is common practice to screen only the lower half or lower
one-third of the aquifer because, if appreciable drawdowns occur, the upper part
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of a longer well screen would fall dry;

— In a very thick aquifer, it will be obvious that the length of the screen will have
to be less than 80 per cent, simply for reasons of economy. Such a well is said to
be a partially penetrating well. It induces vertical-flow components, which can
extend outwards from the well to distances roughly equal to 1.5 times the thickness
of the aquifer (Figure 2.2B). Within this radius, the measured drawdowns have to
be corrected before they can be used in calculating the aquifer characteristics;

— Wells in consolidated aquifers do not need a well screen because the material around
the well is stable.

2.4.4  Gravel pack

It is easier for water to enter the well if the aquifer material immediately surrounding
the screen is removed and replaced by artificially-graded coarser material. This is
known as a gravel pack. When the well is pumped, the gravel pack will retain much
of the aquifer material that would otherwise enter the well. With a gravel pack, larger
slot sizes can be selected for the screen. The thickness of the pack should be in the
range of 8 to 15 cm. Gravel pack material should be clean, smoothly-rounded grains.
Details on the gravel sizes to be used in gravel packs are given by Driscoll (1986)
and Huisman (1972).

2.4.5 The pump

After the well has been drilled, screened, and gravel-packed, as necessary, a pump
has to be installed to lift the water. It is beyond the scope of this book to discuss
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the many kinds of pumps that might be used, so some general remarks must suffice:

— The pump and power unit should be capable of operating continuously at a constant
discharge for a period of at least a few days. An even longer period may be required
for unconfined or leaky aquifers, and especially for fractured aquifers. The same
applies if drawdown data from piezometers at great distances from the well are
to be analyzed. In such cases, pumping should continue for several days more;

— The capacity of the pump and the rate of discharge should be high enough to produce
good measurable drawdowns in piezometers as far away as, say, 100 or 200 m from
the well, depending on the aquifer conditions.

After the pump has been installed, the well should be developed by being pumped

at a low discharge rate. When the initially cloudy water becomes clear, the discharge

rate should be increased and pumping continued until the water clears again. This
procedure should be repeated until the desired discharge rate for the test is reached
or exceeded.

2.4.6  Discharging the pumped water

The water delivered by the well should be prevented from returning to the aquifer.
This can be done by conveying the water through a large-diameter pipe, say over
a distance of 100 or 200 m, and then discharging it into a canal or natural channel.
The water can also be conveyed through a shallow ditch, but the bottom of the ditch
should be sealed with clay or plastic sheets to prevent leakage. Piezometers can be
used to check whether any water is lost through the bottom of the ditch.

2.5 Piezometers

A piezometer (Figure 2.3) is an open-ended pipe, placed in a borehole that has been
drilled to the desired depth in the ground. The bottom tip of the piezometer is fitted
with a perforated or slotted screen, 0.5 to 1 m long, to allow the inflow of water.
A plug at the bottom and jute or cotton wrapped around the screen will prevent the
entry of fine aquifer material.

The annular space around the screen should be filled with a gravel pack or uniform
coarse sand to facilitate the inflow of water. The rest of the annular space can be
filled with any material available, except where the presence of aquitards requires a
seal of bentonite clay or cement grouting to prevent leakage along the pipe. Experience
has taught us that very fine clayey sand provides almost as good a seal as bentonite.
It produces an error of less than 0.03 m, even when the difference in head between
the aquifers is more than 30 m.

The water levels measured in piezometers represent the average head at the screen
of the piezometers. Rapid and accurate measurements can best be made in small-
diameter piezometers. If their diameter is large, the volume of water contained in them
may cause a time lag in changes in drawdown. When the depth to water is to be mea-
sured manually, the diameter of the piezometers need not be larger than 5 cm. If auto-
matic water-level recorders or electronic water pressure transducers are used, larger-
diameter piezometers will be needed. In a heterogeneous aquifer with intercalated
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Figure 2.3 A piezometer

aquitards, the diameter of the bore holes should be large enough to allow a cluster
of piezometers to be placed at different depths (Figure 2.4).

After the piezometers have been installed, it is advisable to pump or flush them
for a short time to remove silt and clay particles. This will ensure that they function
properly during the test.

After the well has been completed and its information analyzed, one has to decide
how many piezometers to place, at what depths, and at what distances from the well.

2.5.1 The number of piezometers

The question of how many piezometers to place depends on the amount of information
needed, and especially on its required degree of accuracy, but also on the funds avail-
able for the test.

Although it will be shown in later chapters that drawdown data from the well itself
or from one single piezometer often permit the calculation of an aquifer’s hydraulic
characteristics, it is nevertheless always best to have as many piezometers as conditions
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permit. Three, at least, are recommended. The advantage of having more than one
piezometer is that the drawdowns measured in them can be analyzed in two ways:
by the time-drawdown relationship and by the distance-drawdown relationship.
Obviously, the results of such analyses will be more accurate and will be representative
of a larger volume of the aquifer.

2.5.2 Their distance from the well

Piezometers should be placed not too near the well, but not too far from it either.
This rather vague statement needs some explanation. So, as will be outlined below,
the distances at which piezometers should be placed depends on the type of aquifer,
its transmissivity, the duration of pumping, the discharge rate, the length of the well
screen, and whether the aquifer is stratified or fractured.

The type of aquifer
When a confined aquifer is pumped, the loss of hydraulic head propagates rapidly
because the release of water from storage is entirely due to the compressibility of the
aquifer material and that of the water. The drawdown will be measurable at great
distances from the well, say several hundred metres or more.

In unconfined aquifers, the loss of head propagates slowly. Here, the release of
water from storage is mostly due to the dewatering of the zone through which the
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Figure 2.4 Cluster of piezometers in a heterogeneous aquifer intercalated with aquitards
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water is moving, and only partially due to the compressibility of the water and aquifer
material. Unless pumping continues for several days, the drawdown will only be mea-
surable fairly close to the well, say not much more than about 100 m.

Aleaky aquifer occupies an intermediate position. Depending on the hydraulic resis-
tance of its confining aquitard (or aquitards), a leaky aquifer will resemble either a
confined or an unconfined aquifer.

Transmissivity

When the transmissivity of the aquifer is high, the cone of depression induced by pump-
ing will be wide and flat (Figure 2.5A). When the transmissivity is low, the cone will
be steep and narrow (Figure 2.5B). In the first case, piezometers can be placed farther
from the well than they can in the second.

The duration of the test

Theoretically, in an extensive aquifer, as long as the flow to the well is unsteady, the
cone of depression will continue to expand as pumping continues. Therefore, for tests
of long duration, piezometers can be placed at greater distances from the well than
for tests of short duration.

The discharge rate

If the discharge rate is high, the cone of depression will be wider and deeper than
if the discharge rate is low. With a high discharge rate, therefore, the piezometers
can be placed at greater distances from the well.

The length of the well screen

The length of the well screen has a strong bearing on the placing of the piezometers.
If the well is a fully penetrating one, i.e. it is screened over the entire thickness of
the aquifer or at least 80 per cent of it, the flow towards the well will be horizontal
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and piezometers can be placed close to the well. Obviously, if the aquifer is not very
thick, it is always best to employ a fully penetrating well.

If the well is only partially penetrating, the relatively short length of well screen
will induce vertical flow components, which are most noticeable near the well. If piez-
ometers are placed near the well, their water-level readings will have to be corrected
before being used in the analysis. These rather complicated corrections can be avoided
if the piezometers are placed farther from the well, say at distances which are at least
equal to 1.5 times the thickness of the aquifer. At such distances, it can be assumed
that the flow is horizontal (see Figure 2.2).

Stratification

Homogeneous aquifers seldom occur in nature, most aquifers being stratified to some
degree. Stratification causes differences in horizontal and vertical hydraulic conductiv-
ity, so that the drawdown observed at a certain distance from the well may differ
at different depths within the aquifer. As pumping continues, these differences in draw-
down diminish. Moreover, the greater the distance from the well, the less effect stratifi-
cation has upon the drawdowns.

Fractured rock

Deciding on the number and location of piezometers in fractured rock poses a special
problem, although the rock can be so densely fractured that its drawdown response
to pumping resembles that of an unconsolidated homogeneous aquifer; if so, the
number and location of the piezometers can be chosen in the same way as for such
an aquifer.

If the fracture is a single vertical fracture, however, matters become more compli-
cated. The number and location of piezometers will then depend on the orientation
of the fracture (which may or may not be known) and on the transmissivity of the
rock on opposite sides of the fracture (which may be the same or, as so often happens,
is not the same). Further, the fracture may be open or closed. If it is open, its hydraulic
conductivity can be regarded as infinite, and it will resemble a canal whose water
level is suddenly lowered. There will then be no hydraulic gradient inside the fracture,
so that it can be regarded as an ‘extended well’, or as a drain that receives water from
the adjacent rock through parallel flow. This situation requires that piezometers be
placed along a line perpendicular to the fracture. To check whether the fracture can
indeed be regarded as an ‘extended well’, a few piezometers should be placed in the
fracture itself.

If the hydraulic conductivity of the fracture is severely reduced by weathering or
by the deposition of minerals on the fracture plane, pumping will cause hydraulic
gradients to develop in the fracture and in the adjacent rock. This situation requires
piezometers in the fracture and in the adjacent rock.

If the fracture is a single vertical open fracture of infinite hydraulic conductivity
and known orientation, and if the transmissivity of the rock is the same on both sides
of the fracture, two piezometers on the same side of the fracture are required to deter-
mine the perpendicular distances between the piezometers and the fracture (Figure
2.6A). In this figure, the piezometer closest to the pumped well is not the piezometer
closest to the fracture. Regardless of the distances r, and r,, the drawdown will be
greatest in the piezometer closest to the fracture. To analyze pumping test data from
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such a fracture, we must know the distances between the piezometers and the fracture,
x; and x,, which we can calculate from r, and r,, measured in the field, and the angles
0, and O,.

If the precise orientation of the fracture is not known, more than two piezometers
will be needed. As can be seen in Figure 2.6B, if x, is small relative to X,, tWO orienta-
tions are possible because x;, may be on either side of the fracture. More piezometers
must then be placed to find the orientation.

More piezometers are also required if there is geological evidence that the transmissi-
vity of the rock on opposite sides of the fracture is significantly different.

Summarizing

As is obvious from the above, there are many factors to be taken into account in
deciding how far from the well the piezometers should be placed. Nevertheless, if one
has a proper knowledge of the test site (especially of the type of aquifer, its thickness,
stratification or fracturing, and expected transmissivity), it will be easier to make the
right decisions.

Although no fixed rule can be given and the ultimate choice depends entirely on
local conditions, placing piezometers between 10 and 100 m from the well will give
reliable data in most cases. For thick aquifers or stratified confined ones, the distances
should be greater, say between 100 and 250 m or more from the well.

One or more piezometers should also be placed outside the area affected by the
pumping so that the natural behaviour of the hydraulic head in the aquifer can be
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Figure 2.6 Piezometer arrangement near a fracture:
A) of known orientation
B) of unknown orientation
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Figure 2.7 Example of a piezometer arrangement

measured. These piezometers should be several hundred metres away from the well,
or in the case of truly confined aquifers, as far away as one kilometre or more. If
the readings from these piezometers show water-level changes during the test (e.g.
changes caused by natural discharge or recharge), these data will be needed to correct
the drawdowns induced by the pumping.

An example of a piezometer arrangement in an unconsolidated leaky aquifer is
shown in Figure 2.7.

2.5.3  Depth of the piezometers

The depth of the piezometers is at least as important as their distance from the well.
In an isotropic and homogeneous aquifer, the piezometers should be placed at a depth
that coincides with that of half the length of the well screen. For example, if the well
is fully penetrating and its screen is between 10 and 20 m below the ground surface,
the piezometers should be placed at a depth of about 15 m.

For heterogeneous aquifers made up of sandy deposits intercalated with aquitards,
it is recommended that a cluster of piezometers be placed, i.e. one piezometer in each
sandy layer (see Figure 2.4). The holes in the aquitards should be sealed to prevent
leakage along the tubes. Despite these precautions, some leakage may still occur, so
it is recommended that the screens be placed a few metres away from the upper and
lower boundaries of the aquitards where the effect of this leakage is small.

If an aquifer is overlain by a partly saturated aquitard, piezometers should also
be placed in the aquitard to check whether its watertable is affected when the underly-
ing aquifer is pumped. This information is needed for the analysis of tests in leaky
aquifers.

2.6 The measurements to be taken

The measurements to be taken during a pumping test are of two kinds:
— Measurements of the water levels in the well and the piezometers;
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— Measurements of the discharge rate of the well.

Ideally, a pumping test should not start before the natural changes in hydraulic head
in the aquifer are known — both the long-term regional trends and the short-term
local variations. So, for some days prior to the test, the water levels in the well and
the piezometers should be measured, say twice a day. If a hydrograph (i.e. a curve
of time versus water level) is drawn for each of these observation points, the trend
and rate of water-level change can be read. At the end of the test (i.e. after complete
recovery), water-level readings should continue for one or two days. With these data,
the hydrographs can be completed and the rate of natural water-level change during
the test can be determined. This information can then be used to correct the drawdowns
observed during the test.

Special problems arise in coastal aquifers whose hydraulic head is affected by tidal
movements. Prior to the test, a complete picture of the changes in head should be
obtained, including maximum and minimum water levels in each piezometer and their
time of occurrence.

When a test is expected to last one or more days, measurements should also be
made of the atmospheric pressure, the levels of nearby surface waters, if present, and
any precipitation.

In areas where production wells are operating, the pumping test has to be conducted
under less than ideal conditions. Nevertheless, the possibly significant effects of these
interfering wells can be eliminated from the test data if their on-off times and discharge
rates are monitored, both before and during the test. Even so, it is best to avoid the
disturbing influence of such wells if at all possible.

2.6.1 Water-level measurements

The water levels in the well and the piezometers must be measured many times during
a test, and with as much accuracy as possible. Because water levels are dropping fast
during the first one or two hours of the test, the readings in this period should be
made at brief intervals. As pumping continues, the intervals can be gradually leng-
thened. Table 2.1 gives a range of intervals for readings in the well. For single well
tests (i.e. tests without the use of piezometers), the intervals in the first 5 to 10 minutes
of the test should be shorter because these early-time drawdown data may reveal well-
bore storage effects.

Table 2.1 Range of intervals between water-level measurements in well

Time since start of pumping Time intervals
0— 5 minutes 0.5 minutes
5— 60 minutes S minutes

60—120 minutes 20 minutes
120—shutdown of the pump 60 minutes
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Similarly, in the piezometers, water-level measurements should be taken at brief inter-
vals during the first hours of the test, and at longer intervals as the test continues.
Table 2.2 gives a range of intervals for measurements in those piezometers placed
in the aquifer and located relatively close to the well; here, the water levels are immedi-
ately affected by the pumping. For piezometers farther from the well and for those
in confining layers above or below the aquifer, the intervals in the first minutes of
the test need not be so brief.

Table 2.2 Range of intervals between water-level measurements in piezometers

Time since start of pumping Time intervals
0 — 2 minutes approx. 10 seconds
2 —  Sminutes 30 seconds
5 — 15 minutes 1 minute
15 — 50 minutes 5 minutes
50 — 100 minutes 10 minutes
100 minutes — S hours 30 minutes
Shours — 48 hours 60 minutes
48 hours — 6days 3 times a day
6days  —shutdown of the pump 1 time a day

The suggested intervals need not be adhered to too rigidly as they should be adapted
to local conditions, available personnel, etc. All the same, readings should be frequent
in the first hours of the test because, in the analysis of the test data, time generally
enters in a logarithmic form.

All manual measurements of water levels and times should preferably be noted on
standard, pre-printed forms, with space available for all relevant field data. An exam-
ple is shown in Figure 2.8. The completed forms should be kept on file.

After some hours of pumping, sufficient time will become available in the field to
draw the time-drawdown curves for the well and for each piezometer. Log-log and
semi-log paper should be used for this purpose, with the time in minutes on a logarith-
mic scale. These graphs can be helpful in checking whether the test is running well
and in deciding on the time to shut down the pump.

After the pump has been shut down, the water levels in the well and the piezometers
will start to rise — rapidly in the first hour, but more slowly afterwards. These rises
can be measured in what is known as a recovery test. If the discharge rate of the well
was not constant throughout the pumping test, recovery-test data are more reliable
than the drawdown data because the watertable recovers at a constant rate, which
is the average of the pumping rate. The data from a recovery test can also be used
to check the calculations made on the basis of the drawdown data. The schedule for
recovery measurements should be the same as that adhered to during the pumping
test.
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Figure 2.8 Example of a pre-printed pumping-test form

2.6.1.1 Water-level-measuring devices

The most accurate recordings of water-level changes are made with fully-automatic
microcomputer-controlled systems, as developed, for instance, by the TNO Institute
of Applied Geoscience, The Netherlands (Figure 2.9). This system uses pressure trans-
ducers or acoustic transducers for continuous water-level recordings, which are stored

on magnetic tape (see also Kohlmeier et al. 1983).

A good alternative is the conventional automatic recorder, which also produces
a continuous record of water-level changes. Such recorders, however, require large-

diameter piezometers.
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Fairly accurate measurements can be taken by hand, but then the instant of each
reading must be recorded with a chronometer. Experience has shown that it is possible
to measure water levels to within 1 or 2 mm with one of the following:

— A floating steel tape and standard with pointer;

— An electrical sounder;

— The wetted-tape method.

For piezometers close to the well where water levels are changing rapidly during the
first hours of the test, the most convenient device is the floating steel tape with pointer
because it permits direct readings. For piezometers far from the well, conventional
automatic recorders are the most suitable devices because only slow water-level
changes can be interpreted from their graphs. For piezometers at intermediate dis-
tances, either floating or hand-operated water-level indicators can be used, but even
when water levels are changing rapidly, accurate observations can be made with a
recorder, provided a chronometer is used and the time of each reading is marked
manually on the graph.

For detailed descriptions of automatic recorders, mechanical and electrical
sounders, and other equipment for measuring water levels in wells, we refer to hand-
books (e.g. Driscoll 1986; Genetier 1984; Groundwater Manual 1981).

2.6.2 Discharge-rate measurements

Amongst the arrangements to be made for a pumping test is a proper control of the
discharge rate. This should preferably be kept constant throughout the test. During
pumping, the discharge should be measured at least once every hour, and any necessary
adjustments made to keep it constant.

I computer '—L data storage I atmospheric
I pressure
I i g I
electromagnetic measuring instruments
flow meter I

~8— — 2N

rainfall
L

D.“‘.‘“.L.... -

Figure 2.9 A fully-automated micro-computer-controlled recorder
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The discharge can be kept constant by a valve in the discharge pipe. This is a more
accurate method of control than changing the speed of the pump.

The fully-automatic computer-controlled system shown earlier in Figure 2.9
includes a magnetic flow meter for discharge measurements as part of a discharge-
correction scheme to maintain a constant discharge.

A constant discharge rate, however, is not a prerequisite for the analysis of a pump-
ing test. There are methods available that take variable discharge into account, whether
it be due to natural causes or is deliberately provoked.

2.6.2.1 Discharge-measuring devices

To measure the discharge rate, a commercial water meter of appropriate capacity can
be used. The meter should be connected to the discharge pipe in a way that ensures
accurate readings being made: at the bottom of a U-bend, for instance, so that the
pipe is running full. If the water is being discharged through a small ditch, a flume
can be used to measure the discharge.

If no appropriate water meter or flume is available, there are other methods of
measuring or estimating the discharge.

Container

A very simple and fairly accurate method is to measure the time it takes to fill a contain-
er of known capacity (e.g. an oil drum). This method can only be used if the discharge
rate is low.

Orifice weir

The circular orifice weir is commonly used to measure the discharge from a turbine
or centrifugal pump. It does not work when a piston pump is used because the flow
from such a pump pulsates too much.

The orifice is a perfectly round hole in the centre of a circular steel plate which
is fastened to the outer end of a level discharge pipe. A piezometer tube is fitted in
a 0.32 or 0.64 cm hole made in the discharge pipe, exactly 61 cm from the orifice
plate. The water level in the piezometer represents the pressure in the discharge pipe
when water is pumped through the orifice. Standard tables have been published which
show the flow rate for various combinations of orifice and pipe diameter (Driscoll
1986).

Orifice bucket
The orifice bucket was developed in the U.S.A. It consists of a small cylindrical tank
with circular openings in the bottom. The water from the pump flows into the tank
and discharges through the openings. The tank fills with water to a level where the
pressure head causes the outflow through the openings to equal the inflow from the
pump. If the tank overflows, one or more orifices are opened. If the water in the tank
does not rise sufficiently, one or more orifices are closed with plugs.

A piezometer tube is connected to the outer wall of the tank near the bottom, and
a vertical scale is fastened behind the tube to allow accurate readings of the water
level in the tank. A calibration curve is required, showing the rate of discharge through
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a single orifice of a given size for various values of the pressure head. The discharge
rate taken from this curve, multiplied by the number of orifices through which the
water is being discharged, gives the total rate of discharge for any given water-level
reading. If the orifice bucket is provided with many openings, a considerable range
of pumping rates can be measured. A further advantage of the orifice bucket is that
it tends to smooth out any pulsating flow from the pump, thus permitting the average
pumping rate to be determined with fair accuracy.

Jet-stream method

If none of the above-mentioned methods can be applied, the jet-stream method (or
open-pipe-flow method) can be used. By measuring the dimensions of a stream flowing
either vertically or horizontally from an open pipe, one can roughly estimate the dis-
charge.

If the water is discharged through a vertical pipe, estimates of the discharge can
be made from the diameter of the pipe and the height to which the water rises above
the top of the pipe. Driscoll (1986) has published a table showing the discharge rates
for different pipe diameters and various heights of the crest of the stream above the
top of the pipe.

If the water is discharged through a horizontal pipe, flowing full and with a free
fall from the discharge opening, estimates of the discharge can be made from the hori-
zontal and vertical distances from the end of the pipe to a point in the flowing stream
of water. The point can be chosen at the outer surface of the stream or in its centre.
Another table by Driscoll (1986) shows the discharge rates for different pipe diameters
and for various horizontal distances of the stream of water.

2.7 Duration of the pumping test

The question of how many hours to pump the well in a pumping test is difficult to
answer because the period of pumping depends on the type of aquifer and the degree
of accuracy desired in establishing its hydraulic characteristics. Economizing on the
period of pumping is not recommended because the cost of running the pump a few
extra hours is low compared with the total costs of the test. Besides, better and more
reliable data are obtained if pumping continues until steady or pseudo-steady flow
has been attained. At the beginning of the test, the cone of depression develops rapidly
because the pumped water is initially derived from the aquifer storage immediately
around the well. But as pumping continues, the cone expands and deepens more slowly
because, with each additional metre of horizontal expansion, a larger volume of stored
water becomes available. This apparent stabilization of the cone often leads inexper-
ienced observers to conclude that steady state has been reached. Inaccurate measure-
ments of the drawdowns in the piezometers — drawdowns that are becoming smaller
and smaller as pumping continues — can lead to the same wrong conclusion. In reality,
the cone of depression will continue to expand until the recharge of the aquifer equals
the pumping rate.

In some tests, steady-state or equilibrium conditions occur a few hours after the
start of pumping; in others, they occur within a few days or weeks; in yet others,
they never occur, even though pumping continues for years. It is our experience that,
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under average conditions, a steady state is reached in leaky aquifers after 15 to 20
hours of pumping; in a confined aquifer, it is good practice to pump for 24 hours;
in an unconfined aquifer, because the cone of depression expands slowly, a longer
period is required, say 3 days.

As will be demonstrated in later chapters, it is not absolutely necessary to continue
pumping until a steady state has been reached, because methods are available to ana-
lyze unsteady-state data. Nevertheless, it is good practice to strive for a steady state,
especially when accurate information on the aquifer characteristics is desired, say as
a basis for the construction of a pumping station for domestic water supplies or other
expensive works. If a steady state has been reached, simple equations can be used
to analyze the data and reliable results will be obtained. Besides, the longer period
of pumping required to reach steady state may reveal the presence of boundary condi-
tions previously unknown, or in cases of fractured formations, will reveal the specific
flows that develop during the test.

Preliminary plotting of drawdown data during the test will often show what is hap-
pening and may indicate how much longer the test should continue.

2.8 Processing the data
2.8.1 Conversion of the data

The water-level data collected before, during, and after the test should first be
expressed in appropriate units. The measurement units of the International System
are recommended (Annex 2.1), but there is no fixed rule for the units in which the
field data and hydraulic characteristics should be expressed. Transmissivity, for
instance, can be expressed in m?/s or m?/d. Field data are often expressed in units
other than those in which the final results are presented. Time data, for instance, might
be expressed in seconds during the first minutes of the test, minutes during the follow-
ing hours, and actual time later on, while water-level data might be expressed in differ-
ent units of length appropriate to the timing of the observations.

It will be clear that before the field data can be analyzed, they should first be con-
verted: the time data into a single set of time units (e.g. minutes) and the drawdown
data into a single set of length units (e.g. metres), or any other unit of length that
is suitable (Annex 2.2).

2.8.2 Correction of the data

Before being used in the analysis, the observed water levels may have to be corrected
for external influences (i.e. those not related to the pumping). To find out whether
this is necessary, one has to analyze the local trend in the hydraulic head or watertable.
The most suitable data for this purpose are the water-level measurements taken in
a ‘distant’ piezometer during the test, but measurements taken at the test site for some
days before and after the test can also be used.

If, after the recovery period, the same constant water level is observed as during
the pre-testing period, it can safely be assumed that no external events influenced the
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hydraulic head during the test. If, however, the water level is subject to unidirectional
or rhythmic changes, it will have to be corrected.

2.8.2.1 Unidirectional variation

The aquifer may be influenced by natural recharge or discharge, which will result
in a rise or a fall in the hydraulic head. By interpolation from the hydrographs of
the well and the piezometers, this natural rise or fall can be determined for the pumping
and recovery periods. This information is then used to correct the observed water
levels.

Example 2.1

Suppose that the hydraulic head in an aquifer is subject to unidirectional variation,
and that the water level in a piezometer at the moment t, (start of the pumping test)
is h,. From the interpolated hydrograph of natural variation, it can be read that, at
a moment t;, the water level would have been h, if no pumping had occurred. The
absolute value of water-level change due to natural variation at t, is then: h, — h,
= Ah,. If the observed drawdown at t, is s,, where the observed drawdown is defined
as the lowering of the water level with respect to the water level at t = t,, the drawdown
due to pumping is:

— With natural discharge: s,” = s, — Ah;;

— With natural recharge: s, = s, + Ah,.

2.8.2.2 Rhythmic fluctuations

In confined and leaky aquifers, rhythmic fluctuations of the hydraulic head may be
due to the influence of tides or river-level fluctuations, or to rhythmic variations in
atmospheric pressure. In unconfined aquifers whose watertables are close to the
ground surface, diurnal fluctuations of the watertable can be significant because of
the great difference between day and night evapotranspiration. The watertable drops
during the day because of the consumptive use by the vegetation and recovers during
the night when the plant stomata are closed.

Hydrographs of the well and the piezometers, covering sufficiently long pre-test
and post-recovery periods, will yield the information required to correct the water
levels observed during the test.

Example 2.2

For this example, data from the pumping test ‘Dalem’ (see Chapter 4 and Figure 4.2)
will be corrected for the piezometer at 400 m from the well. The piezometer was located
1900 m from the River Waal, which is under the influence of the tide in the North
Sea. The Waal is hydraulically connected with the aquifer; hence the rise and fall of
the river level affected the water levels in the piezometers. Piezometer readings covering
a few days both prior to pumping and after complete recovery made it possible to
interpolate the groundwater time-versus-tide curve for the pumping and recovery peri-
ods.
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Figure 2.10A shows the curve of the groundwater tide with respect to a reference
level, which was selected as the water level at the moment pumping started (08.04
hours). At 10.20 hours, it was low tide and the water levels had fallen 5 mm, indepen-
dently of pumping. This meant that the water level observed at that moment was
Smm lower than it would have been if there had been no tidal influence. The drawdown
therefore has to be corrected accordingly. The correction term applied is read on the
vertical axis of the time-tide curve.

Figure 2.10B shows the uncorrected time-drawdown curve and the same curve after
being corrected. It will be noted that different vertical scales have been used in Parts
A and B of Figure 2.10.

The same procedure is followed to correct the data from the other piezometers.
For each, a time-tide curve, corresponding to the distance between the piezometer
and the river, is used. Obviously, the closer a piezometer is to the river, the greater
is the influence of the tide on its water levels.

2.8.2.3 Non-rhythmic regular fluctuations

Non-rhythmic regular fluctuations, due, for example, to changes in atmospheric pres-
sure, can be detected on a hydrograph covering the pre-test period. In wells or piez-
ometers tapping confined and leaky aquifers, the water levels are continuously chang-
ing as the atmospheric pressure changes. When the atmospheric pressure decreases,
the water levels rise in compensation, and vice versa (Figure 2.11). By comparing the
atmospheric changes, expressed in terms of a column of water, with the actual changes
in water levels observed during the pre-test period, one can determine the barometric
efficiency of the aquifer. The barometric efficiency (BE) is defined as the ratio of
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Figure 2.10 Correction of data for tidal influence
A) The curve of the groundwater tide under non-pumped conditions
B) Corrected and uncorrected drawdowns
Note: Vertical scales in upper and lower part of figure are different
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Figure 2.11 Response of water level in a well penetrating a confined aquifer to changes in atmospheric
pressure, showing a barometric efficiency of 75 per cent (Robinson 1939)

change in water level (Ah) in a well to the corresponding change in atmospheric pres-
sure (Ap), or BE = yAh/Ap, in which v is the specific weight of water. BE usually
ranges from 0.20 to 0.75.

From the changes in atmospheric pressure observed during a test, and the known
relationship between Ap and Ah, the water-level changes due to changes in atmospheric
pressure alone (Ah,) can be calculated for the test period for the well and each piez-
ometer. Subsequently, the actual drawdown during the test can be corrected for the
water-level changes due to atmospheric pressure:

— For falling atmospheric pressures: s” = s 4+ Ah,;
— For rising atmospheric pressures: s = s —Ah,,.

2.8.2.4 Unique fluctuations

In general, the water levels measured during a pumping test cannot be corrected for
unique fluctuations due, say, to heavy rain or the sudden rise or fall of a nearby river
or canal that is in hydraulic connection with the aquifer. In certain favourable circum-
stances, allowance can be made for such fluctuations by extrapolating the data from
a control piezometer outside the zone of influence of the well. But, in general, the
data of the test become worthless and the test has to be repeated when the situation
has returned to normal.
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2.9 Interpretation of the data

Calculating hydraulic characteristics would be relatively easy if the aquifer system
(i.e. aquifer plus well) were precisely known. This is generally not the case, so interpret-
ing a pumping test is primarily a matter of identifying an unknown system. System
identification relies on models, the characteristics of which are assumed to represent
the characteristics of the real aquifer system.

Theoretical models comprise the type of aquifer (Section 1.2), and initial and bound-
ary conditions. Typical outer boundary conditions were mentioned in Section 1.4.
Inner boundary conditions are associated with the pumped well (e.g. fully or partially
penetrating, small or large diameter, well losses).

In a pumping test, the type of aquifer and the inner and outer boundary conditions
dominate at different times during the test. They affect the drawdown behaviour of
the system in their own individual ways. So, to identify an aquifer system, one must
compare its drawdown behaviour with that of the various theoretical models. The
model that compares best with the real system is then selected for the calculation of
the hydraulic characteristics.

System identification includes the construction of diagnostic plots and specialized
plots. Diagnostic plots are log-log plots of the drawdown versus the time since pump-
ing started. Specialized plots are semi-log plots of drawdown versus time, or drawdown
versus distance to the well; they are specific to a given flow regime. A diagnostic plot
allows the dominating flow regimes to be identified; these yield straight lines on special-
ized plots. The characteristic shapes of the curves can help in selecting the appropriate
model.

In a number of cases, a semi-log plot of drawdown versus time has more diagnostic
value than a log-log plot. We therefore recommend that both types of graphs be con-
structed.

The choice of theoretical model is a crucial step in the interpretation of pumping
tests. If the wrong model is chosen, the hydraulic characteristics calculated for the
real aquifer will not be correct. A troublesome fact is that theoretical solutions to
well-flow problems are usually not unique. Some models, developed for different
aquifer systems, yield similar responses to a given stress exerted on them. This makes
system identification and model selection a difficult affair. One can reduce the number
of alternatives by conducting more field work, but that could make the total costs
of the test prohibitive. In many cases, uncertainty as to which model to select will
remain. We shall discuss this problem briefly below. The examples we give will illus-
trate that analyzing a pumping test is not merely a matter of opening a particular
page of this book and applying the method described there.

2.9.1 Aquifer categories

Aquifers fall into two broad categories: unconsolidated aquifers and consolidated frac-
tured aquifers. Within both categories, the aquifers may be confined, unconfined, or
leaky (Section 1.2, Figure 1.1). We shall first consider all three types of unconsolidated
aquifer, and then the consolidated aquifer, but only the confined type.

Figure 2.12 shows log-log and semi-log plots of the theoretical time-drawdown rela-
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tionships for confined, unconfined, and leaky unconsolidated aquifers. We present
these graphs in pairs because, although log-log plots are diagnostic, as the oil industry
states, we believe that semi-log plots can sometimes be even more diagnostic. This
becomes clear if we look at Parts A and A’ of Figure 2.12. These refer to an ideal,
confined, unconsolidated aquifer, homogeneous and isotropic, and pumped at a con-
stant rate by a fully penetrating well of very small diameter. From the semi-log plot
(Part A”), we can see that the time-drawdown relationship at early pumping times
is not linear, but at later times it is. If a linear relationship like this is found, it should
be used to calculate the hydraulic characteristics because the results will be much more
accurate than those obtained by matching field data plots with the curve of Part A.
(We return to this subject in Sections 3.2.1 and 3.2.2.)

Parts B and B’ of Figure 2.12 show the curves for an unconfined, homogeneous,
isotropic aquifer of infinite lateral extent and with a delayed yield. These two curves
are characteristic. At early pumping times, the curve of the log-log plot (Part B) follows
the curve for the confined aquifer shown in Part A. Then, at medium pumping times,
it shows a flat segment. This reflects the recharge from the overlying, less permeable
aquifer, which stabilizes the drawdown. At late times, the curve again follows a portion
of the curve of Part A. The semi-log plot is even more characteristic: it shows two
parallel straight-line segments at early and late pumping times. (We return to this
subject in Section 5.1.1.)

Parts C and C’ of Figure 2.12 refer to a leaky aquifer. At early pumping times,
the curves follow those of Parts A and A’. At medium pumping times, more and more
water from the aquitard (or aquitards) is reaching the aquifer. Eventually, at late
pumping times, all the water pumped is from leakage through the aquitard(s), and
the flow towards the well has reached a steady state. This means that the drawdown

s log s log s log

— tlog —» tlog —» tlog

s lin slin s lin

—>tlog —> t log —> t log
confined aquifer unconfined aquifer, delayed yield leaky aquifer

Figure 2.12 Log-log and semi-log plots of the theoretical time-drawdown relationships of unconsolidated
aquifers:
Parts A and A’ Confined aquifer
Parts B and B: Unconfined aquifer
Parts C and C: Leaky aquifer

49



in the aquifer stabilizes, as is clearly reflected in both graphs. (We return to this subject

in Sections 4.1.1 and 4.1.2.)

We shall now consider the category of confined, consolidated fractured aquifers,
some examples of which are shown in Figure 2.13. Parts A and A’ of this figure refer
to a confined, densely fractured, consolidated aquifer of the double-porosity type.
In an aquifer like this, we recognize two systems: the fractures of high permeability
and low storage capacity, and the matrix blocks of low permeability and high storage
capacity. The flow towards the well in such a system is entirely through the fractures
and is radial and in an unsteady state. The flow from the matrix blocks into the frac-
tures is assumed to be in a pseudo-steady state. Characteristic of the flow in such
a system is that three time periods can be recognized:

— Early pumping time, when all the flow comes from storage in the fractures;

— Medium pumping time, a transition period during which the matrix blocks feed
their water at an increasing rate to the fractures, resulting in a (partly) stabilizing
drawdown;

— Late pumping time, when the pumped water comes from storage in both the frac-
tures and the matrix blocks.

(We return to this subject in Chapter 17.)

The shapes of the curves in Parts A and A’ of Figure 2.13 resemble those of Parts
B and B’ of Figure 2.12, which refer to an unconfined, unconsolidated aquifer with
delayed yield.

Parts B and B’ of Figure 2.13 present the curves for a well that pumps a single
plane vertical fracture in a confined, homogeneous, and isotropic aquifer of low perme-
ability. The fracture has a finite length and a high hydraulic conductivity. Characteris-
tic of this system is that a log-log plot of early pumping time shows a straight-line
segment of slope 0.5. This segment reflects the dominant flow regime in that period:

s log s log
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confined fractured aquifer pumped well in single plane, pumped well in fractured dike
(double porosity type) vertical fracture

Figure 2.13 Log-log and semi-log plots of the theoretical time-drawdown relationships of consolidated,
fractured aquifers:
Parts A and A’: Confined fractured aquifer, double porosity type
Parts B and B": A single plane vertical fracture
Parts C and C": A permeable dike in an otherwise poorly permeable aquifer



it is horizontal, parallel, and perpendicular to the fracture. This flow regime gradually
changes, until, at late time, it becomes pseudo-radial. The shapes of the curves at
late time resemble those of Parts A and A’ of Figure 2.12. (We return to this subject
in Section 18.3.)

Parts C and C’ of Figure 2.13 refer to a well in a densely fractured, highly permeable
dike of infinite length and finite width in an otherwise confined, homogeneous, isotro-
pic, consolidated aquifer of low hydraulic conductivity and high storage capacity.
Characteristic of such a system are the two straight-line segments in a log-log plot
of early and medium pumping times. The first segment has a slope of 0.5 and thus
resembles that of the well in the single, vertical, plane fracture shown in Part B of
Figure 2.13. At early time, the flow towards the well is exclusively through the dike,
and this flow is parallel. At medium time, the adjacent aquifer starts yielding water
to the dike. The dominant flow regime in the aquifer is then near-parallel to parallel,
but oblique to the dike. In a log-log plot, this flow regime is reflected by a one-fourth
slope straight-line segment. At late time, the dominant flow regime is pseudo-radial,
which, in a semi-log plot, is reflected by a straight line.

The one-fourth slope straight-line segment does not always appear in a log-log plot;
whether it does or not depends on the hydraulic diffusity ratio between the dike and
the adjacent aquifer. (We return to this subject in Section 19.3.)

2.9.2  Specific boundary conditions

When field data curves of drawdown versus time deviate from the theoretical curves
of the main types of aquifer, the deviation is usually due to specific boundary condi-
tions (e.g. partial penetration of the well, well-bore storage, recharge boundaries, or
impermeable boundaries). Specific boundary conditions can occur individually (e.g.
a partially penetrating well in an otherwise homogeneous, isotropic aquifer of infinite
extent), but they often occur in combination (e.g. a partially penetrating well near
a deeply incised river or canal). Obviously, specific boundary conditions can occur
in all types of aquifers, but the examples we give below refer only to unconsolidated,
confined aquifers.

Partial penetration of the well

Theoretical models usually assume that the pumped well fully penetrates the aquifer,
so that the flow towards the well is horizontal. With a partially penetrating well, the
condition of horizontal flow is not satisfied, at least not in the vicinity of the well.
Vertical flow components are thus induced in the aquifer, and these are accompanied
by extra head losses in and near the well. Figure 2.14 shows the effect of partial penet-
ration. The extra head losses it induces are clearly reflected. (We return to this subject
in Chapter 10.)

Well-bore storage

All theoretical models assume a line source or sink, which means that well-bore storage
effects can be neglected. But all wells have a certain dimension and thus store some
water, which must first be removed when pumping begins. The larger the diameter
of the well, the more water it will store, and the less the condition of line source or
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Figure 2.14 The effect of the well’s partial penetration on the time-drawdown relationship in an unconsoli-
dated, confined aquifer. The dashed curves are those of Parts A and A’ of Figure 2.12

sink will be satisfied. Obviously, the effects of well-bore storage will appear at early
pumping times, and may last from a few minutes to many minutes, depending on
the storage capacity of the well. In a log-log plot of drawdown versus time, the effect
of well-bore storage is reflected by a straight-line segment with a slope of unity. (We
return to this subject in Section 15.1.1.)

If a pumping test is conducted in a large-diameter well and drawdown data from
observation wells or piezometers are used in the analysis, it should not be forgotten
that those data will also be affected by the well-bore storage in the pumped well. At
early pumping time, the data will deviate from the theoretical curve, although, in a
log-log plot, no early-time straight-line segment of slope unity will appear. Figure
2.15 shows the effect of well-bore storage on time-drawdown plots of observation
wells or piezometers. (We return to this subject in Section 11.1.)

Recharge or impermeable boundaries

The theoretical curves of all the main aquifer types can also be affected by recharge
or impermeable boundaries. This effect is shown in Figure 2.16. Parts A and A’ of
that figure show a situation where the cone of depression reaches a recharge boundary.
When this happens, the drawdown in the well stabilizes. The field data curve then
begins to deviate more and more from the theoretical curve, which is shown in the
dashed segment of the curve. Impermeable (no-flow) boundaries have the opposite
effect on the drawdown. If the cone of depression reaches such a boundary, the draw-
down will double. The field data curve will then steepen, deviating upward from the
theoretical curve. This is shown in Parts B and B’ of Figure 2.16. (We return to this
subject in Chapter 6.)

well-bore storage well-bore storage

Figure 2.15 The effect of well-bore storage in the pumped well on the theoretical time-drawdown plots
of observation wells or piezometers. The dashed curves are those of Parts A and A’ of Figure
2.12
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Figure 2.16 The effect of a recharge boundary (Parts A and A’) and an impermeable boundary Parts B
and B’) on the theoretical time-drawdown relationship in a confined unconsolidated aquifer.
The dashed curves are those of Parts A and A’ of Figure 2.12

2.10 Reporting and filing of data
2.10.1 Reporting

When the evaluation of the test data has been completed, a report should be written
about the results. It is beyond the scope of this book to say what this report should
contain, but it should at least include the following items:

— A map, showing the location of the test site, the well and the piezometers, and
recharge and barrier boundaries, if any;

— A lithological cross-section of the test site, based on the data obtained from the
bore holes, and showing the depth of the well screen and the number, depth, and
distances of the piezometers;

— Tables of the field measurements made of the well discharge and the water levels
in the well and the piezometers;

— Hydrographs, illustrating the corrections applied to the observed data, if applicable;

— Time-drawdown curves and distance-drawdown curves;

— The considerations that led to the selection of the theoretical model used for the
analysis;

— The calculations in an abbreviated form, including the values obtained for the
aquifer characteristics and a discussion of their accuracy;

— Recommendations for further investigations, if applicable;

— A summary of the main results.

2.10.2 Filing of data
A copy of the report should be kept on file for further reference and for use in any
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later studies. Samples of the different layers penetrated by the borings should also
be filed, as should the basic field measurements of the pumping test. The conclusions
drawn from the test may become obsolete in the light of new insights, but the hard
facts, carefully collected in the field, remain facts and can always be re-evaluated.
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3 Confined aquifers

When a fully penetrating well pumps a confined aquifer (Figure 3.1), the influence
of the pumping extends radially outwards from the well with time, and the pumped
water is withdrawn entirely from the storage within the aquifer. In theory, because
the pumped water must come from a reduction of storage within the aquifer, only
unsteady-state flow can exist. In practice, however, the flow to the well is considered
to be in a steady state if the change in drawdown has become negligibly small with
time.

Methods for evaluating pumping tests in confined aquifers are available for both
steady-state flow (Section 3.1) and unsteady-state flow (Section 3.2).

The assumptions and conditions underlying the methods in this chapter are:

1) The aquifer is confined;

2) The aquifer has a seemingly infinite areal extent;

3) The aquifer is homogeneous, isotropic, and of uniform thickness over the area
influenced by the test;

4) Prior to pumping, the piezometric surface is horizontal (or nearly so) over the area
that will be influenced by the test;

5) The aquifer is pumped at a constant discharge rate;

6) The well penetrates the entire thickness of the aquifer and thus receives water by
horizontal flow.

piezometric surface before i > piezometric surface after
start of pumping start of pumping
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Figure 3.1 Cross-section of a pumped confined aquifer
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Figure 3.2 Lithological cross-section of the pumping-test site ‘Oude Korendijk’, The Netherlands (after
Wit 1963)

And, in addition, for unsteady-state methods:
7) The water removed from storage is discharged instantaneously with decline of head;
8) The diameter of the well is small, i.e. the storage in the well can be neglected.

The methods described in this chapter will be illustrated with data from a pumping
test conducted in the polder ‘Oude Korendijk’, south of Rotterdam, The Netherlands
(Wit 1963).

Figure 3.2 shows a lithological cross-section of the test site as derived from the
borings. The first 18 m below the surface, consisting of clay, peat, and clayey fine
sand, form the impermeable confining layer. Between 18 and 25 m below the surface
lies the aquifer, which consists of coarse sand with some gravel. The base of the aquifer
is formed by fine sandy and clayey sediments, which are considered impermeable.

The well screen was installed over the whole thickness of the aquifer, and piez-
ometers were placed at distances of 0.8, 30, 90, and 215 m from the well, and at different
depths. The two piezometers at a depth of 30 m, Hy, and H,,s, showed a drawdown
during pumping, from which it could be concluded that the clay layer between 25
and 27 m is not completely impermeable. For our purposes, however, we shall assume
that all the water was derived from the aquifer between 18 and 25 m, and that the
base is impermeable. The well was pumped at a constant discharge of 9.12 1/s (or
788 m3/d) for nearly 14 hours.

3.1 Steady-state flow
3.1.1 Thiem’s method

Thiem (1906) was one of the first to use two or more piezometers to determine the
transmissivity of an aquifer. He showed that the well discharge can be expressed as
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_ 2nKD(h,—h,) _ 27KD(h, —h,)

Q= "tjry) = 2.30 log (tr)) G.1)
where
Q = the well discharge in m?/d
KD = the transmissivity of the aquifer in m?/d

riandr, = the respective distances of the piezometers from the well in m
h;and h, = the respective steady-state elevations of the water levels in the piezometers
inm.

For practical purposes, Equation 3.1 is commonly written as

21K D (S — Smo)

= 230log () G2

where s, and s,,, are the respective steady-state drawdowns in the piezometers in m.
In cases where only one piezometer at a distance r, from the well is available

Q = 27Dl = 5,)
~ 2.301og (r,/r,)

where s,,,, is the steady-state drawdown in the well, and r,, is the radius of the well.

Equation 3.3 is of limited use because local hydraulic conditions in and near the
well strongly influence the drawdown in the well (e.g. s, is influenced by well losses
caused by the flow through the well screen and the flow inside the well to the pump
intake). Equation 3.3 should therefore be used with caution and only when other meth-
ods cannot be applied. Preferably, two or more piezometers should be used, located
close enough to the well that their drawdowns are appreciable and can readily be
measured.

(3.3)

With the Thiem (or equilibrium) equation, two procedures can be followed to deter-
mine the transmissivity of a confined aquifer. The following assumptions and condi-
tions should be satisfied:

— The assumptions listed at the beginning of this chapter;

— The flow to the well is in steady state.

Procedure 3.1

— Plot the observed drawdowns in each piezometer against the corresponding time
on a sheet of semi-log paper: the drawdowns on the vertical axis on a linear scale
and the time on the horizontal axis on a logarithmic scale;

— Construct the time-drawdown curve for each piezometer; this is the curve that fits
best through the points.
It will be seen that for the late-time data the curves of the different piezometers
run parallel. This means that the hydraulic gradient is constant and that the flow
in the aquifer can be considered to be in a steady state;

— Read for each piezometer the value of the steady-state drawdown s, ;

— Substitute the values of the steady-state drawdown s,,,; and s,, for two piezometers
into Equation 3.2, together with the corresponding values of r and the known value
of Q, and solve for KD;
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— Repeat this procedure for all possible combinations of piezometers. Theoretically,
the results should show a close agreement; in practice, however, the calculations
may give more or less different values of KD, e.g. because the condition of homoge-
neity of the aquifer was not satisfied. The mean is used as the final result.

Example 3.1

We shall illustrate Procedure 3.1 of the Thiem method with data from the pumping
test ‘Oude Korendijk’. On semi-log paper and using Table 3.1, we plot the drawdown
versus time for all the piezometers, and draw the curves through the plotted points
(Figure 3.3). As can be seen from this figure, the water levels in the piezometers at
the end of the test (after 830 minutes of pumping) had not yet stabilized. In other
words, steady-state flow had not been reached.

From Figure 3.3, however, it can also be seen that the curves of the piezometers
H,, and H,, start to run parallel approximately 10 minutes after pumping began. This
means that the drawdown difference between these piezometers after t = 10 minutes
remained constant, i.e. the hydraulic gradient between these piezometers remained
constant. This is the primary condition for which Thiem’s equation is valid.

The reader will note that during the whole pumping period the cone of depression
deepened and expanded. Even at late pumping times, the water levels in the piez-
ometers continued to drop: a clear example of unsteady-state flow! Although the cone
of depression deepened during the whole pumping period, after 10 minutes of pumping
it deepened uniformly between the two piezometers under consideration: a typical
case of what is sometimes called transient steady-state flow!

Wenzel (1942) was probably the first who proved the transient nature of the Thiem
equation, but this important work has received little attention in the literature, until
recently when Butler (1988) discussed the matter in detail.
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Figure 3.3 Time-drawdown plot of the piezometers H3, Hoq and H,; 5, pumping test ‘Oude Korendijk
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Table 3.1 Data pumping test ‘Oude Korendijk’ (after Wit 1963)

Piezometer Hy, Screen depth 20 m
t (min) s (m) t/r*(min/m>) t (min) s (m) t/r*(min/m>)
0 0 0 18 0.680 2.00 x 1072
0.1 0.04 1.11 x 107* 27 0.742 3.00

0.25 0.08 2.78 33 0.753 3.67

0.50 0.13 5.56 41 0.779 4.56

0.70 0.18 778 x 1074 48 0.793 5.33

1.0 0.23 1.11 x 1073 59 0.819 6.56

1.40 0.28 1.56 80 0.855 8.89 x 1072
1.90 0.33 2.11 95 0.873 1.06 x 107!
2.33 0.36 2.59 139 0.915 1.54

2.80 0.39 3.12 181 0.935 2.01

3.36 0.42 3.73 245 0.966 2.72

4.00 0.45 4.44 300 0.990 3.33

5.35 0.50 5.94 360 1.007 4.00

6.80 0.54 7.56 480 1.050 5.33

8.3 0.57 9.22 600 1.053 6.67

8.7 0.58 9.67 x 107 728 1.072 8.09
10.0 0.60 1.11 x 1072 830 1.088 9.22 x 107!
13.1 0.64 1.46 x 1072
Piezometer Hy, Screen depth 24 m
t (min) s (m) t/r*(min/m?) t (min) s(m) t/r’(min/m>)
0 0 0 40 0.404 494 x 107
1.5 0.015 1.85 x 107 53 0.429 6.54

2.0 0.021 2.47 60 0.444 7.41

2.16 0.023 2.67 75 0.467 9.26 x 107
2.66 0.044 3.28 90 0.494 1.11 x 1072
3 0.054 3.70 105 0.507 1.30

3.5 0.075 432 120 0.528 1.48

4 0.090 4.94 150 0.550 1.85

433 0.104 5.35 180 0.569 2.22

5.5 0.133 6.79 248 0.593 3.06

6 0.153 7.41 301 0.614 3.72

7.5 0.178 9.26 x 107* 363 0.636 4.48

9 0.206 1.11 x 1073 422 0.657 5.21
13 0.250 1.60 542 0.679 6.69
15 0.275 1.85 602 0.688 7.43
18 0.305 2.22 680 0.701 8.40
25 0.348 3.08 785 0.718 9.69 x 1072
30 0.364 3.70 x 1073 845 0.716 1.04 x 107!
Piezometer H,, 5 Screen depth 20 m
t (min) s (m) t/r*(min/m?) t (min) s (m) t/r*(min/m?)

0 0 0 305 0.196 6.60 x 107
66 0.089 143 x 1073 366 0.207 7.92 x 107
127 0.138 2.75 x 107 430 0.214 9.30 x 107
185 0.165 4.00 x 1073 606 0.227 131 x 1072
251 0.186 543 x 107 780 0.250 1.68 x 1072
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From Figure 3.3, the reader will also note that the time-drawdown curve of piez-
ometer H,,;5; does not run parallel to that of the other piezometers, not even at very
late pumping times. In applying Procedure 3.1 of the Thiem method, therefore, we
shall disregard the data of this piezometer and shall use only the data from the piez-
ometers Hs, and Hy, for t > 10 minutes. In doing so, and using Equation 3.2 after
rearranging, we find

B 788 x 2.30 log 20
= 2% 3.14 (1.088 — 0.716) %30

KD = 370 m%/d

Similar calculations were made for combinations of these piezometers with the piez-
ometer Hy 5. The results are given in Table 3.2. The table shows only minor differences
in the results. Our conclusion is that the transmissivity of the tested aquifer is approxi-
mately 385 m?/d.

Table 3.2 Results of the application of Thiem’s method, Procedure 3.1, to data from the pumping test

‘Oude Korendijk’

i I Sml Sm2 KD
2

(m) (m) m) (m) (m7/d)
30 90 1.088 0.716 370
0.8 30 2.236 1.088 396
0.8 90 2.236 0.716 389
Mean 385

Procedure 3.2

— Plot on semi-log paper the observed transient steady-state drawdown s,, of each
piezometer against the distance r between the well and the piezometer (Figure 3.4);

— Draw the best-fitting straight line through the plotted points; this is the distance-
drawdown graph;

— Determine the slope of this line As,, i.e. the difference of drawdown per log cycle
of r, giving r,/r; = 10 orlog r,/r; = 1. In doing so Equation 3.2 reduces to

_ 27KD

— Substitute the numerical values of Q and As,, into Equation 3.4 and solve for KD.

Example 3.2

Using Procedure 3.2 of the Thiem method, we plot the values of s, and r on semi-log
paper (Figure 3.4). We then draw a straight line through the plotted points. Note
that the plot of piezometer H,,; falls below the straight line and is therefore discarded.
The slope of the straight line is equal to a drawdown difference of 0.74 m per log
cycle of r. Introducing this value and the value of Q into Equation 3.4 yields

2.30Q 2.30 x 788
2rAs ~ 2 x 3.14 x 0.74

KD = = 390 m?/d
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Figure 3.4 Analysis of data from pumping test ‘Oude Korendijk’ with the Thiem method, Procedure 3.2

This result agrees very well with the average value obtained with the Thiem method,
Procedure 3.1.

Remarks

— Steady-state has been defined here as the situation where variations of the drawdown
with time are negligible, or where the hydraulic gradient has become constant. The
reader will know, however, that true steady state, i.e. drawdown variations are zero,
is impossible in a confined aquifer;

— Field conditions may be such that considerable time is required to reach steady-state
flow. Such long pumping times are not always required, however, because transient
steady-state flow, i.e. flow under a constant hydraulic gradient, may be reached
much earlier as we have shown in Example 3.1.

3.2 Unsteady-state flow
3.2.1 Theis’s method

Theis (1935) was the first to develop a formula for unsteady-state flow that introduces
the time factor and the storativity. He noted that when a well penetrating an extensive
confined aquifer is pumped at a constant rate, the influence of the discharge extends
outward with time. The rate of decline of head, multiplied by the storativity and
summed over the area of influence, equals the discharge.

The unsteady-state (or Theis) equation, which was derived from the analogy be-
tween the flow of groundwater and the conduction of heat, is written as
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_ Q Tevdy  Q
* = 4nKD f y ~dmkp"W (3-3)
where
s = the drawdown in m measured in a piezometer at a distance r in m
from the well
Q = the constant well discharge in m3/d
KD = the transmissivity of the aquifer in m?/d
r’S 4K Dtu
u = IKDit and consequently S = 2 (3.6)
= the dimensionless storativity of the aquifer
t = the time in days since pumping started
u? woou
W) = —0.5772—Inu +u ~371 + 331 4.41 + ...

The exponential integral is written symbolically as W(u), which in this usage is general-
ly read ‘well function of u’ or ‘Theis well function’. It is sometimes found under the
symbol -Ei(-u) (Jahnke and Embde 1945). A well function like W(u) and its argument
u are also indicated as ‘dimensionless drawdown’ and ‘dimensionless time’, respective-
ly. The values for W(u) as u varies are given in Annex 3.1.
From Equation 3.5, it will be seen that, if s can be measured for one or more values
of r and for several values of t, and if the well discharge Q is known, S and KD can
be determined. The presence of the two unknowns and the nature of the exponential
integral make it impossible to effect an explicit solution.

Using Equations 3.5 and 3.6, Theis devised the ‘curve-fitting method’ (Jacob 1940)
to determine S and KD. Equation 3.5 can also be written as

logs = log(Q/4nKD) + log (W(u))
and Equation 3.6 as
log (r*/t) = log (4KD/S) + log (u)

Since Q/4nKD and 4KD/S are constant, the relation between log s and log (r*/t) must
be similar to the relation between log W(u) and log (u). Theis’s curve-fitting method
is based on the fact that if s is plotted against 2/t and W(u) against u on the same
log-log paper, the resulting curves (the data curve and the type curve, respectively)
will be of the same shape, but will be horizontally and vertically offset by the constants
Q/4nKD and 4KD/S. The two curves can be made to match. The coordinates of an
arbitrary matching point are the related values of s, r?/t, u, and W(u), which can be
used to calculate KD and S with Equations 3.5 and 3.6.

Instead of using a plot of W(u) versus (u) (normal type curve) in combination with
a data plot of s versus r?/t, it is frequently more convenient to use a plot of W(u)
versus 1/u (reversed type curve) and a plot of s versus t/r* (Figure 3.5).

Theis’s curve-fitting method is based on the assumptions listed at the beginning of

this chapter and on the following limiting condition:

— The flow to the well is in unsteady state, i.e. the drawdown differences with time
are not negligible, nor is the hydraulic gradient constant with time.
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Procedure 3.3

— Prepare a type curve of the Theis well function on log-log paper by plotting values
of W(u) against the arguments 1/u, using Annex 3.1 (Figure 3.5);
— Plot the observed data curve s versus t/r2 on another sheet of log-log paper of the

same scale;

— Superimpose the data curve on the type curve and, keeping the coordinate axes
parallel, adjust until a position is found where most of the plotted points of the data

curve fall on the type curve (Figure 3.6);

— Select an arbitrary match point A on the overlapping portion of the two sheets
and read its coordinates W(u), 1/u, s, and t/r%. Note that it is not necessary for the
match point to be located along the type curve. In fact, calculations are greatly simpli-
fied if the point is selected where the coordinates of the type curve are W(u) = 1

and 1/u = 10;

— Calculate S by substituting the values of KD, t/r%, and u into Equation 3.6.

Substitute the values of W(u), s, and Q into Equation 3.5 and solve for KD;
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Figure 3.6 Analysis of data from pumping test ‘Oude Korendijk’ with the Theis method, Procedure 3.3

Remarks

— When the hydraulic characteristics have to be calculated separately for each pie-
zometer, a plot of s versus t or s versus 1/t for each piezometer is used with a type
curve W(u) versus 1/u or W(u) versus u, respectively;

In applying the Theis curve-fitting method, and consequently all curve-fitting meth-
ods, one should, in general, give less weight to the early data because they may
not closely represent the theoretical drawdown equation on which the type curve
is based. Among other things, the theoretical equations are based on the assump-
tions that the well discharge remains constant and that the release of the water
stored in the aquifer is immediate and directly proportional to the rate of decline
of the pressure head. In fact, there may be a time lag between the pressure decline
and the release of stored water, and initially also the well discharge may vary as
the pump is adjusting itself to the changing head. This probably causes initial dis-
agreement between theory and actual flow. As the time of pumping extends, these
effects are minimized and closer agreement may be attained;

If the observed data on the logarithmic plot exhibit a flat curvature, several appar-
ently good matching positions, depending on personal judgement, may be obtained.
In such cases, the graphical solution becomes practically indeterminate and one
must resort to other methods.

Example 3.3
The Theis method will be applied to the unsteady-state data from the pumping test
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‘Oude Korendijk’ listed in Table 3.1. Figure 3.6 shows a plot of the values of s versus
t/r? for the piezometers H;,, Hy, and H,;5s matched with the Theis type-curve, W(u)
versus 1/u. The reader will note that for late pumping times the points do not fall
exactly on the type curve. This may be due to leakage effects because the aquifer was
not perfectly confined. Note the anomalous drawdown behaviour of piezometer H,,s
already noticed in Example 3.2. In the matching procedure, we have discarded the
data of this piezometer. The match point A has been so chosen that the value of W(u)
= 1 and the value of 1/u = 10. On the sheet with the observed data, the match point
A has the coordinates s, = 0.16 m and (t/1?), = 1.5 x 10 min/m? = 1.5 x 1073/1440
d/m?. Introducing these values and the value of Q = 788 m®/d into Equations 3.5
and 3.6 yields

Q _ 788 _ )
KD =25, VW = 55518 < 016 < | = 392m/d
and
_ 4KD(1/r%), 15x10° 1 By
S—-—ﬁl/u —4><392><—1440 10—16><10

3.2.2 Jacob’s method

The Jacob method (Cooper and Jacob 1946) is based on the Theis formula, Equation
3.5

. Q Q L
= 4xp VW = x5 (—0.5772-Inu + u — 5 + 30

From u = r2S/4KDt, it will be seen that u decreases as the time of pumping t increases
and the distance from the well r decreases. Accordingly, for drawdown observations
made in the near vicinity of the well after a sufficiently long pumping time, the terms
beyond In u in the series become so small that they can be neglected. So for small
values of u (u < 0.01), the drawdown can be approximated by

r’S

__Q IS
s = 3¢5 (— 05772~ In g 50)

with
an error less than 1% 2% 5% 10%
for u smaller than 0.03 0.05 0.1 0.15

After being rewritten and changed into decimal logarithms, this equation reduces to

230Q | 2.25KDt
4nKD %8 %S

s = (3.7
Because Q, KD, and S are constant, if we use drawdown observations at a short dis-
tance r from the well, a plot of drawdown s versus the logarithm of t forms a straight
line (Figure 3.7). If this line is extended until it intercepts the time-axis where s =
0, the interception point has the coordinates s = 0 and t = t,. Substituting these
values into Equation 3.7 gives
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_2.30Q 2.25KDt,
0=ZKD 8 p3
2.30Q . 2.25KDt,
and because 47KD # 0, it follows that—rzs— =1
or
S 2.25:2(Dt0 (3.8)

The slope of the straight line (Figure 3.7), i.e. the drawdown difference As per log
cycle of time log t/t, = 1, is equal to 2.30Q/4nKD. Hence

~2.30Q

R 4mAs

(3.9)

Similarly, it can be shown that, for a fixed time t, a plot of s versus r on semi-log
paper forms a straight line and the following equations can be derived

g _ 2.2515Dt (3.10)
5
and
~2.30Q
KD = 2nAs (-1

If all the drawdown data of all piezometers are used, the values of s versus t/r? can
be plotted on semi-log paper. Subsequently, a straight line can be drawn through the
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Figure 3.7 Analysis of data from pumping test ‘Oude Korendijk’ (r = 30 m) with the Jacob method, Proce-
dure 3.4
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plotted points. Continuing with the same line of reasoning as above, we derive the
following formulas

S = 2.25KD(t/r?), (3.12)
and
_2.30Q
KD = AmAs (3.13)

Jacob’s straight-line method can be applied in each of the three situations outlined
above. (See Procedure 3.4 for r = constant, Procedure 3.5 for t = constant, and Proce-
dure 3.6 when values of t/r? are used in the data plot.)

The following assumptions and conditions should be satisfied:

— The assumptions listed at the beginning of this chapter;

— The flow to the well is in unsteady state;

— The values of u are small (u < 0.01), i.e. ris small and t is sufficiently large.

The condition that u be small in confined aquifers is usually satisfied at moderate
distances from the well within an hour or less. The condition u < 0.01 is rather rigid.
For a five or even ten times higher value (u < 0.05and u < 0.10), the error introduced
in the result is less than 2 and 5%, respectively. Further, a visual inspection of the
graph in the range u < 0.01 and u < 0.1 shows that it is difficult, if not impossible,
to indicate precisely where the field data start to deviate from the straight-line relation-
ship. For all practical purposes, therefore, we suggest using u < 0.1 as a condition
for Jacob’s method.

The reader will note that the use of Equation 3.7 for the determination of the differ-
ence in drawdown s, — s, between two piezometers at distances r, and r, from the
well leads to an expression that is identical to the Thiem formula (Equation 3.2).

Procedure 3.4 (for r is constant)

— For one of the piezometers, plot the values of s versus the corresponding time t
on semi-log paper (t on logarithmic scale), and draw a straight line through the
plotted points (Figure 3.7);

— Extend the straight line until it intercepts the time axis where s = 0, and read the
value of t;

— Determine the slope of the straight line, i.e. the drawdown difference As per log
cycle of time;

— Substitute the values of Q and As into Equation 3.9 and solve for KD. With the
known values of KD and t,, calculate S from Equation 3.8.

Remarks

— Procedure 3.4 should be repeated for other piezometers at moderate distances from
the well. There should be a close agreement between the calculated KD values, as
well as between those of S;

— When the values of KD and S are determined, they are introduced into the equation
u = r2S/4KDt to check whether u < 0.1, which is a practical condition for the
applicability of the Jacob method.
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Example 3.4

For this example, we use the drawdown data of the piezometer Hy,in ‘Oude K orendijk’
(Table 3.1). We plot these data against the corresponding time data on semi-log paper
(Figure 3.7), and fit a straight line through the plotted points. The slope of this straight
line is measured on the vertical axis As = 0.375 m per log cycle of time. The intercept
of the fitted straight line with the absciss (zero-drawdown axis) is t, = 0.25 min =
0.25/1440 d. The discharge rate Q = 788 m?/d. Substitution of these values into Equa-
tion 3.9 yields

230Q  2.30 x 788
4nAs — 4 x 3.14 x 0.375

KD = = 385 m?/d

and into Equation 3.8

_ 2.25KDt, 2.25 x 385 « 0.25
- r? N 30? 1440 —

Substitution of the values of KD, S, and r into u = r2S/4KDt shows that, for t >
0.00I dort > 1.4 min, u < 0.1, as is required. The departure of the time-drawdown
curve from the theoretical straight line is probably due to leakage through one of
the assumed ‘impermeable’ layers.

The same method applied to the data collected in the piezometer at 90 m gives:
KD = 450 m*d and S = 1.7 x 10“ with u < 0.1 for t > 11 min. This result is
less reliable because few points are available between t = 11 min. and the time that
leakage probably starts to influence the drawdown data.

S 1.7 x 10

Procedure 3.5 (tis constant)

— Plot for a particular time t the values of s versus r on semi-log paper (r on logarithmic
scale), and draw a straight line through the plotted points (Figure 3.8);

— Extend the straight line until it intercepts the r axis where s = 0, and read the value
of ry;

— Determine the slope of the straight line, i.e. the drawdown difference As per log
cycle of r;

— Substitute the values of Q and As into Equation 3.11 and solve for KD. With the
known values of KD and r,, calculate S from Equation 3.10.

Remarks

— Note the difference in the denominator of Equations 3.9 and 3.11;

— The data of at least three piezometers are needed for reliable results;

— If the drawdown in the different piezometers is not measured at the same time,
the drawdown at the chosen moment t has to be interpolated from the time-draw-
down curve of each piezometer used in Procedure 3.4;

— Procedure 3.5 should be repeated for several values of t. The values of KD thus
obtained should agree closely, and the same holds true for values of S.

Example 3.5

Here, we plot the (interpolated) drawdown data from the piezometers of ‘Oude K oren-
dijk’ for t = 140 min = 0.1 d against the distances between the piezometers and the
well (Figure 3.8). In the previous examples, we explained why we discarded the point
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Figure 3.8 Analysis of data from pumping test ‘Oude Korendijk’ (t = 140 min) with the Jacob method,
Procedure 3.5

of piezometer H,,s. The slope of the straight line As = 0.78 m and the intercept with
the absciss 1, = 450 m. The discharge rate Q = 788 m?/d. Substitution of these values
into Equation 3.11 yields

230Q  2.30 x 788

— — 2
KD =5As = 7% 304 x 078 ~ >/0m7d
and into Equation 3.10
S 2.25KDt _ 2.25 x 370 x 0.1 _ 41 x 10

12 - 45072

Procedure 3.6 (based on s versus t/r’ data plot)

— Plot the values of s versus t/r> on semi-log paper (t/r? on the logarithmic axis), and
draw a straight line through the plotted points (Figure 3.9);

— Extend the straight line until it intercepts the t/r? axis where s = 0, and read the
value of (t/r?),;

— Determine the slope of the straight line, i.e. the drawdown difference As per log
cycle of t/r2;

— Substitute the values of Q and As into Equation 3.13 and solve for KD. Knowing
the values of KD and (t/r?),, calculate S from Equation 3.12.

Example 3.6

As an example of the Jacob method, Procedure 3.6, we use the values of t/r* for all
the piezometers of ‘Oude Korendijk’ (Table 3.1). In Figure 3.9, the values of s are
plotted on semi-log paper against the corresponding values of t/r2. Through those
points, and neglecting the points for H, 5, we draw a straight line, which intercepts
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Figure 3.9 Analysis of data from pumping test ‘Oude Korendijk’ with the Jacob method, Procedure 3.6

the s = 0 axis (absciss) in (t/r?), = 2.45 x 10* min/m? or (2.45/1440) x 10 d/m>.
On the vertical axis, we measure the drawdown difference per log cycle of t/r2 as As
= 0.33 m. The discharge rate Q = 788 m?/d.

Introducing these values into Equation 3.13 gives

2.30Q  2.30 x 788

KD = As =4 x3.14 % 033

= 437 m?/d

and into Equation 3.12

2.45

4 _ 4
1440><10 =17 x 10

S = 2.25KD(t/r?), = 2.25 x 437 x

3.3 Summary

Using data from the pumping test ‘Oude Korendijk’ (Figure 3.2 and Table 3.1), we
have illustrated the methods of analyzing (transient) steady and unsteady flow to a
well in a confined aquifer. Table 3.3 summarizes the values we obtained for the
aquifer’s hydraulic characteristics.

When we compare the results of Table 3.3, we can conclude that the values of KD
and S agree very well, except for those of the last two methods. The differences in
the results are due to the fact that the late-time data have probably been influenced
by leakage and that graphical methods of analysis are never accurate. Minor shifts
of the data plot are often possible, giving an equally good match with a type curve,
but yielding different values for the aquifer characteristics. The same is true for a
semi-log plot whose points do not always fit on a straight line because of measuring
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errors or otherwise. The analysis of the Jacob 2 method, for example, is weak, because
the straight line has been fitted through only two points, the third point, that of the
piezometer H,,s, being unreliable. The anomalous behaviour of this far-field piez-
ometer may be due to leakage effects, heterogeneity of the aquifer (the transmissivity
at H, s being slightly higher than closer to the well), or faulty construction (partly
clogged).

We could thus conclude that the aquifer at ‘Oude Korendijk’ has the following
parameters: KD = 390 m?/dand S = 1.7 x 10

Table 3.3 Hydraulic characteristics of the confined aquifer at ‘Oude Korendijk’, obtained by the different
methods

Method KD S
(m*/d) (-)

Thiem 1 385 —
Thiem 2 390 -
Theis 392 1.6 x 107
Jacob 1 385 1.7 x 107#
Jacob 2 370 4.1 x 107
Jacob 3 437 1.7 x 107
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4 Leaky aquifers

In nature, leaky aquifers occur far more frequently than the perfectly confined aquifers
discussed in the previous chapter. Confining layers overlying or underlying an aquifer
are seldom completely impermeable; instead, most of them leak to some extent. When
a well in a leaky aquifer is pumped, water is withdrawn not only from the aquifer,
but also from the overlying and underlying layers. In deep sedimentary basins, it is
common for a leaky aquifer to be just one part of a multi-layered aquifer system as
was shown in Figure 1.1E.

For the purpose of this chapter, we shall consider the three-layered system shown
in Figure 4.1. The system consists of two aquifers, separated by an aquitard. The
lower aquifer rests on an aquiclude. A well fully penetrates the lower aquifer and
is screened over the total thickness of the aquifer. The well is not screened in the upper
unconfined aquifer. Before the start of pumping, the system is at rest, i.e. the piezo-
metric surface of the lower aquifer coincides with the watertable in the upper aquifer.

When the well is pumped, the hydraulic head in the lower aquifer will drop, thereby
creating a hydraulic gradient not only in the aquifer itself, but also in the aquitard.
The flow induced by the pumping is assumed to be vertical in the aquitard and horizon-
tal in the aquifer. The error introduced by this assumption is usually less than 5 per
cent if the hydraulic conductivity of the aquifer is two or more orders of magnitude
greater than that of the aquitard (Neuman and Witherspoon 1969a).

The water that the pumped aquifer contributes to the well discharge comes from
storage within that aquifer. The water contributed by the aquitard comes from storage
within the aquitard and leakage through it from the overlying unpumped aquifer.

ARSI CIIIIITIISSITLISSITLLLS
ULLELLIRIHLRRRRRILRILRLRARARLRLRLRAZLRLRIALKS

Figure 4.1 Cross-section of a pumped leaky aquifer
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As pumping continues, more of the water comes from leakage from the unpumped
aquifer and relatively less from aquitard storage. After a certain time, the well dis-
charge comes into equilibrium with the leakage through the aquitard and a steady-state
flowis attained. Under such conditions, the aquitard serves merely as a water-transmit-
ting medium, and the water contributed from its storage can be neglected.

Solutions to the steady-state flow problem (Section 4.1) have been found on the
basis of two very restrictive assumptions. The first is that, during pumping, the water-
table in the upper aquifer remains constant; the second is that the rate of leakage
into the leaky aquifer is proportional to the hydraulic gradient across the aquitard.
But, as pumping continues, the watertable in the upper aquifer will drop because more
and more of its water will be leaking through the aquitard into the pumped aquifer.
The assumption of a constant watertable will only be satisfied if the upper aquifer
is replenished by an outside source, say from surface water distributed over the aquifer
via a system of narrowly spaced ditches. If the watertable can thus be kept constant
as pumping continues, the well discharge will eventually be supplied entirely from
the upper aquifer and steady-state flow will be attained. If the watertable cannot be
controlled and does not remain constant and if pumping times are long, neglecting
the drawdown in the upper aquifer can lead to considerable errors, unless its transmis-
sivity is significantly greater than that of the pumped aquifer (Neuman and Withers-
poon 1969b).

The second assumption completely ignores the storage capacity of the aquitard.
This is justified when the flow to the well has become steady and the amount of water
supplied from storage in the aquitard has become negligibly small (Section 4.1).

As long as the flow is unsteady, the effects of aquitard storage cannot be neglected.
Yet, two of the solutions for unsteady flow (Sections 4.2.1 and 4.2.2) do neglect these
effects, although, as pointed out by Neuman and Witherspoon (1972), this can result
in:

— An overestimation of the hydraulic conductivity of the leaky aquifer;
— An underestimation of the hydraulic conductivity of the aquitard,;
— A false impression of inhomogeneity in the leaky aquifer.

The other two methods do take the storage capacity of the aquitard into account.
They are the Hantush curve-fitting method, which determines aquifer and aquitard
characteristics (Section 4.2.3), and the Neuman-Witherspoon ratio method, which
determines only the aquitard characteristics (Section 4.2.4). All four solutions for
unsteady flow assume a constant watertable.

For a proper analysis of a pumping test in a leaky aquifer, piezometers are required
in the leaky aquifer, in the aquitard, and in the upper aquifer.

The assumptions and conditions underlying the methods in this chapter are:

— The aquifer is leaky;

— The aquifer and the aquitard have a seemingly infinite areal extent;

The aquifer and the aquitard are homogeneous, isotropic, and of uniform thickness

over the area influenced by the test;

— Prior to pumping, the piezometric surface and the watertable are horizontal over
the area that will be influenced by the test;

— The aquifer is pumped at a constant discharge rate;
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— The well penetrates the entire thickness of the aquifer and thus receives water by
horizontal flow;

— The flow in the aquitard is vertical;

— The drawdown in the unpumped aquifer (or in the aquitard, if there is no unpumped
aquifer) is negligible.

And for unsteady-state conditions:

— The water removed from storage in the aquifer and the water supplied by leakage
from the aquitard is discharged instantaneously with decline of head;

— The diameter of the well is very small, i.e. the storage in the well can be neglected.

The methods will be illustrated with data from the pumping test ‘Dalem’, The Nether-
lands (De Ridder 1961). Figure 4.2 shows a lithostratigraphical section of the test
site as derived from the drilling data. The Kedichem Formation is regarded as the
aquiclude. The Holocene layers form the aquitard overlying the leaky aquifer. The
reader will note that there is no aquifer overlying the aquitard asin Figure 4.1. Instead,
the aquitard extends to the surface where a system of narrowly spaced drainage ditches
ensured a relatively constant watertable in the aquitard during the test.

The site lies about 1500 m north of the River Waal. The level of this river is affected
by the tide and so too is the piezometric surface of the aquifer because it is in hydraulic
connection with the river. The well was fitted with two screens. During the test, the
lower screen was sealed and the entry of water was restricted to the upper screen,
placed from 11 to 19 m below the surface. For 24 hours prior to pumping, the water
levels in the piezometers were observed to determine the effect of the tide on the hyd-
raulic head in the aquifer. By extrapolation of these data, time-tide curves for the
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Figure 4.2 Lithostratigraphical cross-section of the pumping-test site ‘Dalem’, The Netherlands (after De
Ridder 1961)
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pumping period were established to allow a correction of the measured drawdowns
(see Example 2.2). The data from the piezometers near the well were influenced by
the effects of the well’s partial penetration, for which allowance also had to be made
(Example 10.1). The aquifer was pumped for 8 hours at a constant discharge of Q
= 31.70 m*/hr (or 761 m?/d). The steady-state drawdown, which had not yet been
reached, could be extrapolated from the time-drawdown curves.

4.1 Steady-state flow

The two methods presented below, both of which use steady-state drawdown data,
allow the characteristics of the aquifer and the aquitard to be determined.

4.1.1 De Glee’s method

For the steady-state drawdown in an aquifer with leakage from an aquitard proportio-

nal to the hydraulic gradient across the aquitard, De Glee (1930, 1951; see also Anony-
mous 1964, pp 35-41) derived the following formula

Q

r
Sn = 37K D <o) (“.1)
where
Sm = steady-state (stabilized) drawdown in m in a piezometer at distance
rin m from the well
Q = discharge of the well in m®/d
L = /KDc: leakage factor inm 4.2)
c = D’/K’: hydraulic resistance of the aquitard in d
D’ = saturated thickness of the aquitard in m
K’ = hydraulic conductivity of the aquitard for vertical flow in m/d

Ky(x) = modified Bessel function of the second kind and of zero order (Hankel
function)

The values of K(x) for different values of x can be found in Annex 4.1.

De Glee’s method can be applied if the following assumptions and conditions are
satisfied:

— The assumptions listed at the beginning of this chapter;

— The flow to the well is in steady state;

- L > 3D.

Procedure 4.1

— Using Annex 4.1, prepare a type curve by plotting values of K(x) versus values
of x on log-log paper;

— On another sheet of log-log paper of the same scale, plot the steady-state (stabilized)
drawdown in each piezometer s, versus its corresponding value of r;
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— Match the data plot with the type curve;

— Select an arbitrary point A on the overlapping portion of the sheets and note for
A the values of s, r, Ky(r/L), and r/L(=x). It is convenient to select as point A
the point where K(r/L) = 1 and r/L = 1;

— Calculate KD by substituting the known value of Q and the values of s, and K(r/L)
into Equation 4.1;

— Calculate ¢ by substituting the calculated value of KD and the values of r and r/L
into Equation 4.2, written as

L2 1 2

“TKD~ /Ly “KD

Example 4.1

When the pump at ‘Dalem’ was shut down, steady-state drawdown had not yet been
fully reached, but could be extrapolated from the time-drawdown curves. Table 4.1
gives the extrapolated steady-state drawdowns in the piezometers that had screens
at a depth of 14 m (unless otherwise stated), corrected for the effects of the tide in
the river and for partial penetration.

Table 4.1 Corrected extrapolated steady-state drawdowns of pumping test ‘Dalem’ (after De Ridder 1961)

Piezometer ~ Pyo Pyo* Py Py* Peo Pgy Py Pyo0*
Drawdown
inm 0.310 0.252 0.235 0.213 0.170 0.147 0.132 0.059

* screen depth 36 m

For this example, we first plot the drawdowns listed in Table 4.1 versus the correspond-
ing distances, which we then fit with De Glee’s type curve K(x) versus x (Figure 4.3).
As match point A, we choose the point where Ky(r/L) = 1 and r/L = 1. On the
observed data sheet, point A has the coordinates s, = 0.057 m and r = 1100 m.
Substituting these values and the known value of Q = 761 m*/d into Equation 4.1,
we obtain

Qo (1) 761 B ,
KD = 2nsmK°<L> = 3% 314 x 0,057 < | = 2126m7d

Further,r/L = 1,L = r = 1100 m. Hence

_ L* _ (1100)
T KD 2126

=569d

4.1.2 Hantush-Jacob’s method

Unaware of the work done many years earlier by De Glee, Hantush and Jacob (1955)
also derived Equation 4.1. Hantush (1956, 1964) noted that if r/L is small (r/L <
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Figure 4.3 Analysis of data from pumping test ‘Dalem’ with the De Glee method

0.05), Equation 4.1 can, for practical purposes, be approximated by
2.30Q L
Sm X logl.12—= 4.3
m ~ 2nKD < & r> “3)

Forr/L < 0.16,0.22,0.33, and 0.45, the errors in using this equation instead of Equa-
tion 4.1 are less than 1, 2, 5, and 10 per cent, respectively (Huisman 1972). A plot
of s, against r on semi-log paper, with r on the logarithmic scale, will show a straight-
line relationship in the range where r/L is small (Figure 4.4). In the range where r/L
is large, the points fall on a curve that approaches the zero-drawdown axis asymptoti-
cally.

The slope of the straight portion of the curve, i.e. the drawdown difference As,,
per log cycle of 1, is expressed by

2.30Q

As, = KD 4.4)

The extended straight-line portion of the curve intercepts the r axis where the draw-
down is zero. At the interception point, s,, = 0 and r = r, and thus Equation 4.3
reduces to
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2.30Q L
0= m(logl.lzr;)

from which it follows that

1.12rE - %%Q/KDC =1
0

0

and hence

o % (4.5)

The Hantush-Jacob method can be used if the following assumptions and conditions
are satisfied:

— The assumptions listed at the beginning of this chapter;

— The flow to the well is in steady state;

- L > 3D;

- r/L < 0.05.

Sm in metres
0.40

.
a
Asp, =0.138m \
0.20

~y: _ 4+ 4

log cycle °

0.10
o piezometer at 14 m . .
o piezometer at 36 m (corrected for partial penetration) o
a average drawdown "o
0.00 \[
60 8 10 2 4 6 8 10° 2 4 s 8 10°

rin metres

Figure 4.4 Analysis of data from pumping test ‘Dalem’ with the Hantush-Jacob method
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Procedure 4.2

— On semi-log paper, plot s,, versus r (r on logarithmic scale);

— Draw the best-fit straight line through the points;

— Determine the slope of the straight line (Figure 4.4);

— Substitute the value of As,, and the known value of Q into Equation 4.4 and solve
for KD;

— Extend the straight line until it intercepts the r axis and read the value of ry;

— Calculate the hydraulic resistance of the aquitard c¢ by substituting the values of
roand KD into Equation 4.5.

Another way to calculate cis:

— Select any point on the straight line and note its coordinates s, and r;

— Substitute these values, together with the known values of Q and KD into Equation
4.3 and solve for L;

— Since L = ./KDec, calculate c.

Example 4.2

For this example, using data from the pumping test ‘Dalem’, we first plot the steady-
state drawdown data listed in Table 4.1 on semi-log paper versus the corresponding
distances. For the piezometer at 10 m from the well, we use the average of the draw-
downs measured at depths of 14 and 36 m, and do the same for the piezometer at
30 m from the well. After fitting a straight line through the plotted points, we read
from the graph (Figure 4.4) the drawdown difference per log cycle of r

As,, = 0.281 —0.143 = 0.138 m
Further, Q = 761 m?/d. Substituting these data into Equation 4.4, we obtain

2.30Q 2.30 x 761

KD = 2nAs, 2 x 3.14 x 0.138

= 2020 m?/d

The fitted straight line intercepts the zero-drawdown axis at the point r, = 1100 m.
Substitution into Equation 4.5 gives

o (/L127 _ (1100/1.12)?

KD~ 2000 ~ 478d
and L is calculated from 1.12rL =lorL = % = 982 m.
o .

This result is an approximation because this method can only be used for values of
r/L < 0.05, a rather restrictive limiting condition, as we said earlier. If errors in the
calculated hydraulic parameters are to be less than 1 per cent, the value of r/L should
be less than 0.16. This means that the data from the five piezometers at r < 0.16
x 982 = 157 m can be used.

4.2 Unsteady-state flow
Until steady-state flow is reached, the water discharged by the well is derived not
only from leakage through the aquitard, but also from a reduction in storage within

both the aquitard and the pumped aquifer.
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The methods available for analyzing data of unsteady-state flow are the Walton
curve-fitting method, the Hantush inflection-point method (both of which, however,
neglect the aquitard storage), the Hantush curve-fitting method, and the Neuman and
Witherspoon ratio method (both of which do take aquitard storage into account).

4.2.1 Walton’s method

With the effects of aquitard storage considered negligible, the drawdown due to pump-
ing in a leaky aquifer is described by the following formula (Hantush and Jacob 1955)

__Q 71 o
S_4nKD{yeXp<_y 4L2y>dy

or
s = Q W(u,r/L) (4.6)
4nKD > ’
where
r’S
U= IKDt @7

Equation 4.6 has the same form as the Theis well function (Equation 3.5), but there
are two parameters in the integral: u and r/L. Equation 4.6 approaches the Theis well
function for large values of L, when the exponential term r?/4L%y approaches zero.

On the basis of Equation 4.6, Walton (1962) developed a modification of the Theis
curve-fitting method, but instead of using one type curve, Walton uses a type curve
for each value of r/L. This family of type curves (Figure 4.5) can be drawn from the
tables of values for the function W(u,r/L) as published by Hantush (1956) and pre-
sented in Annex 4.2.

Walton’s method can be applied if the following assumptions and conditions are satis-
fied:

— The assumptions listed at the beginning of this chapter;

— The aquitard is incompressible, i.e. the changes in aquitard storage are negligible;

— The flow to the well is in unsteady state.

Procedure 4.3

— Using Annex 4.2, plot on log-log paper W(u,r/L) versus 1/u for different values
of r/L; this gives a family of type curves (Figure 4.5);

— Plot for one of the piezometers the drawdown s versus the corresponding time t
on another sheet of log-log paper of the same scale; this gives the observed time-
drawdown data curve;

— Match the observed data curve with one of the type curves (Figure 4.6);

— Select a match point A and note for A the values of W(u,r/L), 1/u, s, and t;

Substitute the values of W(u,r/L) and s and the known value of Q into Equation

4.6 and calculate KD;

— Substitute the value of KD, the reciprocal value of 1/u, and the values of t and
rinto Equation 4.7 and solve for S;

81



W (u,r/L)

10°
6 E
4 F
2 - r/L
1 | | loo L——7

10 E ——————"_0.010
6 E /ﬁz/l : T i : 0050

F \jE’ ————— n 0.10;
F wﬁ‘sc\]ﬁT ] | |
2 r //ﬁ 0.50
1o°§: A// ! ! ! ! l1.0
i = 7
2 i #‘ 20
107 //L

E Yy 30
o ") b
Naw/

/.

10—25__ /// }7 5.0
35 i
2 Z—— l 6.0
10— [
s E_I]
a B
.
10740
6 E
4 F
. T

sl Lo bbb bddad o bbbl o Pov bl o T bdadal 1 e By AR

- 1
107 o 7 3 > 2

1024610246102461022 46102461042 4 6 10 46106

17u

Figure 4.5 Family of Walton’s type curves W(u,r/L) versus 1/u for different values of r/L

— From the type curve that best fits the observed data curve, take the numerical value
of r/L and calculate L. Then, because L = /KDc, calculate c;

— Repeat the procedure for all piezometers. The calculated values of KD, S, and ¢
should show reasonable agreement.

Remark

— To obtain the unique fitting position of the data plot with one of the type curves,
enough of the observed data should fall within the period when leakage effects are
negligible, or r/L should be rather large.
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Example 4.3

Compiled from the pumping test ‘Dalem’, Table 4.2 presents the corrected drawdown
data of the piezometers at 30, 60, 90, and 120 m from the well. Using the data from
the piezometer at 90 m, we plot the drawdown data against the corresponding values
of t on log-log paper. A comparison with the Walton family of type curves shows
that the plotted points fall along the curve for r/L = 0.1 (Figure 4.6). The point where
W(u,r/L) = 1 and 1/u = 10? is chosen as match point Ay, On the observed data
sheet, this point has the coordinates s = 0.035 m and t = 0.22 d. Introducing the
appropriate numerical values into Equations 4.6 and 4.7 yields

761
KD = - Wur/L) = x 1= 1731 m*/d
47s (ur/L) 4 x 3.14 x 0.035 /
and
s in metres
109
8
6
W (u,r/L) 4
10!
r/L
110.00
2 1 0.05
%2_{‘/————-—-— 0.10
=TT | 0.20
./4 u
//
0.50
100 xA90
1.0
6
4 =
10'1 o data from piezom. at 90 m
2
103 5
10-2 2 4 6 8107 2 4 6 810 2 4 6 810
t in days
2
10° -
100 10! 102 10°

1/u

Figure 4.6 Analysis of data from pumping test ‘Dalem’ (r = 90 m) with the Walton method
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4KDt  4x 1731 x022 1
=T UT 907 * 107

Further, because r = 90 m and r/L = 0.1, it follows that L = 900 m and hence
¢ = L?/KD = (900)*/1731 = 468 d.

S =1.9 x 107

Table 4.2 Drawdown data from pumping test ‘Dalem’, The Netherlands (after De Ridder 1961)

Time Drawdown Time Drawdown

(@) (m) (d) (m)

Piezometer at 30 m distance and 14 m depth

0 0

1.53 x 1072 0.138 8.68 x 1072 0.190
1.81 0.141 1.25 x 107! 0.201
2.29 0.150 1.67 0.210
2.92 0.156 2.08 0.217
3.61 0.163 2.50 0.220
4.58 0.171 2.92 0.224
6.60 x 1072 0.180 3.33 x 107! 0.228
extrapolated steady-state drawdown 0.235m

Piezometer at 60 m distance and 14 m depth

0 0 8.82 x 1072 0.127
1.88 x 1072 0.081 1.25 x 107! 0.137
2.36 0.089 1.67 0.148
2.99 0.094 2.08 0.155
3.68 0.101 2.50 0.158
4.72 0.109 2.92 0.160
6.67 x 1072 0.120 3.33 x 107! 0.164
extrapolated steady-state drawdown 0.170 m

Piezometer at 90 m distance and 14 m depth

0 0

2.43 x 107 0.069 1.25 x 107! 0.120
3.06 0.077 1.67 0.129
3.75 0.083 2.08 0.136
4.68 0.091 2.50 0.141
6.74 0.100 2.92 0.142
8.96 x 1072 0.109 3.33 x 107! 0.143
extrapolated steady-state drawdown 0.147m

Piezometer at 120 m distance and 14 m depth

0 0

2.50 x 107 0.057 1.25 x 107! 0.105
3.13 0.063 1.67 0.113
3.82 0.068 2.08 0.122
5.00 0.075 2.50 0.125
6.81 0.086 2.92 0.127
9.03 x 1072 0.092 3.33 x 107! 0.129
Extrapolated steady-state drawdown 0.132m
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4.2.2  Hantush’s inflection-point method

Hantush (1956) developed several procedures for the analysis of pumping test data
in leaky aquifers, all of them based on Equation 4.6

s = 4n%D W(u,r/L)

One of these procedures (Procedure 4.4) uses the drawdown data from a single piez-
ometer; the other (Procedure 4.5) uses the data from at least two piezometers. To
determine the inflection point P (which will be discussed further below), the steady-
state drawdown s, should be known, either from direct observations or from extrapo-
lation. The curve of s versus t on semi-log paper has an inflection point P where the
following relations hold

r
5, = 0.5, = m%ﬁKO <f> (4.8)
where K is the modified Bessel function of the second kind and zero order
r’S r
% = 4KDt, T 2L (4.9)
The slope of the curve at the inflection point As, is given by
_2.30Q .,
As, = KD € (4.10)
or
r = 230L <1og% ~log Asp) @.11)

At the inflection point, the relation between the drawdown and the slope of the curve
is given by

230-P = MK (r/L) (4.12)
As,

In Equations 4.8 to 4.12, the index p means ‘at the inflection point’. Further, As stands
for the slope of a straight line.

Either of Hantush’s procedures of the inflection-point method can be used if the fol-
lowing assumptions and conditions are satisfied:

— The assumptions listed at the beginning of this chapter;

— The aquitard is incompressible, i.e. changes in aquitard storage are negligible;

— The flow to the well is in unsteady state;

— It must be possible to extrapolate the steady-state drawdown for each piezometer.

Procedure 4.4

— For one of the piezometers, plot s versus t on semi-log paper (t on logarithmic scale)
and draw the curve that best fits through the plotted points (Figure 4.7);

85



s in metres
0.15 - T T
7 = T""T5m=0.147m

0.10 s
/ Asp=0.072
| . inflection point x’/
sp=0.0735m |
R < A S S N R — v _
/// } log cycle——>

0.05—— |
|
|
|
|
|
'
|
0.00 |

10-2 | 6 8 107 2 4 6 8 10°

2 2
tp= 2.8 x10days t in days

Figure 4.7 Analysis of data from pumping test ‘Dalem’ (r = 90 m) with Procedure 4.4 of the Hantush
inflection-point method

— Determine the value of the maximum drawdown s,, by extrapolation. This is only
possible if the period of the test was long enough;

— Calculate s, with Equation 4.8: s, = (0.5)s,,. The value of s, on the curve locates
the inflection point P;

— Read the value of t, at the inflection point from the time-axis;

— Determine the slope As, of the curve at the inflection point. This can be closely
approximated by reading the drawdown difference per log cycle of time over the
straight portion of the curve on which the inflection point lies, or over the tangent
to the curve at the inflection point;

— Substitute the values of s, and As, into Equation 4.12 and find r/L by interpolation
from the table of the function e*K, (x) in Annex 4.1;

— Knowing r/L and r, calculate L;

— Knowing Q, s,, As,, and r/L, calculate KD from Equation 4.10, using the table
of the function e™in Annex 4.1, or from Equation 4.8, using the table of the function
Ky(x) in Annex 4.1;

— Knowing KD, t,, r, and r/L, calculate S from Equation 4.9;

— Knowing KD and L, calculate ¢ from the relation ¢ = L?/KD.

Remarks
— The accuracy of the calculated hydraulic characteristics depends on the accuracy

86



of the extrapolation of s,,. The calculations should therefore be checked by substitut-
ing the values of S, L, and KD into Equations 4.6 and 4.7.

Calculations of s should be made for different values of t. If the values of t are
not too small, the values of s should fall on the observed data curve. If the calculated
data deviate from the observed data, the extrapolation of s, should be adjusted.
Sometimes, the observed data curve can be drawn somewhat steeper or flatter
through the plotted points, and so As, can be adjusted too. With the new values
of s, and/or As,, the calculation is repeated.

Example 4.4
From the pumping test ‘Dalem’, we use the data from the piezometer at 90 m (Table
4.2). We first plot the drawdown data of this piezometer versus t on semi-log paper
(Figure 4.7) and then find the maximum (or steady-state) drawdown by extrapolation
(Sm = 0.147 m). According to Equation 4.8, the drawdown at the inflection point
s, = 0.5, = 0.0735 m. Plotting this point on the time-drawdown curve, we obtain
t, = 2.8 x 102d.
Through the inflection point of the curve, we draw a tangent line to the curve, which
matches here with the straight portion of the curve itself. The slope of this tangent
line As, = 0.072 m.
Introducing these values into Equation 4.12 gives

2'30ZS§LP — 230 x % — 234 = MK, (r/L)
Annex 4.1 gives r/L = 0.15, and because r = 90 m, it follows that L = 90/0.15 =
600 m.
Further, Q = 761 m?*d is given, and the value of e = ¢ = 0.86 is found from
Annex 4.1. Substituting these values into Equation 4.10 yields

230Q . 2.30 x 761

KD = 1as, ¢ ~ 4% 3.14 % 0072

x 0.86 = 1665 m*/d

and consequently

_ L2 (600 _
=KD ~ 1665 ~ 2l6d
Introducing the appropriate values into Equation 4.9 gives
_r4KDt, 90 4 x 1665 x 2.8 x 107 _ 5
S=3Le T 7% 600 % 907 17> 10

To verify the extrapolated steady-state drawdown, we calculate the drawdown at a
chosen moment, using Equations 4.6 and 4.7. If we choose t = 0.1 d, then
r’S 90% x 1.7 x 1073

U= ZKDt 4 % 1665 x 107 — %02

According to Annex 4.2, W(u,r/L) = 3.11 (foru = 0.02 and r/L = 0.15). Thus

761 B
Wwr/L) = 7517 1egs X 311 =0.113m

S _Q
(=0 = 47KD
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The pointt = 0.1,s = 0.113 falls on the time-drawdown curve and justifies the extrapo-
lated value of s,,. In practice, several points should be tried.

Procedure 4.5

— On semi-log paper, plot s versus t for each piezometer (t on logarithmic scale) and
draw curves through the plotted points (Figure 4.8);

— Determine the slope of the straight portion of each curve As;

— On semi-log paper, plot r versus As (As on logarithmic scale) and draw the best-fit
straight line through the plotted points. (This line is the graphic representation of
Equation 4.11);

— Determine the slope of this line Ar, i.e. the difference of r per log cycle of As (Figure
4.9);

— Extend the straight line until it intercepts the absciss where r = 0 and As = (As),.

Read the value of (As),;
— Knowing the values of Ar and (As),, calculate L from
1
and KD from
KD =2 30L (4.14)
T 4n(As), '

— Knowing KD and L, calculate ¢ from the relation ¢ = L?/KD;

s in metres

0.25
7
0.20 R
A
A As(30)=
d 0.072m P
7
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/,50@/’ ///
015 < "
; s . —
/ / ./
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- . »i
Lot o
© //
L oSy | o Bs(680)=
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Figure 4.8 Analysis of data from pumping test ‘Dalem’ with Procedure 4.5 of the Hantush inflection-point
method: determination of values of As for different values of r
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— With the known values of Q, r, KD, and L, calculate s, for each piezometer, using
Equation 4.8: s, = (Q/4nKD)K,(r/L) and the table for the function Ky(x) in Annex
4.1;

— Plot each s, value on its corresponding time-drawdown curve and read t, on the
absciss;

— Knowing the values of KD, r, r/L, and t,, calculate S from Equation 4.9: (r2S)/
(4KDt,) = 0.5(r/L).

Example 4.5

From the pumping test ‘Dalem’, we use data from the piezometers at 30, 60, 90, and
120 m (Table 4.2). Figure 4.8 shows a time-drawdown plot for each of the piezometers
on semi-log paper. Determining the slope of the straight portion of each curve, we
obtain:

As (30m) = 0.072m As(90m) = 0.070 m
As (60 m) = 0.069 m As (120 m) = 0.066 m

In Figure 4.9, the values of As are plotted versus r on semi-log paper and a straight
line is fitted through the plotted points. Because of its steepness, the slope is measured
as the difference of r over 1/20 log cycle of As. (If 1 log cycle measures 10 c¢m, 1 /20
log cycle is 0.5 cm). The difference of r per 1/20 log cycle of As equals 120 m, or
the difference of r per log cycle of As, i.e. Ar equals 2400 m. The straight line intersects
the As axis where r = 0 in the point (As), = 0.074 m. Substitution of these values
into Equations 4.13 and 4.14 gives

rin metres
200

150

100

50 20"

:(A5)3=
2L log cycle \0.07dm
o 26 %9 N i1
_2 _1
10 2 4 6 8 10
As in metres
log cycle

Figure 4.9 Idem: determination of the value of Ar
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SR T
230" T 230

and because Q = 761 m*/d

©230Q 230 x 761
KD = 4nAs), = 4% 3.14 x 0.074

L x 2400 = 1043 m

— 1883 m’/d

finally

L2 (1043)

C=xpD~ 1853 —°/8d

The value of r/L is calculated for each piezometer, and the corresponding values of
K,(r/L) are found in Annex 4.1. The results are listed in Table 4.3.

Table 4.3 Data to be substituted into Equations 4.8 and 4.9

r r/L Ko(r/L) Sp t, Sm
(m) (m) (d (m)
30 0.0288 3.668 0.1180 outside figure 0.236
60 0.0575 2.984 0.0960 3.25 x 1072 0.192
90 0.0863 2.576 0.0829 3.85 x 107 0.166
120 0.1150 2.290 0.0737 4.70 x 1072 0.147

The drawdown s, at the inflection point of the curve through the observed data, as
plotted in Figure 4.8 for the piezometer at 60 m, is calculated from Equation 4.8
__Q L) S _
$,(60) = KD Ky(r/L) = 314 < 1883 2.984 = 0.0960 m

The point on this curve for which s = 0.0960 m is determined; this is the inflection
point. On the absciss, the value of t, at the inflection point is t,(60) = 3.25 x 1072
d. From Equation 4.8, it follows that s,,(60) = 2s,(60) = 0.192 m. This calculation
was also made for the other piezometers. These results are also listed in Table 4.3.
Substitution of the values of t, into Equation 4.9 yields values of S. For example,
forr = 60 m,

_ r4KDt, 60 4 1883 x 325 x 102 .
=3L 2 — 21043~ 60° =20x10

S
In the same way, for r = 90 m and for r = 120 m, the values of S are 1.5 x 107
and 1.4 x 1073, respectively. The average value of Sis 1.6 x 1072
It will be noted that the calculated values for the steady-state drawdown are somewhat
higher than the extrapolated values from Table 4.1.
4.2.3 Hantush’s curve-fitting method

Hantush (1960) presented a method of analysis that takes into account the storage
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changes in the aquitard. For small values of pumping time, he gives the following
drawdown equation for unsteady flow

_Q
S = 47KD W(u,B) (4.15)
Whgre
r’S
Y = IKDt (4.16)
_r |[K/D S
B = i KD < S (4.17)

S’ = aquitard storativity

W(u,p) = T%y erfc A\/%dy

Values of the function W(u,B) are presented in Annex 4.3.

Hantush’s curve-fitting method can be used if the following assumptions and condi-
tions are satisfied:

— The assumptions listed at the beginning of this chapter;

— The flow to the well is in an unsteady state;

The aquitard is compressible, i.e. the changes in aquitard storage are appreciable;
-t < S’D’/10K".

Only the early-time drawdown data should be used so as to satisfy the assumption
that the drawdown in the aquitard (or overlying unpumped aquifer) is negligible.

Procedure 4.6

— Using Annex 4.3, construct on log-log paper the family of type curves W(u,[) versus
1/u for different values of B (Figure 4.10);

— On another sheet of log-log paper of the same scale, plot s versus t for one of the
piezometers;

— Match the observed data plot with one of the type curves (Figure 4.11);

— Select an arbitrary point A on the overlapping portion of the two sheets and note
the values of W(u,p), 1/u, s, and t for this point. Note the value of B on the selected
type curve;

— Substitute the values of W(u,p) and s and the known value of Q into Equation
4.15 and calculate KD;

— Substitute the values of KD, t, r, and the reciprocal value of 1/u into Equation
4.16 and solve for S;

— Substitute the values of §, KD, S, r, and D’ into Equation 4.17 and solve for K'S’.

Remarks

— It is difficult to obtain a unique match of the two curves because the shapes of
the type curves change gradually with B (B values are practically indeterminate in
therange B = 0 — B = 0.5, because the curves are very similar);
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Figure 4.10 Family of Hantush’s type curves W(u,B) versus 1/u for different values of B
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Figure 4.11 Analysis of data from pumping test ‘Dalem’ (r = 90 m) with the Hantush curve-fitting method
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— As K’ approaches zero, the limit of Equation 4.15 is equal to the Theis equation
s = (Q/4nKD)W(u). If the ratio of the storativity of the aquitard and the storativity
of the leaky aquifer is small (S'/S < 0.01), the effect of any storage changes in
the aquitard on the drawdown in the aquifer is very small. In that case, and for
small values of pumping time, the Theis formula (Equation 3.5) can be used (see
also Section 4.2.4).

Example 4.6
From the pumping test ‘Dalem’ we use the drawdown data from the piezometer at
90 m (Table 4.2), plotting on log-log paper the drawdown data against the correspond-
ing values of t (Figure 4.11). A comparison of the data plot with the Hantush family
of type curves shows that the best fit of the plotted points is obtained with the curve
B = 5x 102 We choose a match point A, whose coordinates are W(u,p) = 10°,
l/u =10,s = 4x 102 m, and t = 2 x 102 d. Substituting these values, together
with the values of Q = 761 m*/d and r = 90 m, into Equations 4.15, 4.16, and 4.17,
we obtain
KD = 4‘%W(“’B) Tdx 3.147214 <102 10° = 1515 m%/d
S — 4KDtu 4 x 1515 x 2 x 102 x 10"
o 90° -

1.5 x 1073

KD§ = B(4/rPKDS = (5 x 102)2 x (4/90) x 1515 x 1.5 x 10

= 1.1 x 104"
The thickness of the aquitard D’ = 8 m (Figure 4.2). Hence, K’'S’ = 9 x 10 m/d.

To check whether the condition t < S'D’/10K" is fulfilled, we need more calculated
parameters. Using the value of ¢ = D’/K’ = 450 d (see Section 4.3), we can calculate
an approximate value of S’

K/S/
D/
S"=450 x 1.1 x 10° = 5 x 1073

=1.1x 105d"!

Hence

t<5x103%x450 x 0.1ort < 0.225d
If this time condition is to be satisfied, the drawdown data measured att = 2.50 x 10,
2.92 x 107, and 3.33 x 107" d should not be used in the analysis (Figure 4.11).
Note: Because the data curve matches with a type curve in the range p = 0 — B =

0.5, not too much value should be attached to the exact value of B, nor to the calculated
value of K’S’.

424  Neuman-Witherspoon’s method
Neuman and Witherspoon (1972) developed a method for determining the hydraulic
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characteristics of aquitards at small values of pumping time when the drawdown in
the overlying unconfined aquifer is still negligible. The method is based on a theory
developed for a so-called slightly leaky aquifer (Neuman and Witherspoon 1968),
where the drawdown function in the pumped aquifer is given by the Theis equation
(Equation 3.5), and the drawdown in the aquitard of very low permeability is described
by

=3 %D Wuu) (4.18)

where

W(uu,) = f j E1< uzzuc >e*y2dy

722S’
uc - 4K/D/t (419)
K'D’ T . .
g = hydraulic diffusivity of the aquitard in m?/d

z = vertical distance from aquifer-aquitard boundary to
piezometer in the aquitard in m

At the same elapsed time and the same radial distance from the well, the ratio of
the drawdown in the aquitard and the drawdown in the pumped aquifer is

se _ W(u,u,)
s W

Figure 4.12 shows curves of W(u,u.)/W(u) versus 1/u, for different values of u. These
curves have been prepared from values given by Witherspoon et al. (1967) and are
presented in Annex 4.4. Knowing the ratio s./s from the observed drawdown data
and a previously determined value of u for the aquifer, we can read a value of 1/u,
from Figure 4.12. By substituting the value of 1/u. into Equation 4.19, we can deter-
mine the hydraulic diffusivity of the aquitard of very low permeability.

Neuman and Witherspoon (1972) showed that their ratio method, although devel-
oped for a slightly leaky aquifer, can also be used for a very leaky aquifer. The only
requirement is that, in Equation 4.17, B < 1.0 because, as long as < 1.0, the ratio
s./sis found to be independent of B for all practical values of u.. As B is directly propor-
tional to the radial distance r from the well to the piezometer, r should be small
(r < 100 m).

The Neuman-Witherspoon ratio method can be applied if the following assumptions

and conditions are fulfilled:

— The assumptions listed at the beginning of this chapter;

— The flow to the well is in an unsteady state;

— The aquitard is compressible, i.e. the changes in aquitard storage are appreciable;

— B < 1.0, i.e. the radial distance from the well to the piezometers should be small
(r < 100 m);

-t < S’D’/10K".
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Figure 4.12 Neuman-Witherspoon’s nomogram showing the relation of W(u,u,)/W(u) versus 1/u, for dif-
ferent values of u

Procedure 4.7

— Calculate the transmissivity KD and the storativity S of the aquifer with one of
the methods described in Section 4.2, using the early-time drawdown data of the
aquifer;

— For a selected value of r (r < 100 m), prepare a table of values of the drawdown
in the aquifer s, in the overlying aquitard s, and, if possible, in the overlying uncon-
fined aquifer s, for different values of t (see Remarks below);

— Select a time t and calculate for this value of t the value of the ratio s /s and the
value of u = r’S/4KDt;
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Knowing s./s = W(u,u,)/W(u) and u, determine the corresponding value of 1/u,,
using Figure 4.12;
Substitute the value of 1/u, and the values of z and t into Equation 4.19, written
as

KD _1 2

S w4t

and calculate the hydraulic diffusivity of the aquitard K'D’/S’;
Repeat the calculation of K’D’/S’ for different values of t, i.e. for different values
of s./s and u. Take the arithmetic mean of the results;

Repeat the procedure if data from more than one set of piezometers are available.
Take the arithmetic mean of the results.

Remarks

To check whether the selected value of t falls in the period in which the method
is valid, the calculated values of S/, D’, and K’ have to be substituted into
t < S'D’/10K’. Neuman and Witherspoon (1969a) showed that this time criterion
is rather conservative. It is also possible to use drawdown data from piezometers
in the unpumped unconfined aquifer and to read the time limit from the data plot
of s, versus t on log-log paper. However, if KD of the unpumped aquifer is relatively
large, the drawdown s, will be too small to determine the time limit reliably;
According to Neuman and Witherspoon (1972), the KD and S values of a leaky
aquifer can be determined with the methods of analysis based on the Theis solution
(Section 3.2). They state that the errors introduced by these methods will be small
if the earliest available drawdown data, collected close to the pumped well, are used;
Neuman and Witherspoon (1972) also observed that whenu < 2.5 x 107 the curves
in Figure 4.12 are so close to each other that they can be assumed to be practically
independent of u. Then, even a crude estimate of u will be sufficient for the ratio
method to yield satisfactory results;

The ratio method is also applicable to multiple leaky aquifer systems, provided that
the sum of the P values related to the overlying and/or underlying aquitards is less
than 1.

Example 4.7
The data are taken from the pumping test ‘Dalem’. At 30 m from the well, piezometers
were placed at depths of 2 and 14 m below ground surface. The drawdowns in them

at

t = 4.58 x 102d are s, = 0.009 m and s = 0.171 m, respectively. The values of

the aquifer characteristics are taken from Table 4.4: KD = 1800 m*/d and S =
1.7 x 1073. Consequently

and

oS 30Px 1.7x10° "
U= KDt = 4% 1800 x 4.58 x 102~ +0 < 10
s, 0009 ,
o0 5310

Plotting the value of s./s = 5.3 x 102 on the W(u,u,)/W(u) axis of the plot in Figure
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4.12 and knowing the value of u = 4.6 x 107, we can read the value of 1/u, from
the horizontal axis of this plot: 1/u, = 6.4 x 107!

As the depth of the piezometer in the aquitard is 2 m below ground surface and
D’ = 8 m, it follows that z = 6 m. Consequently, the hydraulic diffusivity of the
aquitard is

KD 1 _ 2 ; 6
ST TR R ey R (=

The Neuman-Witherspoon method is only applicable if t < S'D’/10K’. From K'D’/S’
= 126 m?/d and D’ = 8 m, it follows that

t<0.1<5—D— 1

= 126 m?/d

-1 21
X (D,)2> Lort < 0.1(126 x 1/8%)1 = 0.05d

Hence, the time condition is fulfilled (the pumping time t used in the calculation was
4.58 x 102d). As the radial distance of the piezometer to the well is 30 m, the condition
r < 100 mis also satisfied.

4.3 Summary

Using data from the pumping test ‘Dalem’, we have illustrated the methods of analyz-
ing steady and unsteady flow to a well in a leaky aquifer. Table 4.4 summarizes the
values we obtained for the hydraulic characteristics of both the aquifer and the aqui-
tard.

Table 4.4 Hydraulic characteristics of the leaky aquifer system at ‘Dalem’, calculated with the different
methods

Method Data from KD S L c K*S" -K'D'/S

piezometer

(m?/d) m (@ (m/d)  (m%d)

De Glee All 2126 - 1100 569 - -
Hantush-Jacob All 2020 - 982 478 - -
Walton 90 1731 1.9x1073 900 468 - -
Hantush inflection-
point 1 90 1665  1.7x107 600 216 - -
Hantush inflection-
point 2 All 1883 1.6x1073 1043 578 - -
Hantush
curve-fitting 90 1515 1.5x107 - - 9x107° -
Neuman-
Witherspoon 30 - - - - - 126

We could thus conclude that the leaky aquifer system at ‘Dalem’ has the following
(average) hydraulic characteristics:
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Aquifer: KD = 1800 m?/d Aquitard: ¢ =450d
S =17x107? K'D’/S" = 126 m?/d
L =900m

From the aquitard characteristics, we could calculate values of K" and S’
K'=D’/c = 8/450 = 1.8 x 10??m/d
S"=K'D’/126 = 1.1 x 1073

It will be noted that the different methods produce somewhat different results. This
is due to inevitable inaccuracies in the observed and corrected or extrapolated data
used in the calculations, but also, and especially, to the use of graphical methods.
The steady-state drawdowns used in our examples, for instance, were extrapolated
values and not measured values. These extrapolated values can be checked with Proce-
dure 4.5 of the Hantush inflection-point method, but this requires a lot of straight
lines having to be fitted through observed and calculated data that do not fall exactly
on a straight line. Consequently, there are slightly different positions possible for these
lines, which are still acceptable as fitted straight lines, but give different values of
the hydraulic parameters.

The same difficulties are encountered when observed data plots have to be matched
with a type curve or a family of type curves. In these cases too, slightly different match-
ing positions are possible, with different match-point coordinates as a result, and thus
different values for the hydraulic parameters. Because of such matching problems,
the value of K’S” in Table 4.4 is not considered to be very reliable.

Most of the methods described in this chapter only require data from the pumped
aquifer. But, as already stated by Neuman and Witherspoon (1969b), such data are
not sufficient to characterize a leaky system: the calculations should also be based
on drawdown data from the aquitard and, if present, from the overlying unconfined
unpumped aquifer, whose watertable will not remain constant, except for ideal situa-
tions, which are rare in nature.

Moreover, it should be kept in mind that, in practice, the assumptions underlying
the methods are not always entirely satisfied. One of the assumptions, for instance,
is that the aquifer is homogeneous, isotropic, and of uniform thickness, but it will
be obvious that for an aquifer made up of alluvial sand and gravel, this assumption
is not usually correct and that its hydraulic characteristics will vary from one place
to another.

Summarizing, we can state that the average results of the calculations presented
above are the most accurate values possible, and that, given the lithological character
of the aquifer, aiming for any higher degree of accuracy would be to pursue an illusion.
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5 Unconfined aquifers

Figure 5.1 shows a pumped unconfined aquifer underlain by an aquiclude. The pump-

ing causes a dewatering of the aquifer and creates a cone of depression in the water-

table. As pumping continues, the cone expands and deepens, and the flow towards
the well has clear vertical components.

There are thus some basic differences between unconfined and confined aquifers
when they are pumped:

— First, a confined aquifer is not dewatered during pumping; it remains fully saturated
and the pumping creates a drawdown in the piezometric surface;

— Second, the water produced by a well in a confined aquifer comes from the expansion
of the water in the aquifer due to a reduction of the water pressure, and from the
compaction of the aquifer due to increased effective stresses;

— Third, the flow towards the well in a confined aquifer is and remains horizontal,
provided, of course, that the well is a fully penetrating one; there are no vertical
flow components in such an aquifer.

In unconfined aquifers, the water levels in piezometers near the well often tend to
decline at a slower rate than that described by the Theis equation. Time-drawdown
curves on log-log paper therefore usually show a typical S-shape, from which we can
recognize three distinct segments: a steep early-time segment, a flat intermediate-time
segment, and a relatively steep late-time segment (Figure 5.2). Nowadays, the widely
used explanation of this S-shaped time-drawdown curve is based on the concept of
‘delayed watertable response’. Boulton (1954, 1963) was the first to introduce this
concept, which he called ‘delayed yield’. He developed a semi-empirical solution that

.‘.......‘.....' ....... DI N Y I 'Watertableafter ........

IR R R ST AT IR start of pumping’\". ...t

Figure 5.1 Cross-section of a pumped unconfined aquifer

99



—>— W(up, B)

—> T/up

1072 46 10° 2 46 10" 2 46 102 2 46 103 46 10" 2 46 10° 2 46 105 2 4610,
U= T T T T T T T T T T T T T[] T T [T T [T [T[T] T L L L L T1T[H10
10 % ] | T T
6F — 0.001 =6
ar — 17 | L —=—T"1 114
- T — 0.01 L] ]
. e = )
1 —— =
C - 0. X ]
0 | A 109
100E H .
6 Tt 0.4 — 6
L 4
4r g 10 T 1*
2 2
- o 1 -
101E 101
6 F L 16
4 / Bl —— / 1
L I i
60| 11—

2 / / 2
102F 4 1102
6 F L 16
af a4
2 2
3l 103

10 1 11111 1 (il 1 111l 1 111l 1 Lty 1 Ll L 111 1 11l

1 1 1 1 1 1 1 01
1052 461042 461032 46122 461" 2 46 10° 2 461 2 46 1022 46 103

—>= 1/un

Figure 5.2 Family of Neuman type curves: W(uy,B) versus 1/us and W(ug,B) versus 1/ug for different

values of

reproduced all three segments of this curve. Although useful in practice, Boulton’s
solution has one drawback: it requires the definition of an empirical constant, known
as the Boulton’s delay index, which is not clearly related to any physical phenomenon.
The concept of delayed watertable response was further developed by Neuman (1972,
1973, 1979); Streltsova (1972a and b, 1973, 1976); and Gambolati (1976). According
to these authors, the three time segments of the curve should be understood as follows:

The steep early-time segment covers only a brief period after the start of pumping
(often only the first few minutes). At early pumping times, an unconfined aquifer
reacts in the same way as a confined aquifer: the water produced by the well is
released instantaneously from storage by the expansion of the water and the com-
paction of the aquifer. The shape of the early-time segment is similar to the Theis
type curve;

The flat intermediate-time segment reflects the effect of the dewatering that accom-
panies the falling watertable. The effect of the dewatering on the drawdown is com-
parable to that of leakage: the increase of the drawdown slows down with time
and thus deviates from the Theis curve. After a few minutes to a few hours of pump-
ing, the time-drawdown curve may approach the horizontal;

The relatively steep late-time segment reflects the situations where the flow in the
aquifer is essentially horizontal again and the time-drawdown curve once again
tends to conform to the Theis curve.

Section 5.1 presents Neuman'’s curve-fitting method, which is based on the concept
of delayed watertable response. Neuman’s method allows the determination of the
horizontal and vertical hydraulic conductivities, the storativity S,, and the specific
yield Sy.

It must be noted, however, that unreasonably low Sy values are often obtained,
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because flow in the (saturated) capillary fringe above the watertable is neglected (Van
der Kamp 1985).

Under favourable conditions, the early and late-time drawdown data can also be ana-
lyzed by the methods given in Section 3.2. For example, the Theis method can be
applied to the early-time segment of the time-drawdown curve, provided that data
from piezometers near the well are used because the drawdown in distant piezometers
during this period will often be too small to be measured. The storativity S, computed
from this segment of the curve, however, cannot be used to predict long-term draw-
downs. The late-time segment of the curve may again conform closely to the Theis
type curve, thus enabling the late-time drawdown data to be analyzed by the Theis
equation and yielding the transmissivity and the specific yield Sy of the aquifer. The
Theis method yields a fairly realistic value of Sy (Van der Kamp 1985).

If a pumped unconfined aquifer does not show phenomena of delayed watertable
response, the time-drawdown curve only follows the late-time segment of the S-shaped
curve. Because the flow pattern around the well is identical to that in a confined
aquifer, the methods in Section 3.2 can be used.

True steady-state flow cannot be reached in a pumped unconfined aquifer of infinite
areal extent. Nevertheless, the drawdown differences will gradually diminish with time
and will eventually become negligibly small. Under these transient steady-state condi-
tions we can use the Thiem-Dupuit method (Section 5.2).

The methods presented in this chapter are all based on the following assumptions

and conditions:

— The aquifer is unconfined;

— The aquifer has a seemingly infinite areal extent;

— The aquifer is homogeneous and of uniform thickness over the area influenced by
the test;

— Prior to pumping, the watertable is horizontal over the area that will be influenced
by the test;

— The aquifer is pumped at a constant discharge rate;

— The well penetrates the entire aquifer and thus receives water from the entire saturat-
ed thickness of the aquifer.

In practice, the effect of flow in the unsaturated zone on the delayed watertable res-
ponse can be neglected (Cooley and Case 1973; Kroszynski and Dagan 1975). Accord-
ing to Bouwer and Rice (1978), air entry phenomena may influence the drawdown.

Although the aquifer is assumed to be of uniform thickness, this condition is not
met if the drawdown is large compared with the aquifer’s original saturated thickness.
A corrected value for the observed drawdown s then has to be applied. Jacob (1944)
proposed the following correction

s’ = s—(s?/2D)

where
s’ = corrected drawdown
s = observed drawdown

D = original saturated aquifer thickness
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According to Neuman (1975), Jacob’s correction is strictly applicable only to the late-
time drawdown data, which fall on the Theis curve.

5.1 Unsteady-state flow
5.1.1 Neuman’s curve-fitting method

Neuman (1972) developed a theory of delayed watertable response which is based
on well-defined physical parameters of the unconfined aquifer. Neuman treats the
aquifer as a compressible system and the watertable as a moving material boundary.
He recognizes the existence of vertical flow components and his general solution of
the drawdown is a function of both the distance from the well r and the elevation
head. When considering an average drawdown, he is able to reduce his general solution
to one that is a function of r alone. Mathematically, Neuman simulated the delayed
watertable response by treating the elastic storativity S, and the specific yield Sy as
constants.

Neuman’s drawdown equation (Neuman 1975) reads

S = gt W up.B) (5.1)

Under early-time conditions, this equation describes the first segment of the time-
drawdown curve (Figure 5.2) and reduces to

Q

s = 4nKD W(uu,B) (5.2)
where
1S,
U = IRDi (5.3)

S, = volume of water instantaneously released from storage per unit surface
area per unit decline in head (= elastic early-time storativity).

Under late-time conditions, Equation 5.1 describes the third segment of the time-draw-
down curve and reduces to

__Q
S = gty W(unB) (5:4)
where
I
%8 = 2KDt :5)

Sy = volume of water released from storage per unit surface area per unit de-
cline of the watertable, i.e. released by dewatering of the aquifer (= spe-
cific yield)

Neuman’s parameter f is defined as
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r’K,
B= DK (5.6)

where

K, = hydraulic conductivity for vertical flow, in m/d
K, = hydraulic conductivity for horizontal flow, in m/d

For isotropic aquifers, K, = K;, and § = r?/D2.

Neuman’s curve-fitting method can be used if the following assumptions and condi-

tions are satisfied:

— The assumptions listed at the beginning of this chapter;

— The aquifer is isotropic or anisotropic;

— The flow to the well is in an unsteady state;

— The influence of the unsaturated zone upon the drawdown in the aquifer is neglig-
ible;

— Sy/Sa > 10;

— An observation well screened over its entire length penetrates the full thickness of
the aquifer;

— The diameters of the pumped and observation wells are small, i.e. storage in them
can be neglected.

As stated by Rushton and Howard (1982), fully-penetrating observation wells allow
the ‘short-circuiting’ of vertical flow. Consequently, the water levels observed in them
will not always be equivalent to the average of groundwater heads in a vertical section
of the aquifer, as assumed in Neuman’s theory. The theory should still be valid, howev-
er, for piezometers with short screened sections, provided that the drawdowns are
averaged over the full thickness of the aquifer (Van der Kamp 1985).

Procedure 5.1

— Construct the family of Neuman type curves by plotting W(u,,ug,p) versus 1/u,
and 1/ug for a practical range of values of  on log-log paper, using Annex 5.1.
The left-hand portion of Figure 5.2 shows the type A curves [W(u,,B) versus 1/u,]
and the right-hand portion the type B curves [W(ug,p) versus 1/ug];

— Prepare the observed data curve on another sheet of log-log paper of the same scale
by plotting the values of the drawdown s against the corresponding time t for a
single observation well at a distance r from the pumped well;

— Match the early-time observed data plot with one of the type A curves. Note the
B value of the selected type A curve;

— Select an arbitrary point A on the overlapping portion of the two sheets and note
the values of s, t, 1/u,, and W(u,,B) for this point;

— Substitute these values into Equations 5.2 and 5.3 and, knowing Q and r, calculate
K,D and S,;

— Move the observed data curve until as many as possible of the late-time observed
data fall on the type B curve with the same f§ value as the selected type A curve;

— Select an arbitrary point B on the superimposed sheets and note the values of s,
t, 1/ug, and W(ug,B) for this point;

— Substitute these values into Equations 5.4 and 5.5 and, knowing Q and r, calculate
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KD and Sy. The two calculations should give approximately the same value for
K,D;

— From the KD value and the known initial saturated thickness of the aquifer D,
calculate the value of K;;

— Substitute the numerical values of K;, B, D, and r into Equation 5.6 and calculate
Ky

— Repeat the procedure with the observed drawdown data from any other observation
well that may be available. The calculated results should be approximately the same.

Remarks

— To check whether the condition Sy/S, > 10 is fulfilled, the value of this ratio should
be determined;

— Gambolati (1976) (see also Neuman 1979) pointed out that, theoretically, the effects
of elastic storage and dewatering become additive at large t, the final storativity
beingequal to S, + Sy. However, in situations where the effect of delayed watertable
response is clearly evident, S, << Sy and the influence of S, at larger times can
safely be neglected.

Example 5.1

To illustrate the Neuman curve-fitting method, we shall use data from the pumping
test “Vennebulten’, The Netherlands (De Ridder 1966). Figure 5.3 shows a lithostrati-
graphical section of the pumping test area as derived from the drilling data. The imper-
meable base consists of Middle Miocene marine clays. The aquifer is made up of very
coarse fluvioglacial sands and coarse fluvial deposits, which grade upward into very
fine sand and locally into loamy cover sand. The finer part of the aquifer is about
10 m thick. A well screen was placed between 10 and 21 m below ground surface,
and piezometers were placed at distances of 10, 30, 90, and 280 m from the well at

WI/280  WI/90 Wi/ 30 pumped WI/10
m well
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Figure 5.3 Lithostratigraphical cross-section of the pumping-test site ‘Vennebulten’, The Netherlands
(after De Ridder 1966)
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Figure 5.4 Analysis of data from pumping test ‘Vennebulten’, The Netherlands (r = 90 m) with the Neuman
curve-fitting method

depths ranging from 12 to 19 m. Shallow piezometers (at a depth of about 3 m) were
placed at the same distances. The aquifer was pumped for 25 hours at a constant
discharge of 36.37 m*/hr (or 873 m?/d). Table 5.1 summarizes the drawdown observa-
tions in the piezometer at 90 m.

The observed time-drawdown data of Table 5.1 are plotted on log-log paper (Figure
5.4). The early-time segment of the plot gives the best match with the Neuman type
A curve for B = 0.01. The match point A has the coordinates 1 Jux = 10, W(u,,B)
=1,s=48 x10?m,and t = 10.5min = 7.3 x 103d.

The values of KD and S, are obtained from Equations 5.2 and 5.3

. Q _ 873 _ 2
KD = s WaP) = g g8 < 102 % 1 = 1447 md
-3 -1
S, — 4Khr12)tuA _ 4% 1447 x 79.;3)2>< 107 % 107 _ oo o

The coordinates for match point B of the observed data plot and the type B curve
for B = 0.01 are 1/uy = 10%, W(ug,B) = 1, s = 43 x 102 m and t = 880 min =
6.1 x 10'd.

Calculating the values of K;,D and Sy from Equations 5.4 and 5.5, we obtain

_Q B 873 3 ,
KaD = s WsB) = g3 x 107 % 1 = 1616 m¥/d
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_ 4K,Dtuy _ 4 x 1616 x 6.1 x 107 x 107
— Mty

: 5 =49 x 107

Sy

Knowing the thickness of the aquifer D = 21 m, we can calculate the hydraulic conduc-
tivity for horizontal flow

K,D _ /1447 + 1616
K'="Dp =( 2

)/21 — 73m/d

Table 5.1 Summary of data from piezometer W1I/90; pumping test ‘Vennebulten’, The Netherlands (after
De Ridder 1966)

Time Drawdown Drawdown Time Drawdown Drawdown
(min) deep shallow (min) deep shallow
piezometer piezometer piezometer piezometer
(m) (m) (m) (m)
0 0 0 41 0.128 0.018
1.17 0.004 51 0.133 0.022
1.34 0.009 65 0.141 0.026
1.7 0.015 85 0.146 0.028
2.5 0.030 115 0.161 0.033
4.0 0.047 175 0.161 0.044
5.0 0.054 260 0.172 0.050
6.0 0.061 0.005 300 0.173 0.055
7.5 0.068 370 0.173
9 0.064 0.006 430 0.179
14 0.090 0.008 485 0.183 0.061
18 0.098 0.010 665 0.182 0.071
21 0.103 1.340 0.200 0.096
26 0.110 0.011 1.490 0.203 0.099
31 0.115 0.014 1.520 0.204 0.099

From Equation 5.6, the hydraulic conductivity for vertical flow can be calculated

2 2
K, = BDrth _0.01 ><9%)1 XT3 _ 4« 102m/d
The value of the ratio Sy/S, is
Sy 49 x10° _
S, 52x100 04

The condition of Sy/S, > 10 is therefore nearly satisfied. Note that the value of Sy
calculated by means of the ‘B’ curves is unreasonably low. This is in agreement with
earlier observations that the determination of Sy from ‘B’ curves remains a dubious
procedure (Van der Kamp 1985).

5.2 Steady-state flow

When the drawdown differences have become negligibly small with time, the Thiem-
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Dupuit method can be used to calculate the transmissivity of an unconfined aquifer.

5.2.1 Thiem-Dupuit’s method

The Thiem-Dupuit method can be used if the following assumptions and conditions
are satisfied:
— The assumptions listed in the beginning of this chapter;
— The aquifer is isotropic;
— The flow to the well is in steady state;
— The Dupuit (1863) assumptions are satisfied, i.e.:
* The velocity of flow is proportional to the tangent of the hydraulic gradient instead
of the sine as it is in reality;
» The flow is horizontal and uniform everywhere in a vertical section through the
axis of the well.

If these assumptions are met, the well discharge for steady horizontal flow to a well
pumping an unconfined aquifer (Figure 5.5) can be described by

dh
Q = 2nrKh ar
After integration between r, and r, (with r, > r,), this yields
hZ _ h2
= nK 22— 5.7
Q=™ ey 67

which is known as the formula of Dupuit.

aquiclude
Figure 5.5 Cross-section of a pumped unconfined aquifer (steady-state flow)
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Since h = D —s, Equation 5.7 can be transformed into
TK[(D-8,12)> — (D-8,)"12D/2D _ 21K D[(Sm1 — Su1/2D) — (Sm2 — S3/2D)]
In(r,/1;) In(ry/r})
Replacing s —s?/2D with s’ = the corrected drawdown, yields
Q= 2KD(8 iy — ') 2TKD(8 1 — 8'm2)
- In(r,/1,) ~ 2.30 log (ry/ry)

This formula is identical to the Thiem formula (Equation 3.2) for a confined aquifer,
so the methods in Section 3.1.1 can also be used for an unconfined aquifer.

Q=

(5.8)

Remarks

— The Dupuit formula (Equation 5.7) fails to give an accurate description of the draw-
down curve near the well, where the strong curvature of the watertable contradicts
the Dupuit assumptions. These assumptions ignore the existence of a seepage face
at the well and the influence of the vertical velocity components, which reach their
maximum in the vicinity of the well;

— An approximate steady-state flow condition in an unconfined aquifer will only be
reached after long pumping times, i.e. when the flow in the aquifer is essentially
horizontal again and the drawdown curve has followed the late-time segment of
the S-shaped curve that coincides with the Theis curve for sufficiently long time.
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6 Bounded aquifers

Pumping tests sometimes have to be performed near the boundary of an aquifer. A
boundary may be either a recharging boundary (e.g. a river or a canal) or a barrier
boundary (e.g. an impermeable valley wall). When an aquifer boundary is located
within the area influenced by a pumping test, the general assumption that the aquifer
is of infinite areal extent is no longer valid.

Presented in Sections 6.1 and 6.2 are methods of analysis developed for confined
or unconfined aquifers with various boundaries and boundary configurations. Section
6.3 presents a method for leaky or confined aquifers bounded laterally by two parallel
barrier boundaries.

To analyze the flow in bounded aquifers, we apply the principle of superposition.
According to this principle, the drawdown caused by two or more wells is the sum
of the drawdown caused by each separate well. So, by introducing imaginary wells,
or image wells, we can transform an aquifer of finite extent into one of seemingly
infinite extent, which allows us to use the methods presented in earlier chapters.

Figure 6.1A shows a fully penetrating straight canal which forms a recharging
boundary with an assumed constant head. In Figure 6.1B, we replace this bounded
system with an equivalent system, i.e. an imaginary system of infinite areal extent.
In this system, there are two wells: the real discharging well on the left and an image
recharging well on the right. The image well recharges the aquifer at a constant rate
Q equal to the constant discharge of the real well. Both the real well and the image
well are located on a line normal to the boundary and are equidistant from the bound-
ary (Figure 6.1C). If we now sum the cone of depression from the real well and the
cone of impression from the image well, we obtain an imaginary zero drawdown in
the infinite system at the real constant-head boundary of the real bounded system.

Figure 6.1D shows a system with a straight impermeable valley wall which forms
a barrier boundary. Figure 6.1E shows the real bounded system replaced by an equiva-
lent system of infinite areal extent. The imaginary system has two wells discharging
at the same constant rate: the real well on the left and an image well on the right.
The image well induces a hydraulic gradient from the boundary towards the image
well, which is equal to the hydraulic gradient from the boundary towards the real
well. A groundwater divide thus exists at the boundary and there is no flow across
the boundary. The resultant real cone of depression is the algebraic sum of the depres-
sion cones of both the real and the image well. Note that between the real well and
the boundary, the real depression cone is flatter than it would be if no boundary were
present, and is steeper on the opposite side away from the boundary.

If there is more than one boundary, more image wells are needed. For instance,
if two boundaries are at right angles to each other, the imaginary system includes
two primary image wells, both reflections of the real well, and one secondary image
well, which is a reflection of the primary image wells. If the boundaries are parallel
to one another, the number of image wells is theoretically infinite, but in practice
itis only necessary to add pairs of image wells until the next pair would have a negligible
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A) A recharging boundary;
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influence on the sum of all image-well effects. Some of these boundary configurations

will be discussed below.

6.1 Bounded confined or unconfined aquifers, steady-state flow

6.1.1 Dietz’s method, one or more recharge boundaries

Dietz (1943) published a method of analyzing tests conducted in the vicinity of straight
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recharge boundaries under conditions of steady-state flow. Dietz’s method, which is
based on the work of Muskat (1937), uses Green’s functions to describe the influence
of the boundaries: in a piezometer with coordinates x, and y,, the steady-state draw-
down caused by a well with coordinates x,, and y,, is given by

Sm = 53 (1Y) 6.1)

where G(x,y) = Green’s function for a certain boundary configuration.

For one straight recharge boundary (Figure 6.2A), the function reads

(Xl + Xw) + (yl YW)Z
Gley) = 5t = ©2

For two straight recharge boundaries at right angles to each other (Figure 6.2B), the
function reads

1[G = %) + 3+ vy [+ X0+ (3 — v
Glsy) = 5 Iny = X+ (1 — ¥wd [0 F %P+ 1 T v 63)

For two straight parallel recharge boundaries (Figure 6.2C), the function reads

| COSh (yl2 yw) + cos n(xlz_a‘- Xw)
Gxy) = 5 (6.4)
2 COSh Tc(yl - YW) — Cos TC(XI - Xw)
2a 2a
For a U-shaped recharge boundary (Figure 6.2D), the function reads
COSh (yl yw) + cos TC(X] + Xw)
G(xy) = 5 In 2 2
2 COShn(yl — YW) — cos TC(Xl w)
2a -~ 2a
[Coshn(ylzz yw) — cos n(xlza w):|
6.5)

X
COShn(yl + yw) + cos TC(Xl + Xw)
2a 2a

The assumptions and conditions underlying the Dietz method are:
— The assumptions listed at the beginning of Chapter 3, except for the first and second
assumptions, which are replaced by:
* The aquifer is confined or unconfined;
* Within the zone influenced by the pumping test, the aquifer is crossed by one
ormore straight, fully penetrating recharge boundaries with a constant water level;
* The hydraulic contact between the recharge boundaries and the aquifer is as per-
meable as the aquifer.

The following condition is added:
— The flow to the well is in a steady state.
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Figure 6.2 Image well systems for bounded aquifers (Dietz method)
A) One straight recharge boundary
B) Two straight recharge boundaries at right angles
C) Two straight parallel recharge boundaries
D) U-shaped recharge boundary

Procedure 6.1

— Determine the boundary configuration and substitute the appropriate Green func-
tion into Equation 6.1;

— Measure the values of x,,, yy, X;, and y; on the map of the pumping site;

— Substitute the values of Q, X, Vw» X1, ¥1, and sy, into Equation 6.1 and calculate
KD; .

— Repeat this procedure for all available piezometers. The results should show a close
agreement.

Remarks
— The angles in Equations 6.4 and 6.5 are expressed in radians;

— For unconfined aquifers, the maximum drawdown s, should be replaced by s,
= s, — (s%,/2D).

6.2 Bounded confined or unconfined aquifer, unsteady-state
flow
6.2.1 Stallman’s method, one or more boundaries

Stallman (as quoted by Ferris et al. 1962) developed a curve-fitting method for aquifers
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that have one or more straight recharge or barrier boundaries.
The distance between the real well and a piezometer is r; the distance between an
image well and the piezometer is r;, and their ratio is rj/r = r,.

If
r’S
" 4KDt (6.6)
and
_ S Ar’S
%= 4KDt T4kDt - " .7
the drawdown in the piezometer is described by
s=4 %D W) £ W(riu) + W(rdu) + ... £ W(r2w)] (6.8)
or
__Q
s = 41tKD W(uarrl—m) (69)

Numerical values of W(r?u) are given in Annex 6.1. In Equation 6.8, the number of
terms between brackets depends on the number of image wells. If there is only one
image well, there are two terms between brackets: the term (Q/4nKD) W(u) describing
the influence of the real well and the term (Q/4nKD) W(r?u) describing the influence
of the image well. If there are two straight boundaries intersecting at right angles,
three image wells are required, and there are consequently four terms between brack-
ets. With parallel boundaries, the number of image wells becomes infinite, but those
where r, > 100 can be neglected.

A discharge well — real or image — gives terms with a positive sign; a recharge well
gives terms with a negative sign. Consequently, the drawdown in a piezometer caused
by a well near a boundary can be described by the following equations.

One straight boundary
One recharge boundary (Figure 6.1A-C)
__Q 2
S = 4KD W) - W(rtu)] , (6.10)
or
5= 4R%D We(ur,) 6.11)
One barrier boundary (Figure 6.1D-F)
_ Q 2
S = 4KD [W(u) + W(r?u)] (6.12)
or
2wy (6.13)
~ 4gKD BV .
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Two straight boundaries at right angles to each other
One barrier boundary and one recharge boundary (Figure 6.3A)

= S IW(W) + Wirhu) - Wirh) - W(rku)] (6.14)

Two barrier boundaries (Figure 6.3B)

s = gy W) + Wiw) + Wrku) + W) (6.15)
Two recharge boundaries (Figure 6.3C)
= gt s W)~ W(rhu) - W(rku) + W(riu)] (6.16)

Two parallel boundaries
One barrier and one recharge boundary (Figure 6.4A)

§= 47-5%]) [W(u) + W(riu) - W(rdu) - W(rauw) — ... £ W(riw)] 6.17)

Two barrier boundaries (Figure 6.4B)

s Q [W(u) + W(rZu) + W(rdu) + W(r3u) + ... + W(rZu)] (6.18)

~ 4nKD
Two recharge boundaries (Figure 6.4C)
S = s W)~ W(ehu) - W(eku) + Wrau) + ... + W(ru)] (6.19)

For three and four straight boundaries (Figures 6.5 and 6.6), the drawdown equations
can be composed in the same way.

Stallman’s method can be applied if the following assumptions and conditions are
satisfied:
— The assumptions listed at the beginning of Chapter 3, with the exception of the
first and second assumptions, which are replaced by:
* The aquifer is confined or unconfined;
* Within the zone influenced by the pumping test, the aquifer is crossed by one
or more straight, fully penetrating recharge or barrier boundaries;
° Recharge boundaries have a constant water level and the hydraulic contacts be-
tween the recharge boundaries and the aquifer are as permeable as the aquifer.
The following condition is added:
— The flow to the well is in unsteady state.

Procedure 6.2

— Determine the boundary configuration and prepare a plan of the equivalent system
of image wells;

— Determine for one of the piezometers the value of r and the value or values of r;

— Calculate r, = 1;/r for each of the image wells and determine the sign for each of
the terms between brackets in Equation 6.8;
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Figure 6.5 Two straight parallel boundaries intersected at right angles by a third boundary

115



o o 050 i o o o o
|
| |
| |
- +
(@ o 0;3} | e e o o
|
|
_‘_ _________ A o
| 1
|o ® o) ﬁSJI ® @ o o
R BN A
l A
lo o .I.I I o o e o
l L |
| ! |
| IR
|9__o___o_;_04| i/ o o e o

@ image recharge well

O image discharge well
-¢-rea| discharge well

(3) number reflected wells

patterns repeat to infinity

Figure 6.6 Four straight boundaries, i.e. two pairs of straight parallel boundaries intersecting at right angles

— Using Annex 6.1, calculate the numerical values of W(u,r,,_,) with respect to u
according to the appropriate form of Equation 6.8, and plot the type curve
W(u,r,,_,,) versus u on log-log paper;

(For one-boundary systems, the values of Wg(u,r,) and Wg(u,r,) can be read directly
from Annexes 6.2 and 6.3);

— On another sheet of log-log paper, plot s as observed in the piezometer versus 1/t;
this is the observed data curve;

— Match the observed data curve with the type curve;

— Select a matchpoint A and note its coordinate values u, W(u,r,,_,), s, and 1/t;

— Substitute these values of s and W(u,r,,_,,) and the known value of Q into Equation
6.9 and calculate KD;

— Substitute the values of Q, r, u, KD, and 1/t into Equation 6.6 and calculate S;

— Repeat this procedure for all available piezometers. It will be noted that each piez-
ometer has its own type curve because the value of W(u,r,,_,,) depends on the value
of the ratio r;/r = r,, which is different for each piezometer.

Remarks
— This method can also be used to analyze the drawdown data from an aquifer pumped
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by more than one real well, or from an aquifer that is both pumped and recharged
by real wells, provided all wells operate at the same constant rate Q;

— Equation 6.8 is based on the Theis well function for confined aquifers. Stallman’s
method, however, is also applicable to data from unconfined aquifers as long as
Assumption 7 (Chapter 3) is met, i.e. no delayed watertable response is apparent.

6.2.2 Hantush’s method, one recharge boundary

The Hantush image method is useful when the effective line of recharge does not cor-
respond with the bank or the streamline of the river or canal. This may be due to
the slope of the bank, to partial penetration effects of the river or canal, or to an
entrance resistance at the boundary contact. When the effects of these conditions are
small but not negligible, they can be compensated for by making the distance between
the pumped well and the hydraulic boundary in the equivalent system (line of zero
drawdown in Figure 6.1B) greater than the distance between the pumped well and
the actual boundary (Figure 6.7).

As was shown by the Stallman method, the drawdown in an aquifer limited at one
side by a recharge boundary can be expressed by Equation 6.10

s = 4 W)~ Wie)]

where, according to Equation 6.6,

r’S

U = JKDt

and
I
r

r = ./(x* + y?)is the distance between the piezometer and the real discharging
well

piezometer
(x,y)

pumped well JZ—M

actual boundary—s

~~rj= \/(2z-x)2+y2

image well
z

z

<—hydraulic boundary

Figure 6.7 The parameters in the Hantush image method
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> 0

1, = /{(2z—x)* + y?} is the distance between the piezometer and the recharg-
ing well; x, y are the coordinates of the piezometer with respect to the real

discharging well (see Figure 6.7)

The distance between the real discharging well and the recharging image well is 2z.
The hydraulic boundary, i.e. the effective line of recharge, intersects the connecting
line midway between the real well and the image well. The lines are at right angles
to each other. It should be kept in mind that, especially with recharge boundaries,
the hydraulic boundary does not always coincide with the bank of the river or its
streamline. It is not necessary to know z beforehand, nor the location of the image
well, nor the distance r; dependent on it; neither need the relation r;/r = r, be known
beforehand.

The relation between r,, X, 1, and zis given by

472 —4xz — (12— 1) =0 (6.20)

Hantush (1959b) observed that if the drawdown s is plotted on semi-log paper versus
t (with t on logarithmic scale), there is an inflection point P on the curve (Figure 6.8).
At this point, the value of uis given by

S  2lInr,

% =KDy, T -1 (6.21)
The slope of the curve at this point is
- _ 2
As; = iflgg <e Up g rf“P) (6.22)

and the drawdown at this point is

T T T T 17 17T

Figure 6.8 The application of the Hantush image method
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Q
% = 715 VT (6.23)

For values of t > 4t,, the drawdown s approaches the maximum drawdown

Inr, - (6.24)

s, =2
» = 2nKD

It will be noted that the ratio of s,, as given by Equation 6.24, and As,, as given
by Equation 6.22, depends solely on the value of r,. So

Sm 2logr,

- _ 12
As, e U Tl

= f(r,) (6.25)

where u,, is given by Equation 6.21.

The Hantush image method is based on the following assumptions and conditions:
— The assumptions listed at the beginning of Chapter 3, with the exception of the
first and second assumptions, which are replaced by:

* The aquifer is confined or unconfined;

* The aquifer is crossed by a straight recharge boundary within the zone influenced
by the pumping test;

* The recharge boundary has a constant water level, but the effective line of recharge
need not necessarily be known beforehand. Entrance resistances, however, should
be small, although not negligible.

The following conditions are added:

— The flow to the well is in unsteady state;

— It should be possible to extrapolate the steady-state drawdown for each of the piez-
ometers.

Procedure 6.3

— On semi-log paper, plot s versus t for one of the piezometers (t on logarithmic scale),
and draw the time-drawdown curve through the plotted points (Figure 6.8);

— Extrapolate the curve to determine the value of the maximum drawdown s,;;

— Calculate the slope As, of the straight portion of the curve; this is an approximation
of the slope at the inflection point P;

— Calculate the ratio s,/As, according to Equation 6.25; this is equal to f(r,). Use
Annex 6.4 to find the value of r, from f(r,);

— Substitute the values of s,,, Q, and r, into Equation 6.24 and calculate KD;

— Obtain the values of u, and W(u,,r,) from Annex 6.4;

— Substitute the values of Q, KD, and W(u,,r,) into Equation 6.23 and calculate s,

— Knowings,, locate the inflection point on the curve and read t,;

— Substitute the values of KD, t,, u,, and r into Equation 6.21 and calculate S;

— Using Equation 6.20, calculate z;

— Apply this procedure to the data from all available piezometers. The calculated
values of KD and S should show a close agreement.

Remarks
— To check whether any errors have been made in the approximation of s, and As,,
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the theoretical time-drawdown curve should be calculated with Equations 6.6 and
6.10, Annex 6.2, and the calculated values of r,, KD, and S. This theoretical curve
should show a close agreement with the observed time-drawdown curve. If not,
the procedure should be repeated with corrected approximations of s, and As,.
Procedure 6.3 can be applied to analyze data from unconfined aquifers when
Assumption 7 (Chapter 3) is met.

6.3 Bounded leaky or confined aquifers, unsteady-state flow
6.3.1 Vandenberg’s method (strip aquifer)

Leaky aquifers bounded laterally by two parallel barrier boundaries form an ‘infinite
strip aquifer’, or a ‘parallel channel aquifer’. In the analysis of such aquifers, we have
to consider not only boundary effects, but also leakage effects. Vandenberg (1976;
1977) proposed a method by which the values of KD, S, and L of such aquifers can
be determined.

If the distance, x, measured along the axis of the channel between the pumped well
and the piezometer (Figure 6.9), is greater than the width of the channel, w, (i.e. x/w
> 1), Vandenberg showed that for parallel unsteady-state flow the following draw-
down function is applicable

s = (2—1?1);7) F(u,x/L) (6.26)
where
F(u,x/L) = ﬁ Of ¥ exp (—y—x2/4L2y)dy (6.27)
2

A
7 ///////////////

barrier boundary

piezometer

aquifer

[c<
pumped well

VO

barrier bound
o 7
Figure 6.9 Plan view of a parallel channel aquifer
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L = /KDc = leakage factorinm (6.29)
X = projection of distance r in m between pumped well and piezometer, along
the direction of the channel

w = width of the channel in m

Presented in Annex 6.5 are values of the function F(u,x/L) for different values of u
and x/L, as given by Vandenberg (1976). These values can be plotted as a family of
type curves (Figure 6.10).

The Vandenberg curve-fitting method can be used if the following assumptions and
conditions are satisfied:

F(u, x/L)
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Figure 6.10 Family of Vandenberg’s type curves F(u,x/L) versus 1/u for different values of x/L
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— The assumptions listed at the beginning of Chapter 3, with the exception of the
first and second assumptions, which are replaced by:
* The aquifer is leaky;
* Within the zone influenced by the pumping test, the aquifer is bounded by two

straight parallel fully penetrating barrier boundaries.

The following conditions are added: )

— The flow to the well is in unsteady state;

— The width and direction of the aquifer are both known with sufficient accuracy;

- x/w > 1.

Procedure 6.4

— Using Annex 6.5, construct on log-log paper a family of Vandenberg type curves
by plotting F(u,x/L) versus 1/u for a range of values of x/L;

— On another sheet of log-log paper of the same scale, plot s versus t for a single
piezometer at a projected distance x from the pumped well;

— Match the observed data curve with one of the type curves;

— Select a match point on the superimposed sheets, and note for this point the values
of F(u,x/L), 1/u, s, and t. Note also the value of x/L of the selected type curve;

— Substitute the values of F(u,x/L) and s, together with the known values of Q, x,
and w into Equation 6.26 and calculate KD;

— Substitute the values of u and t, together with the known values of KD and x, into
Equation 6.28 and calculate S;

— Knowing x/L and x, calculate L;

— Calculate ¢ from Equation 6.29;

— Repeat the procedure for all available piezometers (x/w > 1). The calculated values
of KD, S, and ¢ should show reasonable agreement.

Remarks

— If the direction of the channel is known, but not its width w, the same procedure
as above can be followed, except that instead of calculating KD and S, the products
KDw and Sw are calculated; ,

— If the direction of the channel is not known and the data from only one piezometer
are available, the distance r may be used instead of x. For those cases where r >>
w, only a small error will be introduced;

— When x/L = 0,i.e. when L — oo, the drawdown function (Equation 6.26) becomes
the drawdown function for parallel flow in a confined channel aquifer

s = 2Ig§w F(u) (6.30)
where
F(u) = exp(—u//mu) — erfc(\/u) (6.31)

With the type curve F(u,x/L) versus 1/u for x/L = 0 (Annex 6.5), the values of
KD and S of confined parallel channel aquifers can be determined;

— Ifx/w < 1, Equation 6.26 is not sufficiently accurate and the following drawdown
equation for a system of real and image wells should be used (Vandenberg 1976;
see also Bukhari et al. 1969)
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s = Z% [W(u,r/L) + El W(u;,r;/L)] (6.32)
where W(u,r/L) is the function for radial flow towards a well in a leaky aquifer
of infinite extent.

Type curves can be constructed from the exact solution of Equation 6.32. For each
particular configuration of pumped well and piezometer, however, a different set
of curves is required. Vandenberg (1976) provides 16 sets of type curves and gives
a listing and user’s guide for a Fortran program that will plot a set of type curves
for any well/piezometer configuration.
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7 Wedge-shaped and sloping aquifers

The standard methods of analysis are all based on the assumption that the thickness
of the aquifer is constant over the area influenced by the pumping test. In wedge-
shaped aquifers this assumption is not fullfilled and other methods of analysis should
be used (Section 7.1). Standard methods also assume a horizontal watertable prior
to a test. In some cases the watertable in unconfined aquifers is sloping and these
methods cannot be used. Sections 7.2 and 7.3 present methods of analysis for uncon-
fined aquifers with a sloping watertable.

7.1 Wedge-shaped confined aquifers, unsteady-state flow
7.1.1 Hantush’s method

According to Hantush (1962), if the thickness of a confined aquifer varies exponen-
tially in the flow direction (x-direction) while remaining constant in the y-direction
(Figure 7.1), the drawdown equation for unsteady-state flow takes the form

s = |:4RI(2DW exp (g cos ®>} W<u, 2‘) (7.1)

where

D,, = thickness of the aquifer at the location of the well
©® = the angle between the x-direction and a line through the well and a piez-
ometer, in radians

a = constant defining the exponential variation of the aquifer thickness
N r’S
" 4KD,t

(\Q s original piezometric surface
’ /

aquiclude5 5SS CLKKKS 02070, %
R RRRREGIEIIIIILIAN

piezometer (x,y)

7F ......
. .
~ ¥ pumped well (xq,yq)
‘aﬂ“\c 0'Y0 X

Figure 7.1 Cross-section and plan view of a pumped wedge-shaped confined aquifer
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This equation has the same form as Equation 4.6, which describes the drawdown for
unsteady state in a leaky aquifer of constant thickness. So, to determine the values
of KD,, S, and a of a wedge-shaped confined aquifer, we can use a method analogous
to the Hantush inflection-point method for leaky aquifers of constant thickness (Pro-
cedure 4.4) (Hantush 1964).

At the inflection point P of the time-drawdown curve for a pumped confined aquifer
of non-uniform thickness, Equations 4.8, 4.9, 4.10, and 4.12 become

1 r r
Sy = 2 5n = [ 4n§D exp (5 cos @)] KO< 5’) (7.2)
r’S r
% T 4KD,t, " 2a (73)
The slope of the curve at the inflection point is
As, = [41;’28 exp (g cos ®>:| g/ (7.9

The relation between the drawdown and the slope of the curve is
Sp — ella I ‘
230 2 = e K, (‘a > (7.5)

Hantush’s inflection-point method (Procedure 4.4) can be applied if the following
assumptions and conditions are fulfilled:
— The assumptions listed at the beginning of Chapter 3, with the exception of the
third assumption, which is replaced by:
* The aquifer is homogeneous and isotropic over the area influenced by the pumping
test;
* The thickness of the aquifer varies exponentially in the direction of flow;

dD . a a
dx with I, = E IH<TDW>

) S
< 020, e.t < m
The following condition is added:

— The flow to the well is in an unsteady state, but the steady-state drawdown should
be approximately known.

Procedure 7.1

— For one of the piezometers, plot s versus t on semi-log paper (t on the logarithmic

scale) and draw the curve that fits best through the plotted points;

Determine the value of s, by extrapolation;

— Calculate s, from Equation 7.2. The value of s, on the curve locates the inflection

point P;

From the time axis, read the value of t, at the inflection point;

— Determine the slope As, of the curve at the inflection point by reading the drawdown
difference per log cycle of time over the tangent to the curve at the inflection point;

— Substitute the values of s, and As, into Equation 7.5 and find r/a by interpolation
from the table of the function e*K (x) in Annex 4.1;

— Knowing r/a and r, calculate a;

|
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— Knowing Q, s, As,, r/a, and cos 0, and using Annex 4.1, calculate KD, from Equa-
tion 7.4 or Equation 7.2;
— Knowing KD,, t,, r, and r/a, calculate S from Equation 7.3.

Remarks

— To check whether the time condition is fulfilled, calculate the value of (12S)/20K D,

— If the well and all the piezometers are located on a single straight line, i.e. 0 is the
same for all piezometers, we can use a method analogous to the Hantush inflection-
point method for leaky aquifers (Procedure 4.5).

7.2 Sloping unconfined aquifers, steady-state flow
7.2.1 Culmination-point method
If an unconfined aquifer with a constant saturated thickness slopes uniformly in the

direction of flow (x-axis) (Figure 7.2), the slope of the watertable i is equal to the
slope of the impermeable base o and the flow rate per unit width is

q =3 =KDo (7.6)
or
a4
*= XD

When such an aquifer is pumped at a constant discharge Q, the slope of the cone
of depression along the x-axis downstream of the well is given for steady-state flow
as

dh Q

T dx ~ 2nKD 7.7

On the x-axis, there is a point where the slopes o and dh/dx are numerically the same
but have opposite signs; hence the combined slope is zero. In this culmination point
of the depression cone, which lies on the x-axis, the distance to the well r is designated
by x,. Consequently, a combination of Equations 7.6 and 7.7 (Huisman 1972) yields

___Q
%= 27KDx, (7.8)

The width of the zone from which the water is derived is F = 27x,.

The transmissivity can be calculated if the following assumptions and conditions are
satisfied:
— The assumptions listed at the beginning of Chapter 3, with the exception of the
first and fourth assumptions, which are replaced by:
° The aquifer is unconfined;
* Prior to pumping, the watertable slopes in the direction of flow.
The following condition is added:
— The flow to the well is in steady state.
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Figure 7.2 Cross-section and plan view of a pumped sloping unconfined aquifer

Procedure 7.2

— Instead of plotting the drawdown, plot the water-level elevations with reference
to a horizontal datum plane versus r on arithmetic paper;

— Determine the distance x, from the well to the point where the slope of the depression
cone is zero;

— Introduce the values of Q, o, and x, into Equation 7.8 and calculate KD.

7.3 Sloping unconfined aquifers, unsteady-state flow

7.3.1 Hantush’s method

According to Hantush (1964), the unsteady-state drawdown in a sloping unconfined
aquifer of constant thickness (Figure 7.2) is
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r__ Sz — Q £ r
S =S5 = {m exp ( — cos 9>} W(u,ﬁ—/) (7.9)

’

S corrected drawdown

S observed drawdown

0 = the angle between the line through the well and a piezometer, and the
direction of flow, in radians

where

Il

2D
T
u = r’S
4K Dt
1 = slope of the watertable

This equation has the same form as Equation 4.6, which describes the drawdown for
unsteady state in a leaky horizontal aquifer of constant thickness.
According to Hantush (1964), Equation 7.9 can be written alternatively as

s— % = [% exp (—% cos 9)] [2K0<$> — W(q,;?)] (7.10)

2 1 KDt

where

q= U SP (7.11)
Ifq>2 %, Equation 7.10 can be approximated by
Sm—s = Q exp —Tos 0 W(q) (7.12)
" 4nKD Y ’
where
f_g S Q _r r
Sm = Sn~5D = 5KD exp( v cos 6) K, <Y> (7.13)

s’ = corrected maximum or steady-state drawdown

If s, in a piezometer at distance r from the well can be extrapolated from a plot
of s” versus t on semi-log paper (t on logarithmic scale), the drawdown at the inflection
point P can be calculated (s, = 0.5s",,) and t, (the time corresponding to s’,) can
be read from the graph.

If a sufficient number of data fall within the period t > 4t,, the Hantush method
can be used, provided that the following assumptions and conditions are also satisfied:
— The assumptions listed at the beginning of Chapter 3, with the exception of the

first and fourth assumptions, which are replaced by:

° The aquifer is unconfined;

* Prior to pumping, the watertable slopes in the direction of flow with a hydraulic

gradienti < 0.20.
The following conditions are added:
— The flow to the well is in unsteady state;
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T

>2=
a Y
t > 4t,.

Procedure 7.3

— For one of the piezometers, plot s” versus t on semi-log paper (t on logarithmic
scale) and find the maximum drawdown s’,, by extrapolation;

— Using Annex 3.1, prepare a type curve by plotting W(q) versus q on log-log paper.
This curve is identical with a plot of W(u) versus u;

— On another sheet of log-log paper of the same scale, plot the observed data curve
(s'm — 8) versus t. Obviously, one can only use the data of one piezometer at a
time because, although q is independent of r, this is not so with (Q/4nKD) exp

[— <£>cos 9];
Y

— Match the observed data curve with the type curve. It will be seen that the observed
data in the period t < 4t, fall below the type curve because, in this period, Equation
7.12 does not apply;

— Choose a match point A on the superimposed sheets and note for A the values
of (s'n —8), t, q, and W(q);

— Substitute the values of (s’,, —s’) and W(q) into Equation 7.12 and calculate

(QM4TKD) exp [— (£)cos e];

3 . . . . Q (T . .
Multiply this value by 2, which gives KD &P (Y) cos 0 |. Substitute this value

and that of s’, into Equation 7.13, which gives a value of KO<§> The value of %

can be found from Annex 4.1 and, because r is known, y can be calculated. With
the values of % and 6 known, |:—— <§>cos 6} can be found, and exp [-— G) cos 6]
can be obtained from Annex 4.1;

— Substitute the values of exp |:— G) cos 9} Q, and D into

[— (%) cos 9] and calculate K;

— Substitute the values t and q of point A and those of KD and y into Equation
7.11 and calculate S;
— Repeat this procedure for all available piezometers.

Q
2nKD P

Remarks

— When delayed watertable response phenomena are apparent (Chapter 5), the condi-
tion “The water removed from storage is discharged instantaneously with decline
of head’ is not met and this Hantush method is not applicable;

— Because of the analogy between Equations 4.6 and 7.9, we can also use a method
analogous to the Hantush method for horizontal leaky aquifers of constant thick-
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ness (Procedure 4.4). If the well and all the piezometers are located on a single straight
line, i.e. 0 is the same for all piezometers, we can use a method analogous to the Han-
tush method for leaky aquifers (Procedure 4.5).
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8 Anisotropic aquifers

The standard methods of analysis are all based on the assumption that the aquifer
is isotropic, i.e. that the hydraulic conductivity is the same in all directions. Many
aquifers, however, are anisotropic. In such aquifers, it is not unusual to find hydraulic
conductivities that differ by a factor of between two and twenty when measured in
one or another direction. Anisotropy is a common feature in water-laid sedimentary
deposits (e.g. fluvial, clastic lake, deltaic and glacial outwash deposits). Aquifers that
are composed of water-laid deposits may exhibit anisotropy on the horizontal plane.
The hydraulic conductivity in the direction of flow tends to be greater than that perpen-
dicular to flow. Because of the differences in hydraulic conductivity, lines of equal
drawdown around a pumped well in these aquifers will form ellipses rather than con-
centric circles.

In addition such aquifers are often stratified, i.e. they are made up of alternating
layers of coarse and fine sands, gravels, and occasional clays, with each layer possessing
a unique value of K. Any layer with a low K will retard vertical flow, but horizontal
flow can occur easily through any layer with relatively high K. Obviously, K,, i.e.
parallel to the bedding planes, will be much higher than K,, and the aquifer is said
to be anisotropic on the vertical plane.

Aquifers that are anisotropic on both the horizontal and vertical planes, are said
to exhibit three-dimensional anisotropy, with principal axes of K in the vertical direc-
tion, the horizontal direction parallel to stream flows that prevailed in the past, and
the horizontal direction at a right angle to those flows.

It will be clear that, in the analysis of pumping tests, anisotropy poses a special
problem. Methods of analysis that take anisotropy on the horizontal plane into
account are presented in Section 8.1 for confined aquifers and in Section 8.2 for leaky
aquifers. Sections 8.3, 8.4 and 8.5 discuss anisotropy on the vertical plane in confined
aquifers, leaky aquifers, and unconfined aquifers.

8.1 Confined aquifers, anisotropic on the horizontal plane
8.1.1 Hantush’s method

The unsteady-state drawdown in a confined isotropic aquifer is given by the Theis
equation (Equation 3.5)

_Q
S= kD VW
where
u= r’S
~ 4KDt

In a confined aquifer that is anisotropic on the horizontal plane, with the principal
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ray 2

axes of anisotropy X and Y, the above equations, according to Hantush (1966), are
replaced by

__Q
s = A(KD), W(uxy) 8.1
where
r’S
Y = gyKD), | 6.2
(KD), = /(KD)x x (KD)y = the effective transmissivity (8.3)
(KD)x = transmissivity in the major direction of anisotropy

(KD)y = transmissivity in the minor direction of anisotropy
(KD), = transmissivity in a direction that makes an angle (0 + o) with the
X axis (0 and o will be defined below)

If we have one or more piezometers on a ray that forms an angle (6 + o) with the
X axis, we can apply the methods for isotropic aquifers and obtain values for (KD),
and S/(KD),. Consequently, to calculate S and (KD),, we need data from more than
one ray of piezometers.

Hantush (1966) showed that if 6 is defined as the angle between the first ray of
piezometers (n = 1) and the X axis and o, as the angle between the nth ray of piez-
ometers and the first ray of piezometers (Figures 8.1A and B), (KD), is given by

(KD)x

KD), = . 8.4
(KD), cos*(0 + a,) + m sin? (@ + o) (8.4)
where
A B C
ray1
X / pumped well//
[ /
| e
ap A2 \ P
\ -
\\\ ///
pumped well pumped well ellipse of equal drawdown

Figure 8.1 The parameters in the Hantush and the Hantush-Thomas methods for aquifers with anisotropy
on the horizontal plane:
A. Principal directions of anisotropy known
B. Principal directions of anisotropy not known
C. Ellipse of equal drawdown
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m = (KD)y _ [(KD)E}z (8.5
(KD)y | (KD)y
Because o, = 0 for the first ray of piezometers, Equation 8.4 reduces to
_ (KD)x
(KD), = cos’® + m sin> @ (8.6)
and consequently
0 — (KD), _ cos*(0 + o,) + m sin*(0 + a,) 8.7)
» 7 (KD), cos? 0 + m sin® O ’
It goes without saying thata, = 1.
A combination of Equations 8.5 and 8.7 yields
_[(KD). ]2 _ a,cos?6—cos?(0+a,) (8.8)
| (KD)y | — sin*(0 + o,) — a, sin> 0 :

If the principal directions of anisotropy are not known, one needs at least three piez-
ometers on different rays from the pumped well to solve Equation 8.7 for 6, using
_5 (a; — 1)sin%a, — (a, — 1)sin%oy '

(as — 1)sin 20, — (a, — 1)sin 20

tan (20) = (8.9
Equation 8.9 has two roots for the angle (2 0) in the range 0 to 2n of the XY plane.
If one of the roots is d, the other will be © + 3. Consequently, 6 has two values:
8/2 and (t + 8)/2. One of the values of 0 yields m > 1 and the other m < 1. Since
the X axis is assumed to be along the major axis of anisotropy, the value of 0 that
will make m = (KD)y/(KD)y > 1 locates the major axis of anisotropy, X; the other
value locates the minor axis of anisotropy, Y. (It should be noted that a negative
value of O indicates that the positive X axis lies to the left of the first ray of piezometers.)
The Hantush method can be applied if the following assumptions and conditions are
satisfied:

— The assumptions listed at the beginning of Chapter 3, with the exception of the
third assumption, which is replaced by:

* The aquifer is homogeneous, anisotropic on the horizontal plane, and of uniform
thickness over the area influenced by the pumping test.

The following conditions are added:

— The flow to the well is in unsteady state;

— If the principal directions of anisotropy are known, drawdown data from two piez-
ometers on different rays from the pumped well will be sufficient. If the principal
directions of anisotropy are not known, drawdown data must be available from
at least three rays of piezometers.

Procedure 8.1 (principal directions of anisotropy known)

— Apply the methods for isotropic confined aquifers (Sections 3.2.1 and 3.2.2) to the
data of each of the two rays of piezometers. This results in values for (KD),, S/(KD),,
and S/(KD),;

— A combination of the last two values gives a, (cf. Equation 8.7). Because 6 and
o, are known, substitute the values of 0, a, a, and (KD), into Equation 8.8 and
calculate m;
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— Knowing (KD), and m, calculate (KD)y and (KD)y from Equation 8.5;

— Substitute the values of (KD)y, m, 0, and a, into Equations 8.6 and 8.7 and solve
for (KD), and (KD),; .

— A combination of the last two values with those for S/(KD), and S/(KD),, respective-
ly, yields values for S, which should be essentially the same.

Procedure 8.2 (principal directions of anisotropy unknown)

— Apply the methods for isotropic confined aquifers (Sections 3.2.1 and 3.2.2) to the
data from each of the three rays of piezometers. This results in values for (KD),,
S/(KD),, S/(KD),, and S/(KD)s;

— A combination of S/(KD), with S/(KD), and S/(KD),, respectively, yields values
for a, and a;. Because o, and o3 are known, 6 can be calculated from Equation
8.9;

— Substitute the values of 0, (KD)., a,, and a, (or o3 and a;) into Equation 8.8 and
calculate m;

— Knowing (KD), and m, calculate (KD)y and (KD)y from Equation 8.5;

— Substitute the values of (KD)y, m, and 6 and the values of o, = 0, a,, and o, into
Equation 8.4 and solve for (KD),, (KD),, and (KD);;

— A combination of these values with those of S/(KD),, S/(KD),, and S/(KD),, respec-
tively, yields values for S, which should be essentially the same.

Remarks

— The observed data should permit the use of those methods for isotropic confined
aquifers that give a value for S/(KD),. Hence, the methods for steady-state flow
in isotropic confined aquifers (Section 3.1) are not applicable;

— The analysis of the data from each ray of piezometers yields a value of (KD),. These
values should all be essentially the same.

Example 8.1
Using Procedure 8.2, we shall analyse the drawdown data presented by Papadopulos
(1965). The data are from a pumping test conducted in an anisotropic confined aquifer.
During the test, the well PW was pumped at a discharge rate of 1086 m?/d. The draw-
down was observed in three observation wells OW-1, OW-2, and OW-3, located as
shown in Figure 8.2.

For each observation well, we plot the drawdown data on semi-log paper (Figure
8.3). The data allow the application of Jacob’s straight line method (Chapter 3) to
determine the values of (KD), and S/(KD),, S/(KD),, and S/(KD),

230Q  2.30 x 1086
4nAs — 4 x 3.14 x 1.15

S 225ty  225x0.37

(KD), = = 173 m?¥/d

=7.22 x 107 d/m?

(KD), ~ 7 T (2837 x 1440
S 225t,  225x072 o
S 225ty 2.25x0.24

— —7 2
®D), = 1 (193 +52) x 1440 — 239 x 107 d/m
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Subsequently, we calculate the values of a, and a,: a, = 1.295and a, = 1.300.
The value of ® can now be derived from Equation 8.9

_ o f (1300 — 1)sin?75° — (1.295 — )sin’196° | _
tan (20) = 2‘{1.300 Sin@ x 75°) — (1.295 — sin(2 x 196°)} =82
y-axis
A /
9.0 mel/
ow-2
r=283m / 7F
rp=Ve2; 3352 /
r3=V5.224+19.32 //
/
a3=196°- 335 m
_7\
/%1;:750
PW)L OW-1  x-axis
R & —=0 e
52m _ <283 mﬁ),
ﬁlé.6w-3
19.3mﬁ

Figure 8.2 Location of the pumped well and observation wells (Papadopulos pumping test, Example 8.1)

sinm
5
\N‘?’
4 ONA
,/1/:‘09%
g /_ch_l o
T L&
" L-o ~
3 | ~J] Lo
//|/ 1o .,/'
/j./o// L /./
T 0"V T Tax
//o/l ]// 7F
2 /./o/ I/-/' |
Lo o As=1.16m
1| o a
/;:/QT oA — —_—— =1 ——i
1 A P log cycle
b
// L
//ﬁ//
| o ///l
0 //l./| I !I
101 2] [4 68100 2 4 6 810 2 4 6 8102 2 4 6 810°
t93= to1= tgo= tin min

024 037 072

Figure 8.3 Analysis of data from the Papadopulos pumping test with the Jacob method
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The two possible values of ® are 45° and 135°. .
Using ® = 45°, and subsequently ® = 135°, and the appropriate values of (KD),,
o, and a, in Equation 8.8 gives the following values for m

o 1.3c0os45° —cos*(45° 4+ 196°) _
for® = 45°m = sin2(45° 4+ 196°) — 1.3 sin’45°

for® = 135°:m = 0.2771 (ie.m < 1)

3.6(i.e.m > 1)

We use m = 3.6 to solve (KD)y and (KD)y from Equation 8.5. The transmissivity
in the major direction of anisotropy is (KD)x = 328 m?/d, and that in the minor
direction of anisotropy is (KD)y = 91 m?/d.

We determine the transmissivity in the direction of each observation well from Equa-
tion 8.4

328
{cos*(45° + 0°) + 3.6 5in*(45° + 0°)
and calculate in the same way (KD), = 111 m?/d and (KD), = 110 m?*/d.
Finally, we calculate the storativity of the anisotropic confined aquifer.

S S r

Solved for S, the equation yields S = 1 x 107

(KD), = p=143 m?/d

Table 8.1 Drawdown data from the Papadopulos pumping test (from Papadopulos 1965)

Time t since Drawdown s (metres)
pumping started
(minutes) OW-1 OwW-2 OW-3
0.5 0.335 0.153 0.492
1 0.591 0.343 0.762
2 0.911 0.611 1.089
3 1.082 0.762 1.284
4 1.215 0911 1.419
6 1.405 1.089 1.609
8 1.549 1.225 1.757
10 1.653 1.329 1.853
15 1.853 1.531 2.071
20 2.019 1.677 2.210
30 2.203 1.853 2.416
40 2.344 2.019 2.555
50 2.450 2.123 2.670
60 2.541 2.210 2.750
90 2.750 2.416 2.963
120 2.901 2.555 3.118
150 2.998 2.670 3.218
180 3.075 2.750 3.310
240 3.235 2.901 3.455
300 3.351 2.998 3.565
360 3.438 3.118 3.649
430 3.587 3.247 3.802
720 3.784 3.455 3.996




8.1.2 Hantush-Thomas’s method

In an isotropic aquifer, the lines of equal drawdown around a pumped well form con-
centric circles, whereas in an aquifer that is anisotropic on the horizontal plane, those
lines form ellipses, which satisfy the equation

X2 2

at %2 =1 (8.10)
where a; and by are the lengths of the principal axes of the ellipse of equal drawdown

s at the time t, (Figure 8.1C).
It can be shown that

(KD), = (r3/a,b)(KD), (8.11)
(KD)x = (a,/b))(KD), (8.12)
(KD)y = (b/a,)(KD), (8.13)
4ms(KD). _ W(uxy) (8.14)
Q
where
S ab,S

Y = ZKD),t ~ 4KD), ®.15)

Hantush and Thomas (1966) stated that when (KD),, a,, and b, are known the other
hydraulic characteristics can be calculated. Hence, it is not necessary to have values
of S/(KD),, provided that one has sufficient observations to draw the ellipses of equal
drawdown.

The Hantush-Thomas method can be applied if the following assumptions and condi-
tions are satisfied:
— The assumptions listed at the beginning of Chapter 3, with the exception of the
third assumption, which is replaced by:
* The aquifer is homogeneous, anisotropic on the horizontal plane, and of uniform
thickness over the area influenced by the pumping test.
The following condition is added:
— The flow to the well is in unsteady state.

Procedure 8.3

— Apply the methods for isotropic confined aquifers (Sections 3.1 and 3.2) to the data
from each ray of piezometers; this yields values for (KD), and sometimes S/(KD),.
The factor (KD), is constant for the whole flow system, and S/(KD), is constant
along each ray;

— Substitute the values of (KD), and S/(KD), into Equations 8.1 and 8.2 and calculate
the drawdown at any desired time and at any distance along each ray of piezometers;

— Construct one or more ellipses of equal drawdown (Figure 8.1C), using observed
(or calculated) data, and calculate for each ellipse a, and b

— Calculate (KD),, (KD)y, and (KD)y from Equations 8.11 to 8.13;
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— Calculate the value of W(uyy) from Equation 8.14 and find the corresponding value
of uyy from Annex 3.1;
With the value of uyy known, calculate S from Equation 8.15;

— Repeat this procedure for several values of s. This should produce approximately
the same values for (KD),, (KD)y, (KD)y, and S.

8.1.3 Neuman’s extension of the Papadopulos method

In aquifers that are anisotropic on the horizontal plane, the orientation of the hydrau-
lic-head gradients and the flow velocity seldom coincide; the flow tends to follow the
direction of the highest permeability. This leads us to regard the hydraulic conductivity
as a tensorial property, which is simply the mathematical translation of our observa-
tion of the non-coincidence. Regarding the hydraulic conductivity in this way, we
must define the tensor K, which is a matrix of nine coefficients, symmetrical to the
diagonal. This allows us to transform the components of the hydraulic gradient into
components of velocity. Along the principal axes of such a tensor (X,Y), the velocity
and hydraulic gradients have the same directions.

By making use of the tensor properties, Papadopulos (1965) developed an equation
for the unsteady-state drawdown induced in a confined aquifer that is anisotropic
on the horizontal plane

5= ﬁwmxy) (8.16)

where

(KD), = /(KD),, (KD),, — (KD)?,

— S (KD)xxy2 + (I<]))yyx2 _ 2(KD)xyXy
B 7 E( (KD)(KD),, — (KD)?, )
S ((KD),y* + (KD),x* — 2(KD), xy
= ﬂ( (KDY, ) ®.17)

where x and y are local coordinates (Figure 8.4) and (KD),,, (KD),,, and (KD),, are
components of the transmissivity tensor.
Foru < 0.01, Equation 8.16 reduces to

_230Q 225t (KD),, (KD),, — (KD)2,
~ 4KD), ¢S {(Kmxxyz + (KD)x? — 2(KD)xyxy}

The following relations between the principal transmissivity and the transmissivity
tensors hold

s (8.18)

(KD)x = %{(KD)XX + (KD),, + /[(KD),, — (KD),,]* + 4(KD);,} (8.19)

(KD)y = 1 {((KD),, + (KD),, — \/[(KD),, = (KD),F + 4KD);}  (8.20)

where X and Y are global coordinates of the transmissivity tensor (Figure 8.4).
The X axis is parallel to the major direction of anisotropy; the Y axis is parallel
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Figure 8.4 Relationship between the global coordinates (X and Y) and the local coordinates (x and y)

to the minor direction. The orientation of the X and Y axes is given by

(KD)X _ (KD)xx
(KD),y

where © is the angle between the x and the X axis (0 <Z ® < ). The angle of ®
is positive to the left of the axis.

If the principal directions of anisotropy are known, Equations 8.16 and 8.17 reduce
to

® = arctan (8.21)

= Q A\ 8.22
% JKDHKD), &2

_ S /(KD)xY? + (KD),X?
o= E( (KD)x(KD)y )

Taking the above equations as his basis, Papadopulos (1965) developed a method
of determining the principal directions of anisotropy and the corresponding minimum
and maximum transmissivities. This method requires drawdown data from at least
three wells, other than the pumped well, all three located on different rays from the
pumped well.

Neuman et al. (1984) showed that the Papadopulos method can be used with draw-
down data from only three wells, provided that two pumping tests are conducted in
sequence in two of those wells. When water is pumped from Well 1 at a constant
rate Q,, two sets of drawdown data, s, and s 5, are available from Wells 2 and 3 (Figure
8.5). This is not sufficient to allow the use of the Papadopulos equations. But, if at
least one other pumping test is conducted, say in Well 2, at a constant rate Q,, and
the resulting drawdown is observed at least in Well 3, these drawdown data, s,;, provide
the third set of data needed to complete the analysis. Equation 8.17 as used in the
Papadopulos method can now be replaced by

(8.23)

S 2

U2 = Z¢ (KD [(KD)uyh + (KD)y,xi; — 2(KD), X5y 1] (8.24)
S

Uz = 4t,(KD)? [(KD)uyis + (KD)yyxis — 2(KD),yXy3y,5] (8.25)
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well 3

well 1

Figure 8.5 The three-well arrangement used in Neuman’s extension of the Papadopulos method

Ups [(KD)y3 + (KD)yx3; — 2(KD),yX53y5] (8.26)

_ S
 415(KD);

Neuman’s three-well method is applicable if the following assumptions and conditions

are fulfilled:

— The assumptions listed at the beginning of Chapter 3, with the exception of the
third assumption, which is replaced by:
* The aquifer is homogeneous, anisotropic on the horizontal plane, and of uniform

thickness over the area influenced by the pumping test.

The following conditions are added:

— The flow to the well is in an unsteady state;

— The aquifer is penetrated by three wells, which are not on one ray. Two of them
are pumped in sequence.

Procedure 8.4

— Apply one of the methods for confined isotropic aquifers (Section 3.2) to the draw-
down data from each well, using Equations 8.16, 8.24, 8.25, and 8.26. This results
in values for (KD),, S(KD),,, S(KD),,, and S(KD),,;

— Knowing (KD),, S(KD),,, S(KD),,, and S(KD),,, calculate S from S =
/S(KD),S(KD),, — {S(KD), }//(KD),

— Knowing S, S(KD),,, S(KD),,, and S(KD),,, calculate (KD),,, (KD),,, and (KD),,;

— Calculate (KD)x by substituting the known values of (KD),,, (KD),,, and (KD),,
into Equation 8.19;

— Calculate (KD)y by substituting the known values of (KD),,, (KD),,, and (KD),,
into Equation 8.20;

— Determine the angle ® by substituting the known values of (KD)y, (KD),,, and
(KD),, into Equation 8.21.

Remarks

— The drawdown induced by the pumping test in Well 2 should be observed in Well
3 and not in the previously pumped Well 1, because s,, will be proportional to s,
under ideal conditions. Hence Equation 8.26 will not be linearly independent of
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Equation 8.24 and no unique solutions can be found for the Equations 8.24, 8.25,
and 8.26;

— According to Neuman et al. (1984), more reliable results can be obtained by conduct-
ing three pumping tests, pumping one well at a time and observing the drawdown
in the other two wells. Equation 8.17 should then be replaced in the calculations
by up to six equations of the form

S
u; = m {(KD)xxyizj + (KD)yyxizj - 2(KD)xyXinij}

wherei,j = 1,2, 3.
A least-squares procedure can be used to solve these equations and determine
S(KD)yx, S(KD),y, and S(KD),,. (For more information, see Neuman et al. 1984);

— If drawdown data are available from at least three piezometers or observation wells
on different rays from the pumped well, the Papadopulos method can be used. The
procedure is the same as Procedure 8.4, except that in the first step of Procedure
8.4, Equation 8.18 should be used instead of Equations 8.24, 8.25, and 8.26 to deter-
mine the values of S(KD),,, S(KD),,, and S(KD)yy.

Example 8.2
We shall use the data from the Papadopulos pumping test (Example 8.1, Table 8.1,
Figures 8.2 and 8.3) to illustrate the Papadopulos method, Procedure 8.4.

From Example 8.1 we know the value of the effective transmissivity: (KD), = 173
m?/d. Figure 8.3 shows the semi-log plot of the drawdown data for each observation
well. The three straight lines through the plotted points intercept the t axis at t,, =
0.37 min., t;, = 0.72 min., and t;; = 0.24 min. These straight lines are described by
Equation 8.18. For s = 0, Equation 8.18 reduces to

_ S (KD)xxy2 + (KD)yyX2 — 2(KD)xyXy
225 { (KD),, (KD),, — (KD)3, }

— i {(I(D)xxy2 + (I<]))yyx2 _ 2(KD)xyxy}

to

=225 (KD)

Hence, 2.25 (KD); x t, = S(KD),,y* + S(KD),,x*> — 2 S(KD),,xy.
Using this expression, we can determine S(KD),,, S(KD)y,, and S(KD),,.
For observation well OW-1:

0.37

2.25 x (KD)? x ty; = 2.25 x 1732 x 1440 = S(KD),, x 0 4+ S(KD),, x
28.3* —2S(KD),, x 0
For observation well OW-2:
2.25(KD)2 x ty, = 2.25 x 173% x % = S(KD),, x 33.5* + S(KD),, x
92 —2S(KD),, x 33.5 x 9
For observation well OW-3:
0.24
2 _ 2
2.25(KD)2 x ty; = 2.25 x 173% x 1440
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= S(KD),, x 5.22 + S(KD),, x 19.32 —2S(KD),, x 19.3 x 5.2

Solving these three equations gives

S(KD),, = 0.0215m?/d
S(KD),, = 0.0216 m¥/d
S(KD),, = —0.0219 m¥/d

Substituting these values together with the value of (KD), into
g _ /SKD), S(KI?)W — {SKD),,}*

The values of (KD),,, (KD),,, and (KD),, can now be calculated

(KD),, = 215m?/d

(KD),, = 216 m*/d

(KD),, = —129m*d
The transmissivity (KD)y in the principal direction of anisotropy is calculated from
Equation 8.19

yieldsS =1 x 10

(KD)y = %{215 + 216 + /(215 —216)> + 4 (~129)?} = 345 m?/d

The transmissivity (KD)y in the minor direction of anisotropy is calculated from Equa-
tion 8.20

(KD)y = %{215 +216— /(215 — 2162 + 4 (-129)} = 86 m?/d

The orientation of the X and Y axes is determined from Equation 8.21

_ (KD)x— (KD)] _ M5—215)
0= arctan{ (KD), = arctan {—— 99 (= arctan (—1) = 135

The X axis is 135° to the left of the x axis (or 45° to the right of the x axis, see Example
8.1).

8.2 Leaky aquifers, anisotropic on the horizontal plane
8.2.1 Hantush’s method

The flow to a well in a leaky aquifer which is anisotropic on the horizontal plane
can be analyzed with a method that is essentially the same as the Hantush method
for confined aquifers with anisotropy on the horizontal plane. There is, however, one
more unknown parameter involved, the leakage factor L, which is given by Hantush
(1966) as

L, = /(KD),¢c (8.27)

Because c is a constant, Equation 8.7 also gives the relationship between L, and L,
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a,

_(KD), _ [Ll]z _ cos(@ + a,) + m sin¥(® + o) (8.28)

"~ (KD), |L, cos20 + m sin’®

The Hantush method can be applied if the following assumptions and conditions are
satisfied:
— The assumptions listed at the beginning of Chapter 3, with the exception of the
first and third assumptions, which are replaced by:
* The aquifer is leaky;
* The aquifer is homogeneous, anisotropic on the horizontal plane, and of uniform
thickness over the area influenced by the pumping test.
The following condition is added:
— The flow to the well is in an unsteady state.

Procedure 8.5

This procedure is the same as Procedures 8.1 and 8.2 (the Hantush method for confined
aquifers with anisotropy on the horizontal plane), except that, in the first step of Proce-
dure 8.5, the methods for leaky isotropic aquifers (Section 4.2) are used to determine
values for (KD)., S/(KD),, and L,. Further, Equation 8.28 is used instead of Equation
8.7.

8.3 Confined aquifers, anisotropic on the vertical plane

The flow towards a well that completely penetrates a confined, horizontally stratified
aquifer takes place essentially in planes parallel to the aquifer’s bedding planes. Even
if the hydraulic conductivities vary appreciably in horizontal and vertical directions,
the effect of any anisotropy on the vertical plane may not be of any great significance.

In thick aquifers, however, wells usually penetrate only a portion of the aquifer.
The flow to such partially penetrating wells is not horizontal, but three-dimensional,
i.e. the flow has significant vertical components, at least in the vicinity of the well,
where most observations of the drawdown are made. In aquifers with very pronounced
anisotropy on the vertical plane, the yield of partially penetrating wells may be appre-
ciably smaller than that of similar wells in isotropic aquifers.

8.3.1 Weeks’s method

For large values of pumping time (t > DS/2K,) in a well that partially penetrates
a confined aquifer, Hantush (1961a) developed a solution for the drawdown. After
modification for the influence of anisotropy on the vertical plane, this equation
becomes (Hantush 1964; Weeks 1969)

N {W(u) (AR %)} = 2 W) + 5s (8.29)

where
W(u) = Theis well function
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b,d,a = geometric parameters (Figure 8.6)

, r
p = pvVEKJ/Ky (8.30)
K, = hydraulic conductivity in vertical direction
K, = hydraulic conductivity in horizontal direction

4D a1 , nma) (. nmb . nnd
f, = 2(bd) El] o K, (nnf {cos ﬁ} {sm o —sin ﬁ} (8.31)
3s = difference in drawdown between the observed drawdowns and the

drawdowns predicted by the Theis equation (Equation 3.5). This dif-
ference in drawdown is given by

s = %fs (8.32)

Values of f; for different values of B’, b/D, d/D, and a/D as tabulated by Weeks (1969)

are presented in Annex 8.1.

The assumptions and conditions underlying the Weeks method are:

— The assumptions listed at the beginning of Chapter 3, with the exception of the
third and sixth assumptions, which are replaced by:
* The aquifer is homogeneous, anisotropic in the vertical plane, and of uniform

thickness over the area influenced by the pumping test;

* The pumped well does not penetrate the entire thickness of the aquifer.

The following conditions are added:

— The flow to the well is in an unsteady state;

-t > SD/2K,;

— Drawdown data from at least two piezometers are available; one piezometer at a
distancer > 2D./K,/K,.

Sf——

aquifer-| ",

VAV VA Ve

Figure 8.6 The parameters used in Weeks’s method

146



Procedure 8.6

— Apply one of the methods for confined, fully penetrated, isotropic aquifers (Section
3.2) to the observed drawdown data of Piezometer 1 at r > 2D./K,/K,, and deter-
mine the values of K,D and S;

— For Piezometer 2 at r < 2D,/K,/K,, plot the observed drawdown s versus t on
semi-log paper (t on logarithmic scale). Draw a straight line through the late-time
data;

— Knowing Q, K;D, S, and r, calculate, for different values of t, the values of s that
would have occurred in Piezometer 2 if the pumped well had been fully penetrating;

use Equation 3.5,s = LW(u), and Annex 3.1;

4nKD

— Plot these calculated values of s versus t on the same sheet of semi-log paper as
used for the observed time-drawdown plot. Draw a straight line through the late-
time data. The straight lines of the two data plots should be parallel;

— Determine the vertical distance s between the two straight lines;

— Knowing 8s, Q, and K, D, calculate f, from Equation 8.32;

— Knowing f;, use Annex 8.1 to determine the value of B’ for the values of b/D, d/D,
and a/D nearest to the observed values for Piezometer 2;

— Knowing " and r/D for Piezometer 2, calculate K,/K;, from Equation 8.30;

— Knowing K, /K, K;D, and D, calculate K; and K.

Remarks

— Instead of determining K;D and S with data from a piezometer at r > 2D./K,/K,
from the partially penetrating well, one can, of course, also obtain these values from
the data of a separate pumping test conducted in the same aquifer with a fully pene-
trating well;

— Whether 0s will have a positive or a negative value depends on the location of Piez-
ometer 2 relative to that of the screen of the partially penetrating well. When both
are located at the same depth in the aquifer, the observed drawdown in Piezometer
2 will be greater than the theoretical drawdown for a fully penetrating well and
consequently, ds will have a positive value.

8.4 Leaky aquifers, anisotropic on the vertical plane
8.4.1 Weeks’s method

For large values of pumping time (t > DS/2K,) in a well that partially penetrates
a leaky aquifer with anisotropy on the vertical plane, the drawdown response is given
by (Hantush 1964; Weeks 1969)

S

W(ur/L) + fs<[3’,%,%,%>} - %W(u,r/L) +8  (833)

-9 {
47K, D

where

W(u,r/L) = Walton’s well function
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f,, B’, b, d, a, and 8s are as defined in Section 8.3.1.
A procedure similar to Procedure 8.6 can be applied to leaky aquifers.

The following assumptions and conditions should be satisfied:

— The assumptions listed at the beginning of Chapter 3, with the exception of the
first, third, and sixth assumptions, which are replaced by:
* The aquifer is leaky;
* The aquifer is homogeneous, anisotropic on the vertical plane, and of uniform

thickness over the area influenced by the pumping test;

* The pumped well does not penetrate the entire thickness of the aquifer.

The following conditions are added:

— The aquitard is incompressible;

— The flow to the well is in unsteady state;

- t> SD/2K,;

— Drawdown data from at least two piezometers are available; one piezometer at a
distance r > 2D, /K,/K,.

Procedure 8.7

— Apply one of the methods for leaky, fully penetrated, isotropic aquifers (Sec-
tions 4.2.1, 4.2.2, or 4.2.3) to the observed drawdown data of Piezometer 1 at
r > 2D, /K,/K,, and determine the values of K, D, S, and L;

— For Piezometer 2 at r < 2D,/K,/K,, plot the observed drawdown s versus t on
log-log paper;

— Knowing Q, K;D, S, L, and r, calculate for different values of t the values of s
that would have occurred in Piezometer 2 if the pumped well had been fully penetrat-
ing; use Equation 4.6

5= ZI%ﬁwm, r/L)
and Annex 4.2;

— Plot these calculated values of s versus t on the same sheet of log-log paper as used
for the observed time-drawdown plot. The late-time parts of the data curves should
be parallel;

— Determine the vertical distance ds between the late-time parallel parts of the data
curves; ’

— Knowing ds, Q, and K, D, calculate f, from Equation 8.32;

— Knowing f;, use Annex 8.1 to determine the value of B’ for the values of b/D, d/D
and a/D nearest to the observed values for Piezometer 2;

— Knowing " and r/D for Piezometer 2, calculate K,/K, from Equation 8.30;

— Knowing K, /K, K;D, and D, calculate K, and K.

8.5 Unconfined aquifers, anisotropic on the vertical plane
The flow to a well that pumps an unconfined aquifer is considered to be three-dimen-
sional during the time that the delayed watertable response prevails (see Chapter 5).

As three-dimensional flow is affected by anisotropy on the vertical plane, one of the
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standard methods for unconfined aquifers already takes this anisotropy into account:
Neuman’s curve-fitting method (Section 5.1.1).

Apart from that standard method, there are other methods that take anisotropy
on the vertical plane into account. They can be used when the well is partially penetrat-
ing. They are Streltsova’s curve-fitting method (Section 10.4.1), Neuman’s curve-fit-
ting method (Section 10.4.2), and Boulton-Streltsova’s curve-fitting method (Section
11.2.1).
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9 Multi-layered aquifer systems

Multi-layered aquifer systems may be one of three kinds. The first consists of two
or more aquifer layers, separated by aquicludes. If data on the transmissivity and
storativity of the individual aquifer layers are needed, a pumping test can be conducted
in each layer, and each test can then be analyzed by the appropriate method for a
single-layered aquifer.

If a well fully penetrates the aquifer system and thus pumps more than one of the
aquifer layers at a time, single-layered methods are not applicable. For an aquifer
system that consists of two confined aquifers, Papadopulos (1966) derived asymptotic
solutions for unsteady-state flow to a well that fully penetrates the system and thus
pumps both aquifers at the same time.

For an aquifer system that consists of an unconfined aquifer overlying a confined
aquifer, Abdul Khader and Veerankutty (1975) derived a solution for unsteady-state
flow to a fully penetrating well.

Either of these solutions allows the hydraulic characteristics of the individual
aquifers to be calculated. Both, however, require the use of a computer.

The second multi-layered aquifer system consists of two or more aquifers, each with
its own hydraulic characteristics, and separated by interfaces that allow unrestricted
crossflow (Figure 9.1). This system’s response to pumping will be analogous to that
of a single-layered aquifer whose transmissivity and storativity are equal to the sum
of the transmissivity and storativity of the individual layers. Hence, in an aquifer with
unrestricted crossflow, the same methods as used for single-layered aquifers can be
applied. One has to keep in mind, however, that only the hydraulic characteristics

o
=
st 1By

______ (1S oy

?quifer'v . aquifer , *, b, i AR PRI
: . ..... []-T'-E ......... 1. ..... E.'. .« .

aquiclude aquiclude

Figure 9.1 Confined two-layered aquifer system, partially penetrating well, either in the upper layer from
the top downwards or in the lower layer from the bottom upwards
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of the equivalent aquifer system can be determined in this way.

In a confined two-layered aquifer system with unrestricted crossflow, the hydraulic
characteristics of the individual aquifers can be determined with the Javandel-Wither-
spoon method presented in Section 9.1.1.

The third multi-layered aquifer system consists of two or more aquifer layers, sepa-
rated by aquitards. Pumping one layer of this leaky system has measurable effects
in layers other than the pumped layer. The resulting drawdown in each layer is a func-
tion of several parameters, which depend on the hydraulic characteristics of the aquifer
layers and those of the aquitards. Only for small values of pumping time can the draw-
down in the unpumped layers be assumed to be negligible, and only then can methods
for leaky single-layered aquifers (Chapter 4) be used to estimate the hydraulic charac-
teristics of the pumped layer.

Forlonger pumping times, Bruggeman (1966) has developed a method for the analy-
sis of data from leaky two-layered aquifer systems in which steady-state flow prevails.
This method is presented in Section 9.2.1.

Various analytical solutions have been derived for steady and unsteady-state flow
to a well pumping a leaky multi-layered aquifer system, e.g. Hantush (1967), Neuman
and Whitherspoon (1969a, 1969b), and Hemker (1984, 1985). Because of the large
number of unknown parameters involved, these methods require the use of a com-
puter.

9.1 Confined two-layered aquifer systems with unrestricted
crossflow, unsteady-state flow

9.1.1 Javandel-Witherspoon’s method

Javandel and Witherspoon (1983) developed analytical solutions for the drawdown
in both layers of a confined two-layered aquifer system pumped by a well that is par-
tially screened, either in the upper layer from the top downwards, or in the underlying
layer from the bottom upwards (Figure 9.1). Asymptotic solutions for small and large
values of pumping time are derived from the general solution.

For small values of pumping time (t < (D, — b)*/{(10K,D,)/S,}), the drawdown
equation for the pumped layer is identical with the equation for unsteady-state flow
in a confined single-layered aquifer that is pumped by a partially penetrating well
(see Section 10.2.1).

For large values of pumping time and at distances from the pumped well beyond
r > 1.5 {D, + (K,D,)/K,}, the partial penetration effects of the well can be ignored
and the drawdown in the pumped layer approaches the following expression

s W(u) 9.1

_ Q
T 4n(K,D, + K,D,)
where

XS, + S,)

YT #(X D, + K,Dy)

9.2)
This drawdown equation has the form of the Theis equation for unsteady flow in
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a confined single-layered aquifer pumped by a fully penetrating well (Section 3.2.1).
The response of the two-layered system reflects the hydraulic characteristics of the
equivalent single-layered system:

KD,, = K,D, + K, D,
and
Seq = Sl + Sz

Since t is assumed to be large, u will be small. Hence, in analogy to Equation 3.7
(Jacob’s method, Section 3.2.2), Equation 9.1 can be written as

_ 2.30Q 25 (K,D, + K,D))t
47]:(K1D| + K2D2) rz(Sl + Sz)

A plot on semi-log paper of s versus t will show a straight line for large values of
t. The slope of this straight line is given by

2.30Q

S, log 9.3)

As = 4n(K,D, + K;,D,) 9.4)
The intercept t, of the straight line with the t axis where s = 0 is given by
2
t, r*(S;+ S, 9.5)

~225(K,D, + K,D))

The Javandel-Witherspoon method is applicable if the following assumptions and con-

ditions are satisfied:

— The assumptions listed at the beginning of Chapter 3, with the exception of the
third and sixth assumptions, which are replaced by:

* The system consists of two aquifer layers. Each layer has its own hydraulic charac-
teristics, is of apparent infinite areal extent, is homogeneous, isotropic, and of
uniform thickness over the area influenced by the test. The interface between the
two layers is an open boundary, i.e. no discontinuity of potential or its gradient
is allowed across the interface;

* The pumped well does not penetrate the entire thickness of the aquifer system,
but is partially screened, either in the upper layer from the top downwards, or
in the lower layer from the bottom upwards.

The following conditions are added:

— The flow to the well is in unsteady state;

— The piezometers are placed at a depth that coincides with the middle of the well screen;

— Drawdown data are available for small values of pumping time t < (D, — b)%/(10K,
D,/S,) and for large values of pumping time. The late-time drawdown data are mea-
suredatr > 1.5{D, + (K,D,)/K,}.

Procedure 9.1

— Apply the Hantush modification of the Theis method (see Section 10.2.1) to the
early-time drawdown data {t < (D,-b)?/(10K,D,/S,)} and determine K,D, and S,
of the pumped layer;

— Determine K,D, and S, of the unpumped layer with the procedure outlined for
the Jacob method (Section 3.2.2):
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* Plot for one of the piezometers, r > 1.5{D, + (K,D,)/K,}, the observed drawdown
s versus the corresponding time t on semi-log paper (t on logarithmic scale);

* Draw the best-fitting straight line through the late-time portion of the plotted
points;

* Extend the straight line until it intercepts the time axis where s = 0, and read
the value of t,;

* Determine the slope of the straight line, i.e. the drawdown difference As per log
cycle of time;

* Substitute the known values of Q, As, and K, D, into Equation 9.4

2.30Q

K.D, = 4mtAs

— KD,
and calculate K,D, of the unpumped layer;
* Substitute the known values of t,, K,D,, K,D,, 12, and S, into Equation 9.5

_ 2.25t4(K,D, + K,D
- 2

2)_Sl
r

S,

and calculate S,.

Remarks

— To analyze the late-time drawdown data, the Theis curve-fitting method (Section
3.2.1) can be used instead of the Jacob method;

— Javandel and Witherspoon (1983) observed that the condition
r > 1.5{D, + (X,D,)/K,} is on the conservative side;

— If only one piezometer at r > 1.5 {D, + (K,D,)/K,} from the well is available,
there may not be sufficient early-time drawdown data to determine the hydraulic
characteristics of the pumped layer. Hence, only the combined hydraulic character-
istics KD, (= KD, + K;,D,) and S.,(= S, + S,) of the equivalent aquifer system
can be determined;

— Javandel and Witherspoon (1980) also developed a semi-analytical solution for the
drawdown distribution in both layers of a slightly different type of two-layered
aquifer system with unrestricted crossflow. The upper layer of this system is bounded
by an aquiclude. The lower layer is considered to be very thick compared with the
upper layer. The system is pumped by a well that partially penetrates the upper
layer. For more information, see the original literature.

9.2 Leaky two-layered aquifer systems with crossflow through
aquitards, steady-state flow

Figure 9.2 shows a cross-section of a pumped leaky two-layered aquifer system, over-
lain by an aquitard, and with another aquitard separating the two aquifer layers. If
the hydraulic resistance of the aquitard separating the layers is high compared with
that of the overlying aquitard, and if the base layer is an aquiclude, the upper and
lower parts of the system can be treated as two separate single-layered leaky aquifers.
Matters become more complicated if the hydraulic resistance of the separating aqui-
tard is appreciably lower than that of the overlying aquitard. If the upper part of
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Figure 9.2 Pumped leaky two-layered aquifer system, overlain by an aquitard, and with another aquitard
separating the two aquifer layers

that system is pumped, the discharged water would come from the pumped upper
layer, the lower aquifer layer (through the separating aquitard), and the overlying
aquitard. Bruggeman (1966) has developed a method of analysis for such a system.

9.2.1 Bruggeman’s method

The Bruggeman method calls for a double pumping test in which the lower layer is
pumped until a steady state is reached, and then, after complete recovery, the upper
layer is pumped, again until a steady state is reached. Bruggeman (1966) does not stipu-
late that the aquifer system be underlain by an aquiclude; it may also be an aquitard.
Bruggeman showed that the following relations are valid

ur + Piss = 5o - Kolt/h) 9.6)

S+ Posay = oL Ky(r/h) ©.7)
2nK,D, K,D,

S0+ Pisha = Py g 5 Kolt/h) 9.8)
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’

S'io + P8y = sz%—’i Ko(r/2,) 9.9

where

s’ = Q S 9.10)
Q’ = standardized discharge rate
The first index to s indicates the aquifer layer in which the piezometer is installed.

The second index indicates which layer is being pumped. For example, s’ is the draw-
down observed in the lower layer when the upper layer is pumped at a standardized

discharge rate Q’.
Moreover
P,+P,= (K2D2/Kllz/l)(s 22— 8'11) 9.11)
1,2
PP, = “(KzDz/KlDl) 9.12)
where P, P,, A,, and A, are constants which are related to one another by
%% = al + b] - a2P| (913)
1
T% - al + bl - a2P2 (9.14)
P,
)\‘—%z —b1+b2P1+a2P, (9.15)
P,
Yl b, + b,P; + a,P, (9.16)

where a,, a,, b, and b, are also constants dependent on K,D,, K,D,, ¢,, and c,, accord-
ing to the following equations

1

1
b= g p 9.18)
1
and
1
b = e (9.20)

The Bruggeman method is based on the following assumptions and conditions:
— The assumptions listed at the beginning of Chapter 3, with the exception of the
first, third and sixth assumptions, which are replaced by:
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* The aquifer system consists of two aquifer layers separated by an aquitard. Each
layer is homogeneous, isotropic, and of uniform thickness over the area influenced
by the test. The aquifer system is overlain by an aquitard;

* The well receives water by horizontal flow from the entire thickness of the pumped
layer.

The following conditions are added:

— The flow to the well is in steady state;

— r/Lissmall (r/L < 0.05);

—C > Cy

- K,D, > K,Dy;

- ¢3 < 0;

A pumping test is first conducted in the lower layer until a steady state is reached;
then after complete recovery, a pumping test is conducted in the upper layer, again
until steady state is reached.

Procedure 9.2

— With Equation 9.10, transform the observed drawdown data to corrected drawdown
data for an arbitrarily chosen standard discharge rate Q’. Check whether 8, =
s’ because this should be so for the application of this method;

— Plot ¢’; , versus r on semi-log paper and calculate K,D, with

2.30Q’

A =21k D,

where As’, | is the difference in s’ , per log cycle of t;

— In the same way, calculate K,D, from a plot of s’ , versus r;

— Calculate P,P, with Equation 9.12;

— Calculate P, + P, by introducing into Equation 9.11, for a given value of r, the
corresponding values of s,, and s, ; and the values of K,D, and K,D,. When this
is repeated for several values of r, it provides a check on the values of K,D, and
KD, already calculated, because P, + P, should be independent of r. Calculate
P, and P, by combining the values of P, + P, and P,P,.

A comparison of Equations 9.6 to 9.9 with Equation 4.1 shows the analogy between
the Bruggeman equations and the De Glee equation;

— Therefore plot the curve s, ; + Py, versus r on log-log paper and, using De Glee’s
method (Section 4.1.1, Procedure 4.1), calculate the values of A,. In the same way,
calculate A, from a plot of s, + P,s’,; versus r. Check the values of A, and A,
by calculating A, and X, from plots on log-log paper of (1/P,) 8’12 + 8%, versus
rand (1/P,) s, + s’, versus r with the De Glee method;

— Using Equations 9.13 to 9.16, calculate a;, a,, b,, and b, from the known values
of A, Ay, P;, and Py;

— Finally, calculate c,, ¢, K,D,, and K,D, from Equations 9.17 to 9.20. Calculating
K,D, and K,D; in this way provides a check on the earlier calculations of K,D,
and K,D,.
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10  Partially-penetrating wells

Some aquifers are so thick that it is not justified to install a fully penetrating well.
Instead, the aquifer has to be pumped by a partially penetrating well. Because partial
penetration induces vertical flow components in the vicinity of the well, the general
assumption that the well receives water from horizontal flow (Chapter 3) is not valid.
Partial penetration causes the flow velocity in the immediate vicinity of the well to
be higher than it would be otherwise, leading to an extra loss of head. This effect
is strongest at the well face, and decreases with increasing distance from the well.
Itis negligible if measured at a distance thatis 1.5 to 2 times greater than the saturated
thickness of the aquifer, depending on the amount of penetration. If the aquifer
has obvious anisotropy on the vertical plane, the effect is negligible at distances
r > 2D./K,/K,. Hence, the standard methods of analysis cannot be used for
r < 2D{/K,/K, unless allowance is made for partial penetration. For long pumping
times (t > DS/2K), the effects of partial penetration reach their maximum value for
a particular well/piezometer configuration and then remain constant.

For confined and leaky aquifers under steady-state conditions, Huisman developed
methods with which the observed drawdowns can be corrected for partial penetration.
These are presented in Sections 10.1.1, 10.1.2, and 10.3.

For confined aquifers under unsteady-state conditions, the Hantush modification
of the Theis method (Section 10.2.1) or of the Jacob method (Section 10.2.2) can be
used.

For leaky aquifers under unsteady-state conditions, drawdowns can be corrected
with the Weeks method (Section 10.4.1). This is based on the Walton and Hantush
curve-fitting methods for horizontal flow.

Finally, for unconfined aquifers under unsteady-state conditions, the Streltsova
curve-fitting method (Section 10.5.1) or the Neuman curve-fitting method (Section
10.5.2) can be used.

10.1  Confined aquifers, steady-state flow
10.1.1 Huisman’s correction method I
For a confined aquifer, Huisman (in Anonymous 1964, pp. 73 and 91) presents an

equation that can be used to correct the steady-state drawdown measured in a piez-
ometer atr < 2D. The parameters are shown in Figure 10.1. The equation reads

(Sm)partially - (Sm)fully

. Q 2D < 1 (. /nmb\ . /nnz, nnz nmr
= 5KD X od 2 o s1n<T)—> sm( ) ) cos< ) >K0< D> (10.1)

n=1

where
(Sm)parially = Observed steady-state drawdown
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Figure 10.1 The parameters of the Huisman correction method for partial penetration

(Swryy = steady-state drawdown that would have occurred if the well had
been fully penetrating ‘

Zy = distance from the bottom of the well screen to the underlying
aquiclude

b = distance from the top of the well screen to the underlying aquiclude

z = distance from the middle of the piezometer screen to the underly-
ing aquiclude

d = length of the well screen

Note: The angles are expressed in radians

The Huisman correction method I can be used if the following assumptions and condi-

tions are satisfied: ’

— The assumptions listed at the beginning of Chapter 3, with the exception of the
sixth assumption, which is replaced by:
* The well does not penetrate the entire thickness of the aquifer.

The following conditions are added:

— The flow to the well is in steady state;

o o

Procedure 10.1

— Calculate (8,)n, from Equation 10.1, using an approximate value of KD and the
observed (s,,)pariay (€€ Annex 4.1 for the value of Ky);

— Calculate a corrected value of KD, using the Thiem method (Section 3.1.1);

— If there is a great difference between the corrected value of KD and its assumed
value, substitute the corrected value into Equation 10.1 and repeat the procedure
to get a better result.
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Remarks

— This method cannot be applied in the immediate vicinity of the welt; there, Huis-
man’s correction method II (Section 10.1.2) has to be used;

— A few terms of the series behind the X-sign will generally suffice.

Example 10.1

For this example, we can use data from the pumping test ‘Dalem’ (Chapter 4) because,
as will be shown in Section 10.3, the Huisman correction method can also be applied
to leaky aquifers.

Numerical values for the parameters in Figure 10.1 can be read from the cross-
section of the test site (Figure 4.2). For the piezometer at r = 10 m and a depth of
36 m, we derive the following data:

D=35m,d=8m,z, =25m,b =33m,r = 10m,andz = 10 m.
Substitution of these data, together with Q = 761 m*/d and KD =~ 2000 m?/d, into
Equation 10.1 yields

Forn = 1, the term behind the -sign = — 0.1831

Forn = 2, the term behind the Z-sign = — 0.0101

Forn = 3, the term behind the Z-sign = — 0.0012

Forn = 4, the term behind the X-sign = + 0.0044
e

— 0.1900

Q 2D 761 2x35

2nKD * 7d X 2% 3.14 x 2000 < 3.14 x8~ 1687 y
(Sm)partiatly — (Smruny = —0.0320m

This means that 0.032 m has to be added to the observed drawdown to get the draw-
down that would have occurred if the well had been fully penetrating.

For the piezometer at r = 10 m and a depth of 14 m, the observed data are the
same as above, except that z = 30 m. This gives

Forn = 1, the term behind the Z-sign = + 0.2646
Forn = 2, the term behind the Z-sign = + 0.0284
Forn = 3, the term behind the X-sign =  + 0.0003
Forn = 4, the term behind the Z-sign =  + 0.0011

S— +
+ 0.2944
Q 2D _
KD S md T + 0.1687 .
(Sm)parlially - (Sm)fully = + 0.0495m

This means that 0.05 m has to be substracted from the observed drawdown.
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10.1.2 Huisman’s correction method IT

According to Huisman (Anonymous 1964, pp. 93), the extra drawdown at a well face
induced by the eccentric position of the well screen can, for steady-state flow, be
expressed by

(Sumdprits ~ Gty = 255 () In (10.2)
where (see Figure 10.1)
P = % = the penetration ratio
d = length of the well screen
e = % = amount of eccentricity
[ = distance between the middle of the well screen and the middle of the
aquifer

function of P and e (see Annex 10.1)
r., = effective radius of the pumped well

Huisman’s correction method II can be used if the following assumptions and condi-

tions are satisfied:

— The assumptions listed at the beginning of Chapter 3, with the exception of the
sixth assumption, which is replaced by:
* The well does not penetrate the entire thickness of the aquifer.

The following conditions are added:

— The flow to the well is in a steady state;

— T = Iy,

Procedure 10.2

— Calculate (s,)any from Equation 10.2, using an approximate value of KD and the
observed (Swm)partially; .

— Calculate a corrected value of KD, applying the Thiem method (Section 3.1.1);

— If there is a great difference between the corrected value of KD and its assumed
value, substitute the corrected value into Equation 10.2 and repeat the procedure
to obtain a better result.

10.2  Confined aquifers, unsteady-state flow
10.2.1 Hantush’s modification of the Theis method

For a relatively short period of pumping {t < {(2D-b-a)*(S;)}/20K, the drawdown
in a piezometer at r from a partially penetrating well is, according to Hantush (1961a;
1961b)

Q bda

E(ua_»_’_) (103)

ST 8K (b-d) “rrr

where
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Ew292) = M(B,) - M(u.B,) + M(u.B,) — M(u.B) (10.4)

1S,
u= 4Kt (105)
S . .
S, = D= specific storage of the aquifer
B, = (b + a)/r (for symbols b, d, and a, see Figure 10.2)
B, =(d+ a)r
B; = (b-a)/r
B,=(d-a)/r

Mmsz%Qmmﬂhy

Because erf (—x) = —erf (x), it follows that M(u,~-B) = —M(u,B).
Numerical values of M(u,B) are given in Annex 10.2.

The Hantush modification of the Theis method can be used if the following assump-

tions and conditions are satisfied:

— The assumptions listed at the beginning of Chapter 3, with the exception of the
sixth assumption, which is replaced by:
* The well does not penetrate the entire thickness of the aquifer.

The following conditions are added:

— The flow to the well is in an unsteady state;

— The time of pumping is relatively short: t < {(2D-b-a)*(S,)}/20K.

aquiclude

a;qu.ife;": .

N A IOZ00%00=P OO0
aquiclude 0’0”‘0’””"’“""’"""“0"”"”””.

Figure 10.2 The parameters of the Hantush modification of the Theis and Jacob methods for partial penet-
ration
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Procedure 10.3

— For one of the piezometers, determine the values of B;, B,, B;, and B, and calculate,
according to Equation 10.4, its E-function for different values of u, using the tables
of the function M(u,B) in Annex 10.2;

— On log-log paper, plot the values of E versus 1/u; this gives the type curve;

— Onanother sheet of log-log paper of the same scale, plot s versus t for the piezometer;

— Match the data curve with the type curve. It will be seen that for relatively large
values of t the data curve deviates upwards from the type curve. This is to be expected
because the type curve is based on the assumption that the pumping time is relatively
short;

— Select a point A on the superimposed sheets in the range where the curves do not
deviate, and note for A the values of s, E, 1/u, and t;

— Substitute the values of s and E into Equation 10.3 and, with Q, b, and d known,
calculate K;

— Substitute the values of 1/u and t into Equation 10.5 and, with r and K known,
calculate S;

— If the data curve departs from the type curve, note the value of 1/u at the point
of departure, 1/u,;

— Calculate D from the relation

Dz0.5<b+a+r /3
Ug

ep

) (10.6)

— KD can now be calculated. If the data curve does not depart from the type curve
within the range of observed data, record the value of 1/u at a point in the vicinity
of the last observed point. If that value of 1/u is used in Equation 10.6 instead
of 1/ug,, the calculated thickness of the aquifer is greater;

— Repeat this procedure for all piezometers in the vicinity of the well, i.e. all piez-
ometers that satisfy the condition r < 2D.

Example 10.2
By courtesy of WAPDA, Lahore, Pakistan, we use for this example the data of pump-
ing test BWP 9 conducted in the Indus Basin in June 1976 (Nespak-Ilaco 1985). The
alluvial sediments of the basin are hundreds to more than 1000 m thick and consist
of medium sand with lenses of coarse and fine to very fine sands and incidentally
clay or loam. A top layer of clay and loam several metres thick usually covers the
aquifer. Figure 10.3 shows the location of the area and a lithological section.
The pumped well was screened from 20 to 60 m below the ground surface. Pumping
started on 1 June 1976 at 10.00 h and was terminated on 5 June 1976 at 21.20 h.
The average discharge of the well was 73.5 1/s. Besides in the well, drawdowns were
measured in three piezometers at distances of 15.2, 30.5, and 91.5 m from the well.
All piezometers were screened from 44 to 46 m below the ground surface. In Table
10.1 we present the drawdown data of the piezometers atr, = 30.5and r; = 91.5m.
Following Procedure 10.3 we first calculate the values of B, to B, for the piezometer
atr = 30.5m. B, = (60 + 45)/30.5 = 3.443, B, = (20 + 45)/30.5 = 2.131, B; =
(60-45)/30.5 = 0.492 and B, = (20-45)/30.5 = —0.820.
With the values of B, to B, known, we now calculate the E-function of this piezometer
for different values of u, using Equation 10.4 and Annex 10.2. By using the reciprocals
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Figure 10.3 Location map of the SCARP II Project area and a representative lithological cross section
(after NESPAK-ILACO 1985)

of u, we construct the type curve E versus 1/u on log-log paper. On another sheet
of log-log paper, and using the data of piezometer r = 30.5 m in Table 10.1, we plot
the drawdown s versus time t.
Figure 10.4 shows the result of matching the field data plot of this piezometer with
the type curve. Indeed, as noted before, we observe from this diagram that for large
pumping times the field data plot gradually starts to deviate from the type curve. This
is not a surprise, for the method of analysis is only valid for early pumping times.

The match point A, selected on the superimposed sheets, has the following dual
coordinate values:s = 0.185m, E = 1, 1/u = 10, and t = 3.52 minutes.
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Table 10.1 Data pumping test ‘Janpur’, Indus Plain, Pakistan (after Nespak-Ilaco 1985)

Piezometer r = 30.5 m. Screen depth 44-46 m.

t (min) s (m) t (min) s (m) t (min) s (m)
0.00 0.000 30.00 0.518 500.00 0.613
1.00 0.177 40.00 .533 600.00 619
2.00 .250 50.00 .543 750.00 .634
3.00 .320 60.00 .549 1000.00 .640
4.00 .344 75.00 .555 1250.00 .643
6.00 372 100.00 .555 1500.00 .649
8.00 427 125.00 .570 1750.00 .658

10.00 445 150.00 .576 2000.00 674

12.00 457 175.00 .579 2500.00 .680

15.00 472 200.00 .579 3000.00 .695

18.00 .488 250.00 .582 4000.00 716

21.00 497 300.00 .588 5000.00 122

25.00 .509 400.00 .610 6000.00 728

Piezometer r = 91.5 m. Screen depth 44-46 m.

t (min) s (m) t (min) s (m) t (min) s (m)
0.00 0.000 30.00 0.168 500.00 0.253
1.00 0.010 40.00 .180 600.00 .259
2.00 .010 50.00 .186 750.00 265
3.00 .021 60.00 192 1000.00 274
4.00 .034 75.00 .201 1250.00 287
6.00 .061 100.00 207 1500.00 293
8.00 .088 125.00 213 1750.00 299

10.00 .110 150.00 216 2000.00 .305

12.00 122 175.00 219 2500.00 326

15.00 134 200.00 223 3000.00 335

18.00 .143 250.00 229 4000.00 357

21.00 152 300.00 238 5000.00 369

25.00 158 - 400.00 244 6000.00 369

Substituting the values of s and E into Equation 10.3 and, with Q, b, and d, known,
we can calculate the value of K
73.5 x 86400 x 1073

K = 8314 % 0.185 (60 — 20) — >*2m/d

We now substitute the known values of K, r, t, and 1/u into Equation 10.5 and find

_4uKt 4x0.1x342 x 3.52
TP T T (3057 x 1440

In Figure 10.4 we have indicated the time at which the data plot of piezometer 1,
gradually starts to deviate from the type curve (t = 360 minutes). From this time
value and using the above values of K and S,, we can calculate the value of 1/u (i.e.
the point of departure, 1/u,,) from 1/u = 4Kt/r’S,. We thus find that 1/u = 1024.
This data allows us to estimate the thickness of the tested aquifer, using Equation
10.6. We thus find that

S, =3.59 x 10°°
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5
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Figure 10.4 Observed-data plot of piezometer r, = 30.5 m matched with the type curve E(u) versus 1/u

We have repeated the calculations for the other piezometers and obtained the following
results:

Piezometer K (m/d) S, Aquifer thickness (m)
r,=152m 31.7 3.17 x 107 1145
r, =30.5m 34.2 3.59 x 107 1144
r; =91.5m 34.7 4.05 x 10°° 1178

It can be concluded that Hantush’s method applied to the three piezometers yields
(almost) consistent values for the hydraulic conductivity and the thickness of the
aquifer, the latter being a rough estimate. The values obtained for the specific storage,
however, are less consistent: they increase slightly with the distance from the well.
We cannot offer a plausible explanation for this phenomenon.

10.2.2 Hantush’s modification of the Jacob method
According to Hantush (1961b), the drawdown observed in an observation well for
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arelatively long period of pumping, {t > {D*(S,)/2K}, is

o= 47tIQ(D {W(u) +1 %,%,%,%)} (10.7)

where W(u) is the Theis well function, and
B 4D? - [ 1 nnr
b= 2oam-ad) =, <YF> Ko (ﬁ)
._/nnb . (nnd ._/nmb’ . (nnd’
X {mn(T) — sm(T)—)} {SIH<T> — s1n<T>} (10.8)

Note: The angles are expressed in radians. For an explanation of the symbols, see
Figure 10.2

A plot of s versus t on semi-log paper (t on the logarithmic scale) will show a straight
line for large values of t. The slope of this line is

2.30Q

As = KD (10.9)
while the intercept t, of the straight line with the absciss wheres = 0 is
2
¢ St (10.10)

0 = 225K Dexp(f)

When the difference between b” and d’ is small {(b’-d") < 0.05 D}, i.e. when the draw-
down is observed in a piezometer, Equation 10.8 can be replaced by

£ = % n§1 (%) KO<%>{COS<%’?>HSin<‘%’> _ sin<r%i>} (10.11)

Hantush’s modification of the Jacob method can be used if the following assumptions

and conditions are satisfied:

— The assumptions listed at the beginning of Chapter 3, with the exception of the
sixth assumption, which is replaced by:
° The well does not penetrate the entire thickness of the aquifer.

The following conditions are added:

— The flow to the well is in an unsteady state;

— The time of pumping is relatively long: t > D?*(S,)/2K.

Procedure 10.4

— On semi-log paper, plot for one of the piezometers s versus t (t on the logarithmic
scale). Draw a straight line through the plotted points and extend this line until
it intercepts the absciss where s = 0. Read the value of t,;

— Calculate the slope of this line, As, i.e. the drawdown difference per log cycle of time;

— Calculate KD from Equation 10.9;

— Calculate f, from Equation 10.8 or Equation 10.11, as is applicable (see Annex 4.1
for values of K, and Annex 8.1 for values of f, defined by Equation 10.11); a few
terms of the series involved are generally sufficient;
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— Using Annex 4.1, calculate exp(f,), and calculate S from Equation 10.10;
— Repeat this procedure for all piezometers at r < 2D.

10.3  Leaky aquifers, steady-state flow

It can be shown (Anonymous 1964) that the effect of partial penetration is, as a rule,
independent of vertical replenishment, whether this be from overlying or underlying
layers. This means that the Huisman correction methods I and IT can also be applied
to leaky aquifers if the other assumptions of Sections 10.1.1 and 10.1.2 are satisfied.
The corrected steady-state drawdown data can then be used in combination with the
methods in Section 4.1.

10.4  Leaky aquifers, unsteady-state flow

10.4.1 Weeks’s modifications of the Walton and the Hantush curve-fitting
methods

For long pumping times (t > DS/2K), the effects of partial penetration reach their
maximum value for a particular well/piezometer configuration and then remain con-
stant.

Analogous to the drawdown equation for confined aquifers (Equation 10.7, Section
10.2.2), the drawdown in partially penetrated leaky aquifers for t > DS/2K is, accord-
ing to Weeks (1969)

. Q rbda
S = 1nD {W(u,r/L) + I, <ﬁ,ﬁ,ﬁ,ﬁ )} (10.12)
or
-_Q rbda
s= 2 {W(u,ﬁ) i (D,ﬁ,D,ﬁ)} (10.13)
where

W(u,r/L) = Walton’s well function for unsteady-state flow in fully penetrated
leaky aquifers confined by incompressible aquitard(s) (Equation
4.6, Section 4.2.1)

W(u,B) = Hantush’s well function for unsteady-state flow in fully penetrated
leaky aquifers confined by compressible aquitard(s) (Equation
4.15, Section 4.2.3)

r,bd,a = geometrical parameters given in Figure 10.2.

The value of f; is constant for a particular well/piezometer configuration (Equations
10.8 and 10.11) and can be determined from Annex 8.1. With the value of f; known,
a family of type curves of {W(u,r/L) + £} or {W(u,B) + f.} versus 1/u can be drawn
for different values of r/L or B. These can then be matched with the data curve for
t > DS/2K to obtain the hydraulic characteristics of the aquifer.

169



The Walton curve-fitting method (Section 4.2.1) can be used if:

-t > DS/2K; '

— The assumptions and conditions in Section 4.2.1 are satisfied;

— A corrected family of type curves {W(u,r/L + f.} is used instead of W(u,r/L);
— Equation 10.12 is used instead of Equation 4.6.

The Hantush curve-fitting method (Section 4.2.3) can be used if:

-t > DS/2K;

— The assumptions and conditions in Section 4.2.3 are satisfied;

— A corrected family of type curves {W(u,B) + f.} is used instead of W(u,p);

— Equation 10.13 is used instead of Equation 4.15.

10.5 Unconfined anisotropic aquifers, unsteady-state flow

10.5.1 Streltsova’s curve-fitting method

For the early-time drawdown behaviour in a partially penetrated unconfined aquifer
(Figure 10.5), Streltsova (1974) developed the following equation

_ Q
S = 4TI:KhD(b1/D) W(uAaBabl/D’bZ/D) (1014)
where
S
u, = 4;<hlADt (10.15)
S, = storativity of the aquifer
r\ K
= (=3 )7 10.16
B=(p)K (10.16)

NN VN
aquiclude
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Figure 10.5 Cross-section of an unconfined anisotropic aquifer pumped by a partially penetrating well
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For the late-time drawdown behaviour, Streltsova applied a modified form of the
Dagan solution (Dagan 1967), written as

_ Q
= WW(UB,B,bI/D,bz/D) (10.17)
18y

U = 2K Bt (10.18)

Sy = specific yield of the aquifer

Values of both well functions are given in Annex 10.3 and Annex 10.4 for a selected
range of parameter values. From these values, a family of type A and B curves can
be drawn (Figure 10.6).

The Streltsova curve-fitting method can be used if the following assumptions and con-
ditions are satisfied:
— The assumptions listed at the beginning of Chapter 3, with the exception of the
first, third, sixth and seventh assumptions, which are replaced by:
* The aquifer is homogeneous, anisotropic, and of uniform thickness over the area
influenced by the pumping test;
* The well does not penetrate the entire thickness of the aquifer;
* The aquifer is unconfined and shows delayed watertable response.
The following conditions are added:

— The flow to the well is in an unsteady state;
- Sy/SA > IO.

Procedure 10.5

— On log-log paper, draw type A curves by plotting W(uy,B,b,/D,b,/D) versus 1/u,
for a range of values /B, using the table in Annex 10.3 based on values of b, /D
and b,/D nearest to the observed values;

— On the same sheet of log-log paper, draw type B curves by plotting W(ug,B,b,/D,b,/
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Figure 10.6 Family of Streltsova’s type curves for a well partially penetrating an unconfined aquifer

171



D) versus 1/ug for the same values of \/B, b,/D, and b,/D, using Annex 10.4;

— On another sheet of log-log paper of the same scale, plot s versus t for a single
piezometer at r from the well;

— Match the data curve with a type A curve and note the \/ﬁ value of that type curve;

— Select an arbitrary point A on the overlapping portion of the two sheets and note
the values of s, t, 1/u,, and W(u,,B,b,/D,b,/D) for this point;

— Substitute these values into Equations 10.14 and 10.15 and, with Q, b;/D, and r
known, calculate K;D and S,;

— Move the data curve until as many as possible of the late-time data fall on the
type B curve with the same \/B value as the selected type A curve;

— Select an arbitrary point B on the superimposed curves and note the values of s,
t, 1/ug, and W(ug,B,b,/D,b,/D) for this point;

— Substitute these values into Equations 10.17 and 10.18 and, with Q, b;/D, and r
known, calculate K,D and Sy. The two calculations of K;D should give approxi-
mately the same result;

— From the K,D value and the known initial saturated thickness of the aquifer D,
calculate Ky;

— Substitute the values of K, \/B, D, and r into Equation 10.16 and calculate K;

— Repeat the procedure for each of the available piezometers. The results should be
approximately the same.

10.5.2 Neuman’s curve-fitting method
For the drawdown in an unconfined anisotropic aquifer pumped by a partially pene-

trating well (Figure 10.7), Neuman (1974, 1975; see also 1979) developed a curve-fitting
method based on the following equation

s = ﬁW{uA (or ug),B,S/Sy,b/D,d/D,z/D} (10.19)
where
1S, 1’8y
Us = 75 Dt M % = K, Dt

r\2 K,
b= (o)x;
Equation 10.19 is expressed in terms of six independent dimensionless parameters.
(See Neuman 1974 and 1975 for the exact solution.) This makes it impossible to present
a sufficient number of type A and B curves to cover the range needed for field applica-
tion. Neuman’s method thus requires the use of a computer to develop special sets
of type A and B curves for each piezometer.
Neuman’s curve-fitting method is more widely applicable than the Streltsova
method (Section 10.5.1). Both are limited by the same assumptions and conditions
outlined in Section 10.5.1.
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Figure 10.7 The geometric parameters of Neuman’s method for a well partially penetrating an unconfined
aquifer
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11  Large-diameter wells

The standard methods of analysis all assume that storage in the well is negligible.
This is not so in large-diameter wells, but methods have been devised that take the
well storage into account.

For a large-diameter well that fully penetrates a confined aquifer, Papadopulos
(1967) developed the method presented in Section 11.1.1.

For a large-diameter well that partially penetrates an unconfined anisotropic
aquifer, Boulton and Streltsova (1976) developed the method presented in Section
11.2.1.

11.1  Confined aquifers, unsteady-state flow

11.1.1  Papadopulos’s curve-fitting method

For unsteady-state flow to a fully penetrating, large-diameter well in a confined aquifer
(Figure 11.1), Papadopulos (1967) gives the following drawdown equation

__Q
s = mF(u,a,r/rew) (11.1)
where
S
Y = 4K Dt
s
l
original piezometric sgrfacel ]
T ! g
aquiclude Sw !
|
!
T
.aéqu.ife.r': !

“aquicludedSSSEIEIC I I KKK A A
aquiclud “""““’0""‘”“""""”“’"""”‘.".”"”."

Figure 11.1 A confined aquifer pumped by a fully penetrating, large-diameter well
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(11.2)

r., = effective radius of the well screen or open hole
= radius of the unscreened part of the well over which the water level is
changing

_,
B
|

Numerical values of the function F(u,a,r/r,,) are given in Annex 11.1. These values
can be plotted as families of type curves (Figure 11.2).

For long pumping times, i.e. when the drawdown response is no longer influenced
by well storage effects, the function F(u,o,1/r,,) can be approximated by the Theis
well function W(u) (Equation 3.5).

The assumptions and conditions underlying the Papadopulos curve-fitting method
are:
— The assumptions listed at the beginning of Chapter 3, with the exception of the
eighth assumption, which is replaced by:
« The well diameter is not small; hence, storage in the well cannot be neglected;
The following condition is added:
— The flow to the well is in unsteady state.

F(u,a,r/rew)
102
101 el
=
100
VWA 3 4 5
a—=>- 1010 10 10 10
101 asa
v 7.
7
i
/ 3
1071 100 10! 102 10 104 108 108

1/u

Figure 11.2 Family of Papadopulos’s type curves for large-diameter wells: F(u,0.,1/rey,) versus 1/u for differ-
ent values of o (r/ry, = 20)
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Procedure 11.1

— For a single piezometer, i.e. for an estimated value of r/r,,, plot a family of type
curves F(u,a,r/r,,) versus 1/u for different values of o on leg-log paper, using Annex
11.1; ' ' '

— On another sheet of log-log paper of the same scale, plot the observed data curve
s versus t;

— Match the observed data curve with one of the type curves and note the value of
o of that type curve;

— Select an arbitrary matchpoint A on the superimposed sheets and note for this point
the values of F(u,a,r/r.,), 1/u, s, and t;

— Substitute the values of F(u,a,r/r,,) and s, together with the known value of Q,
into Equation 11.1 and calculate KD;

— Calculate S by introducing the values of r, u, t, and KD into u = r?S/4KDt, or
by introducing the values of r, r,,, and o into Equation 11.2.

Remarks

— If early-time drawdown data only are available, it will be difficult to obtain a unique
match of the data curve and a type curve because the type curves differ only slightly
in shape (Figure 11.2). The data curve can be matched equally well with more
than one type curve. Moving from one type curve to another, however, results in
a value of S which differs an order of magnitude. Hence, for early time, S determined
by the Papadopulos curve-fitting method is of questionable reliability. The transmis-
sivity, KD, is less sensitive to the choice of the type curve ;

— Large-diameter wells are often only partially penetrating. For long pumping times
(t > DS/2K), the effects of partial penetration reach their maximum and then
remain constant. Analogous to Equation 10.7 (Section 10.2.2), the drawdown in
a confined aquifer pumped by a partially penetrating, large-diameter well can be
written as

_Q rbda
- 4nKD {F(u:asr/rew) + fs <ﬁ’ﬁ’ﬁ’ﬁ>

where b, d, and a are the geometrical parameters shown in Figure 10.2.
For a particular well/piezometer configuration, f; is constant and can be determined
from Annex 8.1. For long pumping times, a log-log set of type curves of { F(u,01/r,,)
+ £} versus 1/u for different values of o can be drawn and matched with the data
curve. To obtain KD, Equation 11.1 is replaced by the above equation.

S

11.2  Unconfined aquifers, unsteady-state flow
11.2.1 Boulton-Streltsova’s curve-fitting method

In Chapter 5, we discussed the typical S-shaped time-drawdown curve representing
unsteady-state flow in an unconfined aquifer. For an unconfined anisotropic aquifer
pumped by a partially penetrating, large-diameter well (Figure 11.3), Boulton and
Streltsova (1976) developed a well function describing the first segment of the S-curve.
In an abbreviated form, this can be written as
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Figure 11.3 An unconfined anisotropic aquifer pumped by a partially penetrating, large-diameter well

__Q r b db,
s = gop W (taSuBio B D (113)
where
178,
YA = 4K.Dt

S, = storativity of the compressible aquifer, assumed to be 1073

r\2 K,

B — <5> K (11.4)
Because of the large number of parameters involved in this well function, only a
selected range of parameter values are available with which W(uu,S,B,1/r.,.b,/D,d/
D,b,/D) can be calculated for the construction of type A curves (Annex 11.2).

To analyze the late-time portion of the S-curve, the Boulton- Streltsova method
applies the type B curves resulting from Streltsova’s equation for a small-diameter
well that partially penetrates an unconfined aquifer (Equation 10.17, Section 10.5.1).
This is justified for sufficiently long pumping times when the effect of well storage
is no longer pronounced.

The Boulton-Streltsova curve-fitting method can be used if the following assumptions
and conditions are satisfied:
— The assumptions listed at the beginning of Chapter 3, with the exception of the
first, third, sixth, seventh, and eighth assumptions, which are replaced by:
* The aquifer is unconfined;
* The aquifer is homogeneous, anisotropic, and of uniform thickness over the area
influenced by the test;
* The well does not penetrate the entire thickness of the aquifer;

178



* The well diameter is not small; hence, storage in the well cannot be neglected.
The following conditions are added:
— The flow to the well is in an unsteady state;
— Sy/Sa > 10.

Procedure 11.2

— On log-log paper, draw the type A curves by plotting W(uy,,Sa,B,1/r.,,b;/D,d/D,b,/
D) versus 1/u, for a range of values of /B, using the table in Annex 11.2 based
on values of b;/D, b,/D, and 1/r,,, nearest to the observed values;

— On the same sheet of log-log paper, draw the type B curves by plotting W(us,[,b,/
D,b,/D) versus 1/ug for a range of values of \/B, using the table in Annex 10.4
based on values of b;/D and b,/D nearest to the observed values;

— On another sheet of log-log paper of the same scale, plot s versus t for a single
piezometer at r from the well;

— Match the early-time data curve with one of the type A curves and note the \/B
value of that type curve;

— Select an arbitrary point A on the overlapping portion of the two sheets and note
for this point the values of s, t, 1/u,, and W(u,,Sa,B,1/Te,,b1/D,d/D,b,/D);

— Substitute these values into Equation 11.3 and, with Q also known, calculate K, D;

— Move the data curve until as many as possible of the late-time data fall on the
type B curve with the same \/E value as the selected type A curve;

— Select an arbitrary point B on the superimposed curves and note for this point the
values of s, t, 1/ug, and W(ug,B,b,/D,b,/D);

— Substitute these values into Equations 10.17 and 10.18 and, with Q, r, and b,/D
also known, calculate K, D and Sy. The two calculations of K, D should give approx-
imately the same result;

— From the K;D value and the known initial saturated thickness of the aquifer D,
calculate K, ;

— Substitute the numerical values of K, f D, and rinto Equation 11.4 and calculate
KV’

— Repeat the procedure for each of the available piezometers. The results should be
approximately the same.
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12  Variable-discharge tests and tests in well
fields

Aquifers are sometimes pumped at variable discharge rates. This may be done delibera-
tely, or it may be due to the characteristics of the pump. Sometimes, aquifers are
pumped step-wise (i.e. at a certain discharge from t, to t;, then at another discharge
from t, to t,, and so on), or they may be pumped intermittently at different discharge
rates. For confined aquifers that are pumped at variable discharge rates, Birsoy and
Summers (1980) devised the method presented in Section 12.1.1.

It may happen that the discharge decreases with the decline of head in the well.
If so, the sharpest decrease will occur soon after the start of pumping. For confined
aquifers, the Aron-Scott and the Birsoy-Summers methods take this phenomenon into
account. These are presented in Sections 12.1.2 and 12.1.1.

Although, strictly speaking, free-flowing wells are not pumped, the methods of anal-

ysis applied to them are very similar to those for pumped wells. Hantush’s method
for unsteady-state flow to a free-flowing well in a confined aquifer can be found in
Section 12.2.1, and the Hantush-De Glee method for steady-state flow in a leaky
aquifer in Section 12.2.2. Both methods are based on the condition that the decline
of head in the well is constant and that the discharge decreases with time.
The methods presented in the previous chapters are based on analytical solutions for
the drawdown response in an aquifer that is pumped by a single well. If two or more
wells pump the same aquifer, the drawdown will be influenced by the combined effects
of these wells. The Cooper-Jacob method (Section 12.3.1) takes such effects into
account.

The principle of superposition, which was discussed in Chapter 6, is used in some
of the methods in this chapter. According to this principle, two or more drawdown
solutions, each for a given set of conditions for the aquifer and the well, can be summed
algebraically to obtain a solution for the combined conditions.

12.1 Variable discharge
12.1.1 Confined aquifers, Birsoy-Summers’s method

Birsoy and Summers (1980) present an analytical solution for the drawdown response
in a confined aquifer that is pumped step-wise or intermittently at different discharge
rates (Figure 12.1). Applying the principle of superposition to Jacob’s approximation
of the Theis equation (Equation 3.7), they obtain the following expression for the
drawdown in the aquifer at time t during the nth pumping period of intermittent pump-

ing
. 230Q,,  (/{2.25KD
52 = 2eKD 108 {( S > Bt(n)(t_tn)} (12.1)

where
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Figure 12.1 Step-wise and intermittently changing discharge rates and the resulting drawdown responses
(after Birsoy and Summers 1980)

—1
1 t—t; Q/Q,
Bt(n) B 1131 <t_t/i>
_ t—’[l Ql/Qn t-—tz QZ/Qn t_tn—l Qn—l/Qn
_ ( H,}) x <t_—t2> X x (t-t’,,_1> (12.2)
where
t;, = time at which the i-th pumping period started
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t-t; = time since the i-th pumping period started

t;, = time at which the i-th pumping period ended

t-t;, = time since the i-th pumping period ended

Q, = constant well discharge during the i-th pumping period

For step-wise or uninterrupted pumping, t'..;, = t, and the ‘adjusted time’ { By (t-ta)}
becomes

Bt(n) (t_tn) = 1:_[1 (t_tl)AQl/ Qn
= (t—tl)AQl/Qn X (t“tz)AQ2/Qﬂ X ..o X () AQ,/Q, (12.3)

where AQ; = Q,— Q,, = discharge increment beginning at time t;.
If the intermittent pumping rate is constant (i.e. Q = Q, = Q, = ... = Q,), the
adjusted time becomes

tt t
Bim(t-t) = 7 oo
t(n)( n tltz tn

t, (12.4)

Dividing both sides of Equation 12.1 by Q, gives an expression for the specific draw-
down

Q, 4nKD (12.5)

Sy 2.30 2.25KD
tog {22552 o1

The Birsoy-Summers method can be used if the following assumptions and conditions
are satisfied:
— The assumptions listed at the beginning of Chapter 3, with the exception of the
fifth assumption, which is replaced by:
* The aquifer is pumped step-wise or intermittently at a variable discharge rate
or is intermittently pumped at a constant discharge rate.
The following conditions are added:
— The flow to the well is in an unsteady state;

S 1 )
— = x ———— < 0.01 (see also Section 3.2.2
4KD Bty ~ 0 )

Procedure 12.1

— For a single piezometer, calculate the adjusted time B(t-t,) from Equations 12.2,
12.3, or 12.4 (whichever is applicable), using all the observed discharges and the
appropriate values of time;

— On semi-log paper, plot the observed specific drawdown s,/Q, versus the corres-
ponding values of B,q(t-t,) (the adjusted time on the logarithmic scale), and draw
a straight line through the plotted points;

— Determine the slope of the straight line, A(s,/Q,), which is the difference of s,/Q,
per log cycle of adjusted time;

— Calculate KD from A(s,/Q,) = 2.30/4nKD;

— Extend the straight line until it intersects the s,/Q, = 0 axis and determine the value
of the interception point {Byq(t-t,)}o;
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— Knowing r, KD, and {B,(t-t,) },, calculate S from

S = 2.2?2KD

{Bt(n)(t_tn)}o (1 26)

Remarks

— Procedure 12.1 can also be applied when the well discharge changes uninterruptedly
with time. In that case, however, Q versus t for a single piezometer should be plotted
on arithmetic paper. The time axis is then divided into appropriate equal time inter-
vals t’;—t; and the average discharge Q for each time interval is calculated;

— Calculating the adjusted time B, (t-t,) by hand is a tedious process. Birsoy and
Summers (1980) give a program for an HP-25 pocket calculator that computes By
forn < 4 for step-wise pumping.

Example 12.1

We use drawdown data from a hypothetical pumping test conducted in a fully pene-
trated confined aquifer. During the test, the discharge rates changed step-wise (Table
12.1). For a piezometer at r = 5 m, the adjusted time Bim(t—t,) can be calculated with
Equation 12.3.

For example, forn = 3 and t = 100 min., the adjusted time is calculated as follows

By (t-t;) = (t—tl)AQ‘/ Q (t—tz)AQZ/ Q (t_tS)AQa/Qa

= (100-0°°%/690 . (100-30)200/600 _ 1050y 100/600 _ 11 o
Sn
o)
inrc]!/m3 (x 10'3)
6 T
) |

5 702 A -

0=3 1%

9 /y/" A(soln)=1.ax10'3
4 A
S
yd
| L LA
9 log cycle
s e
/
2 pd
»

1
0
101 2 4 6 8100 2 4 6 810 2 4 6 8102 2 4 6 810°

ﬁt(n)(t_tn) in min

Figure 12.2 Analysis of data with the Birsoy-Summers method for variable discharge
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Table 12.1 gives the results of the calculations.

The specific drawdown data (Table 12.1) are plotted against the calculated adjusted
time on semi-log paper (Figure 12.2). The slope of the straight line through the plotted
points A(s,/Q,) = 1.8 x 1073
The transmissivity is

230 2.30
4nA(s,/Q,) ~ 4 x 3.14 x 1.8 x 1073

The straight line intersects the s,/Q, = 0 axis at {B,q(t-t,)}, = 1.5 x 10" min.
Hence

KD = = 102 m%/d

_ 2.25KD
= =220

_ 225 x102 1.5 x 10" 4
{Bt(n)(thtn)}o - 73 X 1440 =9.6 x 10

S

In each step, the condition u < 0.01 is fulfilled after t = 8.5 min. The less restrictive
condition u < 0.05 (Section 3.2.2) is already fulfilled after 1.7 min., i.e. all drawdown
data can be used in the analysis.

Table 12.1 Data from a pumping test with step-wise changing discharge rates

n t Sn 2 Sn/Qn Bt(n)(t'tn)
min (m) m’/d d/m? min
1 5 1.38 500 2.76 x 107 5
1 10 1.65 500 3.30 x 107 10
1 15 1.81 500 3.62 x 1073 15
1 20 1.93 500 3.86 x 107 20
1 25 2.02 500 4.04 x 1073 25
1 30 2.09 500 4.18 x 1073 30
2 35 2.68 700 3.83 x 107 20
2 40 2.85 700 4.07 x 1073 27
2 45 2.96 700 423 x 1073 33
2 50 3.05 700 436 x 107 38
2 55 3.12 700 4.46 x 107 44
2 60 3.18 700 4.54 x 1073 49
2 70 3.29 700 470 x 1073 60
2 80 3.38 700 4.83 x 107 70
3 90 3.13 600 522 x 107 113
3 100 3.15 600 525 x 1073 116
3 110 3.17 600 5.28 x 1073 123
3 130 3.23 600 538 x 107 140

12.1.2  Confined aquifers, Aron-Scott’s method

In a confined aquifer, when the head in the well declines as a result of pumping, many
pumps decrease their discharge, the sharpest decrease taking place soon after the start
of pumping (Figure 12.3).

An appropriate method that takes this phenomenon into account has been devel-
oped by Aron and Scott (1965). They show that when r2S/4KDt, < 0.01, the draw-
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Figure 12.3 Schematic discharge-time diagram of a pump with decreasing discharge rate

down (s,) at a certain moment t, is approximately equal to

(230Q,,  2.25KDt,
S N <41tKD log =g > TS

(12.7)

where Q, is the discharge at time t,, and s, is the excess drawdown caused by the
earlier higher discharge.

If Q, is the average discharge from time 0 to t,, the excess volume pumped is
(Q,—Qut,. If the fully developed drawdown is considered to extend to the distance
r; at which log (2.25KDt,/r?S) = 0, the excess drawdown s, can be approximated by

(Qn — Qn)tn _ (Qn - Qn)tn S _ Qn - Qn
AS S X 2251KDt,  2.257KD (12.8)

Se =

where A; = nr? = area influenced by the pumping.

If 12S/4KDt, < 0.01, a semi-log plot of s,/Q, versus t, will yield a straight line.
KD can then be determined by introducing the slope of the straight line, A(s,/Q,),
i.e. the specific drawdown difference per log cycle of time, into

2.30
KD ~ IrAGs, Q) (12.9)
and S can be determined from
S~ 2.25:2(])'[0 (12.10)

where t, is the intercept of the straight line with the absciss s,/Q, = s./Q,, the latter
being the average of several values of s./Q, calculated from

s _ (Qu/Qn) —1 (12.11)

Q, ~ 2.257KD

The Aron-Scott method, which is analogous to the Jacob method (Section 3.2.2), can
be used if the following assumptions and conditions are met:
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— The assumptions listed at the beginning of Chapter 3, with the exception of the
fifth assumption, which is replaced by:
* The discharge rate decreases with time, the sharpest decrease occurring soon after
the start of pumping.
The following conditions are added:
— The flow to the well is in an unsteady state;
— 1r’S/4KDt, < 0.01 (see also Section 3.2.2).

Procedure 12.2

— For one of the piezometers, plot s,/Q, versus t, on semi-log paper (t, on logarithmic
scale). Fit a straight line through the plotted points (Figure 12.4);

— Determine the slope of the straight line, A(s,/Q,);

— Calculate KD from Equation 12.9;

— Calculate s,/Q, from Equation 12.11 for several values of t, and determine the aver-
age value, s./Q,;

— Determine the interception point of the straight line with the absciss $,/Q, =
s./Q,.. The t value of this point is t,;

— Calculate S from Equation 12.10;

— Repeat this procedure for all piezometers that satisfy the conditions. The results
should show a close agreement.

7
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Figure 12.4 Tllustration of the application of the Aron-Scott method

12.2  Free-flowing wells

The methods for free-flowing wells are based on the conditions that the drawdown
in the well is constant and that the discharge decreases with time. To satisfy these
conditions, the well is shut down for a period long enough for the pressure to have
become static. When the well is opened up again at time t = 0, the water level in
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the well drops instantaneously to a constant drawdown level, which is equal to the
outflow opening of the well, while the well starts discharging at a decreasing rate.
12.2.1 Confined aquifer, unsteady-state flow, Hantush’s method

The unsteady-state drawdown induced by a free-flowing well in a confined aquifer
is given by Hantush (1964) (see also Reed 1980) as

s = s, A(U,,I/Tey) - (12.12)
where
A(u,,r/r,,) = Hantush’s free-flowing-well function for confined aquifers
r2,S
U = KDt (12.13)
I, = effective radius of flowing well
s, = constant drawdown in flowing well = difference between static head

measured during shutdown of the well and the outflow opening of the
well

Annex 12.1 presents values of A(u,,r/r,,) in tabular form for different values of 1/u,,
and r/r,,.

The Hantush method can be used if the following assumptions and conditions are

satisfied:

— The assumptions listed at the beginning of Chapter 3, with the exception of the
fifth assumption, which is replaced by:

* Atthestart of the test (t = 0), the water level in the free-flowing well drops instanta-
neously. At t > 0, the drawdown in the well is constant, and its discharge is vari-
able.

The following condition is added:
— The flow to the well is in an unsteady state.

Procedure 12.3

— Using Annex 12.1, draw on log-log paper the family of type curves by plotting
A(u,,r/r,,) versus 1/u, for a range of values of r/r,;

— On another sheet of log-log paper of the same scale, prepare the data curve by
plotting s/s,, against the corresponding t for a single piezometer at r from the well;

— Match the data curve with one of type curves and note the r/r,, value of the type
curve;

— Select an arbitrary point A on the overlapping portion of the two sheets and note
for this point the values of t and 1/u,;

— Substitute the values of 1/u,, /T, I, and t into Equation 12.13, now written as

KD _1 (1) (r)?(7
S " 4\u,/\r t
and calculate the diffusivity KD/S.
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Remark
— If the value of r.,, is known, one type curve of A(u,,r/r.,) versus 1/u, for the known
value of r/r,,, can be used.

12.2.2  Leaky aquifers, steady-state flow, Hantush-De Glee’s method

The steady-state drawdown in a leaky aquifer tapped by a fully penetrating free-flow-
ing well is given by Hantush (1959a) as

S = 213&“]) Ky(r/L) (12.14)

where
Sm = steady-state drawdown in a piezometer at r from the well
Q,, = steady-state discharge (= minimum discharge) of the well

The data obtained during the steady-state phase of the free-flowing-well test can be

analyzed with De Glee’s method (Section 4.1.1), provided that the Hantush equation

(Equation 12.14) is used instead of Equation 4.1. The following assumptions and con-

ditions should be satisfied:

— The assumptions and conditions that underlie the standard methods for leaky
aquifers (Chapter 4), with the exception of the fifth assumption, which is replaced
by:

* At the beginning of the test (t = 0), the water level in the well drops instanta-
neously. At t > 0, the drawdown in the well is constant, and its discharge is vari-
able.

The following conditions are added:

— The flow to the well is in a steady state;

- L>3D.

12.3  Well field
12.3.1 Cooper-Jacob’s method

A modified version of the Jacob method, previously described in Section 3.2.2, can
be used to resolve the effects of a well field on the drawdown (Cooper and Jacob
1946). By applying the principle of superposition and using values of specific draw-
down (s,/ZQ)) instead of drawdown (s), and values of the weighted logarithmic mean
(t,/r?) instead of t/r?, the same procedure as outlined for the Jacob method can be
followed. The specific drawdown (s,/ZQ)) is the drawdown (s,) in a piezometer at a
certain time t,, divided by the sum of the discharges of the different pumped wells
for the same time (£Q)).

The assumptions and conditions underlying the Cooper-Jacob method are the same
as those for the Jacob method (see Section 3.2.2) i.e.:
— The assumptions listed in Chapter 3;
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— The flow to the well is in unsteady state;

S
u _
4KD(t/rP)n

< 0.01.

Procedure 12.4 (see also Section 3.2.2)
— Calculate for one of the piezometers the value of the specific drawdown (s,/ZQ;)
for each corresponding time t,;
— Determine the weighted logarithmic mean, (t/r?),, corresponding to each value of
t, in the following way:
« Divide the elapsed time t, by the square of the distance from each pumped well
to the piezometer, r2, (t,/1?);
* Multiply the logarithm of each of those values by the individual well discharge
[Qi log(ta/rD)];
* Sum the products algebraically [Z Q; log(t,/r})];
» Divide that sum by the sum of the discharges of the different pumping wells [{Z
Q log(t,/)}/2Q] = (x);
* Extract the antilogarithm of the quotient (10%) which is the requested value of
(/a3
— Plot the values of (s,/ZQ,) versus (t/r?), on semi-log paper (t/r7 on the logarithmic
axis). Draw a straight line through the plotted points;
— Extend the straight line till it intercepts the time-axis where s,/2Q; = 0, and read
the value of (t/r?);
— Determine the slope of the straight line, i.e. the drawdown difference A(s,/ZQ;) per
log cycle of (t/r?),;
— Substitute the values of A(s,/ZQ;) into — a modified version of — Equation 3.13
B 2.30
- AnA(s,/2Q)

and solve for KD;
— With KD and (t/r?), known, calculate S from Equation 3.12

S = 2.25KD (1),

KD

Remark

— The Cooper-Jacob method can also be applied if the individual wells are pumped
ata variable discharge rate. Hence the discharge rate of each individual well is depen-
dent on the elapsed time t,, and the value of ZQ; will not be constant.

Example 12.2
In a hypothetical well field, the pumping started simultaneously in three wells (1, 2,
3) at constant discharge rates of Q, = 150 m*/d, Q,= 200 m*/d, and Q; = 300 m*/d.
The drawdown was observed in a piezometer at a distance of r; = 10 m from Well
1,1, = 20 m from Well 2, and r; = 30 m from Well 3 (Table 12.2).

Table 12.2 gives the calculated values of s,/% Q;, and shows the step-by-step proce-
dure to calculate the weighted logarithmic mean (t/17),.

The values of s,/ Q; and (t/r7), are plotted on semi-log paper (Figure 12.5). The
slope of the straight line through the plotted points A(s,/2Q;) = 4.75 x 10™*. Hence
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The interception point of the straight line with the (s,/ZQ;) = 0 axis is (t/t?), =
1.8 x 10 min/m?2.
S can be calculated from

1

S = 2.25KD (t/r), = 2.25 x 386 x 1.8 x 10 x Taq0 = 10°

Table 12.2 Calculation of parameter (1/r7), of the Cooper-Jacob method
r—1 2 3 4 5
s, (m) 0.53 0.62 0.74 0.82 0.91
2Q; (m%/d) 650 650 650 650 650
$,/2Q;(d/m?) 8.15x 107 9.54x 107 1.13x 1073 1.26 x 1073 1.4x1073
t,, (min) 5 10 20 40 80
t,/r] = t,/100 0.05 0.10 0.20 0.40 0.80
t,/r5 = t,/400 0.0125 0.025 0.05 0.10 0.20
to/r3 = ,/900 0.0056 0.0111 0.0222 0.0444 0.0889
Q, log (t,/r}) — 1952 — 150 —104.8 — 597 — 145
Q, log (t,/13) — 3806 — 3204 —260.2 — 200 — 1398
Qs log (t,/r3) — 676.6 — 5863 — 496.0 — 405.7 — 3153
+ + + +
> Q;log (t,/r?) — 12524 —1056.7 —861.0 — 665.4 — 496
2

FQlog/n) 999 ~ 1626 — 1325 —1.024 — 0722

1
(t/r?), (min/m?) 0.01 0.02 0.05 0.09 0.19
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13  Recovery tests

When the pump is shut down after a pumping test, the water levels in the well and
the piezometers will start to rise. This rise in water levels is known as residual draw-
down, s’. It is expressed as the difference between the original water level before the
start of pumping and the water level measured at a time t” after the cessation of pump-
ing. Figure 13.1 shows the change in water level with time during and after a pumping
test.

It is always good practice to measure the residual drawdowns during the recovery
period. Recovery-test measurements allow the transmissivity of the aquifer to be calcu-
lated, thereby providing an independent check on the results of the pumping test,
although costing very little in comparison with the pumping test.

Residual drawdown data are more reliable than pumping test data because recovery
occurs at a constant rate, whereas a constant discharge during pumping is often diffi-
cult to achieve in the field.

The analysis of a recovery test is based on the principle of superposition, which
was discussed in Chapter 6. Applying this principle, we assume that, after the pump
has been shut down, the well continues to be pumped at the same discharge as before,
and that an imaginary recharge, equal to the discharge, is injected into the well. The
recharge and the discharge thus cancel each other, resulting in an idle well as is required
for the recovery period. For any of the well-flow equations presented in the previous
chapters, a corresponding ‘recovery equation’ can be formulated.

The Theis recovery method (Section 13.1.1) is widely used for the analysis of recov-
ery tests. Strictly speaking, this method is only valid for confined aquifers which are
fully penetrated by a well that is pumped at a constant rate. Nevertheless, if additional
limiting conditions are satisfied, the Theis method can also be used for leaky aquifers
(Section 13.1.2) and unconfined aquifers (Section 13.1.3), and aquifers that are only
partially penetrated by a well (Section 13.1.4).

t —>—
V3
0 0

——
S

(increasing with time)
residual drawdown
(decreasing with time)

drawdown

_——
e ————— e ]

l(»- pumping period ‘+ recovery period —HI

Figure 13.1 Time drawdown and residual drawdown
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If the recovery test is conducted in a free-flowing well, the Theis recovery method
can also be used (Section 13.2).

If the discharge rate of the pumping test was variable, the Birsoy-Summer recovery
method (Section 13.3.1) can be used.

13.1 Recovery tests after constant-discharge tests
13.1.1 Confined aquifers, Theis’s recovery method

According to Theis (1935), the residual drawdown after a pumping test with a constant
discharge is :

,_Q ,
S =4 KD {W(u) — W)} (13.1)
where
u= S andu’ = rs
4K Dt 4KDt’

When u and u” are sufficiently small (see Section 3.2.2 for the approximation of W(u)
foru < 0.01), Equation 13.1 can be approximated by

. Q 4KDt . 4KDt'
Y=ok <ln o —In 50 ) (13.2)
where
s’ = residual drawdown in m
r = distance in m from well to piezometer

KD = transmissivity of the aquifer in m?/d

S’ = storativity during recovery, dimensionless
S = storativity during pumping, dimensionless
t = time in days since the start of pumping

t" = time in days since the cessation of pumping
Q = rate of recharge = rate of discharge in m3/d

When S and S’ are constant and equal and KD is constant, Equation 13.2 can also
be written as

., 230Q

t
S = 4xKD °f7

t

log (13.3)

A plot of s” versus t/t” on semi-log paper (t/t" on logarithmic scale) will yield a straight
line. The slope of the line is

. 2.30Q
As' =4 KD

(13.4)

where As’ is the residual drawdown difference per log cycle of t/t’.
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The Theis recovery method is applicable if the following assumptions and conditions
are met:

— The assumptions listed at the beginning of Chapter 3, adjusted for recovery tests.
The following conditions are added:

— The flow to the well is in an unsteady state;

— u < 0.01,i.e. pumping time t, > (25 r2S)/KD

—u < 0.01,ie.t" > (25r2S)/KD, see also Section 3.2.2.

Procedure 13.1

For each observed value of s’, calculate the corresponding value of t/t’;

— For one of the piezometers, plot s’ versus t/t” on semi-log paper (t/t" on the logarith-

mic scale);

Fit a straight line through the plotted points;

— Determine the slope of the straight line, i.e. the residual drawdown difference As’
per log cycle of t/t’;

— Substitute the known values of Q and As’ into Equation 13.4 and calculate KD.

I

Remark

— When S and S’ are constant, but unequal, the straight line through the plotted points
intercepts the time axis where s’ = 0 at a point t/t” = (t/t’),. At this point, Equation
13.2 becomes

2.30Q S
0=%&D [1°g< > —log s“}
Because 2.30 Q/4xKD # 0, it follows that log (t/t), — log (S/S’) = 0. Hence (t/t"),
= §/S’, which determines the relative change of S.

13.1.2 Leaky aquifers, Theis’s recovery method
After a constant-discharge test in a leaky aquifer, Hantush (1964), disregarding any

storage effects in the confining aquitard, expresses the residual drawdown s” at a dis-
tance r from the well as

s = 41'5%D {W(u,r/L)-W(u,r/L)} (13.5)
Taking this equation as his basis and using a digital computer, Vandenberg (1975)
devised a least-squares method to determine KD, S, and L. For more information
on this method, we refer the reader to the original literature.

If the pumping and recovery times are long, leakage through the confining aquitards
will affect the water levels. If the times are short, i.e. if t, + t* < (L*S)/20KD or
t, + t° < ¢S/20, the Theis recovery method (Section 13.1.1) can be used, but only
the leaky aquifer’s transmissivity can be determined (Uffink 1982; see also Hantush
1964).
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13.1.3 Unconfined aquifers, Theis’s recovery method

An unconfined aquifer’s delayed watertable response to pumping (Chapter 5) is fully
reversible according to Neuman’s theory of delayed watertable response, because hys-
teresis effects do not play any part in this theory. Neuman (1975) showed that the
Theis recovery method (Section 13.1.1) is applicable in unconfined aquifers, but only
for late-time recovery data. At late time, the effects of elastic storage, which set in
after pumping stopped, have dissipated. The residual drawdown data will then fall
on a straight line in the semi-log s” versus t/t” plot used in the Theis recovery method.

13.1.4 Partially penetrating wells, Theis’s recovery method

The Theis recovery method (Section 13.1.1) can also be used if the well is only partially
penetrating. For long pumping times in such a well, i.e. t, > (D?S)/2KD, the semi-log
plot of s versus t yields a straight line with a slope identical to that of a completely
penetrating well (Hantush 1961b). Thus, if the straight line portion of the recovery
curve is long enough, i.e. if both t, and t" are greater than (10 D’S)/KD, the Theis
recovery method can be applied (Uffink 1982).

13.2 Recovery tests after constant-drawdown tests

If the recovery test follows a constant-drawdown test instead of a constant-discharge
test, the Theis recovery method (Section 13.1.1) can be applied, provided that the
discharge at the moment before the pump is shut down is used in Equation 13.4 (Rush-
ton and Rathod 1980).

13.3  Recovery tests after variable-discharge tests

13.3.1 Confined aquifers, Birsoy-Summers’s recovery method

To analyze the residual drawdown data after a pumping test with step-wise or intermit-

tently changing discharge rates, Birsoy and Summers (1980) proposed the following
expression

s’ 2.30 t—t,

& = s P ()| (136)
where

s’ = residual drawdown att > t’,

Q, = constant discharge during the last (= n-th) pumping period

t, = time at which the n-th pumping period started
t-t, = time since the n-th pumping period started

t, = time at which the n-th pumping period ended
t—t’, = time since the n-th pumping period ended

Bym) is defined according to Equation 12.2
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A semi-log plot of s"/Q, versus the corresponding adjusted time of recovery: By(t-t,/
t—t’,) yields a straight line. The slope of the straight line A(s’/Q,) is equal to 2.30/4nKD,
from which the transmissivity can be determined.

The Birsoy-Summers recovery method can be used if the following assumptions and
conditions are met:
— The assumptions listed at the beginning of Chapter 3, as adjusted for recovery tests,
with the exception of the fifth assumption, which is replaced by:
* Prior to the recovery test, the aquifer is pumped at a variable discharge rate.
The following conditions are added:
— The flow to the well is in an unsteady state;

- u < 0.01 [u = r’S/4KD{B,u(t,~t.)}], see also Section 3.2.2;
- u’ < 0.01 [0 = 2 S/AKD{ B (t—t./t-t')}].
Procedure 13.2

— For a single piezometer, calculate the adjusted time of recovery, B (t-t,/t-t,), by
applying Equation 12.2 for the calculation of B, and by using all the observed
values of the discharge rate and the appropriate values of time;

— On semi-log paper, plot the observed specific residual drawdown s’/Q,, versus the
corresponding values of [B,q)(t-t,/t—t",)] (the adjusted time of recovery on the logar-
ithmic scale);

— Draw a straight line through the plotted points;

— Determine the slope of the straight line, A(s’/Q,), which is the difference of s'/Q,
per log cycle of adjusted time of recovery;

— Calculate KD from A(s’/Q,) = 2.30/4nKD.

Remark

— See Section 12.1 for simplified expressions of B, (t—t,) which can be introduced
into the expression for the adjusted time of recovery.
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14 Well-performance tests

The drawdown in a pumped well consists of two components: the aquifer losses and
the well losses. A well-performance test is conducted to determine these losses.

Aquifer losses are the head losses that occur in the aquifer where the flow is laminar.
They are time-dependent and vary linearly with the well discharge. In practice, the
extra head loss induced, for instance, by partial penetration of a well is also included
in the aquifer losses.

Well losses are divided into linear and non-linear head losses (Figure 14.1). Linear
well losses are caused by damage to the aquifer during drilling and completion of
the well. They comprise, for example, head losses due to compaction of the aquifer
material during drilling, head losses due to plugging of the aquifer with drilling mud,
which reduce the permeability near the bore hole; head losses in the gravel pack; and
head losses in the screen. Amongst the non-linear well losses are the friction losses
that occur inside the well screen and in the suction pipe where the flow is turbulent,
and the head losses that occur in the zone adjacent to the well where the flow is usually
also turbulent. All these well losses are responsible for the drawdown inside the well
being much greater than one would expect on theoretical grounds.

Petroleum engineering recognizes the concept of ‘skin effect’ to account for the head
losses in the vicinity of a well. The theory behind this concept is that the aquifer is
assumed to be homogeneous up to the wall of the bore hole, while all head losses
are assumed to be concentrated in a thin, resistant ‘skin’ against the wall of the bore
hole.

In this chapter, we present two types of well-performance tests: the classical step-
drawdown test (Section 14.1) and the recovery test (Section 14.2).

2 bore-hole S

$1
aquifer loss

theoretical drawdown component of drawdown

extra head loss
penetratration zone,
residual mud
head loss in gravel pack
screen entrance head loss s
“_head lossdue to~ —) 5 .
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Figure 14.1 Various head losses in a pumped well
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14.1  Step-drawdown test

A step-drawdown test is a single-well test in which the well is pumped at a low constant-
discharge rate until the drawdown within the well stabilizes. The pumping rate is then
increased to a higher constant-discharge rate and the well is pumped until the draw-
down stabilizes once more. This process is repeated through at least three steps, which
should all be of equal duration, say from 30 minutes to 2 hours each.

The step-drawdown test was first performed by Jacob (1947), who was primarily
interested in finding out what the drawdown in a well would be if it were pumped
at a rate that differs from the rate during the pumping test. For the drawdown in
a pumped well, he gave the following equation

Sy = B(f,)Q + CQ? (14.1)
where

B(reyt) = Byg,.p + B,

By¢,n = linear aquifer-loss coefficient

B, = linear well-loss coefficient

C = non-linear well-loss coefficient
r., = effective radius of the well

r, = actual radius of the well

t = pumping time

Jacob combined the various linear head losses at the well into a single term, r,,, the
effective radius of the well. He defined this as the distance (measured radially from
the axis of the well) at which the theoretical drawdown (based on the logarithmic
head distribution) equals the drawdown just outside the well screen. From the data
of a step-drawdown test, however, it is not possible to determine r,,, because one must
also know the storativity of the aquifer, and this can only be obtained from observa-
tions in nearby piezometers.

Different researchers have found considerable variations in the flows in and outside
of wells. Rorabaugh (1953) therefore suggested that Jacob’s equation should read

s, = BQ + CQF (14.2)

where P can assume values of 1.5 to 3.5, depending on the value of Q (see also Lennox
1966). The value of P = 2, as proposed by Jacob is still widely accepted (Ramey 1982;
Skinner 1988).

A step-drawdown test makes it possible to evaluate the parameters B and C, and
eventually P.

Knowing B and C, we can predict the drawdown inside the well for any realistic
discharge Q at a certain time t (B is time-dependent). We can then use the relationship
between drawdown and discharge to choose, empirically, an optimum yield for the
well, or to obtain information on the condition or efficiency of the well.

We can, for instance, express the relationship between drawdown and discharge
as the specific capacity of a well, Q/s,,, which describes the productivity of both the
aquifer and the well. The specific capacity is not a constant but decreases as pumping
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continues (Q is constant), and also decreases with increasing Q. The well efficiency,
E,, can be expressed as

— BIQ o
E, = {(Bl TEoT CQP} x 100% (14.3)
If a well exhibits no well losses, it is a perfect well. In practice, only the influence
of the non-linear well losses on the efficiency can be established, because it is seldom
possible to take B, and B, into account separately. As not all imperfections in well
construction show up as non-linear flow resistance, the real degree of a well’s imperfec-
tion cannot be determined from the well efficiency.

As used in well hydraulics, the concepts of linear and non-linear head loss compo-
nents (B,Q + CQ’) relate to the concepts of skin effect and non-Darcyan flow (Ramey
1982). In well hydraulics parlance, the total drawdown inside a well due to well losses
(also indicated as the apparent total skin effects) can be expressed as

1 .
2 — ’
B,Q + CQ? = KD (skin + C'Q)Q (14.4)
where
C" = Cx2nKD = non-linear well loss coefficient or high velocity coeffi-
cient

skin = B, x 2nKD = skin factor

Matthews and Russel (1967) relate the effective well radius, I.y, to the skin factor
by the equation

Toy = I,ekin (14.5)

Various methods are available to analyze step-drawdown tests. The methods based
on Jacob’s equation (Equation 14.1) are the Hantush-Bierschenk method (Section
14.1.1) and the Eden-Hazel method (Section 14.1.2). The Hantush-Bierschenk method
can determine values of B and C, and can be applied in confined, leaky, or unconfined
aquifers. The Eden-Hazel method can be applied in confined aquifers and gives values
of well-loss parameters as well as estimates of the transmissivity.

The methods based on Rorabaugh’s equation (Equation 14.2) are the Rorabaugh
trial-and-error straight line method (Section 14.1.3) and Sheahan’s curve-fitting
method (Section 14.1.4). They can be used in confined, leaky, or unconfined aquifers,
and give values for B, C, and P. Analyzing data from a step-drawdown test does not
yield separate values of B, and B,. A recovery test, however, makes it possible to evalu-
ate the skin factor (Section 14.2).

14.1.1 Hantush-Bierschenk’s method
By applying the principle of superposition to Jacob’s equation (Equation 14. 1), Han-
tush (1964) expresses the drawdown s, in a well during the n-th step of a step-draw-
down test as
Swi) = > AQ] B(rewat'ti) + CQ& (146)
i=1
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where
Sym = total drawdown in the well during the n-th step at time t
r., = effective radius of the well
t, = time at which the i-th step begins (t, = 0)
Q, = constant discharge during the n-th step
Q, = constant discharge during the i-th step of that preceding the n-th step
AQ; = Q-Q,, = discharge increment beginning at time t;

The sum of increments of drawdown taken at a fixed interval of time from the begin-
ning of each step (t — t; = At) can be obtained from Equation 14.6

ASW(i) = Sy = B(rewaAt)Qn + CQ% (147)
i=1

i=

where

As, = drawdown increment between the i-th step and that precedingiit, taken
at time t; + At from the beginning of the i-th step

Equation 14.7 can also be written as

O = BlrawA) + CQ, (14.8)

A plot of s,,,)/Q, versus Q, on arithmetic paper will yield a straight line whose slope
is equal to C. From Equation 14.8 and the coordinates of any point on this line, B
can be calculated.

The procedure suggested by Hantush (1964) and Bierschenk (1963) is applicable if
the following assumptions and conditions are satisfied:
— The assumptions listed at the beginning of Chapter 3, with the exception of the
first and fifth assumptions, which are replaced by:
* The aquifer is confined, leaky or unconfined;
* The aquifer is pumped step-wise at increased discharge rates;
The following conditions are added:
— The flow to the well is in an unsteady state;
— The non-linear well losses are appreciable and vary according to the expression

CcQ~

Procedure 14.1

— On semi-log paper, plot the observed drawdown in the well s,, against the corres-
ponding time t (t on the logarithmic scale) (Figure 14.2);

— Extrapolate the curve through the plotted data of each step to the end of the next
step;

— Determine the increments of drawdown As,, for each step by taking the difference
between the observed drawdown at a fixed time interval At, taken from the begin-
ning of each step, and the corresponding drawdown on the extrapolated curve of
the preceding step;

— Determine the values of s, corresponding to the discharge Q, from sy, = As,q,
+ Asyp) + ... + As,. Subsequently, calculate the ratio Swm/Qn for each step;
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Figure 14.2 The Hantush-Bierschenk method: determination of the drawdown difference for each step

— On arithmetic paper, plot the values of Sw)/Qy versus the corresponding values of
Q, (Figure 14.3). Fit a straight line through the plotted points. (If the data do not
fall on a straight line, a method based on the well loss component CQ® should be
used; see Sections 14.1.2, 14.1.3 or 14.1.4;

— Determine the slope of the straight line A(Syw)/Qn)/AQ,, which is the value of C;

— Extend the straight line until it intercepts the Q = 0 axis. The interception point

- on the s,,,/Q, axis gives the value of B.

Remarks

— The values of As,; depend on extrapolated data and are therefore subject to error;

— When a steady state is reached in each step, the drawdown in the well is no longer
time-dependent. Hence, the observed steady-state drawdown and the corresponding
discharge for each step can be used directly in the arithmetic plot of Swy/Qn versus

Q..

Example 14.1

To illustrate the Hantush-Bierschenk method, we shall use the data in Table 14.1.
These data have been given by Clark (1977) for a step-drawdown test in ‘Well 17,
which taps a confined sandstone aquifer.
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Figure 14.3 The Hantush-Bierschenk method: determination of the parameters B and C

Table 14.1 Step drawdown test data ‘Well 1°. Reproduced by permission of the Geological Society from
“The analysis and planning of step-drawdown tests’. L. Clark, in Q.JI. Engng. Geol. Vol. 10

(1977)
Time in minutes Step 1 2 3 4 5 6
from beginning Q: 1306 1693 2423 3261 4094 5019
of step (m?/d) Drawdown in metres
1 - 5.458 8.170 10.881 15.318 20.036
2 - 5.529 8.240 11.797 15.494 20.248
3 - 5.564 8.346 11.902 15.598 20.389
4 - 5.599 8.451 12.008 15.740 20.529
5 1.303 5.634 8.486 12.078 15.846 20.600
6 2.289 5.669 8.557 12.149 15.881 20.660
7 3.117 5.669 8.557 12.149 15.952 20.741
8 3.345 5.705 8.592 12.184 16.022 20.811
9 3.486 5.740 8.672 12.219 16.022 20.882
10 3.521 5.740 8.672 12.325 16.093 20917
12 3.592 5.810 8.663 12.360 16.198 20.952
14 3.627 5.810 8.698 12.395 16.268 21.022
16 3.733 5.824 8.733 12.430 16.304 21.128
18 3.768 5.845 8.839 12.430 16.374 21.163
20 3.836 5.810 8.874 12.501 16.409 21.198
25 3.873 5.824 8.874 12.508 16.586 21.304
30 4.014 5.824 8.979 12.606 16.621 21.375
35 3.803 5.881 8.979 12.712 16.691 21.480
40 4.043 5.591 8.994 12.747 16.726 21.551
45 4.261 5.591 9.050 12.783 16.776 21.619
50 4.261 6.092 9.050 12.818 16.797 21.656
55 4.190 6.092 9.120 12.853 16.902 -
60 4.120 6.176 9.120 12.853 16.938 21.663
70 4.120 6.162 9.155 12.888 16.973 21.691
80 4.226 6.176 9.191 12.923 17.079 21.762
90 4.226 6.169 9.191 12.994 17.079 21.832
100 4.226 6.169 9.226 12.994 17.114 21.903
120 4.402 6.176 9.261 13.099 17.219 22.008
150 4.402 6.374 9.367 13.205 17.325 22.184
180 4.683 6.514 9.578 13.240 17.395 22.325
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Figure 14.2 shows the semi-log plot of the drawdown data versus time. From this
plot, we determine the drawdown differences for each step and for a time-interval
At = 100 min. We then calculate the specific drawdown values s,,,/Q, (Table 14.2).
Plotting the s,,/Q, values against the corresponding values of Q, on arithmetic paper
gives a straight line with a slope of 1.45 x 107 d*/m* (= C) (Figure 14.3). The intercep-
tion point of the straight line with the Q, = 0 axis has a value of s,,,/Q, = 3.26 x 10
d/m? (= B). Hence, we can write the drawdown equation for ‘Well 1’ as

Sy = (3.26 x 103) Q + (1.45 x 107) Q*(for t = 100 min).

Table 14.2 Specific drawdown determined with the Hantush-Bierschenk method: step-drawdown test

‘Well 1’
ASw(n) Sw(n) Qn Sw(n)/Qn
m m m?/d d/m?
Step 1 425 425 1306 3.25 x 1073
Step 2 1.70 5.95 1693 3.51 x 107
Step 3 2.80 8.75 2423 3.61 x 1073
Step 4 3.40 12.15 3261 3.73 x 107
Step 5 3.65 15.80 4094 3.86 x 107
Step 6 4.20 20.00 5019 3.98 x 1073

(Asy,(ny determined for At = 100 min)

14.1.2 Eden-Hazel’s method (confined aquifers)

From step-drawdown tests in a fully penetrating well that taps a confined aquifer,
the Eden-Hazel method (1973) can determine the well losses, and also the transmissi-
vity of the aquifer. The method is based on Jacob’s approximation of the Theis equa-
tion (Equation 3.7).

The drawdown in the well is given by the Jacob equation, now written as

. _230Q,  225KDt
v = 4nKD °8 T2, S

This equation can also be written as

sy = (a + blogt)Q (14.9)
where
2.30 2.25KD
A= 2D log 2.3 (14.10)
2.30

Using the principle of superposition and Equation 14.9, we derive the drawdown at
time t during the n-th step from
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Swm) = _% (AQ) {a + blog(t-t)} (14.12)

or
Sw(n) — aQn + b Z AQl log(t‘tl) (1413)
i=1
where
Q, = constant discharge during the n-th step
Q. = constant discharge during the i-th step of that preceding the n-th step
AQ, = Q,—Q,, = discharge increment beginning at time t;
t, = time at which the i-th step begins
t = time since the step-drawdown test started

The above equations do not account for the influence of non-linear well losses. Intro-
ducing these losses (CQ?) into Equation 14.13 gives

Swm = aQ, + bH, + CQ; (14.14)
where

H, = » AQ, log(t-t)) (14.15)
i=1

i=

The Eden-Hazel Procedure 14.2 can be used if the following assumptions and condi-

tions are satisfied:

— The conditions listed at the beginning of Chapter 3, with the exception of the fifth
assumption, which is replaced by:
* The aquifer is pumped step-wise at increased discharge rates;

The following conditions are added:

— The flow to the well is in an unsteady state;

—u<0.01;

— The non-linear well losses are appreciable and vary according to the expression
CcQ>

The Eden-Hazel Procedure 14.3 can be used if the last condition is replaced by:

— The non-linear well losses are appreciable and vary according to the expression

CQ-.

Procedure 14.2

— Calculate the values of H, from Equation 14.15, using the measured discharges and
times;

— On arithmetic paper, plot the observed drawdowns s, versus the corresponding
calculated values of H, (Figure 14.4);

— Draw parallel straight lines of best fit through the plotted points, one straight line
through each set of points (Figure 14.4);

— Determine the slope of the lines As,,,,/AH,, which gives the value of b;

— Extend the lines until they intercept the H, = 0 axis. The interception point (A,)
of each line is given by
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Figure 14.4 The Eden-Hazel method: arithmetic plot of Sw(n) versus Hy min

A, = aQ, + CQ, or% —a+CQ, (14.16)

— Read the values of A ;

— Calculate the ratio A,/Q, for each step (i.e. for each value of Q,);

— On arithmetic paper, plot the values of A,/Q, versus the corresponding values of
Q,. Fit a straight line through the plotted points (Figure 14.5);

— Determine the slope of the straight line A(A,/Q,)/AQ,, which is the value of C;

— Extend the straight line until it intersects the A,/Q, axis where Q, = 0; the value
of the intersection point is equal to a;

— Knowing b, calculate KD from Equation 14.11.

Procedure 14.3

— The Eden-Hazel method can also be used if the well losses vary with CQF, as may
happen when well discharges are high (e.g. in a test to determine the maximum yield
of a well). In Equations 14.14 and 14.16, CQ? should then be replaced by CQF. The
adjusted Equation 14.16, after being rearranged in logarithmic form thus becomes

log (g— - a> = 1og C + (P-1)log Q,
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The last three steps of Procedure 14.2 are now replaced by:

— A plot of [(A,/Q,) — a] values versus the corresponding values of Q, on log-log
paper should give a straight line whose slope [A{(A,/Q,) —a}/AQ,] can be determined.
Because the slope equals P — 1, we can calculate P. The interception point of the
extended straight line with the ordinate where Q, = 0, gives the value of C. Knowing
b from Procedure 14.2, we can calculate the transmissivity from Equation 14.11.

Remark
— The analysis of the data from the recovery phase of a step-drawdown test is incorpor-
ated in the Eden-Hazel method (Section 15.3.3).

Example 14.2

We shall illustrate the Eden-Hazel Procedure 14.2 with the data in Table 14.1. Using
Equation 14.15, we calculate values of H,. For example:

— For Step 1, Equation 14.15 becomes

1306

Hi = az5 108t
. m? .
[t = 50min - H, = 1.541 mlog(mm)]
— For Step 2
1306 387
H, =ﬁ4—010gt 1440log(t 180)
. m? .
[t = 230min - H, = 2.599%10g(mm)}
— For Step 6
1306 387 730
H, = 1440l gt + {240 log(t-180) + ——= 1440 log(t-360)
838 833 925
+ 1440 log(t-540) + ——= 1440 log(t-720) + = 1440 log(t-900)

. m .
[t = 950 min - H¢ = 8.859m10g(mm)}
Figure 14.4 gives the arithmetic plot of s, versus H,. The slope of the parallel straight
lines is

1
1440

= 6.9 x 10*d/m?

[NSTH N}

As
= win —3
b -——QAHH X

Introducing b into Equation 14.11 gives KD = 2.30/4n x 6.9 x 10* = 265 m%/d.
The values of the intersection points A, (Figure 14.4) are: A; = 2.55m; A, = 3.4
m;A; = 5.2m; A, = 7.2m; A; = 9.5m; and Ay = 12.5 m. A plot of the calculated
values of A,/Q, versus Q, (Figure 14.5) gives a straight line with a slope A(A,/Q,)/AQ,
= 0.28 x 1073/2000 = 1.4 x 1077. Hence, C = 1.4 x 107 d?/m>. At the intersection
of the straight line and the ordinate where Q, = 0,a = 1.78 x 10 d/m?

After being pumped at a constant discharge Q for t days, the well has a drawdown
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Figure 14.5 The Eden-Hazel method: arithmetic plot of A,/Q, versus Q,

sy = {(1.78 x 107) + (6.9 x 10*)logt} Q + (1.4 x 107)Q> The estimated transmissi-
vity of the aquifer KD = 265 m?/d.

Note: The separate analysis of the data from the recovery phase of the step-drawdown
test on Well 1 gives KD = 352 m?/d (Section 15.3.3). In practice, the Eden-Hazel
method should be applied to both the drawdown and recovery data.

14.1.3 Rorabaugh’s method

If the principle of superposition is applied to Rorabaugh’s equation (Equation 14.2),
the expression for the drawdown corresponding to Equation 14.7 reads

. Asyh = Sum = BQ, + CQ”, (14.17)
i=1

which can also be written as

%m =B + CQ¥! (14.18)
or
log [%“—)—B} — log C + (P-1)log Q, (14.19)

A plot of [(5y(»)/Q,) — B] versus Q, on log-log paper will yield a straight line relationship
(Figure 14.6).

The assumptions and conditions underlying Rorabaugh’s method are:

— The assumptions listed at the beginning of Chapter 3, with the exception of the
first and fifth assumptions, which are replaced by:
* The aquifer is confined, leaky or unconfined;
* The aquifer is pumped step-wise at increased discharge rates.
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The following conditions are added:
— The flow to the well is in an unsteady state;

— The non-linear well losses are appreciable and vary according to the expression
CQr.

Procedure 14.4

— On semi-log paper, plot the drawdowns s,, against the corresponding times t (t on
the logarithmic scale);

— Extrapolate the curve through the plotted points of each step to the end of the
next step;

— For each step, determine the increments of drawdown As,,; by taking the difference
between the observed drawdown at a fixed time interval At, taken from the begin-
ning of that step, and the corresponding drawdown on the extrapolated drawdown
curve of the preceding step;

— Determine the values of s,,,, corresponding to the discharge Q, from s, = As,
+ Asyo) + .o+ Asyy

— Assume a value of B; and calculate [(S,/Q,) — B;] for each step;

— On log-log paper, plot the values of [(s,/Q,) — Bj] versus the corresponding values
of Q,. Repeat this part of the procedure for different values of B;. The value of
B; that gives the straightest line on the plot will be the correct value of B;

— Calculate the slope of the straight line A[(S,/Q.) — BI/AQ,. This equals (P-1),

. from which P can be obtained;

— Determine the value of the interception of the straight line with the Q, = 1 axis.

This value of [(Sy,/Q,) — B] is equal to C.

Remark
— When steady state is reached in each step, the observed steady-state drawdown and
the corresponding discharge for each step can be used directly in a log-log plot

Of [(Sww/Qn) — Bi] versus Q.

Example 14.3

To demonstrate the Rorabaugh method, we shall use the specific drawdown data and

the corresponding discharge rates presented in Table 14.3 (after Sheahan 1971).
Values of [(s,@/Q,) — B]] have been calculated for B; = 0; 0.8 x 107; 1 x 107 and

1.1 x 10 d/m? (Table 14.4). Figure 14.6 shows a log-log plot of [(8,,,)/Q), — Bj] versus

Q,. For B; = 1 x 10 d/m?, the plotted points fall on a straight line. The slope of

this line is

Al(Suw/Qu) — Bs] _ log 102 — log 10~

AQ, ~ Tog (17.500/5100) — 1.85
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Figure 14.6 The Rorabaugh method

Table 14.3 Step-drawdown test data (from Sheahan 1971)

Total drawdown Discharge Specific drawdown
sw(n) Qn Sw(n)/ Qn
(m) (m*/d) (d/m?)
2.62 2180 12 %1073
6.10 3815 1.6 x 1072
17.22 6540 2.6 x 107
42.98 9811 4.4 %107
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Table 14.4 Values of [(sym)/Qn) — Bi] and B; as used in the analysis of Sheahan’s step-drawdown test data
with Rorabaugh’s method

Swi) _ g, Sw@)_ g Swe) _ g Sw4) _g.
Q B Q " Q B Q B
(d/m?) (d/m?) (d/m?) (d/m?)
B, =0 1.2 x 1072 1.6 x 1073 2.6 x 107 44 %1073
B, = 0.8 x 1073 d/m? 0.4 x 1073 0.8 x 1073 1.8 x 1073 3.6 x 107
By=1 x103d/m? 0.2 x 1073 0.6 x 107 1.6 x 1073 34 %107
B, = 1.1 x 107 d/m? 0.1 x 1072 0.5 x 1073 1.5 x 1073 33 x 107

Because the slope of the line equals (P — 1), it follows that P = 2.85. The value of
[(Sw/Qu) — B] for Q, = 10* m%/d is 3.55 x 103 d/m? Hence, the intersection of the
line with the Q, = 1 m?/d axis is four log cycles to the left. This corresponds with
4 x 1.85 = 7.4logcycles below the point [(s,)/Q,) —B] = 3.55 x 107,

The interception point [(s)/Q,) — B]; is calculated as follows: log [(s,w)/Q.) — BJ;
= log 3.55 x 103 —log (10’%) = —3 + 0.55 — 7 — 04 = —10 + 0.15. Hence,
[(Sww/Qn) —B], = 1.4 x 107, and C = 1.4 x 107 d?/m’.

The well drawdown equationis s, = (10 x 104)Q + (1.4 x 10'9)Q?%.

14.1.4 Sheahan’s method

Sheahan (1971) presented a curve-fitting method for determining B, C, and P of Rora-
baugh’s equation (Equation 14.18).

Assuming that B = 1, C = 1, P > 1, and that Q; is defined for any value of P
by Q' = 100, we can calculate the ratio s,q/Q, for selected values of Q, (Q, < Q)
and P, using Equation 14.18 (see Annex 14.1). The values given in Annex 14.1 can
be plotted on log-log paper as a family of type curves (Figure 14.7).

For those values of Q, that equal Q,, Equation 14.18 can be written as

Sww — B 4 CQF! = 2B (14.20)

X

and consequently

B = CQut = BugfQd (14.21)
and
B SW X X
C=qgrm= (v Q) 2‘649) (14.22)
For B = 1 and C = 1, Equation 14.21 gives s8,/Q, = 2, and from Equation 14.22
it follows that Qf! = 1, or Q, = 1. Hence, for all values of P and assuming that

B = 1and C = 1, the ratio s,,/Q, = 2, and Q, = 1 (see also Annex 14.1). All
type curves based on the values in Annex 14.1 and plotted on log-log paper pass
through the point s,,,/Q, = 2; Q, = 1. As this is inconvenient for the curve-matching
procedure, the type curves are redrawn on plain paper in such a way that the common
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point expands into an ‘index line’, located at s,)/Q, = 2 (Figure 14.7).

Sheahan’s curve-fitting method is applicable if the following assumptions and condi-
tions are satisfied:
— The assumptions listed at the beginning of Chapter 3, with the exception of the
first and fifth assumptions, which are replaced by:
* The aquifer is confined, leaky or unconfined;
* The aquifer is pumped step-wise at increased discharge rates.
The following conditions are added:
— The flow to the well is in an unsteady state;
— The non-linear well losses are appreciable and vary according to the expression

CQ*.
Procedure 14.5

— On a sheet of log-log paper, prepare the family of Sheahan type curves by plotting
Swny/Qn versus Q, for different values of P, using Annex 14.1. Redraw the family

one log cycle Qn
P\
A
NS
2
2
Vv YV
4548
'\/‘q:?© o
Vv Q
& {b‘»v
& QO

Sw(n)

Q,

one log cycle

v

Figure 14.7 Family of Sheahan’s type curves s,,)/Q, for different values of P(B = 1;C = L, P > 1
Qu < Q;; Q! = 100) (after Sheahan 1971)
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of type curves on plain paper in such a way that the point Swm/Qu =2; Q, =1
expands into an index line located at s,,,,/Q, = 2 (see Figure 14.7);

— On semi-log paper, plot the observed drawdowns in the well s, against the corres-
ponding times t (t on the logarithmic scale);

— Extrapolate the curve through the plotted points of each step to the end of the
next step;

— Determine the increments of drawdown As,, for each step by taking the difference
between the observed drawdown at a fixed time interval At, taken from the begin-
ning of the step, and the corresponding drawdown on the extrapolated drawdown
curve of the preceding step;

— Determine the values of s, corresponding to the discharge Q, from Swmy = Asy)
+ Asy) + ... + As,,. Subsequently, calculate the ratio Swmy/Qn for each step;

— On log-log paper of the same scale as that used for the log-log plot of Sheahan’s
type curves, plot the calculated values of the ratio s,,,/Q, versus the corresponding
values of Q,;

— Match the data plot with one of the family of type curves and note the value of
P for that type curve;

— For the intersection point of type curve and index line, read the corresponding coor-
dinates from the data plot. This gives the values of Swio/Qx and Qy;

— Substitute the value of s,,,,/Q, into Equation 14.21 and calculate B;

— Substitute the values of B, Q,, and P into Equation 14.22 and calculate C.

Remarks

— The most accurate analysis of step-drawdown data is obtained if the plotted data
fall on the type curve’s portion of greatest curvature;

— For decreasing values of Q,, the Sheahan type curves all approach the line Sw)/Qu
= B asymptotically, indicating that for small values of Q,, the well loss component
CQP becomes negligibly small.

Example 14.4

When we plot the s,,/Q, and Q, data from Table 14.3 on log-log paper, we find
that the best match with Sheahan’s type curves is with the curve for P = 2.8 (Figure
14.8). The interception point (x) of Sheahan’s index line and the curve P = 239)
through the observed data has the coordinates s,4,/Q, = 1.95 x 10 d/m? and Q,
=49 x 10°m’/d.

According to Equation 14.21

B =0.5x %@ =0.5x1.95 % 102 =9.8 x 10*d/m?

X

and according to Equation 14.22

Swi/ Qx 1.95 x 1073 -
c-! 2(Q){"Q‘) T 249 x 109D T 2.2 x 101 d*/m?

The drawdown equation can be written as

Sw = (9.8 x 10%Q + (2.2 x 10719)Q28
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Figure 14.8 Sheahan’s method

14.2 Recovery tests
14.2.1 Determination of the skin factor

If the effective radius of the well r., is larger than the real radius of the bore hole
r,,, we speak of a positive skin effect. If it is smaller, the well is usually poorly developed
or its screen is clogged, and we speak of a negative skin effect (De Marsily 1986).

In groundwater hydraulics, the skin effect is defined as the difference between the
total drawdown observed in a well and the aquifer loss component, assuming that
the non-linear well losses are negligible. Adding the skin effect to Jacob’s equation
(3.7) and assuming that the non-linear well losses are so small that they can be neg-
lected, we obtain the following equation for the drawdown in a well that fully pene-
trates a confined aquifer and is pumped at a constant rate

. Q , 2.25KDt . Q
Sv = 4nKD In r2S + (skin) 2rKD
_ Q [,.225KDt .
= ion [1 o5+ 2(sk1n)} (14.23)
where

skin (Q/2nKD) = skin effect in m
skin skin factor (dimensionless)
Iy actual radius of the well in m
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After the pump has been shut down, the residual drawdown s/, in the well for
t’ > 25r2S/KD is

g = Q [m 2.25KDt |, skin] Q [111 2.2KDt" skin}

~ 47KD 2 S "~ 4nKD 2 S
230Q, t
= 4KD log? (14.24)

where

time since pumping started
time since pumping stopped

I

t/

For t > 25r{S/KD, a semi-log plot of s/, versus t/t’ will yield a straight line. The
transmissivity of the aquifer can be calculated from the slope of this line.
For time t = t, = total pumping time, Equation 14.23 becomes

_ Q| 225KDt
W) = Zkp " s

» 4 skin< . ) (14.25)

The difference between s,(t,) and the residual drawdown s, at any time t’, is

Su(t,) 5 = 2 an'ZSKDtp+Skin< Q > Q bttt (1426

4nKD 2 S 2nKD ) 4nKD t’
t,+t; _ 2.25KDt,
For =0 (14.27)
Equation 14.26 reduces to
su(t,) — sl = skin(~- 2 (14.28)
wAP w 2nKD '

The procedure for determining the skin factor has been described by various authors

(e.g. Matthews and Russell 1967). It is applicable if the following assumptions and

conditions are satisfied:

— The assumptions listed at the beginning of Chapter 3, adjusted for recovery tests.

The following conditions are added:

— The aquifer is confined, leaky or unconfined;

— The flow to the well is in an unsteady state;

- u<0.01;

- u < 0.01;

— The linear well losses (i.e. the skin effect) are appreciable, and the non-linear well
losses are negligible.

Procedure 14.6
— Follow Procedure 13.1 or Procedure 15.8 (the Theis recovery method) to determine
KD;
* On semi-log paper, plot the residual drawdown s/, versus corresponding values
of t/t’ (t/t” on logarithmic scale);
* Fit a straight line through the plotted points;
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* Determine the slope of the straight line, i.e. the residual drawdown difference As’,
per log cycle of t/t’;

* Substitute the known values of Q and As’, into As’, = 2.30Q/4nKD, and calculate
KD;

Determine the ratio (t, + t)/t; by substituting the values of the total pumping time

t,, the calculated KD, the known value of r,, and an assumed (or known) value

of S into Equation 14.27;

Read the value of s',; corresponding to the calculated value of (t, + t9)/t; from the

extrapolated straight line of the data plot s/, versus t/t’;

Substitute the observed value of s,(t,) corresponding to pumping time t = t,, and

the known values of s',;, Q, and KD into Equation 14.28 and solve for the skin

factor.
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15  Single-well tests with constant or variable
discharges and recovery tests

A single-well test is a test in which no piezometers are used. Water-level changes during
pumping or recovery are measured only in the well itself. The drawdown in a pumped
well, however, is influenced by well losses (Chapter 14) and well-bore storage. In the
hydraulics of well flow, the well is generally regarded as a line source or line sink,
i.e. the well is assumed to have an infinitesimal radius so that the well-bore storage
can be neglected. In reality, any well has a finite radius and thus a certain storage
capacity. Well-bore storage is large when compared with the storage in an equal vol-
ume of aquifer material. In a single-well test, well-bore storage must be considered
when analyzing the drawdown data.

Papadopulos and Cooper (1967) observed that the influence of well-bore storage
on the drawdown in a well decreases with time and becomes negligible at t > 25r2/KD,
where r. is the radius of the unscreened part of the well, where the water level is chang-
ing.

To determine whether the early-time drawdown data are dominated by well-bore
storage, a log-log plot of drawdown s, versus pumping time t should be made. If
the early-time drawdowns plot as a unit-slope straight line, we can conclude that well-
bore storage effects exist. ’

The methods presented in Sections 15.1 and 15.2 take the linear well losses (skin
effects) into account by using the effective well radius r, in the equations instead
of the actual well radius r,. Most methods are based on the assumption that non-linear
well losses can be neglected. If not, the drawdown data must be corrected with the
methods presented in Chapter 14.

Section 15.1 presents four methods of analysis for single-well constant-discharge
tests. The Papadopulos-Cooper curve-fitting method (Section 15.1.1) and Rushton-
Singh’s modified version of it (Section 15.1.2) are applicable for confined aquifers.
Jacob’s straight-line method (Section 15.1.3), does not require any corrections for non-
linear well losses and can be used for confined or leaky aquifers, and so also can Hurr-
Worthington’s approximation method (Section 15.1.4). All four methods are applic-
able if the early-time data are affected by well-bore storage, provided that sufficient
late-time data (t > 25 r?/KD) are also available.

Section 15.2 treats variable-discharge tests. Birsoy-Summers’s method (Section
15.2.1) can be used for confined aquifers. A special type of variable discharge test,
the free-flowing-well test, can be analyzed by Jacob-Lohman’s method (Section 15.2.2)
for confined aquifers and by Hantush’s method (Section 15.2.3) for leaky aquifers.

A recovery test is invaluable if the pumping test is performed without the use of
piezometers.

The methods for analyzing residual drawdown data (Chapter 13) are straight-line
methods. The transmissivity of the aquifer is calculated from the slope of a semi-log
straight-line, i.e. from differences in residual drawdown. Those influences on the resid-
ual drawdown that are or become constant with time, i.e. well losses, partial penet-
ration, do not affect the calculation of the transmissivity. The methods presented in
Chapter 13 are also applicable to single-well recovery test data (Section 15.3). In apply-

219



ing these methods, one must make allowance for those influences on the residual draw-
down that do not become constant with time, e.g. well-bore storage.

15.1 Constant-discharge tests

15.1.1 Confined aquifers, Papadopulos-Cooper’s method

For a constant-discharge test in a well that fully penetrates a confined aquifer, Papado-

pulos and Cooper (1967) devised a curve-fitting method that takes the storage capacity
of the well into account. The method is based on the following drawdown equation

_Q
Sv = 47KD F(u,,®) (15.1)
where
r2.S
2.S
= rﬁé (15.3)

r., = effective radius of the screened (or otherwise open) part of the well; r.,
— rwefskin

I, radius of the unscreened part of the well where the water level is changing

Values of the function F(u,,a) are given in Annex 15.1.

The assumptions and conditions underlying the Papadopulos-Cooper method are:

— The assumptions listed at the beginning of Chapter 3, with the exception of the
eighth assumption, which is replaced by:
» The well diameter cannot be considered infinitesimal; hence, storage in the well

cannot be neglected.

The following conditions are added:

— The flow to the well is in an unsteady state;

— The non-linear well losses are negligible.

Procedure 15.1

— Onlog-log paper and using Annex 15.1, plot the family of type curves F(u,,0) versus
1/u,, for different values of o (Figure 15.1);

— On another sheet of log-log paper of the same scale, plot the data curve s,, versus
%

— Match the data curve with one of the type curves;

— Choose an arbitrary point A on the superimposed sheets and note for that point
the values of F(u,,), 1/u,, s,, and t; note also the value of o of the matching type
curve;

— Substitute the values of F(u,,x) and s,, together with the known value of Q, into
Equation 15.1 and calculate KD.
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Figure 15.1 Family of Papadopulos-Cooper’s type curves: F(u,,o) versus 1/uy, for different values of o

Remarks

— The early-time, almost straight portion of the type curves corresponds to the period
when most of the water is derived from storage within the well. Points on the data
curve that coincide with these parts of the type curves do not adequately reflect
the aquifer characteristics;

— If'r, is known (i.e. if the skin factor or the linear well loss coefficient B, is known),
in theory a value of S can be calculated by introducing the values of r,,, 1/u,, t,
and KD into Equation 15.2 or by introducing the values of r,, r.,, and o into Equa-
tion 15.3. The values of S calculated in these two ways should show a close agree-
ment. However, since the form of the type curves differs only very slightly when
o differs by an order of magnitude, the value of S determined by this method has
questionable reliability.

15.1.2 Confined aquifers, Rushton-Singh’s ratio method

Because of the similarities of the Papadopulos-Cooper type curves (Section 15.1.1),
it may be difficult to match the data curve with the appropriate type curve. To over-
come this difficulty, Rushton and Singh (1983) have proposed a more sensitive curve-
fitting method in which the changes in the well drawdown with time are examined.
Their well-drawdown ratio is

St
So.4t

where
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S, well drawdown at time t
Soac = well drawdown at time 0.4t
t time since the start of pumping

The values of this ratio are between 2.5 and 1.0. The upper value represents the situa-
tion at the beginning of the (constant discharge) test when all the pumped water is
derived from well-bore storage. The lower value is approached at the end of the test
when the changes in well drawdown with time have become very small.

The type curves used in the Rushton-Singh ratio method are based on values derived
from a numerical model (see Annex 15.2).

Rushton-Singh’s ratio method can be used if the same assumptions as those underlying
the Papadopulos-Cooper method (Section 15.1.1) are satisfied.

Procedure 15.2
— On semi-log paper and using Annex 15.2, plot the family of type curves s,/s, 4, versus
4K Dt/r2, for different values of S (Figure 15.2);

St
So.4t
25 —

—— i I
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2.3
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Figure 15.2 Family of Rushton-Singh’s type curves for a constant discharge: s/sg 4; versus 4KDt/r§W for
different values of S
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— Calculate the ratio s/s, 4 from the observed drawdowns for different values of t;

— On another sheet of semi-log paper of the same scale, plot the data curve (s,/s,.,)
Versus t;

— Superimpose the data curve on the family of type curves and, with the horizontal
coordinates s,/sy, = 2.5 and 1.0 of both plots coinciding, adjust until a position
is found where most of the plotted points of the data curve fall on one of the type
curves;

— For 4KDt/r], = 1.0, read the corresponding value of t from the time axis of the
data curve;

— Substitute the value of t together with the known or estimated value of r,,, into
4KDt/r2, = 1.0 and calculate KD;

— Read the value of S belonging to the best-matching type curve.

15.1.3  Confined and leaky aquifers, Jacob’s straight-line method

Jacob’s straight-line method (Section 3.2.2) can also be applied to single-well constant-
discharge tests to estimate the aquifer transmissivity. However, not all the assumptions
underlying the Jacob method are met if data from single-well tests are used. Therefore,
the following additional conditions should also be satisfied:

— For single-well tests in confined aquifers

t > 2512/KD

If this time condition is met, the effect of well-bore storage can be neglected;
— For single-well tests in leaky aquifers

252 _oS/_ LS
KD 20 (‘ 20KD)

Aslongast < ¢S/20, the influence of leakage is negligible.

Procedure 15.3

— On semi-log paper, plot the observed values of s,, versus the corresponding time
t (t on logarithmic scale) and draw a straight line through the plotted points;

— Determine the slope of the straight line, i.e. the drawdown difference As,, per log
cycle of time;

— Substitute the values of Q and As,, into KD = 2.30Q/47As,, and calculate KD.

Remarks

— The drawdown in the well reacts strongly to even minor variations in the discharge
rate. Therefore, a constant discharge is an essential condition for the use of the
Jacob method;

— There is no need to correct the observed drawdowns for well losses before applying
the Jacob method; the aquifer transmissivity is determined from drawdown differ-
ences As,, which are not influenced by well losses as long as the discharge is constant;

— In theory, Jacob’s method can also be applied if the well is partially penetrating,
provided that late-time (t > D?S/2KD) data are used. According to Hantush (1964),
the additional drawdown due to partial penetration will be constant for t > D2S/
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2K D and hence will not influence the value of As,, as used in Jacob’s method;

— Instead of using the time condition t > 25r/KD to determine when the effect of
well-bore storage can be neglected, we can use the ‘one and one-half log cycle rule
of thumb’ (Ramey 1976). On a diagnostic log-log plot, the early-time data may
plot as a unit-slope straight line (As,/At = 1), indicating that the drawdown data
are dominated by well-bore storage. According to Ramey, the end of this unit-slope
straight line is about 1.5 log cycles prior to the start of the semi-log straight line
as used in the Jacob method.

Example 15.1

To illustrate the Jacob method, we shall use data from a single-well constant-discharge
test conducted in a leaky aquifer in Hoogezand, The Netherlands (after Mulder 1983).
Mulder’s observations were made with electronic equipment that allowed very precise
measurements of s, and Q to be made every five seconds. The recorded drawdown
data are given in Table 15.1.

Table 15.1 Single-well constant-discharge test ‘Hoogezand’, The Netherlands (from Mulder 1983)

t Sw Q t Sw Q
(s) (m) m?/hr

1 0.108 25.893 178 1.947 29.229

5 1.064 19.991 220 1.950 29.161
10 1.484 30.431 251 1.955 29.286
15 1.721 29.551 286 1.955 28.942
20 1.791 29.248 328 1.960 29.142
25 1.820 28.891 388 1.970 28.963
30 1.843 29.003 508 1.970 28.581
45 1.895 28.547 568 1.972 29.012
60 1.909 28.446 628 1.976 28.893
75 1.916 28.186 638 1.973 28.787
90 1.919 28.135 748 1.976 28.977
148 1.939 27.765

Figure 15.3 shows a semi-log plot of the drawdown s,, against the corresponding time,
with a straight line fitted through the plotted points. The slope of this line, As,, is
0.07 m per log cycle of time. The transmissivity is calculated from

2.30Q  2.30 x 28.7 x 24

KD = 2As, =~ dn x 0.07

= 1800 m?/d

Jacob’s straight-line method is applicable to data from single-well tests in leaky
aquifers, provided that

251 <t< cs

KD 20
Substituting the value of the radius of the well (r, = 0.185 m) and the calculated
transmissivity into 25r2/KD yields

25 % 0.1852
1800

= 0.00048 d or t >4ls
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Figure 15.3 Analysis of data from the single-well constant discharge test ‘Hoogezand’ with the Jacob
method

According to Mulder (1983), the values of ¢ and S can be estimated at ¢ = 1000 days
and S = 4 x 10 The drawdown in the well is not influenced by leakage as long
as
cS 1000 x 4 x 10
‘£<E———20 d or t<1728s
Hence, for t > 41 s, Jacob’s method can be applied to the drawdown data from the
test ‘Hoogezand’.
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15.1.4 Confined and leaky aquifers, Hurr-Worthington’s method

The unsteady-state flow to a small-diameter well pumping a confined aquifer can be
described by a modified Theis equation, provided that the non-linear well losses are
negligible. The equation is written as

. Q
Sv = 47KD W(u,), (15.4)
where
2, S
U = ZKDt (15.5)

Rearranging Equation 15.4 gives

4nKDs,
Q

Hurr (1966) demonstrated that multiplying both sides of Equation 15.6 by u,, elimi-
nates KD from the right-hand side of the equation
41K Ds,, r2,S w2 S s,
u,W(,) = Q X KDL~ 1 X Q (15.7)
A table of corresponding values of u,, and u,W(u,) is given in Annex 15.3 and a graph
in Figure 15.4.

W(u,) = (15.6)

uyWiu,)
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Figure 15.4 Graph of corresponding values of u,, and u,, W(u,,)
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Hurr (1966) outlined a procedure for estimating the transmissivity of a confined
aquifer from a single drawdown observation in the pumped well. In 1981, Worthington
incorporated Hurr’s procedure in a method for estimating the transmissivity of (thin)
leaky aquifers from single-well drawdown data.

In leaky aquifers, the drawdown data can be affected by well losses, by well-bore
storage phenomena during early pumping times, and by leakage during late pumping
times.

According to Worthington (1981), after the drawdown data have been corrected
for non-linear well losses, one can calculate ‘pseudo-transmissivities’ by applying
Hurr’s procedure to a sequence of the corrected data. Both well-bore storage effects
and leakage effects reduce the drawdown in the well and will therefore lead to calcu-
lated pseudo-transmissivities that are greater than the aquifer transmissivity. A semi-
log plot of pseudo-transmissivities versus time shows a minimum (Figure 15.5). A
flat minimum indicates the time during which the well-bore storage effects have
become negligible and leakage effects have not yet manifested themselves: the
minimum value of the pseudo-transmissivity gives the value of the aquifer transmissi-
vity. If well-bore storage and leakage effects overlap, the lowest pseudo-transmissivity
is the best estimate of a leaky aquifer’s transmissivity.

The unsteady-state drawdown data from confined aquifers can also be used to con-
struct a semi-log plot of pseudo-transmissivities versus time to account for the early-
time well-bore storage effects.

well-bore leakage well-bore leakage
storage effects effects storage effects effects

f ' \ \

c
g i | H Theis curve_
3 Theis curve N N R
= I R H
e o
S kS
b7 | } ||
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/ ||
[
[a] ’ [a)
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g g ’ l
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Figure 15.5 Drawdown data and calculated ‘pseudo-transmissivities’
A: Moderately affected by well storage and leakage
B: Severely affected by well storage and leakage
(after Worthington 1981)
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Hurr-Worthington’s method is based on the following assumptions and conditions:

— The assumptions listed at the beginning of Chapter 3, with the exception of the
first and eighth assumptions, which are replaced by:
* The aquifer is confined or leaky;
* The storage in the well cannot be neglected.

The following conditions are added:

— The flow to the well is in an unsteady-state;

— The non-linear well losses are negligible;

— The storativity is known or can be estimated with reasonable accuracy.

Procedure 15.4
— Calculate pseudo-transmissivity values by applying the following procedure pro-
posed by Hurr to a sequence of observed drawdown data:

* For a single drawdown observation, calculate u,W(u,,) from Equation 15.7 for
known or estimated values of S and r,,, and the corresponding values of t, s,,
and Q;

* Knowing u,W(u,), determine the corresponding value of u,, from Annex 15.3 or
Figure 15.4;

* Substitute the values of u,, 1., t, and S into Equation 15.5 and calculate the
pseudo-transmissivity;

— On semi-log paper, plot the pseudo-transmissivity values versus the corresponding

t (t on the logarithmic scale). Determine the minimum value of the pseudo-transmis-

sivity from the plot. This is the best estimate of the aquifer’s transmissivity.

Remarks

— The Hurr procedure permits the calculation of the (pseudo) transmissivity from
a single drawdown observation in the pumped well, provided that the storativity
can be estimated with reasonable accuracy. The accuracy required declines with
declining values of u,,. For u,/S < 0.001, the influence of S on the calculated values
of KD becomes negligible;

— If the non-linear well losses are not negligible, the observed unsteady-state draw-
downs should be corrected before the Hurr-Worthington method is applied.

Example 15.2

To illustrate the Hurr-Worthington method, we shall use the drawdown data from
the first step of the step-drawdown test ‘Well 1’ (see Example 14.1). During the first
step, the well was pumped at a discharge rate of 1306 m?/d. Because the non-linear
well losses were not negligible (CQ? = 1.4 x 107 x 1306 = 0.239 m), the drawdown
data have to be corrected according to the calculations made in Example 14.2.

To calculate (pseudo-)transmissivities, we apply Hurr’s procedure to the data from
each corrected drawdown observation. First, we calculate the values of u, W(u,,) from
Equation 15.7 for Q = 1306 m’/d and the assumed values of S = 10 and r,,, =
0.25 m. Then, using the graph of corresponding values of u, and u,W(u,) (Figure
15.4) and the table in Annex 15.3, we find the corresponding values of u,,. From Equa-
tion 15.5, we calculate the pseudo-transmissivities (Table 15.2).
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Table 15.2 Pseudo-transmissivity values calculated from data obtained during the first step of step-draw-
down test ‘Well 1’

Time Sy (sy)corr™®) u, W(uy) Uy, (pseudo) KD
=5,-0.239
(min) (m) (m) (m?/d)
5 1.303 1.064 4.6%107° 3.2 x1077 1406
6 2.289 2.050 7.4%107° 54 %1077 694
7 3.117 2.878 8.9x107° 6.5 x1077 495
8 3.345 3.106 8.4x107° 6.1 x1077 461
9 3.486 3.247 7.8x107° 5.6 x 1077 446
10 3.521 3.282 7.1x 107 51 x1077 441
12 3.592 3.353 6.0x107° 42 %107 446
14 3.627 3.388 52x%107° 3.6 x1077 446
16 3.733 3.494 47%x10° 3.3 x107 426
18 3.768 3.529 42%10°° 29 x1077 431
20 3.836 3.597 3.9%107° 2.7 x1077 417
25 3.873 3.634 3.1x107° 2.1 x107 429
30 4.014 3.775 2.7x107¢ 1.8 x1077 417
35 3.803 3.564 22x10°° 1.45% 1077 443
40 4.043 3.804 2.1x10°° 1.4 x1077 402
45 4.261 4.022 1.9%10°° 1.25% 1077 400
50 4.261 4.022 1.7x10°° 1.1 x1077 409
55 4.190 3.951 1.6x107° 1.05x 1077 390
60 4.120 3.881 1.4%10°° 9 x107 417
70 4.120 3.881 12x10°° 7.6 x1078 423
80 4.226 3.987 1.1x10°° 7.0 x10°8 402
90 4.226 3.987 9.6x 1077 6.0 x1078 417
100 4.226 3.987 8.6x1077 54 x10°8 417
120 4.402 4.163 7.5%1077 46 %107 408
150 4.402 4.163 6.0x1077 3.6 x1078 417
180 4.683 4.444 53%x 1077 32 x10°8 391

*Wellloss = CQ? = 1.4 x 1077 x (1306)* = 0.239 m

Subsequently, we plot the calculated pseudo-transmissivities versus time on semi-log
paper (Figure 15.6), from which we can see that during the first eight minutes of pump-
ing, the drawdown in the well was clearly affected by well-bore storage effects. Our
estimate of the aquifer transmissivity is 410 m?/d.

15.2  Variable-discharge tests

15.2.1 Confined aquifers, Birsoy-Summers’s method

Birsoy-Summers’s method (Section 12.1.1) can also be used for analyzing single-well
tests with variable discharges. The parameters s and r should be replaced by s, and

I, in all the equations.
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Figure 15.6 Analysis of data from the first step of the step-drawdown test ‘Well 1" with the Hurr-Worth-
ington method: determination of the aquifer’s transmissivity

15.2.2 Confined aquifers, Jacob-Lohman’s free-flowing-well method

Jacob and Lohman (1952) derived the following equation for the discharge of a free-
flowing well

Q = 2nKDs,G(u,) (15.8)
where
Sw = constant drawdown in the well (= difference between static head
measured during shut-in of the well and the outflow opening of the
well)
G(u,) = Jacob-Lohman’s free-flowing-well discharge function for confined
aquifers
_12S
Y T 4KDt
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Lew = effective radius of the well

According to Jacob and Lohman, the function G(u,,) can be approximated by 2/W(u,,)
for all but extremely small values of t. If, in addition, u,, < 0.01, Equation 15.8 can
be expressed as

Q= 4nKDs, opSy 230 | 225KDt
= 2.3000g(2.25KDY2,) ' Q T 4nKD ¢ T &,

(15.9)

A semi-log plot of s,,/Q versus t (t on logarithmic scale) will thus yield a straight line.
A method analogous to the Jacob straight-line method (Section 3.2.2) can therefore
be used to analyze the data from a free-flowing well discharging from a confined
aquifer.

The Jacob-Lohman method can be used if the following assumptions and conditions

are satisfied:

— The assumptions listed at the beginning of Chapter 3, with the exception of the
fifth assumption, which is replaced by:

* At the beginning of the test (t = 0), the water level in the free-flowing well is
lowered instantaneously. At t > 0, the drawdown in the well is constant, and
its discharge is variable.

The following conditions are added:
— The flow to the well is in an unsteady state;
- u, < 0.01.

Procedure 15.5

— On semi-log paper, plot the values of's,,/Q versus t (t on logarithmic scale);

— Fit a straight line through the plotted points;

— Extend the straight line until it intercepts the time-axis where s,,/Q = 0 at the point
to;

— Introduce the value of the slope of the straight line A(s,,/Q) (i.e. the difference of
s/Q per log cycle of time) into Equation 15.10 and solve for KD

2.30

— Calculate the storativity S from
S = h——z'ziﬁmt" (15.11)
Remark

— If the value of r,, is not known, S cannot be determined by this method.

15.2.3 Leaky aquifers, Hantush’s free-flowing-well method

The variable discharge of a free-flowing well tapping a leaky aquifer is given by Han-
tush (1959a) as
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Q = 2nKDs,G(u,,r.,/L) (15.12)
where
Sy constant drawdown in well
G(u,,r,/L) = Hantush’s free-flowing-well discharge function for leaky
aquifers

12 S
T 4KDt

Il

Uy

(15.13)

Annex 15.4 presents values of the function G(u,,r.,/L) for different values of 1/u,,
and r,,/L, as given by Hantush (1959a, 1964; see also Reed 1980). A family of type
curves can be plotted from that annex.

The Hantush method for determining a leaky aquifer’s parameters KD, S, and ¢ can

be applied if the following assumptions and conditions are satisfied:

— The assumptions listed at the beginning of Chapter 4, with the exception of the
fifth assumption, which is replaced by:

* At the beginning of the test (t = 0), the water level in the free-flowing well is
lowered instantaneously. At t > 0, the drawdown in the well is constant, and
its discharge is variable;

The following conditions are added:
— The flow to the well is in an unsteady state;
— The aquitard is incompressible, i.e. changes in aquitard storage are negligible.

Procedure 15.6

— On log-log paper and using Annex 15.4, draw a family of type curves by plotting
G(u,,r,,/L) versus 1/u,, for a range of values of r,,,/L;

— On another sheet of log-log paper of the same scale, prepare the data curve by
plotting the values of Q against the corresponding time t;

— Match the data plot with one of the type curves. Note the value of r,,/L for that
type curve;

— Select an arbitrary point A on the overlapping portion of the two sheets and note
the values of G(u,,r.,/L), 1/u,, Q, and t for that point;

— Substitute the values of Q and G(u,,r.,/L) and the value of s, into Equation 15.12
and calculate KD;

— Substitute the values of KD, t, 1/u,, and r,,, into Equation 15.13 and calculate S;

— Substitute the value of r,, /L corresponding to the type curve and the values of r,,,
and KD into r,,,/L = r,,/+/KDc, and calculate c.

Remark

~ Ifthe effective well radius r,,, is not known, the values of S and ¢ cannot be obtained.
15.3  Recovery tests

15.3.1 Theis’s recovery method

The Theis recovery method (Section 13.1.1) is also applicable to data from single-well
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recovery tests conducted in confined, leaky or unconfined aquifers.
The method can be used if the following assumptions and conditions are met:
— The assumptions listed at the beginning of Chapter 3, adjusted for recovery tests,
with the exception of the eighth assumption, which is replaced by:
*t, > 2512/KD;
*t" > 25r}/KD.
The following conditions are added:
— The aquifer is confined, leaky or unconfined.
For leaky aquifers, the sum of the pumping and recovery times should be t, +
t" < L?S/20KDor t, + t' < ¢S/20 (Section 13.1.2).
For unconfined aquifers only late-time recovery data can be used (Section 13.1.3);
— The flow to the well is in an unsteady state;
- u<0.01,ie.t, > 25r2S/KD;
- u < 0.01,i.e.t” > 25r2S/KD (see also Section 3.2.2).

Procedure 15.7

— For each observed value of s',, calculate the corresponding value of t/t’;

— Plot s, versus t/t" on semi-log paper (t/t” on the logarithmic scale);

— Fita straight line through the plotted points;

— Determine the slope of the straight line, i.e. the residual drawdown difference As’,
per log cycle of t/t’;

— Substitute the known values of Q and As’, into Equation 15.14 As/, = 2.30Q/4nKD,
and calculate KD.

Remarks

— Storage in the well may influence s, at the beginning of a recovery test. If the condi-
tions t, > 25 rJ/KD and t' > 25 r?/KD are met, a semi-log plot of s/, versus t/t’
yields a straight-line and Theis’s recovery method is applicable. Because the
observed recovery data should plot as a straight-line for at least one log cycle of
t/t’, Uffink (1982) recommends that both t, and t’ should be at least 500 r2/KD;

— If the pumped well is partially penetrating, the Theis recovery method can be used,
provided that both t, and t” are greater than D?S/2KD (Section 13.1.4);

— Ifthe recovery test follows a constant-drawdown test instead of a constant-discharge
test, the discharge at the moment before the pump is shut down should be used
in Equation 15.14 (Rushton and Rathod 1980).

15.3.2 Birsoy-Summers’s recovery method
Residual drawdown data from the recovery phase of single-well variable-discharge

tests conducted in confined aquifers can be analyzed by the Birsoy-Summers recovery
method (Section 13.3.1), provided that s’ is replaced by s’, in all equations.

15.3.3 Eden-Hazel’s recovery method

The Eden-Hazel method for step-drawdown tests (Section 14.1.2) is also applicable
to the data from the recovery phase of such a test.
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The Eden-Hazel recovery method can be used if the following assumptions and condi-

tions are met:

— The assumptions listed at the beginning of Chapter 3, as adjusted for recovery tests,
with the exception of the fifth assumption, which is replaced by:
* Prior to the recovery test, the aquifer is pumped step-wise.

The following conditions are added:

— The flow to the well is in unsteady state;

— u < 0.01 (see Section 3.2.2);

- u < 0.01.

Procedure 15.8

— Calculate for the recovery phase (i.e. t > t,) the values of H, from Equation 14.15,
using the measured discharges and times;

— On arithmetic paper, plot the observed residual drawdown s, versus the corres-
ponding calculated values of H,;

— Draw a straight line through the plotted points;

— Determine the slope of the straight line, As’y,/AH,;

— Calculate KD from
Asyw  2.30
AH, = 4nKD

Example 15.3

We shall illustrate the Eden-Hazel recovery method with the data of the step-draw-
down test “‘Well 1’ (Table 14.1 and Table 15.3).
For the recovery phase of the step-drawdown test, Equation 14.5 becomes

Sw(n)
In metres
5

4 /
&— AH, =2 m3/min—> //
3

88y(n)=15m /

0 1 2 3 4 5 6 7 8 9 10

3
Hp, in = Log (min)
min

Figure 15.7 Analysis of data from the recovery phase of the step-drawdown test “Well 1° with the Eden-
Hazel recovery method
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1440
" <838

H, = (1360

1440

387

>log(t) + (1 . 4O>log(t 180) + (

)log(t 540) + <1 =

>l 0g(t-180) (m*/min) log(min)

730
1440

)log(t 720) + <

Table 15.3 shows the result of the calculations for t > t,,.
Figure 15.7 gives the arithmetic plot of the s, versus H,.
The slope of the straight line is

As’w(n) 1.5 1 " )

AHn 2 X m 5 2 X 10 d/m
The transmissivity KD = 230
y dnx52x10°

Table 15.3 Values of H,, calculated for the recovery phase of step-drawdown test “Well 1’

= 352m?/d

)log(t 360)
925

> 4O>log(t 900)

t H, Sw(n)
(min) (m*/min) log(min) (m)

1081 9.515 0.599
1082 8.469 1.233
1083 7.859 4.050
1084 7.427 4.683
1085 7.092 4.578
1086 6.820 4.402
1087 6.590 4.261
1088 6.391 4226
1089 6.216 4.050
1090 6.060 4.014
1092 5.791 3.909
1094 5.564 3.768
1096 5.369 3.662
1098 5.197 3.627
1100 5.045 3.416
1105 4723 3.275
1110 4.463 3.064
1115 4.246 -

1120 4.059 2711
1125 3.896 -

1130 3.752 -

1135 3.623 -

1140 3.506 2.359
1150 3.301 2218
1160 3.127 2.078
1170 2.977 1.937
1180 2.844 1.866
1200 2.620 1.726
1230 2.356 1.479
1260 2.150 1.303
1320 1.843 1.021
1560 1.209 0.458
1800 0.914 0.528
2650 0.499 0.035
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16  Slug tests

In a slug test, a small volume (or slug) of water is suddenly removed from a well,
after which the rate of rise of the water level in the well is measured. Alternatively,
a small slug of water is poured into the well and the rise and subsequent fall of the
water level are measured. From these measurements, the aquifer’s transmissivity or
hydraulic conductivity can be determined.

If the water level is shallow, the slug of water can be removed with a bailer or a
bucket. If not, a closed cylinder or other solid body is submerged in the well and
then, after the water level has stabilized, the cylinder is pulled out. Enough water
must be removed or displaced to raise or lower the water level by about 10 to 50
cm.

If the aquifer’s transmissivity is higher than, say, 250 m?/d, the water level will recov-
er too quickly for accurate manual measurements and an automatic recording device
will be needed.

No pumping is required in a slug test, no piezometers are needed, and the test can
be completed within a few minutes, or at the most a few hours. No wonder that slug
tests are so popular! They are invaluable in studies to evaluate regional groundwater
resources; conducted on newly-constructed wells, they permit a preliminary estimate
of aquifer conditions, and are also useful in areas where other wells are operating
and where well interference can be expected.

But slug tests cannot be regarded as a substitute for conventional pumping tests.
From a slug test, for instance, it is only possible to determine the characteristics of
a small volume of aquifer material surrounding the well, and this volume may have
been disturbed during well drilling and construction. Nevertheless, some authors
(Ramey et al. 1975; Moench and Hsieh 1985) state that fairly accurate transmissivity
values can be obtained from slug tests.

The simple slug-test technique has been further developed in recent years and has
consequently become more complex and requires more equipment. In this chapter,
we shall present one of these more advanced techniques: the oscillation test.

An oscillation test requires an air compressor to lower the water level in the well.
After some time, when the head in the aquifer has resumed its initial value, the pressure
is suddenly released. The water level in the well then resumes its initial level by a
damped oscillation that can be measured, preferably with an automatic recorder.

For conventional slug tests performed in confined aquifers with fully penetrating
wells, curve-fitting methods have been developed (Cooper et al. 1967; Papadopulos
et al. 1973; Ramey et al. 1975). Cooper’s method is presented in Section 16.1.1. For
wells partially or fully penetrating unconfined aquifers, Bouwer and Rice (1976) devel-
oped the method outlined in Section 16.2.1.

All of the above methods are based on theories that neglect the forces of inertia
in both the aquifer and the well: the water level in the well is assumed to return to
the equilibrium level exponentially. When slug tests are performed in highly permeable
aquifers or in deep wells, however, inertia effects come into play, and the water level
in the well may oscillate after an instantaneous change in water level. Various methods
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of analyzing this response by the water level have been developed (Van der Kamp
1976; Krauss 1974; Uffink 1979, 1980; Ross 1985), but they all have the disadvantage
that the aquifer transmissivity cannot be determined without a prior knowledge of
the storativity. In addition, Uffink states that the skin effects also have to be taken
into account and that these, too, should be known beforehand. Uffink’s method is
described in Section 16.1.2.

16.1  Confined aquifers, unsteady-state flow
16.1.1 Cooper’s method

A volume of water (V) instantaneously withdrawn from or injected into a well of finite
diameter (2r,) will cause an instantaneous change of the hydraulic head in the well

\%

hy =
nr?

o (16.1)
After this change, the head will gradually return to its initial head. The following
solution for the rise or fall in the well’s head with time was derived by Cooper et
al. (1967) for a fully penetrating large-diameter well tapping a confined aquifer (Figure
16.1)

h, = h, F(oB), or % — F(oup) (16.2)

X
water level in well
at time tg =0

water level
attime t >t
7

R0 1
J{ it original
B piezometric
surface

aquiclude o,

aquifer':':':':

aquiclude:
Figure 16.1 A confined aquifer, fully penetrated by a well of finite diameter into which a slug of water
has been injected
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where

2
& = rerzs (16.3)
_ KDt (16.4)

p
h, = instantaneous change of head in the well at time t, = 0
h, = headin the well at time t > t,

r. = radius of the unscreened part of the well where the head is changing

r., = effective radius of the screened (or otherwise open) part of the well
exp(-pu’/o) 4

F(o,p) = j T uffue) U (16.5)

where f(u,0) = [uJy(u) — 20d,(W)]* + [UYy(u) — 20Y (W) and J(u), J,(u), Yo(u), and
Y, (u) are the zero and first-order Bessel functions of the first and second kind.

Annex 16.1 lists values of the function F(a,p) for different values of o and B as given
by Cooper et al. (1967) and Papadopulos et al. (1973). Figure 16.2 presents these values
as a family of type curves.

The Cooper curve-fitting method can be used if the following assumptions and condi-

tions are satisfied:

— The aquifer is confined and has an apparently infinite areal extent;

— The aquifer is homogeneous, isotropic, and of uniform thickness over the area
influenced by the slug test;

— Prior to the test, the piezometric surface is (nearly) horizontal over the area that
will be influenced by the test;

— The head in the well is changed instantaneously at time t, = 0;

— The flow to (or from) the well is in an unsteady state;

— The rate at which the water flows from the well into the aquifer (or vice versa)
is equal to the rate at which the volume of water stored in the well changes as the
head in the well falls (or rises);

— The inertia of the water column in the well and the non-linear well losses are neglig-
ible;

— The well penetrates the entire aquifer;

— The well diameter is finite; hence storage in the well cannot be neglected.

Procedure 16.1

— Using Tables 1 and 2 in Annex 16.1, draw a family of type curves on semi-log paper
by plotting F(o,B) versus B for a range of values of o (B on the logarithmic scale)
(Figure 16.2);

— Knowing the volume of water injected into or removed from the well, calculate
h, from Equation 16.1;

— Calculate the ratio h,/h, for different values of t;

— On another sheet of semi-log paper of the same scale, prepare the data curve by
plotting the values of the ratio h,/h, against the corresponding time t (t on the logar-
ithmic scale);
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Figure 16.2 Family of Cooper’s type curves F(o,B) versus B for different values of o (after Papadopulos
etal. 1973)

— Superimpose the data plot on the family of type curves and, keeping the B and
t axes of the two plots coinciding and moving the plots horizontally, find a position
where most of the plotted points of the data curve fall on one of the type curves.
Note the value of o for that type curve;

— For B = 1.0, read the corresponding value of t from the time axis of the data curve;

— Substitute this value of t together with the known value of r, into p = KDt/r? =
1 and calculate KD;

— Knowing r,and a0 = r2,S/r2, and provided that r,, is also known or can be estimated,
calculate S.

Remarks

— Because the type curves in Figure 16.2 are very similar in shape, it may be difficult
to obtain a unique match of the data plot and one of the type curves. As the horizon-
tal shift from one curve to the next is small and becomes smaller as o becomes
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smaller, the error in S will be as large as the error in o, but the error in KD will
still be small. Papadopulos et al. (1973) showed that, if &« < 107, an error of two
orders of magnitude in o will result in an error of less than 30 per cent in the calcu-
lated transmissivity. In addition, the effective radius of the well r,,, (i.e. the skin
factor as r,,, = r,ek") will often not be known;

The well radius r, influences the duration of a slug test: a smaller r, will shorten
the test; this is an advantage in aquifers of low permeability;

To analyze slug tests, Ramey et al. (1975) introduced type curves based on a function
F, which has the form of an inversion integral and is expressed in terms of three
independent dimensionless parameters: KDt/r2S, 12/2r2S, and the skin factor. To
reduce these three parameters to two, Ramey et al. showed that the concept of effec-
tive well radius (r,,, = r,e7%") also works for slug tests. If r.,, is used in the function
F, the two remaining independent parameters relate to Cooper’s dimensionless para-
meters o and P. The set of type curves given by Ramey et al. (see also Earlougher
1977) are identical in appearance to Cooper’s, and either set will produce approxi-
mately the same results for the aquifer transmissivity.

16.1.2 Uffink’s method for oscillation tests

In an oscillation test, the well is sealed off with an inflatable packer, through which
an air hose is inserted. Air is forced through the hose under high pressure, thereby
forcing the water in the well through the well screen into the aquifer and lowering
the head in the well. After a certain time, when the head has been lowered to, say,
50 cm and is held there by the over-pressure, the pressure is suddenly released. The
response of the head in the well to this sudden change can be described as an exponen-
tially damped harmonic oscillation (Figure 16.3), which can be measured, preferably
with an automatic recorder.

ho

This oscillation response is given by Van der Kamp (1976) and Uffink (1984) as
h, = h, e™cos wt (16.6)

\J/ initial head n+1_$_ _r7\

>t

_<

oscillation tlme T

N

an

Figure 16.3 Damped harmonic oscillation

241



where

h, = instantaneous change in the head at time t, (= 0)
h, = head in the well at time t (t > t,)

v = damping constant of head oscillation (Time™)

® = angular frequency of head oscillation (Time™)

The damping constant, v, and the angular frequency of oscillation, ®, can be expressed
as

Y = o,B (16.7)
and

® = 0,/ 1-B? (16.8)
where

o, = ‘damping free’ frequency of head oscillation (Time™)

B = parameter defined by Equation 16.13 (dimensionless)

The values of vy and o, and consequently of ®, and B, can be derived directly from
the oscillation time t, and the ratio between two subsequent minima or maxima, In(h,/
h,,,) = 9, of the observed oscillation

V=1 (16.9)

w=2F (16.10)
Tn

B—_ 0% (16.11)

/0% + 4r?
2 2
o, = @ (16.12)

o Tn
The relation between the frequency and damping of the head’s oscillation and the
aquifer’s hydraulic characteristics can be approximated by the following equation
(Uffink 1984)

1 1.26KD 1 ®—-n 8KD
§ln{ I'g(,[)o X &} + l_BZ = I'(Z;(Do (1613)
where
T3 o
o = SFe‘s“‘ (1614)

skin = skin factor, and

® = tan <B> (16.15)

B

The nomogram in Figure 16.4 gives the relation between the parameters B and
(r’m,)/4KD for different values of a, as calculated by Uffink.
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Figure 16.4 Uffink’s nomogram giving the relation between B and (r§m0/4KD) for different values of o

Oscillation tests in confined aquifers can be analyzed by Uffink’s method if the follow-
ing assumptions and conditions are satisfied:
— The assumptions and conditions underlying Cooper’s method (Section 16.1.1), with
the exception of the seventh assumption, which is replaced by:
* The inertia of the water column in the well is not negligible; the head change in
the well at time t > t, can be described as an exponentially damped cyclic fluctua-
tion.

The following condition is added:
— The storativity S and the skin factor are already known or can be estimated with
fair accuracy.

Procedure 16.2

— On arithmetic paper, plot the observed head in the well, h,, against the corresponding
time t (t > t,) (see Figure 16.3);

— From the h, versus t plot, determine the head’s oscillation time t,;

— Read the values of two subsequent maxima (or minima) of the oscillation, h, and
h, ., and calculate 6 from 6 = In(h,/h,_,);

— Knowing §, calculate the parameter B from Equation 16.11;

— Knowing 6 and B, calculate », from Equation 16.12;

Knowing B, and provided that o is also known, find the corresponding value of

r’m,/4KD from Figure 16.4;

— Knowing r’w,/4KD, r,, and w,, calculate KD;

Repeat this procedure for different sets of t, and In(h,/h, ).

|
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16.2  Unconfined aquifers, steady-state flow
16.2.1 Bouwer-Rice’s method

To determine the hydraulic conductivity of an unconfined aquifer from a slug test,
Bouwer and Rice (1976) presented a method that is based on Thiem’s equation (Equa-
tion 3.1). For flow into a well after the sudden removal of a slug of water, this equation
is written as

_ h,
Q = 2TEKd m (1616)
The head’s subsequent rate of rise, dh/dt, can be expressed as
dh  Q
& (16.17)

Combining Equations 16.16 and 16.17, integrating the result, and solving for K, yields

2
_ 2R/ 1 h,

K d 1

(16.18)

where
r. = radius of the unscreened part of the well where the head is rising
r, = horizontal distance from well centre to undisturbed aquifer
R, = radial distance over which the difference in head, h,, is dissipated in the
flow system of the aquifer
d = length of the well screen or open section of the well
h, = head in the well at time t, = 0
h, = head in the well at time t > t,

The geometrical parameters r, r,,, and d are shown in Figure 16.5.

Bouwer and Rice determined the values of R, experimentally, using a resistance
network analog for different values of r,, d, b, and D (Figure 16.6). They derived
the following empirical equations, which relate R, to the geometry and boundary con-
ditions of the system:

— For partially penetrating wells

R, [ 11 A+ Bln[(D-b)r,]]1
Ins. = [m(b/rw) + dr, }

where A and B are dimensionless parameters, which are functions of d/r;
— For fully penetrating wells

R, [ 1.1 C 14
o = (i + e (16.20)

where C is a dimensionless parameter, which is a function of d/r,,.

(16.19)

Since K, 1, 1, R, and d in Equation 16.18 are constants, (I/t)In(h,/h,) is also a constant.
Hence, when values of h, are plotted against t on semi-log paper (h, on the logarithmic
scale), the plotted points will fall on a straight line. With Procedure 16.3, below, this
straight-line plot is used to evaluate (1/t)In(h,/h,).
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Figure 16.5 An unconfined aquifer, partially penetrated by a large-diameter well from which a slug of
water has been removed
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Figure 16.6 The Bouwer and Rice curves showing the relation between the parameters A, B, C, and d/r,,
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The Bouwer-Rice method can be applied to determine the hydraulic conductivity of

an unconfined aquifer if the following assumptions and conditions are satisfied:

— The aquifer is unconfined and has an apparently infinite areal extent;

— The aquifer is homogeneous, isotropic, and of uniform thickness over the area
influenced by the slug test;

— Prior to the test, the watertable is (nearly) horizontal over the area that will be
influenced by the test;

— The head in the well is lowered instantaneously at t, = 0; the drawdown in the
watertable around the well is negligible; there is no flow above the watertable;

— The inertia of the water column in the well and the linear and non-linear well losses
are negligible;

— The well either partially or fully penetrates the saturated thickness of the aquifer;

— The well diameter is finite; hence storage in the well cannot be neglected;

— The flow to the well is in a steady state.

Procedure 16.3

— On semi-log paper, plot the observed head h, against the corresponding time t (h,
on logarithmic scale);

— Fit a straight line through the plotted points;

— Using this straight-line plot, calculate (I/t)In(h,/h,) for an arbitrarily selected value
of t and its corresponding h;;

— Knowing d/r,,, determine A and B from Figure 16.6 if the well is partially penetrat-
ing, or determine C from Figure 16.6 if the well is fully penetrating;

— If the well is partially penetrating, substitute the values of A, B, D, b, d, and r,,
into Equation 16.19 and calculate In(R,/r,,).
If the well is fully penetrating, substitute the values of C, D, b, d, and r,, into Equation
16.20 and calculate In(R,/r,,);

— Knowing In(R./r,), (1/t)In(h,/h), r., and d, calculate K from Equation 16.18.

Remarks

— Bouwer and Rice showed that if D >> b, an increase in D has little effect on the
flow system and, hence, no effect on R,. The effective upper limit of In[(D-b)/r,]
in Equation 16.19 was found to be 6. Thus, if D is considered infinite, or D — b
is so large that In[(D-b)/r,] > 6, a value of 6 should still be used for this term in
Equation 16.19;

— If the head is rising in the screened part of the well instead of in its unscreened
part, allowance should be made for the fact that the hydraulic conductivity of the
zone around the well (gravel pack) may be much higher than that of the aquifer.
The value of r, in Equations 16.17 and 16.18 should then be taken as r, = [r? +
n(r3—r2)]>, wherer, = actual well radius and n = the porosity of the gravel envelope
or zone around the well;

— It should not be forgotten that a slug test only permits the estimation of K of a
small part of the aquifer: a cylinder of small radius, R,, and a height somewhat
larger than d;

— The values of In(R,/r,) calculated by Equations 16.19 and 16.20 are accurate to
within 10 to 25 per cent, depending on the ratio d/b;

— In a highly permeable aquifer, the head in the well will rise rapidly during a slug
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test. The rate of rise can be reduced by placing packers inside the well over the
upper part of the screen so that groundwater can only enter through the lower part.
Equations 16.19 and 16.20 can then be used to calculate In(R,/r,,);

— Because the watertable in the aquifer is kept constant and is taken as a plane source
of water in the analog evaluations of R,, the Bouwer and Rice method can also
be used for a leaky aquifer, provided that its lower boundary is an aquiclude and
its upper boundary an aquitard.
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17 Uniformly-fractured aquifers,
double-porosity concept

17.1 Introduction

Fractures in a rock formation strongly influence the fluid flow in that formation. Con-
ventional well-flow equations, developed primarily for homogeneous aquifers, there-
fore do not adequately describe the flow in fractured rocks. An exception occurs in
hard rocks of very low permeability if the fractures are numerous enough and are
evenly distributed throughout the rock; then the fluid flow will only occur through
the fractures and will be similar to that in an unconsolidated homogeneous aquifer.

A complicating factor in analyzing pumping tests in fractured rock is the fracture
pattern, which is seldom known precisely. The analysis is therefore a matter of identify-
ing an unknown system (Section 2.9). System identification relies on models, whose
characteristics are assumed to represent the characteristics of the actual system. We
must therefore search for a well-defined theoretical model to simulate the behaviour
of the actual system and to produce, as closely as possible, its observed response.

In recent years, many theoretical models have been developed, all of them assuming
simplified regular fracture systems that break the rock mass into blocks of equal di-
mensions (Figure 17.1). These models usually allow conventional type-curve matching
procedures to be used. But, because the mechanism of fluid flow in fractured rocks
is complex, the models are complex too, comprising, as they do, several parameters
or a combination of parameters. Consequently, few of the associated well functions
have been tabulated, so, for the other models, one first has to calculate a set of function
values. This makes such models less attractive for our purpose.

A B Cc

matrix

fracture

EEEEEEE
EREEERE

matrix

matrix

fracture
fracture

Figure 17.1 Fractured rock formations
A: A naturally fractured rock formation
B: Warren-Root’s idealized three-dimensional, orthogonal fracture system
C: Idealized horizontal fracture system
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Even more serious is the on-going debate about fracture flow, which indicates that
the theory of fluid flow in fractured media is less well-established than that in porous
media. In reviewing the literature on the subject, Streltsova-Adams (1978) states: ‘Pub-
lished work on well tests in fractured reservoirs clearly indicates the lack of a unified
approach, which has led to contradictory results in analyzing the drawdown behav-
iour’. And Gringarten (1982), in his review, states: ‘A careful inspection of the pub-
lished analytical solutions indicates that they are essentially identical. Apparent differ-
ences come only from the definition of the various parameters used in the derivation’.
Indeed, in the literature, there is an enormous overlap of equations. In this chapter,
therefore, we present some practical methods that do not require lengthy tables of
function values and which, when used in combination, allow a complete analysis of
the data to be made.

The methods we present are all based on the double-porosity theory developed ini-
tially by Barenblatt et al. (1960). This concept regards a fractured rock formation
as consisting of two media: the fractures and the matrix blocks, both of them having
their own characteristic properties. Two coexisting porosities and hydraulic conducti-
vities are thus recognized: those of primary porosity and low permeability in the matrix
blocks, and those of low storage capacity and high permeability in the fractures. This
concept makes it possible to explain the flow mechanism as a re-equalization of the
pressure differential in the fractures and blocks by the flow of fluid from the blocks
into the fractures. No variation in head within the matrix blocks is assumed. This
so-called interporosity flow is in pseudo-steady state. The flow through the fractures
to the well is radial and in an unsteady state.

The assumption of pseudo-steady-state interporosity flow does not have a firm theo-
retical justification. Transient block-to-fracture flow was therefore considered by
Boulton and Streltsova (1977), Najurieta (1980), and Moench (1984). From Moench’s
work, it is apparent that the assumption of pseudo-steady-state interporosity flow
is only justified if the faces of the matrix blocks are coated by some mineral deposit
(as they often are). Only then will there be little variation in head within the blocks.
The pseudo-steady-state solution is thus a special case of Moench’s solution of tran-
sient interporosity flow.

The methods in this chapter are all based on the following general assumptions and

conditions:

— The aquifer is confined and of infinite areal extent;

— The thickness of the aquifer is uniform over the area that will be influenced by
the test;

— The well fully penetrates a fracture;

— The well is pumped at a constant rate;

— Prior to pumping, the piezometric surface is horizontal over the area that will be
influenced by the test;

— The flow towards the well is in an unsteady state.

The first method in this chapter, in Section 17.2, is the Bourdet-Gringarten method
and its approximation, which is more universally applicable than other methods; it
uses drawdown data from observation wells. Next, in Section 17.3, we present the
Kazemi et al. method; it is an extension of the method originally developed by Warren
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and Root (1963) for a pumped well; the Kazemi et al. method uses data from observa-
tion wells. Finally, in Section 17.4, we present the original Warren and Root method
for a pumped well.

17.2  Bourdet-Gringarten’s curve-fitting method (observation
wells)

Bourdet and Gringarten (1980) state that, in a fractured aquifer of the double-porosity
type (Figure 17.1B), the drawdown response to pumping as observed in observation
wells can be expressed as

- Q
s = InT, F(u*,\,m) (17.1)

where
_ Tt
(S + B Spr?

u* (17.2)

K

— 2 ~m

A =oar K, (17.3)
- St

- Sf+BSm

= of the fractures

= of the matrix blocks

= / T Ty = effective transmissivity (m?/d)

storativity (dimensionless)

= hydraulic conductivity (m/d)

= interporosity flow coefficient (dimensionless)

= shape factor, parameter characteristic of the geometry of the fractures
and aquifer matrix of a fractured aquifer of the double-porosity type
(dimension: reciprocal area)

B = factor; for early-time analysis it equals zero and for late-time analysis

it equals 1/3 (orthogonal system) or 1 (strata type)
X,y = relative to the principal axes of permeability

e

(17.4)

R PRV E
Il

To avoid confusion, note that our definition of the parameter A differs from the defini-
tion of A commonly used in the petroleum literature; A = (r/r,,)*A;.

Note also that for a fracture system as shown in Figure 17.1B, o = 4n(n+2)/I2, where
nis the number of a normal set of fractures (1, 2, or 3) and lis a characteristic dimension
of a matrix block. For a system of horizontal slab blocks (n=1) as shown in Figure
17.1C, o = 12/h},, where h,, is the thickness of a matrix block. Typical values of A
and o fall within the ranges of 107 (r,/r)> to 107 (r,/r)? for A and 10! to 10 for
o (Serra et al. 1983).

For small values of pumping time, Equation 17.1 reduces to

s = %W(u) (17.5)
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where
_ (St + BSW
u= ATq (17.6)
Equation 17.5isidentical to the Theis equation. It describes only the drawdown behav-
iour in the fracture system (f3 equals zero). For large values of pumping time, Equation
17.1 also reduces to the Theis equation, which now describes the drawdown behaviour
in the combined fracture and block system (3 equals 1/3 or 1).

According to the pseudo-steady-state interporosity flow concept, the drawdown
becomes constant at intermediate pumping times when there is a transition from frac-
ture flow to flow from fractures and matrix blocks. The drawdown at which the transi-
tion occurs is equal to

s = %KO(\/X) (17.7)

where K (x) is the modified Bessel function of the second kind and of zero order.
Bourdet and Gringarten (1980) showed that, for A values less than 0.01, Equation
17.7 reduces to
1.26

_2.30Q
= 4nT, logT (17.8)

The drawdown at which the transition occurs is independent of early- and late-time
drawdown behaviours and is solely a function of A.

Bourdet and Gringarten (1980) presented type curves of F(u*,A,®) versus u* for
different values of A and o (Figure 17.2). These type curves are obtained as a superposi-
tion of Theis solutions labelled in o values, with a set of curves representing the behav-
iour during the transitional period and depending upon A.

As can be seen from Figure 17.2, the horizontal segment does not appear in the
type curves at high values of . For high ® values, the type curves only have an inflec-
tion point. Numerous combinations of @ and A values are possible, each pair yielding
different type curves. But, instead of presenting extensive tables of function values
required to prepare these many different type curves, we present a simplified method.
It is based on matching both the early- and late-time data with the Theis type curve,
which yields values of Tyand S, and Tyand S; + S, respectively. From the steady-state
drawdown at intermediate times, a value of A can be estimated from Equation 17.7
or 17.8.

The Bourdet-Gringarten method can be used if, in addition to the general assumptions
and conditions listed in Section 17.1, the following assumptions and conditions are
satisfied:

— The aquifer is of the double-porosity type and consists of homogeneous and isotro-
pic blocks or strata of primary porosity (the aquifer matrix), separated from each
other either by an orthogonal system of continuous uniform fractures or by equally-
spaced horizontal fractures;

— Any infinitesimal volume of the aquifer contains sufficient portions of both the
aquifer matrix and the fracture system;
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Figure 17.2 Type curves for the function F(u*,\,m) (after Bourdet and Gringarten 1980)

— The aquifer matrix has a lower permeability and a higher storativity than the frac-
ture system;

— The flow from the aquifer matrix into the fractures (i.e. the interporosity flow) is
in a pseudo-steady state;

— The flow to the well is entirely through the fractures, and is radial and in an unsteady
state;

— The matrix blocks and the fractures are compressible;

- A< 1.78.

Bourdet and Gringarten (1980) showed that the double-porosity behaviour of a frac-
tured aquifer only occurs in a restricted area around the pumped well. Outside that
area (i.e. for A values greater than 1.78), the drawdown behaviour is that of an equiva-
lent unconsolidated, homogeneous, isotropic confined aquifer, representing both the
fracture and the block flow.

Procedure 17.1

— Prepare a type curve of the Theis well function on log-log paper by plotting values
of W(u) versus 1/u, using Annex 3.1;

— On another sheet of log-log paper of the same scale, plot the drawdown s observed
in an observation well versus the corresponding time t;

— Superimpose the data plot on the type curve and adjust until a position is found
where most of the plotted points representing the early-time drawdowns fall on
the type curve;
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— Choose a match point A and note the values of the coordinates of this match point,
W(u), 1/u, s, and t;

— Substitute the values of W(u), s, and Q into Equation 17.5 and calculate Tg;

— Substitute the values of 1/u, T, t, and r into Equation 17.6 and calculate S; (B = o);

— Ifthe data plot exhibits a horizontal straight-line segment or only an inflection point,
note the value of the stabilized drawdown or that of the drawdown at the inflection
point. Substitute this value into Equation 17.7 or 17.8 and calculate A;

— Now superimpose the late-time drawdown data plot on the type curve and adjust
until a position is found where most of the plotted points fall on the type curve;

— Choose a matchpoint B and note the values of the coordinates of this matchpoint,
W(u), 1/u,s,and t;

— Substitute the values of W(u), s, and Q into Equation 17.5 and calculate Tj;

— Substitute the values of 1/u, Tj, t, and r into Equation 17.6 and calculate S; + S,

(B=1/30r1).

Remarks

— For relatively small values of ®, matching the late-time drawdowns with the Theis
type curve may not be possible and the analysis will only yield values of T; and
S

— For high values of A (i.e. for large values of r), the drawdown in an observation
well no longer reflects the aquifer’s double-porosity character and the analysis will
only yield values of Trand S; + S.;

— Gringarten (1982) pointed out that the Bourdet-Gringarten’s type curves are identi-
cal to the time-drawdown curves for an unconsolidated unconfined aquifer with
delayed yield as presented by Boulton (1963). (See also Chapter 5.) If one has no
detailed knowledge of the aquifer’s hydrogeology, this may lead to a misinterpre-
tation of the pumping test data.

17.3 Kazemi et al.’s straight-line method (observation wells)

Kazemi et al. (1969) showed that the drawdown equations developed by Warren and
Root (1963) for a pumped well can also be used for observation wells. Their extension
of the approximation of the Warren-Root solution is, in fact, also an approximation
of the general solution of Bourdet and Gringarten (1980). It can be expressed by

s = %F(u*,x,m) a7.1)
where « "
F(u* 0) = 2.3 log(2.25 u*) + EF(%) _Ei (— %) (17.9)

Equation 17.9 is valid for u* values greater than 100, in analogy with Jacob’s approxi-
mation of the Theis solution (Chapter 3).

A semi-log plot of the function F(u*A,) versus u* (for fixed values of A and )
will reveal two parallel straight lines connected by a transitional curve (Figure 17.3).
Consequently, the corresponding s versus t plot will theoretically show the same pat-
tern (Figure 17.4).
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Figure 17.3 Semi-log plot of the function F(u*A,m) versus u* for fixed values of A and ®
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Figure 17.4 Semi-log time-drawdown plot for an observation well in a fractured rock formation of the
double-porosity type
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For early pumping times, Equations 17.1 and 17.9 reduce to

230Q, 225Tqt
S = 4nT, log Sgr?

(17.10)

Equation 17.9 is identical to Jacob’s straight-line equation (Equation 3.7). The water
flowing to the well during early pumping times is derived solely from the fracture
system (f = 0).

For late pumping times, Equations 17.1 and 17.9 reduce to

2.30Q 225Tt
S = 4nT, 925 + p S

4T,
Equation 17.11 is also identical to Jacob’s equation. The drawdown response, how-
ever, is now equivalent to the response of an unconsolidated homogeneous isotropic
aquifer whose transmissivity equals the transmissivity of the fracture system, and
whose storativity equals the arithmetic sum of the storativity of the fracture system
and that of the aquifer matrix. Hence, the water flowing to the well at late pumping
times comes from both the fracture system and the aquifer matrix.

Kazemi et al.’s method is based on the occurrence of the two parallel straight lines
in the semi-log data plot. Whether these lines appear in such a plot depends solely
on the values of A and ®. According to Mavor and Cinco Ley (1979), Equation 17.10,
describing the early-time straight line, can be used if

(17.11)

« _ 0o(l-w)
UF < 3y (17.12)
and Equation 17.11, describing the late-time straight line, can be used if
l-®
> O
Ut > e > 100 (17.13)

If the two parallel straight lines occur in a semi-log data plot, the value of ® can be
derived from the vertical displacement of the two lines, As,, and the slope of these
lines, As (Figure 17.4).

@ = 10 Awins (17.14)

According to Mavor and Cinco Ley (1979), the value of ® can also be estimated from
the horizontal displacement of the two parallel straight lines (Figure 17.4)

Following the procedure of the Jacob method on both straight lines in Figure 17.4,
we can determine values of T, S;, and S,,. Using Equation 17.7 or 17.8, we can estimate
the value of A from the constant drawdown at intermediate times.

Kazemi et al.’s method can be used if, in addition to the assumptions and conditions
underlying the Bourdet-Gringarten method, the condition that the value of u* is larger
than 100 is satisfied.

According to Van Golf-Racht (1982), the condition u* > 100 is very restrictive
and can be replaced by u* > 100 o, if L << 1, or by u* > 100-1/A,if o << 1.
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Procedure 17.2

— On a sheet of semi-log paper, plot s versus t (t on logarithmic scale);

— Draw a straight line through the early-time points and another through the late-time
points; the two lines should plot as parallel lines;

— Determine the slope of the lines (i.e. the drawdown difference As per log cycle of
time);

— Substitute the values of As and Q into T; = 2.30 Q/4r As, and calculate Ty

Extend the early-time straight line until it intercepts the time axis where s = 0,

and determine t;;

— Substitute the values of Ty, t;, and rinto S; = 2.25 Tit,/r?, and calculate Sg;

— Extend the late-time straight line until it intercepts the time axis where s = 0, and
determine t,;

— Substitute the values of Ty, t,, r, and B into S; + B S,, = 2.25 Tit,/r?, and calculate
Sf + Sm,

— Calculate the separate values of S;and S,,..

Remarks
The two parallel straight lines can only be obtained at low A values (i.e. A < 1072).
At higher A values, only the late-time straight line, representing the fracture and block
flow, will appear, provided of course that the pumping time is long enough. The analy-
sis then yields values of Trand S; + S,,..

To obtain separate values of S;and S, when only one straight line is present, Proce-
dure 17.3 can be applied.

Procedure 17.3

— Follow Procedure 17.2 to obtain values of T; and S; from the first straight line,
or if it is not present, values of T;and S; + S, from the second straight line;

— Determine the centre of the transition period of constant drawdown and determine
1/2 As,;

— Calculate the value of  using Equation 17.14;

— Substituting the values of ® and f into Equation 17.4, determine the value of S,
if S¢is known, or vice versa.

Remark
To estimate the centre of the transition period with constant drawdown, the preceding
and following curved-line segments should be present in the time-drawdown plot.

17.4  Warren-Root’s straight-line method (pumped well)

AsKazemi et al.’s straight-line method for observation wells is an extension of Warren-
Root’s straight-line method for a pumped well, we can use Equations 17.7 to 17.15
to analyze the drawdown in a pumped well if we replace the distance of the observation
well to the pumped well, r, with the effective radius of the pumped well, r,,.

Following Procedure 17.2 on both straight lines in the semi-log plot of s, versus
t, we can determine Ty, Sy, and S,,, provided that there are no well losses (i.e. no skin)
and that well-bore storage effects are negligible.
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According to Mavor and Cinco Ley (1979), well-bore storage effects become neglig-
ible when

u* > C’ (60 + 3.5 skin) (17.16)

where, at early pumping times
C’ = C/2nS2 (dimensionless)
C = well-bore storage constant = ratio of change in volume of water in the
well and the corresponding drawdown (m?)

For a water-level change in a perfect well (i.e. no well losses), which is pumping a
homogeneous confined aquifer, the dimensionless coefficient C” is related to the dimen-
sionless o as defined by Papadopulos (1967) (see Section 11.1.1) by the relationship
(Ramey 1982)

C =1/20

When well-bore storage effects are not negligible, the limiting condition for applying
Equation 17.10, as expressed by Equation 17.12, should be replaced by

o(1-m)
3.6\
The early-time straight line may thus be obscured by storage effects in the well and

in the fractures intersecting the well. But, with Procedure 17.3, a complete analysis
is then still possible. '

C’ (60 + 3.5skin) < u* <

(17.17)

Remarks

Well losses (skin) do not influence the calculation of T;and w.

If the linear well losses are not negligible, Equation 17.8 becomes (Bourdet and
Gringarten 1980)

- 230Q,  1.26
Sv = 4nT, 1087 ¢k

(17.18)

From the constant drawdown s,, and the calculated value of T;, the value of A e™kin
can be determined. If the well losses are known or negligible, the value of A can be
estimated.

Example 17.1

For this example, we use the time-drawdown data from Pumping Test 3 conducted
on Well UE-25b#1 in the fractured Tertiary volcanic rocks of the Nevada Test Site,
U.S.A., as published by Moench (1984).

The well (r,, = 0.11 m; total depth 1219 m) was drilled through thick sequences
of fractured and faulted non-welded to densely welded rhyolitic ash flow and bedded
tuffs to a depth below the watertable, which was struck at 470 m below the ground
surface. Five major zones of water entry occurred over a depth interval of 400 m.
The distance between these zones was roughly 100 m. Core samples revealed that most
of the fractures dip steeply and are coated with deposits of silica, manganese, and
iron oxides, and calcite. The water-producing zones, however, had mineral-filled low-
angle fractures, as observed in core samples taken at 612 m below the ground surface.
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The well was pumped at a constant rate of 35.8 1/s for nearly 3 days. Table 17.1 shows
the time-drawdown data of the well.

Like Moench, we assume that the fractured aquifer is unconfined and of the strata
type (i.e. B = 1). Figure 17.5 shows the log-log drawdown plot of the pumped well
and Figure 17.6 the semi-log drawdown plot. These figures clearly reveal the double
porosity of the aquifer because they show the early-time, intermediate-time, and late-
time segments characteristic of double-porosity media. At early pumping times, how-
ever, well-bore storage affects the time-drawdown relationship of the well. In a log-log
plot of drawdown versus time, well-bore storage is usually reflected by a straight line
of slope unity. Consequently, the two parallel straight lines of the Warren and Root
model do not appear in Figure 17.6. Only the late-time data plot as a straight line.
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Figure 17.5 Time-drawdown log-log plot of data from the pumped well UE-25b# 1 at the Nevada Test
Site, U.S.A. (after Moench 1984)
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Figure 17.6 Time-drawdown semi-log plot of data from the pumped well UE-25b# | at the Nevada Test
Site, U.S.A. (after Moench 1984)
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Well-bore skin effects are unlikely, because air was used when the well was being
drilled, the major water-producing zones were not screened, and prior to testing the
well was thoroughly developed.

To analyze the drawdown in this well, we follow Procedure 17.3. From Figure 17.6,
we determine the slope of the late-time straight line, which is As = 1.70 m. We then
calculate the fracture transmissivity from

©230Q 2.3 x 3093.12

Tr= 4nAs ~ 4 x 3.14 x 1.70

= 333 m?/d

Table 17.1 Drawdown data from pumped well UE-25b# 1, test 3 (after Moench 1984)

t Sw t Sw
(min) (m) (min) (m)
0.05 2.513 30.0 8.84
0.1 3.769 35.0 8.84
0.15 4.583 40.0 8.86
0.2 4.858 50.0 8.86
0.25 5.003 60.0 8.90
0.3 5.119 70.0 8.91
0.35 5.230 80.0 8.92
0.4 5.390 90.0 8.93
0.45 5.542 100.0 8.95
0.5 5.690 120.0 8.97
0.6 5.990 140.0 8.98
0.7 6.19 160.0 8.99
0.8 6.42 180.0 9.00
0.9 6.59 200.0 9.02
1.0 6.74 240.0 9.04
1.2 6.96 300.0 9.07
1.4 7.17 400.0 9.11
1.6 7.33 500.0 9.14
1.8 7.45 600.0 9.17
2.0 7.56 700.0 9.18
2.5 7.76 800.0 9.21
3.0 7.93 900.0 9.25
3.5 8.03 1000.0 9.30
4.0 8.12 1200.0 9.44
5.0 8.24 1400.0 9.55
6.0 8.32 1600.0 9.64
7.0 8.41 1800.0 9.74
8.0 8.46 2000.0 9.78
9.0 8.54 2200.0 9.80
10.0 8.62 2400.0 9.84
12.0 8.67 2600.0 9.93
14.0 8.70 2800.0 10.03
16.0 8.74 3000.0 10.08
18.0 8.76 3500.0 10.26
20.0 8.77 4000.0 10.30
25.0 8.81 4200.0 10.41

Extending the straight line until it intercepts the time axis where s = 0 yields t, =
3.4 x 107 min. The overall storativity is then calculated from
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-3
2.252Tf t, _ 225 x 333 x 3.4 x 10 —0.15

Si4 Sn == 1440 (0.11)

The semi-log plot of time versus drawdown shows that the centre of the transition
period is at t & 75 minutes. At t = 75 minutes, 1/2 As, = 1.65 m. Substituting the
appropriate values into Equation 17.14 yields

@ = 108 = 102 x 16170 = 0,011

Substituting the appropriate values into Equation 17.4 yields
St = o (S;+ S,) = 0.011 x 0.146 = 0.0016

and
S, =0.15

This high value of S, is an order of magnitude normally associated with the specific
yield of unconfined aquifers. Moench (1984), however, offers an explanation for such
a high value for the storativity of the fractured volcanic rock, namely that it may
be due to the presence of highly compressible microfissures within the matrix blocks.
We consider this a plausible explanation, because there is little reason to assume homo-
geneous matrix blocks, as in Figure 17.1C.

We must now check the condition that u* > 100, which underlies the Warren-Root
method. Substituting the appropriate values into Equation 17.2, we obtain

_ 100 (S;+ Sy 1% _ 100 x 1440 x 0.15 (0.11)’
T, = 333

Hence this condition is satisfied.

Next, we must check the condition stated in Equation 17.13. For this, we need the
value of A. The constant drawdown during intermediate times is taken as 8.9 m. Using
Equation 17.8, we obtain

7\’ — 126/ 10(4 x 3.14 x 333 x 8.9)/(2.3 x 3093.12) _ 7.3 % 10—6

t = 0.8 min

Substituting the appropriate values into Equation 17.13 gives

o (F0) S +S,) 13 _ 1440 (1-0.011) 0.15 (0.1

130T, ~ 13x73x10°x333 ~— oi8min

The condition for the second straight-line relationship is also satisfied.

Finally, we must check our assumption that the first straight-line relationship is
obscured by well-bore storage effects. Using C’ = 1/2a and assuming r, = r,, gives
us C’ = 1/28;. Taking this C’ value and using Equation 17.16, we get

60 12, 1440 x 60 (0.11)?

LT, T 2 x333

= 1.6 min

So, according to Equation 17.16, after approximately 1.6 min, the drawdown data
are no longer influenced by well-bore storage effects. A check of Figure 17.6 shows
us that the early-time straight-line relationship would have occurred before then and
is thus obscured by well-bore storage effects.
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18 Single vertical fractures

18.1 Introduction

If a well intersects a single vertical fracture, the aquifer’s unsteady drawdown response
to pumping differs significantly from that predicted by the Theis solution (Chapter
3). This well-flow problem has long been a subject of research in the petroleum
industry, especially after it had been discovered that if an oil well is artificially fractured
(‘hydraulic fracturing’) its yield can be raised substantially. Various solutions to this
problem have been proposed, but most of them produced erroneous results. A major
step forward was taken when the fracture was assumed to be a plane, vertical fracture
of relatively short length and infinite hydraulic conductivity. (A plane fracture is one
of zero width, which means that fracture storage can be neglected.) This made it pos-
sible to analyze the system as an ‘equivalent’, anisotropic, homogeneous, porous medi-
um, with a single fracture of high permeability intersected by the pumped well.

The concept underlying the analytical solutions is as follows: The aquifer is homoge-
neous, isotropic, and of large lateral extent, and is bounded above and below by imper-
meable beds. A single plane, vertical fracture of relatively short length dissects the
aquifer from top to bottom (Figure 18.1A). The pumped well intersects the fracture
midway. The fracture is assumed to have an infinite (or very large) hydraulic conduc-
tivity. This means that the drawdown in the fracture is uniform over its entire length
at any instant of time (i.e. there is no hydraulic gradient in the fracture). This uniform
drawdown induces a flow from the aquifer into the fracture. At early pumping times,
this flow is one-dimensional (i.e. it is horizontal, parallel, and perpendicular to the
fracture) (Figure 18.1B). All along the fracture, a uniform flux condition is assumed
to exist (i.e. water from the aquifer enters the fracture at the same rate per unit area).

Groundwater hydrology recognizes a similar situation: that of a constant ground-
water discharge into an open channel that fully penetrates a homogeneous unconsoli-
dated aquifer. Solutions to this flow problem have been presented by Theis (1935),
Edelman (1947; 1972), Ferris (1950), and Ferris et al. (1962). It is hardly surprising
that the solutions that have been developed for early-time drawdowns in a single verti-
cal fracture are identical to those found by the above authors (Jenkins and Prentice
1982).

As pumping continues, the flow pattern changes from parallel flow to pseudo-radial
flow (Figure 18.1C), regardless of the fracture’s hydraulic conductivity. During this
period, most of the well discharge originates from areas farther removed from the
fracture. Often, uneconomic pumping times are required to attain pseudo-radial flow,
but once it has been attained, the classical methods of analysis can be applied.

The methods presented in this chapter are all based on the following general assump-

tions and conditions:

— The general assumptions and conditions listed in Section 17.1.

And:

— The aquifer is confined, homogeneous, and isotropic, and is fully penetrated by
a single vertical fracture;

263



I | \ pseudo radial flow /

parallel flow

plane vertical fracture

plane
¥'ert|cai —> S O —_— O <
ow \ *

pumped pumped well

/7 N

Figure 18.1 A well that intersects a single, vertical, plane fracture of finite length and infinite hydraulic
conductivity
A: The well-fracture-aquifer system
B: The parallel flow system at early pumping times
C: The pseudo-radial flow system at late pumping times

— The fracture is plane (i.e. storage in the fracture can be neglected), and its horizontal
extent is finite;

— The well is located on the axis of the fracture;

— With decline of head, water is instantaneously removed from storage in the aquifer;

— Water from the aquifer enters the fracture at the same rate per unit area (i.e. a
uniform flux exists along the fracture, or the fracture conductivity is high although
not infinite);

The first method in this chapter, in Section 18.2, is that of Gringarten and Witherspoon
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(1972), which uses the drawdown data from observation wells placed at specific loca-
tions with respect to the pumped well. Next, in Section 18.3, is the method of Gringar-
ten and Ramey (1974); it uses drawdown data from the pumped well only, neglecting
well losses and well-bore storage effects. Finally, in Section 18.4, we present the Ramey
and Gringarten method (1976), which allows for well-bore storage effects in the
pumped well.

18.2  Gringarten-Witherspoon’s curve-fitting method for
observation wells

For a well pumping a single, plane, vertical fracture in an otherwise homogeneous,
isotropic, confined aquifer (Figure 18.2), Gringarten and Witherspoon (1972)
obtained the following general solution for the drawdown in an observation well

- :
S = 4T F(uy,r) (18.1)
where
Tt

Uy = S_ng (182)
2 2

PN 183
Xp

S = storativity of the aquifer, dimensionless

T = transmissivity of the aquifer (m?/d)

X¢ half length of the vertical fracture (m)
x,y = distance between observation well and pumped well, measured along
the x and y axis, respectively (m)

From Equations 18.1 and 18.2, it can be seen that the drawdown in an observation
well depends not only on the parameter u, (i.e. on the aquifer characteristics T and
S, the vertical fracture half-length x;, and the pumping time t), but also on the geometri-
cal relationship between the location of the observation well and that of the fracture.

vertical fracture x

M/

—Xg pumped well X§

Figure 18.2 Plan view of a pumped well that intersects a plane, vertical fracture of finite length and infinite
hydraulic conductivity
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For observation wells in three different locations (Figuré 18.3), Gringarten and With-
erspoon developed simplified expressions for the drawdown derived from Equation
18.1.

For an observation well located along the x axis (r' = x/x;), the drawdown function
F(u,r") in Equation 18.1 reads

o) (5] %

For an observation Well located along the y axis (r" = y/X), the drawdown function
F(u,.r") in Equation 18.1 reads’

uyf

F(uvfsr) = f

F(u,,r) = \/— Terf( 2\/~) exp[ (222] :d% (18.5)

For an observation well located along a line through the pumped well and making
an angle of 45° with the direction of the fracture (r' = x./2/x; = yf /Xp), the draw-
down function F(u,,r") in Equation 18.1 reads

y
A
observation
well
] —x N
vertical fracture T | .
pumped well
.
\Y
observation well T
r=y
vertical fracture X
pumped well
e X 3|
AY
/oobservation well
s
K_-r=xV2 =y\/2—
Ve
7 \45°
vertical fracture \( s . «
pumped well
e X ——>

Figure 18.3 Plan view of a vertical fracture with observation wells at three different locations
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F(u,r) = %T exp —<L7:—%—>2 *| erf 1—_2{/\2——2> + erf 1——'_2<\;/T_—2> %

Figures 18.4, 18.5, and 18.6 show the three different families of type curves developed
from Equations 18.4, 18.5, and 18.6, respectively (Gringarten and Witherspoon 1972;
see also Thiery et al. 1983). For the three locations of observation well, Annex 18.1
gives values of the function F(u,,r") for different values of u,;and r’.
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Figure 18.4 Gringarten-Witherspoon’s type curves for a vertical fracture with an observation well located
on the x axis (after Merton 1987)
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Figure 18.5 Gringarten-Witherspoon’s type curves for a vertical fracture with an observation well located
on the y axis (after Merton 1987)
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The type curves in Figures 18.4, 18.5, and 18.6 clearly indicate that the drawdown
response in an observation well differs from that in a pumped well. As long as an
observation well does not intersect the same fracture as the pumped well, the log-log
plot of the drawdown in the observation well does not yield an initial straight line
of slope 0.5. Far enough from the pumped well (i.e. 1’ > 5), the drawdown response
becomes identical to that for radial flow to a pumped well in the Theis equation (Equa-
tion 3.5). In other words, beyond a distance r’ = 5, the influence of the fracture on
the drawdown is negligible.

The Gringarten-Witherspoon curve-fitting method can be used if the assumptions and
conditions listed in Section 18.1 are met.

Procedure 18.1

— If the location of the observation well is known with respect to the location of the
fracture, choose the appropriate set of type curves (for ' = x/x; 1’ = y/X; or r’ =
Xﬁ/ Xp = Yﬁ/ Xp);

— Using Annex 18.1, prepare the selected family of type curves on log-log paper by
plotting F(u,,r") versus u,/r’ for different values of r’;

— On another sheet of log-log paper of the same scale, plot s versus t for the observation
well;

— Match the data plot with one of the type curves and note the value of 1’ for that
curve;

— Knowing r and r’, calculate the fracture half-length, x;, from r’ = r/x

— Select a matchpoint A on the superimposed sheets and note for A the values of
F(u,nr), uy/r’, s, and t;

— Substitute the values of F(u,,r’) and s and the known value of Q into Equation
18.1 and calculate T;

— Knowing u,/r’ and r’, calculate the value of u,g
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— Substitute the values of u,, t, x;, and T into Equation 18.2 and solve for S.

If the geometrical relationship between the observation wells and the fracture is not
known, a trial-and-error matching procedure will have to be applied to all three sets
of type curves. Data from at least two observation wells are required for this purpose.
The trial-and-error procedure should be continued until matching positions are found
that yield approximations of the fracture location and its dimensions, and estimates
of the aquifer parameters consistent with all available observation-well data.

Remarks

— Forr’ > 5,noreal value of r’ (and consequently of x;) can be found with the Gringar-
ten-Witherspoon method alone because no separate type curves for r’ > 5 can be
distinguished. It will only be possible to calculate a maximum value of x,. If data
from the pumped well are also available, however, the product Sx? can be obtained
(Section 18.3). Then, knowing S from the observation-well data, and also knowing
Sx?, one can calculate x;. It should be noted, however, that calculated values of
xpare not precise and are often underestimated (Gringarten et al. 1975);

— Forr’ > 5, the observation-well data can be analyzed with the Theis method (Section
3.2.1), from which the aquifer parameters T and S can be obtained.

18.3  Gringarten et al.’s curve-fitting method for the pumped well

For a well intersecting a single, plane, vertical fracture in an otherwise homogeneous,
isotropic, confined aquifer (Figure 18.1A), Gringarten and Ramey. (1974) obtained
the following general solution for the drawdown in the pumped well

Sw = g1 F(W) (18.7)

where

Flu,) = 2 nuvferf< ! >7Ei<—4i> (18.8)
2 Uyp Uyp

and

- Fi(-x) = j el; du = the exponential integral of x
0

Equation 18.8 is the reduced form of Equations 18.4 to 18.6 for r’ = 0. Values of
the function F(u,) for different values of u, are given in Annex 18.2. Figure 18.7
shows a log-log plot of F(u,) versus u,,.

At early pumping times, when the drawdown in the well is governed by the horizon-
tal parallel flow from the aquifer into the fracture, the drawdown can be written as

S = g7 F(w) (18.7)

where

F(u,) = 2\/mu, (18.9)
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Figure 18.7 Gringarten et al.’s type curve F(u,g) versus u,; for a vertical fracture
or
log F(u,) = 0.51log (uy) + constant
and consequently
Sy = L\/{ (18.10)
2. /mTSx?
or

logs, = 0.51og(t) + constant

As Equations 18.9 and 18.10 show, on a log-log plot of F(u,) versus u,; (Figure 18.7)
(and on the corresponding data plot), the early-time parallel-flow period is character-
ized by a straight line with a slope of 0.5. The parallel-flow period ends at approximate-
ly u,; = 1.6 x 107'(Gringarten and Ramey. 1975). If the aquifer has a low transmissi-
vity and the fracture is elongated, the parallel-flow period may last relatively long.

The pseudo-radial-flow period starts at u,;, = 2 (Gringarten et al. 1975). During
this period, the drawdown in the well varies according to the Theis equation for radial
flow in a pumped, homogeneous, isotropic, confined aquifer (Equation 3.5), plus a
constant, and can be approximated by the following expression (Gringarten and
Ramey. 1974)

. _230Q, 16.59Tt
v = 4nT %87 sx

(18.11)

The log-log plot of F(u,) versus u,; (Figure 18.7) is used as a type curve to determine
T and the product Sx?.
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Gringarten et al.’s method is based on the following assumptions and conditions:
— The general assumptions and conditions listed in Section 18.1.

And:

— The diameter of the well is very small (i.e. well-bore storage can be neglected);
— The well losses are negligible.

Procedure 18.2

— Using Annex 18.2, prepare a type curve on log-log paper by plotting F(u,;) versus
Uyp

— On another sheet of log-log paper of the same scale, prepare the data curve by
plotting s, versus t;

— Match the data curve with the type curve and select a matchpoint A on the superim-
posed sheets; note for A the values of F(u,y), uy, s, and t;

— Substitute the values of F(u,;) and s,, and the known value of Q into Equation 18.7
and calculate T;

— Substitute the values of u,; and t and the calculated value of T into Equation 18.2
and solve for the product Sx?.

For large values of pumping time (i.e. for t > 2Sx}/T), the data can be analyzed with

Procedure 18.3, which is similar to Procedure 3.4 of the Jacob method (Section 3.2.2).

Procedure 18.3

— If the semi-log plot of s,, versus t yields a straight line, determine the slope of this
line, As,,;

— Calculate the aquifer transmissivity from T = 2.30Q/4nAs,;

— As T is known and the value of t, can be read from the graph, find Sx? from Sx?
= 16.59 Tt,.

Remarks

— No separate values of x; and S can be found with Gringarten et al.’s method. To
obtain such values, one must have drawdown data from at least two observation
wells. (See method in Section 18.2);

— Procedures 18.2 and 18.3 can only be applied to data from perfect wells (i.e. wells
that have no well losses). Such wells seldom exist, but Procedure 18.3, being applied
to late-time drawdown data, allows the aquifer transmissivity to be found;

— If the early-time drawdown data are influenced by well-bore storage, the initial
straight line in the data plot may not have a slope of 0.5, but instead a slope of
1, which indicates a large storage volume connected with the well. This corresponds
to a fracture of large dimensions rather than the assumed plane fracture. Gringarten
et al.’s method will then not be applicable and the data should be analyzed by the
method in Section 18.4.

18.4 Ramey-Gringarten’s curve-fitting method
For a well intersecting a non-plane vertical fracture in a homogeneous, isotropic, con-
fined aquifer, Ramey and Gringarten (1976) developed a method that takes the storage

effects of the fracture into account. Their equation reads
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Sw = m F(uvfnC’vf) (1812)

where

, _ G,
Cu = Sxé

(18.13)

C,; = a storage constant = AV/s, = ratio of change in volume of water in
the well plus vertical fracture, and the corresponding drawdown (m?)

Ramey and Gringarten developed their equation by assuming a large-diameter well
and a plane vertical fracture of infinite conductivity. In practice, however, the apparent
storage effect, C, is due not only to the total volume of the well, but also to the
pore volume of the fracture.

The family of type curves drawn on the basis of Equation 18.12 is shown in Figure
18.8. Annex 18.3 gives a table of the values of F(u,,C’y) for different values of u,
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Figure 18.8 Ramey-Gringarten’s family of type curves F(u,s,Cy) versus u,g for different values of C'y for
a vertical fracture, taking well-bore storage effects into account
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and C. For C’; = 0, the type curve is similar to the Gringarten et al. type curve
(Figure 18.7) for a vertical fracture with negligible storage capacity. For values of
C’yy > 0, the type curves (and in theory also the log-log data plot) will exhibit three
different segments (Figure 18.8). Initially, the curves follow a straight line of unit slope,
indicating the period during which the storage effects prevail. This straight line gra-
dually passes into another straight line with a slope of 0.5, representing the horizontal
parallel-flow period. Finally, when one is using semi-log paper, a straight-line segment
also appears, which corresponds to the period of pseudo-radial flow. The slope of
this lineis 1.15.

Ramey and Gringarten’s curve-fitting method is applicable if the following assump-
tions and conditions are satisfied:

— The general assumptions and conditions listed in Section 18.1.

And:

— The well losses are negligible.

Procedure 18.4

— Using Annex 18.3, prepare a family of type curves on log-log paper by plotting
F(u,,C',p versus u, for different values of C,;

— On another sheet of log-log paper of the same scale, plot s, versus t;

Match the data curve with one of the type curves and note the value of C’,; for

that type curve;

Select a matchpoint A on the superimposed sheets and note for A the values of

F(uvf’clvf)s Uyp, Sws and t’

— Substitute the values of F(u,;,C’), s, and Q into Equation 18.12 and calculate T;

— Substitute the values of u,, t, and T into Equation 18.2, Sx} = Tt/u,;, and calculate
the product Sx?;

— Knowing C’,; and Sx?, calculate the storage constant C,; from Equation 18.13, C,,
= C'y x Sx}.

Discussion

It should not be forgotten that the above (and many other) methods have been devel-
oped primarily for a better understanding of the behaviour of hydraulically fractured
geological formations in deep oil reservoirs. Although field examples are scanty in
the literature, Gringarten et al. (1975) state that the type-curve approach has been
successfully applied to many wells that intersect natural or hydraulic vertical fractures.
Nevertheless, there are still certain problems associated with wells in fractures. Frac-
ture storativity and fracture hydraulic conductivity cannot be determined, because,
in the theoretical concept, the former is assumed to be infinitely small and the latter
is assumed to be infinitely great. The assumption of an infinite hydraulic conductivity
in the fracture is not very realistic, certainly not if the assumption of a plane fracture
(no width) is made or if the fracture is mineral-filled, as is often so in nature. In reality,
a certain hydraulic gradient will exist in the pumped fracture. The so-called uniform-
flux solution must therefore be interpreted as giving the appearance of a fracture with
high, but not infinite, conductivity. This solution seems, indeed, to match drawdown
behaviour of wells intersecting natural fractures better than the infinite-conductivity
solution does.
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It has also been experienced that computed fracture lengths were far too short, which
indicates that still other solutions will be necessary before fracture behaviour can be
analyzed completely. Finally, naturally fractured formations that were generally
broken, but not in a way as to exhibit separated planar fractures, usually do not show
the characteristic early-time drawdown response that follows from the theoretical con-
cept described above.
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19 Single vertical dikes

19.1 Introduction

Dikes have long been regarded as impermeable walls in the earth’s crust, but recent
research has shown that dikes can be highly permeable. They become so by jointing
as the magma cools, by fracturing as a result of shearing, or by weathering.

If a single, permeable, vertical dike bisects a country-rock aquifer whose transmissi-
vity is several times less than that of the dike, a specific flow pattern will be created
when the dike is pumped. Instead of a cone of depression developing around the well,
as in an unconsolidated aquifer, a trough of depression develops (Figure 19.1). Con-
ventional well-flow equations therefore cannot be used to analyze pumping tests in
composite dike-aquifer systems.

The hydraulic behaviour of such systems is identical to that of single-fracture aquifer
systems. Nevertheless, the concepts used for single vertical fractures in Chapter 18
(i.e. short length and zero width) are not realistic for dikes, whose length can vary
from several kilometres to even hundreds of kilometres, and whose width can vary
from one metre or less to tens of metres.

In this chapter, the dike is assumed to be as shown in Figure 19.1A. It is infinitely
long, has a finite width and a finite hydraulic conductivity. The dike’s permeability
stems from a system of uniformly distributed fractures, extending downward and
dying out with depth. Below the fractured zone, the dike rock is massive and imperme-
able. The upper part of the dike is also impermeable because of intensive weathering
or a top clay layer. The water in the fractured part of the dike and in the aquifer
in the country rock is thus confined.

The well in the dike is represented by a plane sink. When the well is pumped at
a constant rate, three characteristic time periods can be distinguished: early time, medi-
um time, and late time.

At early times, all the water pumped originates from storage in the dike and none
is contributed from the aquifer. A log-log plot of the time-drawdown of the well yields
a straight-line segment with a slope of 0.5. The governing equations are then identical
with those for early times in Chapter 18, but now the parallel flow occurs in the dike
instead of in the aquifer.

At medium times, all the water pumped is supplied from the aquifer and none is
contributed from storage in the dike. The flow in the aquifer can be regarded as pre-
dominantly parallel, but oblique to the dike. A log-log plot of the time-drawdown
data yields a straight-line segment with a slope of 0.25. In the petroleum literature,
the same slope was found for fractures with a finite hydraulic conductivity (Cinco
Ley et al. 1978).

At late times, the flow in the aquifer is pseudo-radial. A semi-log plot of the time-
drawdown data also yields a straight-line segment.

The change in flow from one period to another is not abrupt, but gradual. During
these transitional periods, a time-drawdown plot (whether a log-log plot or a semi-log
plot) yields curved-line segments.
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Figure 19.1 Composite dike-aquifer system:
A: Cross-section showing an aquifer of low permeability in hydraulic contact with the highly
permeable, fractured part of a vertical dike;
B: Plan view: parallel flow in the pumped dike and parallel-to-near-parallel flow in the aquifer

The methods of analyzing pumping tests in composite dike-aquifer systems are based

on the following general assumptions and conditions:

— The dike is vertical and of infinite extent over the length influenced by the test;

— The width of the dike is uniform and does not exceed 10 m;

— The flow through the fracture system in the dike is laminar, so Darcy’s equation
can be used;

— The uniformly fractured part of the dike can be replaced by a representative conti-
nuum to which spatially defined hydraulic characteristics can be assigned;

— The fractured part of the dike is bounded above by an impermeable weathered zone
and below by solid rock;

— The well fully penetrates the fractured part of the dike and is represented by a plane
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sink; flow through the dike towards the well is parallel;

— The country-rock aquifer, which is in hydraulic contact with the fractured part of
the dike, is confined, homogeneous, isotropic, and has an apparently infinite areal
extent;

— All water pumped from the well comes from storage within the composite system
of dike and aquifer;

— The ratio of the hydraulic diffusivity of the dike to that of the aquifer should not
be less than 25;

— Well losses and well-bore storage are negligible.

The methods we present in this chapter are based on the work of Boehmer and Boon-
stra (1986), Boonstra and Boehmer (1986), Boehmer and Boonstra (1987), and Boon-
stra and Boehmer (1989). The two methods in Section 19.2 make use of the drawdown
data from observation wells placed along the dike and at specific locations in the
aquifer; they are only valid for early and medium pumping times. The two methods
in Section 19.3 use drawdown data from the pumped well; these methods are comple-
mentary and, when combined, cover all three characteristic time periods.

All the methods in this chapter can also be applied to single vertical fractures, pro-
vided that the fracture is relatively long.

19.2  Curve-fitting methods for observation wells

For a wellin a single, vertical dike of finite width in an otherwise homogeneous, isotro-
pic aquifer of low permeability in the country rock, partial solutions are available
for the drawdown in observation wells in the dike and in the aquifer abreast of the
pumped well.

19.2.1 Boonstra-Boehmer’s curve-fitting method
To analyze the drawdown behaviour along the pumped dike, Boonstra and Boehmer

(1986) developed the following drawdown equation for early and medium pumping
times

Q
s(x,t) = ———=——=F(y,7) (19.1)
3.75 /T ST/S, (
where
2 Ve 2
F(,1) = —=exp(—2./7) | exp [2 -0 — %@]dc (19.2)
Jn g
X

=188 ——— (19.3)
x W, J/S,T,ST

— ST 19.4)
T = 3.52 WS, t (
¢ = dummy variable of integration
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s(x,t) = drawdown in the dike at distance x from the pumped well (m) and

pumping time t (d)
S = storativity of the aquifer, dimensionless
Sq = storativity of the dike, dimensionless
T = transmissivity of the aquifer (m?/d)
T, = transmissivity of the dike (m?/d)
W, = width of the dike (m)

Figure 19.2 shows the family of type curves developed from Equation 19.2. Values
of the function F(y,t) for different values of  and t are given in Annex 19.1.

In addition to the general assumptions and conditions listed in Section 19.1, this curve-
fitting method is further based on the condition that the flow in the aquifer exhibits
a near-parallel-to-parallel flow pattern, which means that the pumping time should
be less than

t < 0.28 S(W,T,)2/4T?

Procedure 19.1

— Using Annex 19.1, prepare a family of type curves on log-log paper by plotting
F(y,7) versus t for different values of y;

— Prepare the data curve by plotting the drawdown s(x,t) observed in an observation
well in the dike at a distance x from the pumped well versus t;

— Apply the type-curve matching procedure;
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Figure 19.2 Family of type curves of the function F(y,t) for different values of y and < (after Boonstra
and Boehmer 1987)
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— Substitute the values of F(y,1), T, s(x,t), and t of the matchpoint A, together with
the y value of the selected type curve, the x value of the observation well, and the
known value of Q into Equations 19.1, 19.3, and 19.4;

— By combining the results, calculate W T, WS, and ST.

Remark
— If data from at least two observation wells in the dike are available, W Ty, WS,,
and ST can also found from a distance-drawdown analysis.

19.2.2 Boehmer-Boonstra’s curve-fitting method

To analyze the drawdown behaviour in observation wells drilled in the aquifer along
aline perpendicular to the dike and abreast of the pumped well, Boechmer and Boonstra
(1987) developed the following drawdown equation for early and medium pumping
times

s(y;t) = s, F(u,) (19.5)
where

F(u,) = exp(-ud) - v/ [1 - erf(u,)] (19.6)

u, = %y\/ﬁ-\% (19.7)

s(y,t) = drawdown in the aquifer (m)

y = distance between observation well and pumped well, measured along

a line through the pumped well and perpendicular to the dike (m)

Figure 19.3 shows the type curve developed from Equation 19.6. Values of the function
F(u,) for different values of 1/u2 are given in Annex 19.2.

In addition to the general assumptions and conditions listed in Section 19.1, this curve-
fitting method is further based on the condition that the flow in the country-rock
aquifer exhibits a near-parallel to parallel flow pattern, which means that the pumping
time should be less than

t < 0.28 S (W,T,)2/4T?

Procedure 19.2

— Using Annex 19.2, prepare a type curve by plotting values of F(u,) versus 1/u? on
log-log paper;

— Prepare the data curve by plotting the drawdown ratios s(y,t)/s,, versus t;

— Apply the type-curve matching procedure;

— Substitute the values of 1/u? and t of the matchpoint A, together with the y value
of the observation well, into Equation 19.7 and calculate the hydraulic diffusivity
T/S.
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Figure 19.3 Type curve of the function F(u,) (after Boehmer and Boonstra 1987)

Remarks

— When data from at least two observation wells located in the aquifer are available,
the hydraulic diffusivity T/S can also be found from a distance-drawdown analysis;

— If data are available from at least one observation well in the dike and another
in the aquifer, separate values of the transmissivity and storativity of the aquifer
can be found by combining the results obtained with the methods in Sections 19.2.1
and 19.2.2.

19.3  Curve-fitting methods for the pumped well

19.3.1 For early and medium pumping times

For a well in a single, vertical dike in an otherwise homogeneous, isotropic, confined,
aquifer of low permeability in the country rock, Boonstra and Boehmer (1986)

obtained the following solution for the drawdown in the pumped well during early
and medium pumping times

5= —2  pr (19.8)
3.75 /TST/S,
where
Va
F(t) = ﬁexp(—z\/?) i exp[2 /(- )] ¢ (19.9)
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Equation 19.9 is the reduced form of Equation 19.2 for ¥ = 0. Figure 19.4 shows
the type curve developed from Equation 19.9. Values of the function F(t) for different
values of T are given in Annex 19.3.

At early pumping times, when the drawdown behaviour in the well is predominantly
governed by the water released from storage in the dike, the drawdown function in
Equation 19.9 reduces to

2
F(1) = — ./t (19.10)
NC:

and consequently

_ Q J
sy = —<Jt (19.11)
/T SyW3

As Equation 19.11 shows, a log-log plot of the early-time drawdown versus time is
characterized by a straight line with a slope of 0.5. This early-time period ends at
approximately T = 0.003.

At medium pumping times, when the drawdown behaviour is predominantly gov-
erned by near-parallel-to-parallel flow from the aquifer into the dike, the drawdown
function in Equation 19.9 reduces to

F(t) = (19.12)

and consequently

S,

(19.13)

.= 9 J
2.74 /W, Ty ¥/ST
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Figure 19.4 Type curve of the function F(t) for the pumped well at early and medium pumping times
(after Boonstra and Boehmer 1987)
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As Equation 19.13 shows, a log-log plot of the medium-time drawdown versus time
is characterized by a straight line with a slope 0.25. This period starts at approximately
T = 100.

In addition to the general assumptions and conditions listed in Section 19.1, this curve-
fitting method is further based on the condition that the flow in the aquifer exhibits
a near-parallel-to-parallel flow pattern, which means that the pumping time should
be less than

t < 0.28 S(W,T)%/4T1?

Procedure 19.3

— Using Annex 19.3, prepare a type curve by plotting F(t) versus t on log-log paper;

~ Prepare the data curve by plotting the drawdown s,, versus t;

—~ Apply the type-curve matching procedure;

— Substitute the values of F(), T, s,,, and t of the chosen matchpoint A and the known
value of into Equations 19.4 and 19.8 and calculate (WS(W,Ty) and
(WiTo/(ST).

Remark

— If the data plot only exhibits an 0.5 or an 0.25 slope straight-line segment,
(W4T )(WS,) or (WyTo)./(ST) can be found from Equations 19.11 or 19.13, respec-
tively. This yields a value for

(WTH(W.S) = % (19.14)

or

W /BT = ot (19.15)

19.3.2 For late pumping times

Boehmer and Boonstra (1986) also obtained a solution for the drawdown in the
pumped well during late pumping times

L _230Q, 40T
v = AaT OB S(W,T,)

Equation 19.16 shows that the drawdown is now a logarithmic function of time. A
plot of s,, versus t on semi-log paper will thus yield a straight-line segment.

Boonstra and Boehmer (1989) showed that the solution for the drawdown in the
pumped well during late times can be integrated with the corresponding solutions
for early and medium times. This gives a family of type curves as a function of ST,/S,T
(Figure 19.5). From an inspection of Figures 19.4 and 19.5, we can conclude that
the log-log plot will not exhibit a straight-line with a slope of 0.25 for ST,/S,T values
lower than 25.

(19.16)
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Figure 19.5 Family of type curves of the function F(t) for the pumped well at late pumping times (after
Boonstra and Boehmer 1987)

In addition to the general assumptions and conditions listed in Section 19.1, this
straight-line method is further based on the condition that the flow in the aquifer
exhibits a pseudo-radial flow pattern, which means that the pumping condition is

t > 50 S(W,T,)2/4T3

Procedure 19.4

— On semi-log paper, plot the drawdown s,, versus t (t on logarithmic scale);
— Draw a straight line of best fit through the plotted points;

— Determine the slope of this line As and calculate T = 2.30Q/47nAs).

Remark
— For a pumping test of the usual duration, the above method can only be applied
to dikes not wider than a few centimetres or to fractures.

Example 19.1

Boonstra and Boehmer (1986) and Boehmer and Boonstra (1987) describe a pumping
test that was conducted in a 10-m-wide fractured dolorite dike at Brandwag Tweeling,
Republic of South Africa. The country rock consists of alternating layers of non-pro-
ductive low-permeable sandstones, silt stones, and mudstones of the Beaufort series,
which belong to the Karroo system.

The well in the dike was pumped for 2500 minutes at a constant rate of 13.9 1/s
or 1200 m*/d. Drawdowns were measured in this well and in two observation wells,
one in the dike at a distance of 100 m from the pumped well and the other in the
aquifer abreast of the pumped well and 20 m away from it. Table 19.1 gives the draw-
down data of the three wells.
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Observation well in the dike

Applying Procedure 19.1 to the data of the observation well in the dike (x = 100
m), we plot these drawdown data on log-log paper against the corresponding values
of time t. A comparison with the family of type curves in Figure 19.6 shows that the
plotted points fall along the type curve for y = 1.0. We choose as matchpoint, Point
A, where F(y,7) = 1 and © = 100. On the observed data sheet, this point has the
coordinates s(100,t) = 2.29 m and t = 23.5 minutes. Introducing the appropriate
numerical values into Equations 19.1, 19.3, and 19.4, we obtain

W,Ty = 2.6 x 10*°m?/d
Wde = 43 X 10_4m
ST =32x10%m¥d

Table 19.1 Drawdown data of the pumped well and two observation wells, Pumping Test Brandwag Tweel-
ing, South Africa, after Boonstra and Boehmer (1986) and Boehmer and Boonstra (1987)

Time x=0 x =100 Time x=0 x =100 Time x=0 x = 100
(min) (m) (m) (min) (m) (m) (min) (m) (m)
1 3.363 1.378 40 8.445 6.232 600 18.108 15.031
2 4.118 2.068 50 8.864 6.606 750 18.948 15.907
3 4.660 2.507 60 9.192 6.907 900 19.795 15.704
4 5.025 2.818 75 9.724 7.349 1050 20.253 17.813
6 5.582 3.360 100 10.366 8.031 1200 20.667 17.565
8 6.081 3.846 125 11.120 8.885 1350 21.033 17.916
10 6.470 4.224 150 11.766 9.063 1500 21.076 17.945
13 6.796 4.547 175 12.300 9.553 1700 21.389 18.285
15 7.020 4.765 200 12.874 10.045 1900 21.486 18.409
18 7.246 5.016 250 13.911 11.027 2100 - 18.483
21 7.500 5.257 300 14.643 11.672 2300 - 18.858
25 7.746 5.519 350 15.142 12.154 2500 - 19.109
30 8.102 5.700 400 16.080 12.207
35 8.324 6.044 500 17.252 14.324
Time y = y =20 Time y=20 y =20 Time y = y =20
(min) (m) (m) (min) (m) (m) (min) (m) (m)
1 3.363 0.572 30 8.102 5.630 300 14.643 11.323
2 4.118 1.249 35 8.324 3.006 350 15.142 11.766
3 4.660 1.741 40 8.445 6.110 400 16.080 12.622
4 5.025 2.540 50 8.864 6.500 500 17.252 14.847
6 5.582 2.800 60 9.192 6.815 600 18.108 14917
8 6.081 3.422 75 9.724 7.320 750 18.948 15.421
10 6.470 3.905 100 10.366 7.858 900 19.795 16.337
13 6.796 4.286 125 11.120 8.489 1050 20.253 16.691
15 7.020 4.530 150 11.766 9.039 1200 20.667 17.125
18 7.246 4.800 175 12.300 9.457 1350 21.033 17.560
21 7.500 5.055 200 12.874 9.901 1500 21.076 17.584
25 7.746 5.375 250 13.911 10.723 1700 21.389 -
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Figure 19.6 The time-drawdown data of the observation well in the dike (x = 100 m), matched with one
of the curves of the family of type curves developed from Equation 19.2

Observation well in the aquifer

Applying Procedure 19.2 to the data of the observation well in the aquifer, we match
the time-drawdown ratio data with the type curve F(u,), as shown in Figure 19.7.
We choose as matchpoint, Point A, where F(u,) = 1 and 1/u? = 10. On the observed
data sheet, this point has the coordinates s(20,t)/s, = 0.9 and t = 5.3 minutes. Intro-
ducing the appropriate numerical values into Equation 19.7, we obtain

T/S = 2.7 x 10°m?/d

Combining the results of Procedures 19.1 and 19.2, we can also obtain separate values
for the transmissivity and storativity of the aquifer

T =9.3m?d
S=34x10°
Pumped well

Figure 19.8 shows the time-drawdown data of the pumped well, plotted on log-log
paper. This plot only exhibits a straight line with a slope of 0.25. Hence, we cannot
apply Procedure 19.3. Instead, we choose an arbitrary point A on this line, with coordi-
natess,, = 10.0 mand t = 70.7 minutes. Introducing these values into Equation 19.15,
we obtain
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Figure 19.8 Time-drawdown relation of the pumped well, showing the characteristic straight-line slope
0f 0.25 for medium pumping times
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(W4T)/(ST) = 425 m*/d?/?

Substituting the values of WyT, and ST obtained with Procedure 19.1 into

(W4To)\/(ST), we get 465, which corresponds reasonably well with the value of 425
obtained with Procedure 19.3.
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Annex 2.1 Units of the International System (SI)

Basic SI units

Name Symbol

Length metre m
Time second s
Mass kilogram kg
SI-derived units
Pressure pascal Pa(=kgm's?)
Viscosity pascal-second Pa.s
Area square metre m?
Volume cubic metre m3
Discharge cubic metre per second ms!
Hydraulic conductivity metre per second m.s™!
Transmissivity square metre per second m%s!
Intrinsic permeability square metre m?
Annex 2.2 Conversion table
Length:

m cm ft inch
Im 1.000 1.000 x 10? 3.281 39.37
lcm 1.000 x 1072 1.000 3.281x 1072 0.3937
1ft 0.3048 30.48 1.000 12.00
1inch 2.540 x 1072 2.540 8.333x 1072 1.000
Length reciprocals:

m™! cm™! ft! inch™
1m™ 1.000 1.000 x 1072 0.3048 2.540 x 1072
lem™ 1.0 x 10? 1.000 30.48 2.540
11! 3.281 3.281 x 1072 1.000 8.333 x 107
1inch™ 39.37 0.3937 12.00 1.000
Area:

m? ft?
1 m? 1.000 10.764
112 9.290 x 1072 1.000
Area reciprocals:

m ft2
1m™ 1.000 9.290 x 1072
172 10.764 1.000
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Annex 2.1 (cont.)

Volume:

m3 1 Imp.gal. U.S. gal ft®
1m? 1.000 1.000 x 10° 2.200 x 10? 2.642 x 102 35.32
11 1.000 x 1073 1.000 0.2200 0.2642 3.532x 1072
1 Imp.gal 4.546x 107 4.546 1.000 1.200 0.1605
1U.S.gal 3.785x 107 3.785 0.8326 1.000 0.1337
16 2832x 102 28.32 6.229 7.481 1.000
Time:

d h min S
1d 1.000 24.00 1.440 x 10 8.640 x 10*
1h 4.167x 1072 1.000 60.00 3.600 x 10°
1 min 6.944x107* 1.667 x 1072 1.000 60.00
ls 1.157x 107 2.777x107* 1.667 x 1072 1.000
Time reciprocals:

4! h! min~! s
147! 1.000 4.167x 1072 6.944x107*  1.157x107
1h! 24.00 1.000 1.667x 1072 2.777x 107
1 min™! 1.440x 10> 60.00 1.000 1.667 x 1072
1s7! 8.640 x 10* 3.600x 10> 60.00 1.000
Discharge rate:

1/s m®/d m’/s Imp.gal/d  U.S.gal/d ft3/d
11/s 1.000 86.40 1.000x 107 1.901x10*  2.282x10* 3.051 x 10°
1 m?/h 0.2777 24.00 2777x10%  5279%x10°  6.340x 10 8.476 x 10°
1m%/d 1.157x102  1.000 1.157x 107> 2.200x10%>  2.642x10> 3532
1m%/s 1.000 x 103 8.640 x 10*  1.000 1.901x 107  2.282x 107 3.051 x 10°
1Imp.gal/d 5262x107°  4.546x107 5262x10°  1.000 1.201 0.1605
1US.gal/d 4.381x107°  3.785x107 4.381x10° 0.8327 1.000 0.1337
1£t%/d 0.3277 2.832x 1072 3.277x107  6.229 7.481 1.000
Mass:
kg gram b

kg 1.000 1.000 x 10 2.205
gram 1.000 x 1073 1.000 2.205x 1073
1b 4.536x 107" 4.536 x 107 1.000
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Annex 2.1 (cont.)

Pressure:

Pa dyne/cm? kgf/em®>  bar atm mm Hg m H,0 1bf/inch?

(0°C) 4°0) (= psi)

Pa 1.000 10.000 1020107 1.000x 10 9.869% 1070  7.501x 107 1.020 x 107* 1.450 x 107
dyne/em?® 1.000x 10" 1.000 1.020x 107 1.000x 1070 9.869x 1077 7.501 x 1074 1.020x 107> 1.450 x 107>
kgffem®  9.807x 10° 9.807x10° 1.000 9.807x 1071 9.68 x 1071 7.357x 102 10.000 14.223
bar 1.000x 10°  1.000x 10°  1.020 1.000 9.869% 1071 7.501 x 10 10.20 14.50
atm 1.013x10° 1.013x10% 1.033 1.013 1.000 7.60 x10% 10.33 14.69
mm Hg
(0°C) 1333x 10> 1.333x10° 1.36 x 107 1.333x107° 1.316x107  1.000 136 x 102 1.93 x 1072
m H,O
°c) 9.807x10° 9.807x10% 1.000x 107! 9.807x 1072 9.68 x 1072 73.57 1.000 1.422
Ibf/inch?
(=psi) 689 x10° 6.89 x10° 7.03 x1072 6.89 x 1072 6.806x 1072 51.73 7.03x 107" 1.000
Viscosity: Intrinsic permeability:

Pa.s cP Ib/ft.s m? darcy
Pa.s 1.000 1.000 x 10> 6.720 x 10™! m? 1.000 1.013 x 10'2
cP 1.000 x 107 1.000 6.720x 107 darcy 9.872x 107" 1.000
Ib/ft.s  1.488 1.488 x 10° 1.000

Hydraulic conductivity

m/d m/s cm/h Imp.gal/ U.S.gal/ Imp.gal/ U.S.gal/
d-ft? d-fe min-ft? min-ft>
1m/d 1.000 1.157x 107 4.167 20.44 24.54 1.419% 1072 1.704x 1072
1m/s 8.640 x 10* 1.000 3.600x10° 1766 x 10° 2.121x10° 1.226x10° 1.472x10°
1em/h 02400  2.777x107% 1.000 4.905 5.890 3.406x 107> 4.089x 107
1 Imp.gal/d-ft> 4.893%10725.663x 1077 0.2039 1.000 1.201 6.944x 10°* 8.339x 1074
1 U.S.gal/d-ft 4.075%1024.716 x 1077 0.1698 0.8327 1.000 5.783x 107 6.944x 107*
1 Imp.gal/min-ft> 70.46 8.155x 1072 2.936x 10  1.440x 10> 1.729x10° 1.000 1.201
1 U.S.gal/min-ft> 58.67 67911072 2.445%10°  1.195x 10> 1.440x 10° 0.8326 1.000
Transmissivity
m%/d m%/s Imp.gal/d-ft  US.gal/d-ft  Imp.gal/min-ft U.S.gal/min-ft
1 m?/d 1.000 1L157x107°  67.05 80.52 4656x1072  5.592x 1072
1 m%/s 8.64 x10*  1.000 5.793 % 10° 6.957x10°  4.023x 10° 4.831x10°
1Imp.gal/d-ft  1.491x 1072  1.726x 107 1.000 1.201 6.944x10%  8.339%x107
1US.gal/d-ft  1242x1072  1.437x 107 0.8326 1.000 5783x10°% 6944107
1 Imp.gal/min-ft 21.48 2.486x 107 1.440 x 10° 1.729% 10> 1.000 1.201
1U.S.gal/min-ft 17.88 2.070x 107 1.199 x 10° 1.440x 10> 0.8326 1.000
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Annex 2.1 (cont.)

Abbreviations:
ft = foot
1 = liter

Imp.gal = Imperial gallon
U.S.gal = U.S. gallon

h = hour

b = pound

Ibf = pound force

kgf = kilogram force

atm = atmosphere

mH,O = metre of water

mm Hg = millimetre of mercury
d = day

cP = centipoise

Care should be taken in the conversion that an approximate value does not become too exact. For example:
the analysis of a pumping test may give values for the transmissivity ranging between 1833 m?/d and 2217
m?/d: consequently in the conclusions it is stated that the transmissivity is approximately equal to 2000
m?/d. If this value is converted into U.S.gallons/d-ft by multiplying it by 80.52 (1 m?/d = 80.52 U.S.gallons/
d-ft) this results in

2000 m?/d = 161 040 U.S.gal/d-ft
However

appr. 2000 mz/d = appr. 160000 U.S.gal/d-ft
and the variation is between

147 000 U.S.gal/d-ft and 178 000 U.S.gal/d-ft
and not between

147593.16 and 178 512.84 U.S.gal/d-ft

Conversion coefficients that are not listed can easily be calculated. For example:
Question: ‘How much is a hydraulic conductivity of 230 1/s-m? when expressed in U.S.gal/d-ft??
Answer: 11/s-m?> = 1.000 x 10~ m/s-m? (= m/s)
lm/s = 2.121 x 10° x U.S.gal/d-ft?
Hence 11/s-m? = 1.000 x 107 x 2.121 x 10° = 2.121 U.S.gal/d-ft?
and 230 1/s-m?> = 230 x 2.121 = 487.8 U.S.gal/d-ft2
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Annex 4.2 Values of the Walton well function W(u,r/L) for leaky aquifers (after Hantush 1956)
More extensive tables can be found in HANTUSH 1956 and WALTON 1962.

u lju L=0 0.005 001 002 003 004 005 006 007 008 0.9
0 o 1.08(1) 9.44 806 725 6.67 623 587 556 529 506
1(-6)  1.00(6) 1.32(1)

2(-6) 5.00(5) 1.25(1)

4(-6) 2.50(5) 1.18(1) 1.07(1)

6(-6) 1.66(5) 1.14(1) 1.06(1)

8(-6) 1.25(5) 1.12(1) 1.05(1) 9.43 W(u,r/L) = W(0,r/L)

1(-5) 1.00(5) 1.09(1) 1.04(1) 9.42
2(-5) 5.00(4) 1.02(1) 9.95  9.30
4(-5) 2.50(4) 955 940 9.01 8.03
6(-5) 1.66(4) 9.14 904 877 798 7.24
8(-5) 1.25(4) 886 878 857 791 1723
1(-4) 1.004) 8.63 857 840 7.84 7.1
2(-4)  5.00(3) 794 791 782 750 7.07 662 622 586
4(-4) 2.50(3) 725 723 719 701 676 645 614 583 5.55
6(-4) 1.66(3) 684 683 680 668 650 627 602 577 551 527 505
8(-4) 1.25(3) 6.55 652 643 629 611 591 569 546 525 504
1(-3) 1.003) 6.33 631 623 612 597 580 561 541 521 501
2(-3) 5.00(2) 5.64 563 559 553 545 535 524 512 489 485
4(-3) 2.50(2) 4.95 494 492 489 485 480 474 467 459 451
6(-3) 1.66(2) 4.54 453 451 448 445 440 436 430 4.24
8(-3) 1.25(2) 4.26 425 423 421 419 415 412 408 403
1(-2) 1.00(2) 4.04 403 402 400 398 395 392 389 385
2(-2) 5.00(1) 3.35 334 334 333 331 330 328 326
4(-2) 2.50(1) 2.68 267 267 266 265 265 2.64
6(-2) 1.66(1) 2.29 228 228 227 227
8(-2) 1.25(1) 2.03 202 200 201 201

W(u,r/L) = W(u,0)

1(-1)  1.00(1) 1.82 181 181 181
2-1) 5.00(1) 1.22 1.22
4-1) 2.50(1) 7.02(-1) 7.00(-1)
6(-1) 1.66(1) 4.54(-1)

8(-1) 1.25(1) 3.11(-1)
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Annex 4.2 (cont.)

u lju rL=0 0.1 0.2 0.3 0.4 0.6 0.8
0 0 4.85 3.50 2.74 2.23 1.55 1.13
1(-4) 1.00(4) 8.63
2(-4) 5.003) 7.94
4(-4) 2.50(3) 7.25
6(—4) 1.66(3) 6.84
8(—4) 1.25(3) 6.55 4.84

W(u,r/L) = W(0,r/L)

1(-3) 1.00(3) 6.33 4.83
2(=3) 5.00(2) 5.64 4.71
4(=3) 2.502) 4.95 442 3.48
6(-3) 1.66(2) 4.54 4.18 3.43
8(-3) 1.25(2) 4.26 3.98 3.36 2.73
1(-2) 1.00(2) 4.04 3.81 3.29 2.71 2.22
2(-2) 5.00(1) 3.35 3.24 2.95 2.57 2.18
4(=2) 2.50(1) 2.68 2.63 2.48 2.27 2.02 1.52
6(-2) 1.66(1) 2.29 2.26 2.17 2.02 1.84 1.46 1.11
8(-2) 1.25(1) 2.03 2.00 1.93 1.83 1.69 1.39 1.08
1(-1) 1.00(1) 1.82 1.80 1.75 1.67 1.56 1.31 1.05
2(-1) 5.00 1.22 1.21 1.19 1.16 1.11 9.96(-1) 8.58(-1)
4(-1) 2.50 7.02(-1) 7.00(-1) 6.93(-1) 6.81(-1) 6.65(-1) 6.21(-1) 5.65(-1)
6(-1) 1.66 4.54(-1) 4.53(-1) 4.50(-1) 4.44(-1) 4.36(-1) 4.15(-1) 3.87(-1)
8(-1) 1.25 3.11(=1) 3.10(-1) 3.08(-1) 3.05(-1) 3.01(-1) 2.89(-1) 2.73(-1)
1 1.00 2.19(-1) 2.18(-1) 2.16(-1) 2.14(-1) 2.07(-1) 1.97(-1)
2 5.00(-1) 4.88(-2) 4.87(-2) 4.85(-2) 4.82(-2) 4.73(-2) 4.60(-2)
Annex 4.2 (cont.)

u lu r/L=0 1.0 2.0 3.0 4.0 5.0 6.0
0 0 8.42(-1) 2.28(-1) 6.95(-2) 2.23(-2) 7.4(-3) 2.5(-3)
1(-2) 1.00(2) 4.04
2(=2) 5.00(1) 3.35
4(-2) 2.50(1) 2.68
6(-2) 1.66(1) 2.29 8.39(-1) W(u,r/L) = W(0,r/L)
8(-2) 1.25(1) 2.03 8.32(-1)
1(-1) 1.00(1) 1.82 8.19(-1)
2(-1) 5.00 1.22 7.15(-1) 2.27(-1)
4(-1) 2.50 7.02(-1) 5.02(-1) 2.10(-1) 6.91(-2)
6(-1) 1.66 4.54(-1) 3.54(-1) L.77(-1) 6.64(-2) 2.22(-2)
8(-1) 1.25 3.01(-1) 2.54(-1) 1.44(-1) 6.07(-2) 2.18(-2)
1 1.00 2.19(-1) 1.85(-1) 1.14(-1) 5.34(-2) 2.07(-2) 7.3(-3)
2 5.00(-1) 4.89(-2) 4.44(-2) 3.35(-2) 2.10(-2) 1.12(-2) 5.1(-3) 2.1(-3)
4 2.50(-1) 3.78(=3) 3.6 (-3) 3.1 (-3) 24 (-3) 1.60(-3) 1.0(-3) 6.0(-4)
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Annex 4.3 (cont.)

u 1/u 1 2 5 10 20 50
1(-6) 100 (6) 536 (0) 467 (0) 378 (0)  3.11 (0) 247 (0)  1.67 (0)
2-6)  5.00 (5) 501 (0)  433(0) 344 (0) 279 (0) 216 (0)  1.39 (0)
4-6)  2.50 (5) 467 (0) 399 (0) 311 (0) 247 (0) 186 (0)  1.14 (0)
6-6)  1.66 (5) 447 (0) 380 (0) 292 (0) 228 (0)  1.69 (0)  9.95(-1)
8(-6)  1.25 (5 433 (0) 366 (0) 279 (0) 216 (0) 157 (0)  9.00(-1)
15 100 (5) 422 (0)  3.55(0) 268 (0) 206 (0) 148 (0)  8.29(-1)
2=5) 500 (4) 388 (0)  322(0) 237 (0) 176 (0) 122 (0)  6.26(-1)
4-5)  2.50 (4) 355(0) 289 (0) 206 (0) 148 (0)  9.731)  4.52(-1)
6(-5)  1.66 (4) 335(0)  2.70 (0) 1.88 (0) 132 0)  841(-1)  3.65-1)
8(-5) 125 (4) 321 (0)  2.57 (0) 1.76 (0) 122 0)  7.53-1)  3.09(-1)
1(4) 100 (4) 311 (0) 247 (0) 1.67 0) 114 (0)  6.88(-1)  2.70(-1)
2-4) 500 (3) 278 (0)  2.15 (0) 139 (0)  899-1)  5.04(-1)  1.68(-1)
4-4) 250 (3) 246 (0) 185 (0) 1.14 (0)  688(-1)  3.51(-1)  9.63(-2)
6-4)  1.66 (3) 228 (0)  1.68 (0)  9.94(-1)  S577(-1)  277-1)  6.61(-2)
8-4) 125 (3) 215 (0) 157 (0)  898(-1)  S5.04(-1)  2.30(-1)  4.94(-2)
1(-3) 1.0 (3) 205 (0) 148 (0)  827-1)  451(-1)  1.98(1)  3.88(-2)
2-3) 500 (2) 175 (0) 121 (0)  6.24(-1)  3.08(-1)  L16(-1)  1.66(-2)
4-3)  2.50 (2) 147 (0)  9.66(-1)  4.50(-1) 197-1)  6.19(-2)  5.88(-3)
6(-3)  1.66 (2) 131 (0)  833(-1)  3.62(-1)  146(-1)  4.04(2)  2.92(-3)
8(-3) 125 (2) 120 (0)  7.44(-1)  3.06(-1)  1.16-1)  2.90(-2)  1.69(-3)
1(-2) 100 (2) L1 (0)  678(-1)  267(-1)  9.55-2)  221(-2)  1.06(-3)
20-2) 500 (1) 8.68(-1)  4.91(-1) 1.65-1)  487(-2)  831(-3)  2.03(-4)
4-2) 250 (1) 6.47(-1)  336(-1)  931(-2)  2.16(-2)  2.53(3)  2.69(-5)
6(-2) 166 (1) 530(-1)  2.59(-1)  630(-2)  1.24(-2)  LI2(-3)  6.55(-6)
8(-2) 125 (1) 453(-1)  212(-1)  464(-2)  797(-3)  587(4)  2.19(-6)
1-1) 100 (1) 397(-1)  L79(-1)  3.59(-2)  5.52(-3)  3.40(-4)

2-1) 500 (0) 245-1)  9.71(-2) 1.43(-2) 149(-3)  4.93(-5)

4-1)  2.50 (0) 130(-1)  441(-2)  448(-3)  2.83(4)  4.24(-6)

6-1) 166 (0) 7.99(-2)  247(-2)  195(-3)  8.73(-5)

8-1)  1.25 (0) 529(-2)  1.52(-2)  9.86(-4)  3.40(-5)

1)  1.00 (0) 3.65(-2)  9.93(-3)  547(-4)  1.51(-5)

20)  5.00-1) 7.60(-3)  L73(-3)  5.51(-5)

40) 25001 5.58(-4)  1.08(-4) 1.89(=6)

6 (0)  1.66(-1) 519-5)  9.26(-6)

8 (0)  1.250-1) 5.36(-6)
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Annex 8.1 Values of the function f,(’,b/D,d/D,a/D for partially penetrated aquifers (after Weeks 1969)

Each of the tables listed below may also be used for the situation where values of the bottom and top
of the pumped well screen are reversed (b, = d;, d, = D-b,) by reading a corrected value of a/D from
the table. (a/D) corrected = 1-(a/D) observed.

For example, the first table listed could also be used to determine f; for a well screened from the top of
the aquifer down to a depth equal to 90% of the aquifer thicknes, i.e. % = % If the piezometer penetrated
20% of the aquifer thickness, i.e. a/D = 0.20, the value of f; for a given B’ value would be found from
(@/D)corrected = 1-0.20 = 0.80.

Table 1 Values of f;for b/D = 1 and d/D = 0.90

a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50

0.0 —4.828 3457 -2.674 -2.134 -1.732 -1.421 -0972 -0.673 -0.468 -0.229 -0.113 -0.056 -0.020
0.10 -4.785 -3.415 -2.633 -2.095 -1.696 -1.387 -0.944 -0.650 -0.451 -0.219 -0.108 -0.053 -0.019
0.20 —4.651 -3.284 2506 -1976 -1.585 -1.284 -0.860 -0.584 -0.400 -0.191 -0.093 -0.046 -0.016
0.30 -4.408 -3.048 -2.280 -1.763 -1.388 -1.104 -0.715 -0.471 -0.315 -0.145 -0.069 -0.034 -0.012
0.40 -4.020 -2.674 -1.925 -1.434 -1.086 -0.833 -0.503 -0.312 -0.198 -0.085 -0.039 -0.018 -0.006
0.50 -3.415 -2.095 -1.387 0944 -0.650 -0.451 -0.219 -0.108 -0.053 -0.013 -0.003 -0.001  0.000
0.60 —2.444 -1.185 -0.566 -0.225 0.035 0.067 0.138 0.135 0.111  0.063 0.033 0.017 0.006
0.70 -0.736 0341 0.725 0.829 0.808 0.736 0.556 0.399 0.280 0.137 0.067 0.033 0.012
0.80 2897 3170 2791 2312 1.875 1.511 0983 0.648 0432 0.199 0.095 0.046 0.016
0.90 13.344 8218 5575 3974 2926 2207 1322 0831 0.539 2241 0.113 0.055 0.019
1.00 21.264 11.404 7.087 4778 3395 2499 1454 0899 0.578 0256 0.120 0.058  0.020

Table 2 Values of f; for b/D = 1 and d/D = 0.80

a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50

0.00 -4.785 -3.415 -2.633 2095 -1.696 -1.387 -0.944 -0.650 -0.451 -0.219 -0.108 -0.053 -0.019
0.10 -4.739 3371 -2.590 -2.055 -1.658 -1.352 -0916 -0.628 -0.434 -0.210 -0.103 -0.051 -0.018
0.20 -4.597 3232 2457 -1929 -1.542 -1246 -0.829 -0.561 -0.383 -0.182 -0.089 -0.044 -0.015
0.30 -4.336 -2979 -2216 -1.705 -1.335 -1.059 -0.681 -0.448 -0.299 -0.138 -0.066 -0.032 -0.011
0.40 -3912 2272 -1.834 -1.354 -1.019 -0.778 -0.467 -0.290 -0.184 -0.079 -0.036 -0.017 -0.006
0.50 -3.232 -1.929 -1.246 -0.829 -0.561 -0.383 -0.182 -0.089 -0.044 -0.011 -0.003 -0.001  0.000
0.60 -2.076 -0.877 -0.331 -0.057 0.079 0.142 0.168 0.145 0.114 0.062 0.032 0.016 0.006
0.70 -0.227 0992 1.113 1.044 0920 0.78 0.561 0.391 0272 0.131 0.064 0.032 0.011
0.80 6.304 4280 3.150 2401 1.867 1471 0939 0615 0410 0.189 0.090 0.044 0.015
0.90 12.080 7.287 4939 3.545 2635 2.005 1219 0773 0.505 0228 0.107 0.052 0.018
1.00 13.344 8218 5575 3973 2926 2207 1322 0.831 0.539 0.241 0.113 0.055 0.019
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Annex 8.1 (cont.)

Table 3 Values of f; for b/D = 1 and d/D = 0.70

B
a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 -4710 -3.342 2562 -2.029 -1.634 -1.330 -0.897 -0.613 -0.423 -0204 -0.100 -0.049 -0.017
0.10 -4.659 -3.293 2515 -1.985 -1.593 -1.293 -0.868 —0.591 -0.406 -0.195 -0.095 -0.047 -0.017
0.20 -4.500 -3.138 -2.368 -1.848 -1.468 -1.179 -0.778 -0.523 -0.355 -0.168 -0.082 —0.040 -0.014
0.30 -4203 -2.853 -2.100 -1.601 -1.245 -0.981 -0.626 -0.410 -0.273 -0.126 -0.060 -0.029 —0.010
0.40 -3.705 -2.381 -1.666 -1.212 -0.902 -0.683 -0.408 -0.254 -0.162 —0.071 -0.033 —0.016 -0.005
0.50 -2.853 -1.601 -0.981 -0.626 -0.410 -0.273 -0.126 -0.060 -0.029 -0.007 -0.002 -0.000  0.000
0.60 -1.189 -0.230 0.100 0.218 0.251 0.248 0206 0.157 0.115 0.059 0030 0015 0.005
0.70 3.064 2155 1.638 1286 1.028 0.830 0.553 0374 0255 0.122 0.059 0.029 0.010
0.80 7239 4463 3104 2289 1745 1359 0859 0.561 0374 0173 0.083 0.040 0.014
0.90 8.651 5592 3958 2925 2220 1.716 1.067 0.687 0453 0206 0.098 0.048 0.017
1.00 9.019 5915 4223 3134 2382 1.840 1.140 0.731 0481 0218 0.103 0.050 0.017
Table 4 Values of f; for b/D = 1 and d/D = 0.60
B
a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 -4.597 -3.237 2457 -1.929 -1.542 -1.246 -0.829 -0.561 -0.383 -0.182 -0.089 -0.044 —0.015
0.10 —4.538 -3.175 -2.403 -1.880 -1.497 -1.206 -0.799 -0.538 -0.367 -0.174 -0.084 -0.041 -0.015
0.20 4348 2994 -2.233 -1.725 -1.358 -1.082 -0.705 -0.470 -0.318 -0.149 -0.072 —-0.035 -0.012
0.30 3986 -2.650 -1.918 -1442 -1.110 -0.868 -0.549 -0.358 -0.239 -0.110 -0.053 —-0.026 -0.009
0.40 -3336 -2.055 -1.394 -0.993 -0.731 -0.552 -0.331 -0.208 -0.135 -0.060 -0.028 -0.014 —0.005
0.50 -2.055 -0.993 -0.552 -0.331 -0.208 -0.135 -0.060 —0.028 -0.014 -0.003 -0.001 —-0.000 -0.000
0.60 1196 0854 0.658 0.524 0424 0347 0236 0.163 0.113 0055 0.027 0013 0.005
0.70 4424 2679 1.847 1.358 1.037 0811 0.518 0342 0231 0.108 0052 0.026 0.009
0.80 5634 3.670 2622 1958 1.502 1.174 0.745 0488 0326 0.152 0.073 0.035 0.012
0.90 6.154 4140 3.026 2295 1777 1397 0890 0.582 0.388 0.179 0.086 0.042 0.015
1.00 6.304 4280 3.150 2401 1.867 1471 0939 0.615 0410 0.189 0.090 0.044 0.015
Table 5 Values of f; for b/D = 1 and d/D = 0.50
B

a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 4434 3075 -2.307 -1.791 -1.415 -1.131 -0.739 -0.493 -0.333 -0.156 -0.075 -0.037 -0.013
0.10 -4360 -3.005 -2.243 -1.732 -1.364 -1.087 -0.707 -0.470 -0.317 -0.149 -0.072 -0.035 -0.012
0.20 4119 2777 -2.036 -1.5499 -1.205 -0.951 -0.611 -0.403 -0.271 -0.127 -0.061 -0.030 -0.010
0.30 -3.626 -2.327 -1.642 -1214 0924 -0.719 -0453 0296 -0.198 -0.092 -0.044 -0.022 —0.008
0.40 -2.609 -1.486 -0.976 -0.691 -0.513 -0.392 -0.243 -0.157 -0.105 —-0.048 -0.023 -0.011 -0.004
0.50 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.60 2.609 1486 0976 0.691 0513 0392 0243 0.157 0.105 0.048 0.023 0011 0.004
0.70 3.626 2327 1.642 1214 0924 0719 0453 0296 0.198 0.092 0.044 0.022 0.008
0.80 4119 2777 2036 1.549 1205 0951 0.611 0403 0271 0.127 0061 0030 0.010
0.90 4360 3.005 2243 1732 1364 1.087 0707 0470 0317 0.149 0.072 0.035 0.012
1.00 4434 3075 2307 1791 1415 1131 0739 0493 0333 0156 0075 0.037 0013
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Table 6 Values of f;forb/D = 1 and d/D = 0.40

B
a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 4203 -2.853 -2.100 -1.601 -1.245 -0.981 -0.626 -0.410 -0.273 -0.126 -0.060 -0.029 -0.010
0.10 -4.102 -2.760 -2.107 -1.530 -1.185 -0.931 -0.593 -0.388 -0.259 -0.120 -0.057 -0.028 -0.010
0.20 -3.756 -2.447 -1.748 -1.305 -1.002 -0.783 -0.497 -0.325 -0.218 -0.101 -0.048 -0.024 -0.008
0.30 -2949 -1.786 -1.231 -0.905 -0.691 -0.541 -0.345 -0.228 -0.154 -0.072 -0.035 -0.017 -0.006
0.40 -0.798 -0.569 -0.439 -0.349 -0.282 -0.231 -0.157 -0.108 -0.075 -0.037 -0.018 -0.009 -0.003
0.50 1.370  0.662 0368 0.220 0.135 0.090 0.040 0.019 0.009 0.002 0.001 0.000 0.000
0.60 2224 1370 0929 0.662 0488 0.368 0220 0.139 0.090 0.040 0.019 0.009 0.003
0.70 2,657 1767 1279 0961 0.740 0.578 0366 0.239 0.159 0.074 0.035 0.017 0.006
0.80 2899 1996 1489 1.150 0905 0.722 0.470 0313 0212 0.100 0.048 0.024 0.008
0.90 3.025 2117  1.602 1253 0998 0.804 0.532 0359 0.244 0.116 0.056 0.028 0.010
1.00 3.064 2155 1.638 1.286 1.028 0.830 0.553 0.374 0255 0.122 0.059 0.029 0.010
Table 7 Values of f, for b/D = 1 and d/D = 0.20

B
a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 -3.336 —2.055 -1.394 -0.993 —0.731 -0.552 -0.331 -0.208 -0.135 -0.060 -0.028 -0.014 -0.005
0.10 -3.020 -1.822 -1.235 -0.886 -0.659 -0.501 -0.305 -0.193 -0.126 -0.057 -0.027 -0.013 -0.005
0.20 -1.576 -1.070 -0.788 -0.600 -0.467 -0.368 -0.235 -0.154 -0.102 -0.047 -0.023 -0.011 -0.004
0.30 -0.057 -0.248 -0.278 -0.261 -0.230 -0.197 -0.140 -0.098 -0.068 -0.033 -0.016 -0.008 -0.003
0.40 0.519 0.219 0.083 0.014 -0.020 -0.036 -0.042 -0.036 -0.028 -0.015 -0.008 -0.004 -0.001
0.50 0.808 0.482 0.311 0207 0.140 0.096 0046 0.022 0.011 0.003 0.001 0.000 0.000
0.60 0978 0.643 0458 0.338 0.255 0.194 0.117 0.072 0.046 0.020 0.009 0.004 0.001
0.70 1.084 0.745 0.554 0.426 0334 0265 0.170 0.112 0.075 0.034 0.016 0.008 0.003
0.80 1.149 0.808 0.614 0482 0.385 0.311 0207 0.140 0.09 0.046 0.022 0.011 0.004
0.90 1.185 0.843 0.647 0.514 0415 0.338 0229 0.157 0.109 0.053 0.026 0.013 0.005
1.00 1.196 0.854 0.658 0.524 0424 0347 0236 0.163 0.113 0.055 0.027 0.013 0.005
Table 8 Values of f; for b/D = 0.90 and d/D = 0.80

B
a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 4743 3373 -2.592 -2.057 -1.660 -1.354 -0916 -0.628 -0.434 -0.210 -0.103 -0.051 -0.018
0.10 -4.694 3326 -2.547 -2.015 -1.621 -1.318 -0.887 -0.606 -0.417 -0.201 -0.098 -0.048 -0.017
0.20 -4.542 -3.179 2407 -1.883 -1.499 -1.207 -0.799 -0.538 -0.366 -0.174 -0.084 -0.041 -0.015
0.30 4263 2910 -2.151 -1.646 -1.283 -1.013 -0.648 -0.425 -0.283 -0.131 -0.062 -0.030 -0.011
0.40 -3.803 2470 -1.742 -1.274 0952 -0.722 -0.431 -0.267 -0.170 -0.074 -0.034 -0.016 -0.006
0.50 -3.048 -1.763 -1.104 -0.715 -0.471 -0.315 -0.145 -0.069 -0.034 -0.008 -0.002 -0.001  0.000
0.60 -1.708 -0.569 -0.096 0.111 0.193 0218 0.198 0.156 0.116 0.061 0.031 0.015 0.006
0.70 1.189 1.644 1.500 1258 1.032 0.843 0.566 0.384 0263 0.125 0.061 0.030 0.011
0.80 9712 5389 3509 2491 1.859 1431 0.895 0.582 0.387 0.179 0.086 0.042 0.015
0.90 10816 6.356 4303 3.117 2344 1.803 1.115 0.716 0471 0.214 0.101  0.049 0.017
1.00 5425 5032 4064 3.168 2457 1915 1.190 0.763 0.500 0.226 0.107 0.052 0.018
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Table 9 Values of f; for b/D = 0.90 and d/D = 0.70

B
a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 —4.651 -3.284 -2.506 -1.976 -1.585 -1.284 —0.860 -0.584 -0.400 -0.191 -0.093 -0.046 —-0.016
0.10 -4.597 3232 2457 -1.929 -1.542 -1246 —0.829 -0.561 -0.383 -0.182 -0.089 -0.044 -0.015
0.20 4424 -3.065 -2.299 -1.784 -1.409 -1.127 -0.737 -0.492 -0.333 -0.157 -0.076 -0.037 —-0.013
0.30 —4.100 -2.755 -2.010 -1.520 -1.173 -0.919 -0.582 -0.379 -0.252 -0.116 -0.056 -0.027 -0.009
0.40 -3.547 -2.235 -1.536 -1.101 -0.810 -0.609 -0.361 -0.224 -0.144 -0.064 -0.030 -0.014 -0.005
0.50 -2.572 -1.354 -0.778 -0.467 -0.290 -0.184 -0.079 -0.036 -0.017 -0.004 -0.001 -0.000  0.000
0.60 -0.562  0.248 0433 0439 0395 0339 0240 0.168 0.117 0.057 0028 0014 0.005
0.70 4965 3.061 2094 1515 1.138 0878 0551 0362 0243 0.114 0.055 0.027 0.009
0.80 9410 5109 3260 2277 1.680 1283 0.796 0.517 0344 0.160 0076 0037 0.013
0.90 6304 4280 3.150 2401 1.867 1471 0939 0615 0410 0.189 0.090 0.044 0.015
1.00 2897  3.170 2791 2312 1.875 1.511 0983 0.648 0432 0.199 0.095 0.046 0016
Table 10 Values of f; for b/D = 0.90 and d/D = 0.60
B
a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 —4.520 -3.157 -2.384 -1.861 -1.478 -1.187 —0.782 -0.524 -0.355 -0.167 -0.081 -0.039 -0.014
0.10 —4.455 -3.095 -2.326 -1.808 -1.431 -1.145 -0.750 -0.501 -0.338 -0.159 -0.077 -0.037 -0.013
0.20 -4.247 -2.897 -2.142 -1.641 -1282 -1.015 —0.654 —0.432 —0290 -0.136 -0.065 -0.032 —-0.011
0.30 -3.845 -2.517 -1.797 -1.335 -1.017 -0.789 -0.494 -0.321 -0.213 -0.099 -0.047 -0.023 -0.008
0.40 -3.108 -1.848 -1.217 -0.847 -0.613 -0.458 -0.273 —0.173 -0.114 -0.052 —0.025 -0.012 —-0.004
0.50 -1.601 -0.626 -0.273 -0.126 -0.060 -0.029 -0.007 -0.002 -0.000 0.000 0.000 0.000 0.000
0.60 2410 1533 1.066 0.774 0.577 0440 0269 0.172 0.113 0.052 0.025 0.012 0.004
0.70 6.144 3458 2220 1.534 1113 0836 0506 0324 0214 0.099 0047 0023 0.008
0.80 6.547 3837 2566 1.840 1378 1.062 0.666 0.435 0291 0.136 0065 0032 0.011
0.90 3.757 2780 2176 1735 1395 1.127 0.746 0500 0338 0.159 0.077 0.037 0013
1.00 1318 1.905 1.838 1.609 1358 1.129 0.767 0.520 0354 0.167 0.081 0.039 0.014
Table 11 Values of f; for b/D = 0.90 and d/D = 0.50
B

a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 4336 -2.979 -2216 -1.705 -1.335 -1.059 -0.681 —0.448 -0.299 -0.138 -0.066 -0.032 —-0.011
0.10 4254 2902 -2.145 -1.642 -1.280 -1.012 -0.648 -0.425 -0.284 -0.131 -0.063 -0.030 -0.011
0.20 -3.986 -2.650 -1.918 -1.442 -1.110 -0.868 -0.549 -0.358 -0.239 -0.110 —-0.053 -0.026 —0.009
0.30 3430 -0.146 -1.482 -1.076 -0.809 -0.622 -0.388 -0.253 -0.169 -0.079 -0.038 -0.019 —-0.007
0.40 -2.256 -1.189 -0.739 -0.506 -0.369 -2.282 —0.177 -0.118 -0.081 -0.039 —-0.019 -0.010 -0.003
0.50 0854  0.524 0347 0236 0.163 0.113 0.055 0.027 0013 0003 0001 0000 0.000
0.60 3.872 2154 1362 0920 0.650 0473 0269 0.163 0.103 0.045 0.021 0010 0.003
0.70 4716 2823 1871 1310 0953 0714 0428 0271 0.177 0081 0.038 0.019 0.007
0.80 4424 2679 1.847 1358 1.037 0.811 0.518 0342 0231 0.108 0.052 0026 0.009
0.90 2114 1701 1410 1172 0973 0.807 0.554 0380 0262 0.125 0.061 0.030 0011
1.00 0227 0992 1113 1.044 0920 0789 0.561 0.391 0272 0.131 0064 0032 0.011
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Table 12 Values of f; for b/D = 0.90 and d/D = 0.40

B
a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 4,078 2732 -1.985 -1.494 -1.147 -0.893 -0.557 -0.357 -0.234 -0.105 -0.050 -0.024 -0.008
0.10 -3.966 —2.629 -1.894 -1.417 -1.083 -0.840 -0.523 -0.336 -0.220 -0.100 -0.047 -0.023 -0.008
0.20 -3.577 2279 -1.596 -1.171 -0.885 -0.683 -0.424 -0.274 -0.181 -0.083 -0.040 -0.019 -0.007
0.30 -2.658 -1.533 -1.021 -0.734 -0.552 -0.428 -0.272 -0.180 -0.122 -0.058 -0.028 -0.014 -0.005
0.40 -0.153 -0.148 -0.141 -0.132 -0.122 -0.111 -0.088 -0.068 -0.051 -0.027 -0.014 -0.007 -0.003
0.50 2327 1214 0.719 0453 0296 0.198 0.092 0.044 0.022 0.005 0.001 0.000 0.000
0.60 3.158 1.881 1.228 0.840 0.592 0.428 0237 0.139 0.086 0.036 0.016 0.008 0.003
0.70 3336 2052 1.389 0988 0.726 0.547 0328 0.207 0.135 0.061 0.029 0.014 0.005
0.80 2.899 1.761 1.228 0917 0.711 0.564 0368 0.247 0.168 0.080 0.039 0.019 0.007
0.90 0961 0.896 0.807 0.709 0.612 0.523 0374 0.264 0.185 0.091 0.045 0.022 0.008
1.00 -0.575 0305 0.548 0.588 0.555 0.497 0373 0.269 0.191 0.095 0.047 0.023  0.008
Table 13 Values of f; for b/D = 0.90 and d/D = 0.30
B
a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 -3.705 -2.381 -1.666 —1.212 -0.902 -0.683 -0.408 -0.254 -0.162 -0.071 -0.033 -0.016 -0.005
0.10 -3.528 2227 -1.540 -1.113 -0.827 -0.627 -0.376 -0.235 -0.151 -0.067 -0.031 -0.015 -0.005
0.20 -2.844 -1.684 -1.134 0815 -0.608 -0.465 -0.286 -0.183 -0.120 -0.055 -0.026 -0.013 -0.004
0.30 -0.798 -0.569 -0.439 -0.349 -0.283 -0.231 -0.157 -0.108 -0.075 -0.037 -0.018 -0.009 -0.003
0.40 1.264  0.560 0271 0.130 0.055 0.015 -0.019 -0.026 -0.024 -0.015 -0.008 -0.004 -0.002
0.50 1.996 1.150 0.722 0470 0313 0.212 0.100 0.048 0.024 0.006 0.001 0.000 0.000
0.60 2260 1.388 0927 0.643 0457 0331 0.181 0.104 0.063 0.025 0.011 0.005 0.002
0.70 2224 1370 0929 0.662 0488 0.368 0.220 0.139 0.090 0.040 0.019 0.009 0.003
0.80 1.767 1.041 0719 0.539 0421 0.338 0.225 0.154 0.106 0.051 0.025 0.012 0.004
0.90 0.106 0.277 0328 0330 0309 0279 0213 0.157 0.113 0.057 0.029 0.014 0.005
1.00 -1.189 -0.230 0.100 0218 0.251 0.248 0206 0.157 0.115 0.059 0.030 0.015 0.005
Table 14 Values of f for b/D = 0.90 and d/D = 0.20
B

a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 -3.123 -1.854 -1.211 -0.830 -0.588 -0.428 -0.239 -0.141 -0.087 -0.036 -0.016 -0.008 -0.003
0.10 -2.768 -1.594 -1.035 -0.714 -0.511 -0.375 -0.213 -0.128 -0.080 -0.034 -0.015 -0.007 -0.002
0.20 -1.137 -0.754 -0.542 -0.404 -0.307 -0.237 -0.145 -0.092 -0.060 -0.027 -0.013 -0.006 -0.002
0.30 0.565 0.152 0.008 -0.046 -0.065 -0.068 -0.058 -0.044 -0.033 -0.017 -0.008 -0.004 -0.002
0.40 1.167 0.633 0370 0.221 0.133 0.078 0.024 0.003 -0.004 -0.006 -0.004 -0.002 -0.001
0.50 1411 0851 0.554 0372 0.253 0.174 0.083 0.041 0.020 0.005 0.001  0.000 0.000
0.60 1.467 0904 0.605 0419 0296 0213 0.114 0.063 0.037 0.014 0.006 0.003 0.001
0.70 1.344  0.802 0.530 0369 0.266 0.197 0.115 0.071 0.045 0.020 0.009 0.004 0.002
0.80 0.899 0471 0303 0221 0.173 0.140 0.09 0.068 0.048 0.024 0.012 0.006 0.002
0.90 -0.552 -0.211 -0.056 0.020 0.056 0.071 0.073 0.061 0.047 0.026 0.013 0.007 0.002
1.00 -1.670 -0.653 —0.260 -0.084 -0.000 0.039 0.062 0.057 0.046 0.026 0.014 0.007 0.003
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Table 15 Values of f; for b/D = 0.90 and d/D = 0.10

B
a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50

0.00 -2.055 -0.993 -0.552 -0.331 -0.208 -0.135 -0.060 —0.028 -0.014 -0.003 —0.001 -0.000 -0.000
0.10 -1.070 -0.600 -0.368 -0.235 -0.154 -0.102 -0.047 -0.023 -0.011 -0.003 -0.00 -0.000 —-0.000
0.20 0.219  0.014 -0.036 -0.042 -0.036 -0.028 -0.015 -0.008 -0.004 -0.001 -0.000 -0.000 -0.000
0.30 0.643 0338 0.194 0.117 0072 0046 002 0.009 0004 0.001 0.000 0000 -0.000
0.40 0.808 0482 0311 0207 0.140 0.096 0.046 0.022 0011 0003 0.001 0000 -0.000
0.50 0854 0.524 0347 0236 0.163 0.113 0055 0027 0013 0.003 0001 0000 0.000
0.60 0.808 0482 0311 0207 0.140 0.096 0.046 0022 0.011 0003 0001 0000 0.000
0.70 0.643 0338 0.194 0.117 0.072 0.046 0.020 0.009 0.004 0001 0.000 0000 0.000
0.80 0.219 0014 -0.036 -0.042 -0.036 -0.028 -0.015 -0.008 -0.004 -0.001 -0.000 -0.000  0.000
0.90 -1.070 -0.600 -0.368 -0.235 -0.154 -0.102 -0.047 -0.023 -0.011 -0.003 -0.001 -0.000  0.000
1.00 -2.054 -0.993 -0.552 -0.331 -0.208 -0.135 -0.060 —-0.028 -0.014 -0.003 —-0.00 -0.000  0.000
Table 16 Values of f; for b/D = 0.80 and d/D = 0.70

B

a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50

0.00 4560 -3.196 -2.421 -1.895 -1.509 -1.215 -0.803 -0.539 -0.366 —-0.172 -0.083 -0.041 -0.014
0.10 -4.500 -3.137 2366 -1.844 -1.463 -1.174 -0.771 —0.516 -0.349 -0.164 -0.079 -0.039 -0.014
0.20 4306 -2.952 -2.192 -1.685 -1.320 -1.047 -0.676 —0.447 -0.300 —-0.140 —0.067 -0.033 -0.012
0.30 —3.937 -2.601 -1.868 -1.393 -1.063 -0.825 -0.515 -0.334 -0.221 -0.102 —-0.049 —0.024 -0.008
0.40 3292 -1.999 -1.330 -0.927 -0.668 -0.495 -0.290 -0.182 -0.119 -0.054 -0.026 -0.013 -0.004
0.50 -2.095 -0.944 -0451 -0219 -0.108 -0.053 -0.013 —0.003 -0.001 0.000 0.000 0.00 0.000
0.60 0.584 1.065 0962 0.768 0.596 0.460 0.282 0.180 0.118 0054 0.026 0013 0.004
0.70 8.740 4479 2.688 1772 1.244 0913 0.537 0339 0223 0.102 0.049 0024 0.008
0.80 9.109 4830 3012 2063 1.500 1.I35 0.698 0452 0302 0.140 0067 0033 0012
0.90 1792 2203 1997 1.686 1390 1.139 0.763 0.514 0349 0.164 0.079 0039 0014
1.00 0.369  1.308 1.519 1456 1.294 1108 0.776 0.532 0364 0.172 0.083 0041 0014
Table 17 Values of f; for b/D = 0.80 and d/D = 0.60

B

a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50

0.00 -4.408 -3.048 -2280 -1.763 -1.388 -1.104 —0.715 —0.471 -0.315 -0.145 -0.069 -0.034 -0.012
0.10 4336 2979 2216 -1.705 -1.335 -1.059 -0.681 -0.448 -0.299 -0.138 -0.066 —0.032 -0.011
0.20 —4.100 -2.755 -2.010 -1.520 -1.173 -0.919 -0.582 —0.379 -0.252 -0.116 -0.056 -0.027 —0.009
0.30 -3.636 -2.321 -1.620 -1.180 -0.884 -0.677 —0.417 -0.269 -0.178 -0.083 -0.040 -0.020 -0.007
0.40 -2761 -1.537 -0.954 -0.633 -0.444 -0.326 -0.194 -0.126 -0.085 -0.041 -0.020 -0.010 -0.004
0.50 -0.877 -0.057 0.142 0.168 0.145 0.114 0.062 0.032 0016 0.004 0001 0.000 0.000
0.60 4468 2.585 1.647 1.105 0.769 0.551 0304 0.180 0.112 0.048 0.022 0011 0.004
0.70 8.622 4365 2581 1672 1.154 0.833 0475 0293 0.190 0.8 0040 0.020 0.007
0.80 4965 3.061 2094 1515 1138 0.878 0551 0362 0243 0.114 0055 0.027 0.009
0.90 0227 0992 1113 1.044 0920 0789 0.561 0391 0272 0.131 0064 0032 0011
1.00 -0.736  0.341 0725 0.829 0.808 0.736  0.556 0.399 0280 0.137 0.067 0033 0012

319



Annex 8.1 (cont.)

Table 18 Values of f, for b/D = 0.80 and d/D = 0.50

B
a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 4200 -2.848 2090 -1.587 -1.227 -0.961 -0.603 -0.388 -0.254 -0.114 -0.054 -0.026 -0.009
0.10 -4.108 -2.760 -2.011 -1.517 -1.167 -0910 -0.568 -0.365 -0.239 —0.108 -0.051 -0.024 -0.008
0.20 -3.800 2474 -1.755 -1.295 -0.980 -0.755 -0.466 -0.298 -0.196 -0.089 -0.042 -0.021 -0.007
0.30 -3.153 -1.892 -1.259 -0.886 -0.650 -0.492 -0.301 -0.195 -0.131 -0.062 -0.030 -0.015 -0.005
0.40 -1.741 -0.762 -0.404 -0.250 -0.175 -0.135 -0.093 -0.069 -0.051 -0.028 -0.014 -0.007 -0.003
0.50 2155 1286 0.830 0.553 0374 0255 0.122 0.059 0.029 0.007 0.002 0.000 0.000
0.60 5732 3.062 1.847 1.190 0.802 0.558 0.292 0.165 0.099 0.040 0.017 0.008 0.003
0.70 5892 3216 1994 1327 0927 0.672 0382 0233 0.149 0.066 0.031 0.015 0.005
0.80 2662 1775 1.292 0981 0.763 0.604 0393 0263 0.179 0.085 0.041  0.020 0.007
0.90 -0.786  0.150 0.445 0.524 0.516 0475 0366 0.268 0.192 0.096 0.048 0.024 0.008
1.00 -1.506 -0.354 0.129 0335 0408 0414 0351 0268 0.195 0.100 0.050 0.025 0.009
Table 19 Values of f for b/D = 0.80 and d/D = 0.40
B
a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 3912 -2.572 -1.834 -1.354 -1.019 -0.778 -0.467 -0.290 -0.184 -0.079 -0.036 -0.017 -0.006
0.10 -3.784 2454 -1.731 -1.267 -0.948 -0.721 -0.432 -0.268 -0.171 -0.074 -0.034 -0.016 -0.006
0.20 3336 —2.055 -1.394 -0.993 -0.731 -0.552 -0.331 -0.208 -0.135 -0.060 -0.028 -0.014 -0.005
0.30 2256 -1.189 -0.739 -0.506 -0.369 -0.282 -0.177 -0.118 -0.081 -0.039 -0.019 -0.010 -0.003
0.40 0.759 0.432 025 0.153 0.085 0.042 -0.002 -0.018 -0.021 -0.015 -0.009 -0.005 -0.002
0.50 3.670 1958 1.174 0.745 0488 0326 0.152 0.073 0.035 0.009 0.002 0.001 0.000
0.60 4374 2493 1.559 1.022 0.692 0480 0.246 0.135 0.078 0.029 0.012 0.006 0.002
0.70 3872 2154 1362 0920 0.650 0473 0269 0.163 0.103 0.045 0.021 0.010 0.003
0.80 1.196 0854 0.658 0.524 0424 0347 0236 0163 0.113 0.055 0.027 0.013 0.005
0.90 -1.503 -0.469 -0.067 0.107 0.180 0203 0.189 0.151 0.114 0.060 0.031 0.015 0.006
1.00 2076 -0.877 -0.331 -0.057 0.079 0.142 0.168 0.145 0.114 0.062 0.032 0.016 0.006
Table 20 Values of f; for b/D = 0.80 and d/D = 0.30
B

a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 -3.497 -2.183 -1.481 -1.042 -0.751 -0.549 -0.307 -0.179 -0.108 -0.043 -0.019 -0.009 -0.003
0.10 -3.295 -2.007 -1.339 -0.933 -0.669 -0.489 -0.274 -0.161 -0.098 -0.040 -0.018 -0.008 -0.003
0.20 -2.505 -1.385 -0.880 -0.601 -0.430 -0.317 -0.183 -0.112 -0.071 -0.031 -0.014 -0.007 -0.002
0.30 -0.104 -0.101 —0.096 -0.090 -0.083 -0.075 -0.059 -0.045 -0.034 -0.018 -0.009 -0.005 -0.002
0.40 2278 1.167 0.674 0.411 0257 0.162 0.063 0.022 0.005 -0.004 -0.003 -0.002 -0.001
0.50 3.005 1.732 1.087 0.707 0470 0317 0.149 0.072 0.035 0.009 0.002 0.001 0.000
0.60 3.053 1780 1.132 0.750 0.510 0.353 0.178 0.094 0.052 0.018 0.007 0.003 0.001
0.70 2431 1315 0815 0.543 0379 0273 0.151 0.089 0.055 0.23 0.010 0.005 0.002
0.80 0.178 0.171 0.161 0.148 0.134 0.119 0.091 0.068 0.049 0.025 0.013 0.006 0.002
0.90 2036 -0.939 -0.466 -0.227 -0.098 -0.026 0.033 0.045 0.041 0.026 0.014 0.007 0.003
1.00 2512 -1.282 —0.693 -0.372 -0.190 -0.085 0.009 0.036 0.038 0.026 0.014 0.008 0.003
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Table 21 Values of f; for b/D

= 0.80and d/D = 0.20

B
a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 -2.853 -1.601 -0.981 -0.626 -0.410 -0.273 -0.126 -0.060 -0.029 —0.007 -0.002 -0.000 —0.000
0.10 2447 -1.305 -0.783 -0.497 -0.325 -0.218 -0.101 -0.048 -0.024 -0.006 -0.001 -0.000 —0.000
0.20 -0.569 -0.349 -0.231 -0.157 -0.108 -0.075 -0.037 -0.018 -0.009 —0.002 -0.001 —0.000 -0.000
0.30 1.370  0.662 0368 0.220 0.139 0.090 0.040 0.019 0.009 0.002 0.001 0.000 —0.000
0.40 1996  1.150 0.722 0470 0313 0212 0.100 0.048 0.024 0.006 0.001 0.000 -0.000
0.50 2155 1286 0.830 0.553 0374 0255 0.122 0.059 0.029 0.007 0.002 0.000 0.000
0.60 1.996 1150 0.722 0470 0313 0212 0.100 0.048 0.024 0.006 0.001 0.000 0.000
0.70 1.370  0.662 0.368 0.220 0.139  0.090 0.040 0.019 0.009 0.002 0.001 0.000 0.000
0.80 -0.569 -0.349 —0.231 -0.157 -0.108 -0.075 -0.037 -0.018 -0.009 -0.002 -0.001 -0.000  0.000
0.90 2447 -1.305 -0.783 -0.497 -0.325 -0.218 -0.101 -0.048 -0.024 —0.006 -0.001 —-0.000  0.000
1.00 -2.853 -1.601 -0.981 -0.626 -0.410 -0.273 -0.126 —0.060 -0.029 -0.007 -0.002 -0.000  0.000
Table 22 Values of f; for b/D = 0.70 and d/D = 0.60
B
a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 —4.256 2901 -2.140 -1.632 -1.266 -0.994 -0.626 -0.404 -0.264 -0.118 -0.056 -0.027 -0.009
0.10 4172 2821 -2.066 -1.565 -1.208 -0.944 -0.592 -0.380 —0.249 -0.112 -0.053 -0.025 -0.009
0.20 -3.895 -2.559 -1.828 -1.355 -1.027 -0.791 -0.488 -0.311 -0.204 -0.093 -0.044 -0.021 -0.007
0.30 3334 -2.041 -1.371 -0966 -0.705 -0.529 -0.318 —0.204 -0.136 -0.064 -0.031 -0.015 -0.005
0.40 2229 -1.075 -0.577 -0.339 -0.219 -0.156 -0.098 —0.070 -0.052 -0.028 -0.015 -0.008 -0.003
0.50 0341 0829 0.736 0.556 0399 0.280 0.137 0.067 0.033 0.008 0.002 0.001 0.000
0.60 8352 4104 2333 1442 0943 0.642 0326 0.180 0.106 0.042 0.018 0.009 0.003
0.70 8.504 4251 2473 1573 1.064 0.752 0.414 0248 0.157 0.069 0.032 0.016 0.005
0.80 0.820 1293 1.176 0967 0.775 0.621 0.405 0271 0.184 0.088 0.043 0.021  0.007
0.90 -1.339 —0.219 0228 0402 0450 0440 0359 0.269 0.195 0.098 0.049 0.024 0.009
1.00 -1.841 -0.626 —0.069 0203 0323 0.363 0335 0.265 0.197 0.102 0.051 0.026 0.009
Table 23 Values of f; for b/D = 0.70 and d/D = 0.50
B

a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 -4.020 -2.674 -1.925 -1.434 -1.086 -0.833 -0.503 -0.312 -0.198 -0.085 -0.039 -0.018 -0.006
0.10 -3912 2572 -1.834 -1.354 -1.019 -0.778 -0.467 -0.290 —0.184 -0.079 -0.036 -0.017 -0.006
0.20 -3.547 2235 -1.536 -1.101 -0.810 -0.609 -0.361 -0.224 -0.144 -0.064 -0.030 -0.014 -0.005
0.30 2761 -1.537 —0.954 -0.633 0444 -0.326 -0.194 —0.126 -0.085 -0.041 -0.020 -0.010 -0.004
0.40 -0.965 -0.144 0.059 0.089 0.072 0.045 0.006 -0.013 -0.018 -0.015 -0.009 -0.005 -0.002
0.50 4280 2401 1471 0939 0615 0410 0.189 0.090 0.044 0.011 0.003 0.001 0.000
0.60 8306 4.060 2290 1401 0.905 0.607 0297 0.158 0.089 0.032 0.013 0.006 0.002
0.70 4468 2585 1.647 1.105 0.769 0.551 0.304 0.180 0.112 0.048 0.022 0.011 0.004
0.80 -0.562 0248 0433 0439 0395 0339 0240 0.168 0.117 0.057 0.028 0.014 0.005
0.90 -2.076 -0.877 -0.331 -0.057 0.079 0.142 0.168 0.145 0.114 0.062 0.032 0.016 0.006
1.00 -2.444 -1.185 -0.566 -0.225 -0.035 0.067 0.138 0.135 0.111  0.063 0.033 0.017 0.006
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Table 24 Values of f for b/D = 0.70 and d/D = 0.40

%
a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 -3.696 -2.364 -1.638 -1.173 -0.856 -0.632 -0.355 -0.206 -0.124 -0.048 -0.021 -0.010 -0.003
0.10 -3.545 2227 -1.519 -1.075 -0.777 -0.570 -0.319 -0.186 -0.112 -0.045 -0.019 -0.009 -0.003
0.20 -3.013 -1.756 -1.128 -0.763 -0.535 -0.387 -0.215 -0.128 -0.080 -0.034 -0.015 -0.007 -0.002
0.30 -1.696 -0.719 -0.362 -0.210 -0.138 -0.100 -0.065 -0.047 -0.034 -0.018 -0.010 -0.005 -0.002
0.40 2110 1243 0.788 0513  0.337 0221 0.093 0.037 0.012 -0.002 -0.003 -0.002 -0.001
0.50 5592 2925 1.716 1.067 0.687 0.453 0206 0.098 0.048 0.012 0.003 0.001 0.000
0.60 5.637 2969 1.758 1.107 0.724 0.487 0235 0.120 0.065 0.021  0.008 0.003  0.001
0.70 2250 1379 0919 0.637 0452 0327 0179 0.104 0.063 0.026 0.011 0.005 0.002
0.80 -1.441 -0471 -0.126 0.011 0.065 0.084 0.082 0.066 0.050 0.026 0.013 0.007 0.002
0.90 —2.601 -1.359 -0.755 -0.419 -0.224 -0.109 -0.002 0.031 0.036 0.026 0.015 0.008 0.003
1.00 -2.890 -1.605 -0.948 -0.562 -0.326 -0.180 -0.034 0.016 0.030 0.025 0.015 0.008 0.003
Table 25 Values of f for b/D = 0.70 and d/D = 0.30
B
a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 -3.232 -1.929 -1.246 -0.829 -0.561 -0.383 -0.182 -0.089 -0.044 -0.011 -0.003 -0.001 -0.000
0.10 2994 -1.725 -1.082 -0.706 -0.470 -0.318 -0.149 -0.072 -0.035 -0.009 -0.002 -0.001 -0.000
0.20 -2.055 -0.993 -0.552 -0.331 -0.208 -0.135 -0.060 -0.028 -0.014 -0.003 -0.001 -0.000 -0.000
0.30 0.854 0.524 0347 0236 0.163 0.113 0055 0.027 0.013 0.003 0.001 0.000 -0.000
0.40 3.670 1958 1.174 0.745 0488 0.326 0.152 0.073 0.035 0.009 0.002 0.001 -0.000
0.50 4280 2401 1471 0939 0615 0410 0.189 0.09 0.044 0.011 0.003 0.001 0.000
0.60 3.670 1958 1.174 0.745 0488 0326 0.152 0.073 0.035 0.009 0.002 0.001 0.000
0.70 0.854 0.524 0347 0236 0.163 0.113 0.055 0.027 0.013 0.003 0.001 0.000 0.000
0.80 -2.055 -0.993 -0.552 -0.331 -0.208 -0.135 -0.060 -0.028 -0.014 -0.003 -0.001 -0.000  0.000
0.90 -2.994 -1.725 -1.082 -0.705 -0.470 -0.318 -0.149 -0.072 -0.035 -0.009 -0.002 -0.001  0.000
1.00 -3.232 -1.929 -1.246 -0.829 -0.561 -0.383 -0.182 -0.089 -0.044 -0.011 -0.003 -0.001  0.000
Table 26 Values of f for b/D = 0.60 and d/D = 0.50
%

a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 -3.784 -2.446 -1.711 -1.235 -0.907 -0.673 -0.380 -0.221 -0.132 -0.051 -0.022 -0.010 -0.003
0.10 -3.651 -2.323 -1.602 -1.142 -0.830 -0.611 -0.343 -0.199 -0.120 -0.047 -0.020 -0.009 -0.003
0.20 -3.200 -1.911 -1.245 -0.846 -0.593 -0.426 -0.234 -0.137 -0.085 -0.035 -0.016 -0.008 -0.003
0.30 -2.187 -1.033 -0.537 -0.300 -0.183 -0.123 -0.070 -0.048 -0.035 -0.019 -0.010 -0.005 -0.002
0.40 0.298 0.788 0.695 0.517 0362 0.247 0.109 0.045 0.016 -0.001 -0.003 -0.002 -0.001
0.50 8218 3973 2207 1322 0.831 0.539 0241 0.113 0.055 0.013 0.003 0.001 0.000
0.60 8261 4015 2247 1361 0.867 0.573 0269 0.136 0.072 0.023 0.008 0.004 0.001
0.70 0432 0918 0.821 0.637 0474 0350 0.194 0.112 0.067 0.027 0012 0.006 0.002
0.80 -1.944 -0.797 -0.311 -0.088 0.014 0.057 0.075 0.064 0.050 0.027 0.014 0.007 0.003
0.90 -2.812 -1.536 -0.890 -0.516 -0.292 -0.155 -0.022 0.022 0.032 0.025 0.015 0.008 0.003
1.00 -3.047 -1.745 -1.063 -0.653 -0.394 -0.229 -0.059 0.005 0.025 0.024 0.015 0.008 0.003
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Annex 8.1 (cont.)

Table 27 Values of f; for b/D = 0.60 and d/D = 0.40

B
a/D 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00 1.20 1.50
0.00 -3.415 -2.095 -1.387 -0.994 -0.650 -0.451 -0.219 -0.108 -0.053 -0.013 -0.003 -0.001 -0.000
010 -3232 -1.929 -1.246 -0.829 -0.561 -0.383 -0.182 —-0.089 —-0.044 -0.011 -0.003 -0.001 -0.000
0.20 -2.572 -1.354 -0.778 -0.467 -0.290 -0.184 -0.079 -0.036 -0.017 -0.004 -0.001 -0.000 -0.000
030 -0.877 -0.057 0.142 0.168 0.145 0.114 0062 0.032 0016 0004 0.001 0.00 -0.000
0.40 4280 2401 1471 0939 0.615 0410 0.189 0.090 0.044 0.011 0.003 0.001 -0.000
0.50 8218 3973 2207 1322 0831 0539 0241 0113 0055 0013 0.003 0.001 0.000
0.60 4280 2401 1471 0939 0.615 0410 0.189 0.090 0.044 0.011 0.003 0.001 0.000
070  -0.877 -0.057 -0.142 -0.168 0.145 0.114 0062 0032 0016 0004 0001 0.000 0.000
0.80 -2.572 -1.354 -0.778 -0.467 -0.290 -0.184 -0.079 -0.036 -0.017 -0.004 -0.001 -0.000  0.000
090 3232 -1.929 -1.246 -0.829 -0.561 -0.383 -0.182 -0.089 -0.044 —-0.011 -0.003 -0.001  0.000
1.00 -3415 -2.095 -1.387 -0.944 -0.650 -0.451 -0.219 -0.108 -0.053 -0.013 -0.003 -0.001  0.000
Annex 10.1 Values of ¢ = f(P,e) (after Anonymous 1964)

P e=0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.1 0.54 0.54 0.55 0.55 0.56 0.57 0.59 0.61 0.67 1.09
0.2 0.44 0.44 0.45 0.46 0.47 0.49 0.52 0.59 0.89

0.3 0.37 0.37 0.38 0.39 0.41 0.43 0.50 0.74

0.4 0.31 0.31 0.32 0.34 0.36 0.42 0.62

0.5 0.25 0.26 0.27 0.29 0.34 0.51

0.6 0.21 0.21 0.23 0.27 0.41

0.7 0.16 0.17 0.20 0.32

0.8 0.11 0.13 0.22

0.9 0.06 0.12
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Annex 10.2 (cont.)

u I B=52 54 56 58 6 6 64 66 6 70

0 9.2886 9.3641 9.4368 9.5069 9.5747 9.6403 9.7037 9.7653 9.8249 9.8829
1-6)  1.00(6)  9.1716 9.2426 9.3108 9.3765 9.4398 9.5008 9.5598 9.6168 9.6720 9.7255
20-6) 50005  9.0231 9.1922 92585 9.3223 9.3838 9.4430 9.5001 9.5553 9.6086 9.6602
4-6) 250(5)  9.0545 9.1210 9.1847 9.2459 9.3047 9.3613 9.4158 9.4684 9.5191 9.5681
6(-6) 1.66(5  9.0020 9.0665 9.1282 9.1874 9.2442 92988 9.3513 9.4019 9.4507 9.4977
8(-6) 1255 89578 9.0206 9.0807 9.1382 9.1933 9.2413 9.2971 9.3460 9.3931 9.4385
1(-5 1005 89190 8.9803 9.0389 9.0949 9.1486 9.2001 9.2495 92970 9.3426 9.3865
20-5)  5004) 87673 8.8220 8.8759 8.9263 8.9743 9.0202 9.0640 9.1059 9.1461 9.1845
4(-5)  2.50(4)  8.5555 8.6035 8.6488 8.6916 8.7321 8.7705 8.8069 8.8414 8.8742 89053
6(-5) 1.66(4) 83959 84383 84780 8.5154 8.5505 8.5836 8.6147 8.6440 8.6716 8.6977
8(-5) 125@) 82636 83016 83370 83700 8.4009 8.4297 8.4568 84821 8.5057 8.5279
1(4) 1.00@4)  8.1491 8.1833 82151 82446 82720 8.2974 83211 83431 83636 8.3827
2A04)  5003) 77203 77421 77618 7.7797 7.7958 7.8104 7.8236 7.8355 7.8463 7.8560
4-4)  2.503)  7.1780 7.1881 7.1968 7.2043 7.2108 72163 7.2211 7.2251 7.2286 7.2315
6(-4) 166(3) 68151 68201 6.8242 6.8276 6.8304 6.8327 6.8345 6.8360 6.8372 6.8382
8(4) 1253)  6.5430 6.5456 6.5476 6.5492 6.5504 6.5514 6.5521 6.5527 6.5531 6.5535
1(-3) 1.003) 63262 6.3277 63287 63294 63300 63304 63307 63310 63311 63312
2-3) 5002) 56392 5.6393 M(u,B) = W(u): see Annex 3.1
u Ilu B=72 74 76 78 8 8 8 8 8 9

0 99392 9.9940 10.0473 10.0992 10.1498 10.1992 10.2474 10.2944 10.3404 10.3853
1-6) 1.006) 97773 9.8276 9.8764 9.9236 9.9700 10.0148 10.0585 10.1011 10.1425 10.1830
20-6) 5005 97102 9.7586 9.8056 9.8512 9.8955 9.9385 9.9803 10.0210 10.0606 10.0992
4(-6)  250(5)  9.6155 9.6613 9.7057 9.7487 9.7904 9.8308 9.8700 9.9081 9.9452 9.9812
6(-6) 1.66(5  9.5431 9.5869 9.6293 9.6703 9.7101 9.7485 9.7858 9.8220 9.8571 9.8911
8(-6) 1255) 94822 9.5244 9.5652 9.6046 9.6426 9.6795 9.7151 9.7497 9.7831 9.8156
1-5)  1.00(5) 94288 9.4696 9.5089 9.5469 9.5835 9.6189 9.6532 9.6863 9.7183 9.7494
20-5)  500@) 92213 9.2566 9.2905 9.3230 9.3542 93843 9.4132 9.4410 9.4677 9.4935
4(-5) 2.50(4) 89349 8.9630 8.9898 9.0153 9.0396 9.0628 9.0848 9.1059 9.1260 9.1451
6(-5) 1.66(4) 87223 8.7455 8.7675 8.7882 8.8076 8.8263 8.8438 8.8603 8.8760 8.8908
8(-5) 1.25()  8.5487 8.5682 8.5865 8.6036 8.6197 8.6348 8.6490 8.6623 8.6747 8.6864
1(-4)  1.00(4) 84005 8.4170 8.4324 8.4468 8.4601 8.4726 8.4842 8.4949 8.5050 8.5143
2(4) 5003)  7.8648 7.8727 7.8798 7.8862 7.8920 7.8972 7.9019 7.9061 7.9098 7.9132
4(-4)  250(3) 72341 72362 72380 7.2395 7.2408 7.2419 7.2428 7.2436 7.2442 7.447
6(4) 1.66(3) 68390 6.8396 6.8401 6.8405 6.8408 6.8411 6.8413 6.8414 6.8416 6.8417
8(4) 1253) 65537 65539 6.5541 6.5542 6.5543 6.5543 6.5544 6.5544 6.5544 6.5544
1(-3) 1.003) 63313 63314 63314 63315
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Annex 10.3 Values of Streltsova’s function W(u A5B,b1/D,b,/D) for partially-penetrated unconfined aquifers
(after Streltsova 1974)

Table 1 Values of W(u,,B,b;/D,by/D) for b;/D = 0.1 and by/D = 0.1

J/B

1/up 0.05 0.1 0.2 0.3 0.5 0.75 1.0

02 57x10* 57x10% 47x10% 29x10% 1.1x10% 38x10° 17x10°
0.4 0.0125 0.0121 0.0075 0.0037 0.0011 3.7x10% 1.6x 107
0.6 0.0392 0.0363 0.0184 0.0083 0.0023 7.6x10% 33x104
0.8 0.0731 0.0642 0.0285 0.0122 0.0033 0.0011 46x107*
1.0 0.1094 0.0908 0.0367 0.0152 0.0040 0.0013 55% 107
2.0 0.2723 0.1824 0.0586 0.0227 0.0058 0.0018 7.8%x107*
40 04674 0.2530 0.0714 0.0268 0.0067 0.0021 9.0x 107
6.0 0.5676 0.2788 0.0755 0.0281 0.0070 0.0022 93x107*
8.0 0.6257 0.2914 0.0773 0.0286 0.0071 0.0022 9.5% 107
10 0.6626 0.2986 0.0783 0.0289 0.0072
20 0.7375 0.3113 0.0800 0.0295 0.0073
40  0.7711 0.3162 0.0807 0.0296 0.0073
60 0.7805 0.3175 0.0809 0.0297
80  0.7846 0.3181 0.0809 0.0297
100 0.7868 0.3184 0.0810
200 0.7905 0.3188 0.0810
400  0.7918 0.3190
1000 0.7922 0.3191

Table 2 Values of W(u,,B,b;/D,b,/D) for b;/D=0.2 and b,/D = 0.2

VB

1/ups 0.05 0.1 0.2 0.3 0.5 0.75 1.0

02 57x10* 57x10* 57x10% 55%x10% 3.8x10% 2.0x10% 1.1x10~
0.4 0.0125 0.0125 0.0121 0.0101 0.0053 0.0023 0.0011
0.6 0.0392 0.0392 0.0363 0.0272 0.0123 0.0049 0.0023
0.8 0.0732 0.0731 0.0642 0.0444 0.0184 0.0071 0.0033
1.0 0.1097 0.1094 0.0908 0.0592 0.0232 0.0087 0.0040
2.0 0.2799 0.2723 0.1824 0.1024 0.0355 0.0127 0.0058
40 05215 0.4674 0.2530 0.1298 0.0424 0.0149 0.0067
6.0 0.6828 0.5676 0.2788 0.1388 0.0445 0.0155 0.0070
8.0 0.7992 0.6257 0.2914 0.1430 0.0455 0.0158 0.0071
10 0.8873 0.6626 0.2986 0.1453 0.0460 0.0160 0.0072
20 1.1236 0.7375 0.3113 0.1493 0.0469 0.0162 0.0073
40 1.2774 0.7711 0.3162 0.1508 0.0472 0.0163 0.0073
60  1.3310 0.7805 0.3175 0.1512 0.0473 0.0164
80  1.3567 0.7846 0.3181 0.1514 0.0473 0.0164
100 1.3713 0.7868 0.3184 0.1515
200 1.3971 0.7905 0.3188 0.1516
400 1.4072 0.7918 0.3190 0.1517
1000 1.4098 0.7922 0.3191 0.1517
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Annex 10.3 (cont.)

Table 3 Values of W(uy,B,b;/D,by/D) for b;/D = 0.4 and by/D = 0.2

VB

1/up 0.05 0.1 0.2 0.3 0.5 0.75 1.0 1.5

0.2 0.0011 0.0011 0.0011 0.0011 85x10% 53x10*% 32x10* 13x10™
0.4 0.0249 0.0249 0.0244 0.0214 0.0133 0.0069 0.0037 0.0014
0.6 0.0783 0.0783 0.0740 0.0600 0.0332 0.0156 0.0081 0.0028
0.8 0.1464 0.1463 0.1328 0.1016 0.0518 0.0232 0.0117 0.0040
1.0 0.2194 0.2190 0.1909 0.1397 0.0672 0.0290 0.0144 0.0048
2.0 0.5598 0.5483 0.4079 0.2624 0.1094 0.0439 0.0211 0.0070
40 1.0433 0.9617 0.6030 0.3516 0.1347 0.0522 0.0247 0.0084
6.0 1.3679 0.1917 0.6835 0.3833 0.1428 0.0547 0.0259 0.0089
8.0 1.6047 1.3352 0.7251 0.3985 0.1465 0.0559 0.0266 0.0092
10 1.7866 1.4321 0.7498 0.4072 0.1486 0.0566 0.0270 0.0093
20 2.3005 1.6489 0.7957 0.4225 0.1522 0.0581 0.0278 0.0095
40  2.6808 1.7599 0.8145 0.4284 0.1539 0.0588 0.0280 0.0095
60  2.8317 1.7934 0.8195 0.4301 0.1545 0.0590 0.0281
80  2.9100 1.8085 0.8216 0.4309 0.1548 0.0590 0.0281
100 2.9569 1.8168 0.8228 0.4314 0.1549
200 3.0452 1.8309 0.8250 0.4324 0.1550
400  3.0819 1.8362 0.8262 0.4327 0.1550
1000 3.0919 1.8377 0.8265 0.4327

Table 4 Values of W(uy,B,b;/D,by/D) for b;/D = 0.4 and by/D = 0.4

J/B

1/up 0.05 0.1 0.2 0.3 0.5 0.75 1.0 1.5

02 57x10% 57x10% 57x10% 57x10% 57x10% 49x10* 38x10* 20x10™*
0.4 0.0125 0.0125 0.0125 0.0124 0.0113 0.0081 0.0053 0.0023
0.6 0.0392 0.0392 0.0392 0.0387 0.0321 0.0204 0.0123 0.0049
0.8 0.0732 0.0732 0.0731 0.0710 0.0544 0.0319 0.0184 0.0071
1.0 0.1097 0.1097 0.1094 0.1041 0.0745 0.0413 0.0232 0.0087
2.0 0.2799 0.2799 0.2723 0.2337 0.1371 0.0671 0.0355 0.0128
4.0 0.5221 0.5215 0.4674 0.3540 0.1800 0.0823 0.0425 0.0155
6.0 0.6873 0.6828 0.5676 0.4036 0.1947 0.0872 0.0448 0.0167
8.0 0.8117 0.7992 0.6257 0.4291 0.2016 0.0895 0.0461 0.0172
10 09114 0.8873 0.6626 0.4441 0.2055 0.0909 0.0470 0.0175
20 1.2315 1.1236 0.7375 0.4719 0.2125 0.0939 0.0486 0.0178
40  1.5414 1.2774 0.7711 0.4832 0.2160 0.0953 0.0490 0.0178
60  1.6978 1.3310 0.7805 0.4864 0.2172 0.0956 0.0491
80  1.7910 1.3567 0.7846 0.4880 0.2177 0.0956 0.0491
100 1.8521 1.3713 0.7869 0.4890 0.2179 0.0957
200  1.9821 1.3971 0.7913 0.4910 0.2182 0.0957
400  2.0444 1.4073 0.7936 0.4916 0.2182
1000 2.0624 1.4102 0.7941 0.4917
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Annex 10.3 (cont.)

Table 5 Values of W(u,,B,b,/D,b,/D) for b;/D = 0.6 and b,/D = 0.3

VB
ljuy  0.05 0.1 0.2 0.3 0.5 0.75 1.0 1.5
0.2 0.0011 0.0011 0.0011 0.0011 0.0011 85x107% 62x10*% 32x10*
0.4 0.0249 0.0249 0.0249 0.0244 0.0200 0.0133 0.0086 0.0037
0.6 0.0783 0.0783 0.0781 0.0740 0.0548 0.0332 0.0199 0.0081
0.8 0.1464 0.1464 0.1450 0.1328 0.0913 0.0518 0.0299 0.0118
1.0 0.2194 0.2194 0.2151 0.1909 0.1240 0.0672 0.0378 0.0149
2.0 0.5598 0.5594 0.5138 0.4079 0.2254 0.1095 0.0589 0.0243
40 1.0443 1.0334 0.8446 0.6030 0.2957 0.1360 0.0739 0.0307
6.0 1.3744 1.3355 1.0079 0.6835 0.3202 0.1465 0.0800 0.0323
8.0 1.6228 1.5442 1.1019 0.7251 0.3324 0.1523 0.0830 0.0328
10 1.8209 2.6969 1.1616 0.7498 0.3400 0.1559 0.0845 0.0329
20 2.4397 2.0902 1.2836 0.7965 0.3565 0.1621 0.0862 0.0330
40 2.9944 2.3395 1.3396 0.8195 0.3643 0.1634 0.0863 0.0330
60  3.2571 2.4265 1.3568 0.8278 0.3658 0.1635 0.0863
80  3.4100 2.4686 1.3657 0.8317 0.3662 0.1635
100 3.5091 2.4926 1.3713 0.8338 0.3663
200 3.7196 2.5367 1.3822 0.8363 0.3663
400  3.8215 2.5583 1.3855 0.8365
1000 3.8516 2.5658 1.3859 0.8365
Table 6 Values of W(uy,B,b;/D,b,/D) for b;/D = 0.6 and by/D = 0.6
VB
luy  0.05 0.1 0.2 0.3 0.5 0.75 1.0 1.5
02 57x10% 57x10% 57x10% 57x10% 57x10% 57x10% 53x10% 38x10*
04 0.0125 0.0125 0.0125 0.0125 0.0124 0.0113 0.0092 0.0053
0.6 0.0392 0.0392 0.0392 0.0392 0.0381 0.0321 0.0240 0.0124
0.8 0.0732 0.0732 0.0732 0.0731 0.0693 0.0544 0.0384 0.0189
1.0 0.1097 0.1097 0.1097 0.1094 0.1004 0.0745 0.0506 0.0245
2.0 0.2799 0.2799 0.2796 0.2723 0.2167 0.1373 0.0864 0.0423
40 0.5221 0.5221 0.5149 0.4674 0.3175 0.1835 0.1147 0.0547
6.0 0.6873 0.6872 0.6613 0.5676 0.3580 0.2032 0.1265 0.0578
8.0 0.8117 0.8113 0.7591 0.6257 0.3798 0.2144 0.1322 0.0587
10 09115 0.9101 0.8281 0.6627 0.3938 0.2213 0.1351 0.0589
20 1.2339 1.2151 0.9914 0.7399 0.4253 0.2333 0.1384 0.0590
40 1.5668 1.4742 1.0814 0.7828 0.4403 0.2357 0.1386 0.0590
60  1.7590 1.5863 1.1127 0.7987 0.4432 0.2358 0.1386
80  1.8888 1.6468 1.1296 0.8062 0.4439 0.2358
100 1.9831 1.6838 1.1402 0.8102 0.4440
200  2.2219 1.7583 1.1612 0.8149 0.4441
400  2.3674 1.7990 1.1676 0.8153 0.4441
1000  2.4172 1.8135 1.1682 0.8153
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Table 7 Values of W(uy,B,b,/D,by/D) for b;/D = 0.8 and by/D = 0.4

VB

1/up 0.05 0.1 0.2 0.3 0.5 0.75 1.0 1.5

0.2 0.0011 0.0011 0.0011 0.0011 0.0011 0.0010 8.5x107% 13x107™*
0.4 0.0249 0.0249 0.0249 0.0249 0.0232 0.0182 0.0134 0.0072
0.6 0.0783 0.0783 0.0783 0.0776 0.0677 0.0486 0.0335 0.0178
0.8 0.1464 0.1464 0.1463 0.1432 0.1177 0.0796 0.0530 0.0285
1.0 0.2194 0.2194 0.2190 0.2110 0.1652 0.1069 0.0701 0.0379
2.0 0.5598 0.5598 0.5483 0.4898 0.3296 0.1942 0.1268 0.0647
4.0 1.0443 1.0443 0.9617 0.7813 0.4676 0.2689 0.1714 0.0763
6.0 1.3745 1.367 1.1917 0.9190 0.5293 0.3005 0.1851 0.0776
8.0 1.6234 1.6047 1.3353 0.9975 0.5655 0.3157 0.1898 0.0778
10 1.8229 1.7866 1.4324 1.0485 0.5890 0.3235 0.1945 0.0778
20 2.4642 2.3005 1.6545 1.1666 0.6349 0.3325 0.1983
40 3.0961 2.6811 1.7881 1.2364 0.6526 0.3410 0.1995
60  3.4296 2.8339 1.8406 1.2564 0.6616 0.3461
80  3.6390 2.9160 1.8677 1.2634 0.6697 0.3502
100 3.7830 2.9679 1.8830 1.2721 0.6754
200  4.1218 3.0849 1.9151 1.2779 0.6781
400  4.3209 3.1495 1.9260 1.2815
1000 4.3966 3.1664 1.9342 1.2856

Table 8 Values of W(u,,B,b,/D,b,/D) for b;/D = 0.8 and by/D = 0.8

J/B

1/ups 0.05 0.1 0.2 0.3 0.5 0.75 1.0 1.5

02 57x10% 57x10% 57x10* 57x10% 57x10% 57x10* 57x10% 52x107*
0.4 0.0125 0.0125 0.0125 0.0125 0.0125 0.0123 0.0116 0.0096
0.6 0.0392 0.0392 0.0392 0.0392 0.0391 0.0376 0.0343 0.0267
0.8 0.0732 0.0732 0.0732 0.0732 0.0727 0.0682 0.0607 0.0450
1.0 0.1097 0.1097 0.1097 0.1097 0.1082 0.0993 0.0865 0.0614
2.0 0.2799 0.2799 0.2799 0.2791 0.2632 0.2238 0.1820 0.0984
40 0.5221 0.5221 0.5216 0.5109 0.4488 0.3514 0.2602 0.1187
6.0 0.6873 0.6873 0.6837 0.6557 0.5506 0.4068 0.2841 0.1210
8.0 0.8117 0.8117 0.8021 0.7555 0.6132 0.4335 0.2973 0.1213
10 09115 0.9114 0.8934 0.8292 0.6544 0.4572 0.3053 0.1214
20 1.2340 1.2319 1.1587 1.0236 0.7346 0.4738 0.3121.  0.1214
40 1.5682 1.5482 1.3725 1.1456 0.7670 0.4839 0.3171
60  1.7663 1.7182 1.4639 1.1907 0.7888 0.4939 0.3198
80  1.9065 1.8283 1.5113 1.2429 0.8000 0.5044
100 2.0139 1.9066 1.5581 1.2775 0.8190
200 23286 2.1028 1.5969 1.3007 0.8215
400 2.5944 2.2659 1.6271 1.3268
1000 2.7293 2.3455 1.6322 1.3508
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Annex 10.4 Values of the function W(ug,B,b;/D,b,/D) for partially-penetrated unconfined aquifers (after
Streltsova 1974)

Table 1 Values of W(ug,B,b;/D,b,/D) for b;/D = 0.1 and by/D = 0.1

VB

1/ug 0.05 0.1 0.2 0.3 0.5 0.75 1.0

0.001  0.7930 0.3196 0.0815 0.0302 0.0077 0.0026 0.0012
0.002  0.7930 0.3196 0.0815 0.0302 0.0077 0.0026 0.0012
0.005  0.7931 0.3196 0.0816 0.0303 0.0078 0.0026 0.0012
0.010  0.7931 0.3197 0.0817 0.0304 0.0079 0.0027 0.0013
0.020  0.7931 0.3198 0.0819 0.0305 0.0080 0.0028 0.0014
0.050  0.7933 0.3202 0.0824 0.0311 0.0084 0.0031 0.0016
0.100  0.7935 0.3209 0.0834 0.0320 0.0091 0.0037 0.0021
0.200  0.7941 0.3222 0.0853 0.0338 0.0105 0.0048 0.0032
0.500  0.7956 0.3260 0.0909 0.0392 0.0151 0.0088 0.0071
1.0 0.7981 0.3325 0.1003 0.0484 0.0233 0.0169 0.0156
2.0 0.8032 0.3452 0.1190 0.0674 0.0417 0.0364 0.0373
5.0 0.8182 0.3820 0.1736 0.1251 0.1017 0.0998 0.1033

10 0.8425 0.4392 0.2565 0.2122 0.1856 0.1764 0.1745

20 0.8885 0.5398 0.3873 0.3358 0.2839 0.2572 0.2479

50 1.0088 0.7569 0.5975 0.4995 0.4006 0.3572 0.3426
100 1.1649 0.9612 0.7342 0.5980 0.4782 0.4293 0.4130
200 1.3743 1.1498 0.8392 0.6808 0.5514 0.5000 0.4829
500 1.6696 1.3326 0.9500 0.7798 0.6453 0.5925 0.5748
1000 1.8513 1.4309 1.0250 0.8514 0.7154 0.6621 0.6443
2000 1.9837 1.5129 1.0970 0.9219 0.7851 0.7315 0.7136
5000 2.1099 1.6114 1.1902 1.0142 0.8769 0.8232 0.8053
10000 2.1891 1.6829 1.2600 1.0837 0.9463 0.8926 0.8746

Table 2 Values of W(ug,B,b;/D,b,/D) for b;/D = 0.2 and b,/D = 0.2

J/B

1/ug 0.05 0.1 0.2 0.3 0.5 0.75 1.0

0.001  1.4167 0.7963 0.3227 0.1552 0.0505 0.0188 0.0091
0.002  1.4167 0.7963 0.3228 0.1552 0.0505 0.0188 0.0091
0.005  1.4167 0.7963 0.3228 0.1553 0.0506 0.0189 0.0092
0.010  1.4167 0.7964 0.3230 0.1555 0.0508 0.0191 0.0094
0.020 1.4167 0.7965 0.3232 0.1558 0.0512 0.0195 0.0097
0.050  1.4168 0.7968 0.3240 0.1569 0.0524 0.0205 0.0107
0.100  1.4170 0.7973 0.3254 0.1587 0.0544 0.0224 0.0123
0.200 1.4173 0.7983 0.3280 0.1623 0.0583 0.0261 0.0158
0.500  1.4182 0.8014 0.3358 0.1729 0.0703 0.0377 0.0271
1.0 1.4197 0.8065 0.3487 0.1903 0.0904 0.0584 0.0484
2.0 1.4226 0.8166 0.3739 0.2434 0.1307 0.1019 0.0953
5.0 1.4315 0.8462 0.4444 0.3818 0.2427 0.2230 0.2218

10 1.4459 0.8926 0.5470 0.4749 0.3847 0.3617 0.3554

20 1.4740 0.9765 0.7074 0.6775 0.5531 0.5120 0.4967

50 1.5516 1.1732 0.9864 0.8779 0.7677 0.7055 0.6828
100 1.6624 1.3881 1.1977 1.0637 0.9176 0.8477 0.8225
200 1.8343 1.6266 1.3815 1.2211 1.0617 0.9881 0.9617
500 1.1397 1.9105 1.5915 1.4150 1.2482 1.1724 1.1453
1000 1.3810 2.0874 1.7384 1.5570 1.3879 1.3114 1.2840
2000 1.5921 2.2442 1.8811 1.6973 1.5271 1.4502 1.4227
5000 1.8216 2.4375 2.0667 1.8816 1.7107 1.6336 1.6060
10000 1.9744 2.5794 2.2061 2.0205 1.8494 1.7723 1.7446
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Table 3 Values of W(ug,B,b;/D,b,/D) for b;/D = 0.4 and by/D =0.2

J/B

1/ug 0.05 0.1 0.2 0.3 0.5 0.75 1.0 1.5

0.001  3.1197 1.8544 0.8406 0.4461 0.1666 0.0678 0.0341 0.0115
0.002  3.1197 1.8544 0.8406 0.4462 0.1667 0.0679 0.0342 0.0116
0.005  3.1198 1.8545 0.8408 0.4464 0.1669 0.0681 0.0344 0.0118
0.010  3.1198 1.8546 0.8410 0.4467 0.1673 0.0685 0.0348 0.0121
0.020  3.1198 1.8547 0.8414 0.4473 0.1681 0.0693 0.0356 0.0127
0.050  3.1199 1.8551 0.8426 0.4491 0.1705 0.0718 0.0379 0.0147
0.100  3.1201 1.8559 0.8446 0.4520 0.1744 0.0758 0.0418 0.0181
0.200  3.1206 1.8573 0.8486 0.4580 0.1822 0.0840 0.0498 0.0254
0.500  3.1218 1.8616 0.8605 0.4758 0.2055 0.1091 0.0752 0.0506
1.0 3.1238 1.8687 0.8801 0.5050 0.2442 0.1521 0.1206 0.1003
2.0 3.1278 1.8829 0.9184 0.5616 0.3198 0.2387 0.2152 0.2080
5.0 3.1398 1.9242 1.0261 0.7168 0.5235 0.4688 0.4596 0.4661

10 3.1595 1.9897 1.1841 0.9308 0.7785 0.7298 0.7168 0.7158

20 3.1979 2.1092 1.4355 1.2347 1.0872 0.0182 0.9929 0.9819

50 3.3049 2.3967 1.8930 1.6955 1.4962 1.3947 1.3611 1.3425
100 3.4606 2.7255 2.2637 2.0258 1.7900 1.6794 1.6392 1.6179
200 3.7090 3.1127 2.6056 2.3312 2.0755 1.9591 1.9169 1.8943
500 4.1765 3.6128 3.0127 2.7142 2.4469 2.3271 2.2838 2.2603
1000 4.5758 3.9466 3.3029 2.9967 2.7258 2.6048 2.5611 2.5373
2000 4.9517 4.2517 3.5864 3.2766 3.0038 2.8823 2.8384 2.8145
5000 5.3869 4.6341 3.9566 3.6447 3.3708 3.2490 3.2050 3.1810
10000 5.6863 4.9164 4.2351 3.9225 3.6482 3.5263 3.4822 3.4582

Table 4 Values of W(ug,p,b,/D,b,/D) for b;/D = 0.4 and b,/D = 0.4

J/B

1/ug 0.05 0.1 0.2 0.3 0.5 0.75 1.0 1.5

0.001  2.1193 1.4457 0.8244 0.5202 0.2425 0.1138 0.0612 0.0217
0.002  2.1193 1.4458 0.8244 0.5202 0.2426 0.1139 0.0613 0.0217
0.005  2.1193 1.4458 0.8245 0.5204 0.2428 0.1141 0.0616 0.0220
0.010 2.1193 1.4458 0.8246 0.5206 0.2432 0.1146 0.0621 0.0224
0.020  2.1193 1.4459 0.8248 0.5210 0.2439 0.1155 0.0630 0.0233
0.050  2.1193 1.4461 0.8255 0.5222 0.2460 0.1182 0.0659 0.0259
0.100  2.1194 1.4464 0.8266 0.5242 0.2496 0.1227 0.0707 0.0304
0.200  2.1196 1.4470 0.8288 0.5283 0.2566 0.1317 0.0803 0.0396
0.500  2.1201 1.4489 0.8354 0.5403 0.2775 0.1584 0.1095 0.0697
1.0 2.1209 1.4520 0.8462 0.5600 0.3115 0.2023 0.1584 0.1238
2.0 2.1225 1.4583 0.8673 0.5979 0.3758 0.2855 0.2528 0.2319
5.0 2.1274 1.4768 0.9275 0.7018 0.5421 0.4925 0.4812 0.4803

10 2.1355 1.5065 1.0180 0.8468 0.7488 0.7254 0.7211 0.7222

20 2.1514 1.5627 1.1695 1.0632 1.0109 0.9927 0.9861 0.9837

50 2.1972 1.7085 1.4778 1.4297 1.3860 1.3588 1.3474 1.3414
100 2.2676 1.8964 1.7669 1.7242 1.6693 1.6366 1.6232 1.6158
200 2.3900 2.1524 2.0662 2.0138 1.9499 1.9142 1.8998 1.8917
500 2.6586 2.5464 2.4513 2.3883 2.3186 2.2810 2.2660 2.2574
1000 2.9343 2.8464 2.7351 2.6682 2.5965 2.5583 2.5431 2.5344
2000 3.2369 3.1372 3.0157 2.9468 2.8741 2.8356 2.8203 2.8115
5000 3.6322 3.5121 3.3842 3.3141 3.2408 3.2022 3.1868 3.1779
10000 3.9206 3.7921 3.6621 3.5917 3.5182 3.4794 3.4640 3.4551
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Annex 10.4 (cont.)

Table 5 Values of W(ug,B,b,/D,b,/D) for b;/D = 0.6 and by/D = 0.3

1/ug 0.05 0.1 0.2 0.3 0.5 0.75 1.0 1.5
0.001 39479 26184 14298 08779 04008  0.1879  0.1015  0.0360
0.002 39480 26184 14298 08779 04009  0.1880  0.1016  0.0362
0.005 39480 26184 14299 08781 04012  0.1884 01020  0.0365
0.010 39480 26185 14301  0.8784 04017  0.1890  0.1027  0.0372
0.020 39480 26186 14304 08791 04028  0.1904  0.1041  0.0384
0.050 39481 26189 14315 08810  0.4060  0.1943  0.1083  0.0423
0.100 39482 26194 14333 08841 04112 02008  0.1152  0.0489
0200 39485 26205 14369  0.8904 04216 02139  0.1293  0.0626
0.500  3.9494 26238 14476 09092 04527 02530  0.1721  0.1070
1.0 39508 26292 14652 09399 05031 03174 02441  0.1875
2.0 39537 26399 14998 09992 05995 04407  0.3842  0.3490
5.0 39622 26714 15976 11615  0.8507 07510 07263  0.7213

10 39763 27221 17438 13878 11644 11014  1.0866  1.0842
20 40039 28169 19857 17226  1.5607  1.5031  1.4842  1.4765
50 4.0828  3.0586 24677 22812 2.1248 20522 20261  2.0130
100 42025 33620 29097 27251  2.5498 24689 24398  2.4246
200 44066 37637 33614 31598 29707 28853 28547  2.8383
500 4.8398 43653 39395 37215 3.5236 34355 34039 33868
1000 52692 48172 43653  4.1414  3.9405  3.8515  3.8169  3.8023
2000 57300 52537 47861 45593 43569 42674 42354 42180
5000 63248 58159 53388 51102 49070 48173 47851  4.7676

10000 67576 62359 57556 55265 53230 52331 52010  5.1835

Table 6 Values of W(ug,B,b;/D,b,/D) for by/D = 0.6 and by/D = 0.6

1/ug 0.05 0.1 0.2 0.3 0.5 0.75 1.0 1.5
0.001 26242 19387 12748 09142 05229 02878  0.1684  0.0632
0.002 26242 19387 12748 09134 05229 02879  0.1685  0.0634
0.005 26242 19387 12749 09144 05232 02883  0.1690  0.0638
0010 2.6242 19387 12750 09146  0.5236 02889  0.1697  0.0646
0020 2.6242 19388 12752 09150  0.5244 02902  0.1713  0.0662
0.050 26243 19389 12757 09161  0.5269 02940  0.1759  0.0711
0.100 26243 19392 12767 09180  0.5309 03003  0.1835  0.0792
0200 26244 19397 12785 09218 05391 03128  0.1987  0.0956
0.500  2.6248 19411 12840 09330 05630 03498 02436  0.1462
1.0 26254 19436 12932 09515  0.6018 04089 03160  0.2312
2.0 26267 19485 13112 09874  0.6750 05184  0.4491  0.3907
5.0 2.6304 19630 13632  1.0873 08654  0.7855  0.7608  0.7454

10 26366 19867 14437 12323 1.1097 10918  1.0932  1.0953

20 2.6489 20322 15833 14626 14390 14600 14721  1.4795

50 2.6847 21563 19033  1.8981 19505 19870  2.0022  2.0110
100 27414 23295 22419 22886 23580 23965 24119  2.4208
200 2.8448 25919 26317 2.6974 27705  2.8093  2.8248  2.8337
500 3.0947  3.0588  3.1743 32448 33185 33573 33728  3.3817
1000 33875 3.4601 35892  3.6601  3.7338  3.7726 37881  3.7970
2000 37526 3.8730  4.0048  4.0757  4.1494 41882 42037 42126
5000 4.2869 44223 45545 46253 4.6990 47378 47533 47622
10000 47013 48382 49703 50412 51149 51537 51691  5.1780
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Table 7 Values of W(ug,B,b;/D,b,/D) for b;/D = 0.8 and b,/D = 0.4

J/B

1/ug 0.05 0.1 0.2 0.3 0.5 0.75 1.0 L.5

0.001  4.6137 3.2588 1.9878 1.3410 0.7047 0.3671 0.2094 0.0773
0.002  4.6137 3.2588 1.9879 1.3410 0.7048 0.3672 0.2096 0.0775
0.005  4.6137 3.2588 1.9880 1.3412 0.7052 0.3677 0.2102 0.0781
0.010  4.6137 3.2588 1.9881 1.3415 0.7058 0.3686 0.2112 0.0791
0.020  4.6137 3.2589 1.9884 1.3422 0.7070 0.3703 0.2131 0.0811
0.050 4.6138 3.2592 1.9894 1.3440 0.7106 0.3754 0.2190 0.0871
0.100  4.6139 3.2596 1.9910 1.3471 0.7165 0.3839 0.2288 0.0972
0.200 4.6141 3.2605 1.9942 1.3532 0.7284 0.4007 0.2485 0.1179
0.500  4.6148 3.2632 2.0037 1.3715 0.7634 0.4507 0.3071 0.1825
1.0 4.6160 3.2677 2.0195 1.4014 0.8202 0.5315 0.4029 0.2936
2.0 4.6183 3.2765 2.0504 1.4594 0.9279 0.6830 0.5828 0.5065
5.0 4.6251 3.3027 2.1389 1.6195 1.2077 1.0566 1.0102 0.9862

10 4.6365 3.3451 2.2737 1.8473 1.5624 1.4828 1.4644 1.4573

20 4.6589 3.4257 2.5046 2.1989 2.0291 1.9870 1.9769 1.9732
50 4.7237 3.6390 2.9974 2.8305 2.7321 2.6983 2.6836 2.6832
100 4.8244 3.9238 3.4919 3.3728 3.2823 3.2470 3.2360 3.2308
200 5.0037 4.3319 4.0370 3.9281 3.8355 3.7989 3.7873 3.7817
500 5.4120 5.0105 4.7744 4.6634 4.5680 4.5184 4.518 4.5125
1000 5.8595 5.5660 5.3318 5.2189 5.1224 5.0843 5.0723 5.0663
2000 6.3860 6.1258 5.8879 5.7739 5.6768 5.6386 5.6265 5.6204
5000 7.1228 6.8631 6.6220 6.5027 6.4098 6.3715 6.3533 6.3523
10000 7.6825 7.4192 7.1768 7.0619 6.9643 6.9259 6.9138 6.9077

Table 8 Values of W(ug,B,b,/D,b,/D) for b;/D = 0.8 and by/D = 0.8

J/B

1/ug 0.05 0.1 0.2 0.3 0.5 0.75 1.0 1.5

0.001  3.2447 2.5476 1.8414 1.4220 0.9015 0.5324 0.3222 0.1237
0.002  3.2447 2.5476 1.8414 1.4220 0.9016 0.5326 0.3224 0.1239
0.005  3.2447 2.5476 1.8415 1.4222 0.9019 0.5330 0.3230 0.1246
0.010  3.2447 2.5476 1.8416 1.4223 0.9023 0.5338 0.3240 0.1258
0.020  3.2447 2.5476 1.8417 1.4227 0.9032 0.5353 0.3260 0.1281
0.050  3.2447 2.5478 1.8423 1.4239 0.9059 0.5399 0.3320 0.1351
0.100  3.2448 2.5480 1.8432 1.4257 0.9103 0.5476 0.3420 0.1467
0.200  3.2449 2.5485 1.8449 1.4295 0.9192 0.5627 0.3618 0.1701
0.500  3.2453 2.5499 1.8502 1.4407 0.9453 0.6072 0.4198 0.2403
1.0 3.2458 2.5521 1.8590 1.4592 0.9877 0.6781 0.5119 0.2545
2.0 3.2470 2.5567 1.8764 1.4953 1.0682 0.8089 0.6789 0.5625
5.0 3.2505 2.5703 1.9270 1.5972 1.2803 1.1288 1.0670 1.0195

10 3.2562 2.5926 2.0065 1.7486 1.5600 1.5034 1.4873 1.4746

20 3.2676 2.6360 2.1503 1.9986 1.9528 1.9676 1.9768 1.9799

50 3.3012 2.7568 2.4911 2.5026 2.5941 2.6516 2.6731 2.6859
100 3.3551 2.9330 2.8800 2.9843 3.1225 3.1910 3.2158 3.2288
200 3.4556 3.2131 3.3558 3.5081 3.6651 3.7383 3.7646 3.7785
500 3.7105 3.7538 4.0503 4.2252 43914 4.4670 4.4941 4.5087
1000 4.0298 4.2512 4.5940 4.7749 4.9437 5.0201 5.0475 5.0623
2000 4.4565 4.7823 5.1435 5.3270 5.4971 5.5739 5.6014 5.6163
5000 5.1234 5.5033 5.8736 6.0586 6.2295 6.3065 6.3341 6.3490
10000 5.6604 6.0541 6.4272 6.6127 6.7838 6.8609 6.8885 6.9035
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Annex 11.1 Values of Papadopulos’s function F(u,o.r/r,,) for large-diameter wells in confined aquifers (after
Papadopulos 1967)

Table 1 Values of F (u,0,1/r,,,) for o = 107!

1u rfrg, =1 2 5 10 20 50 100 200

5(-1) 488(-2)  1.96(-2) 1.75(-2) 241(-2) 348(-2) 424(2) 448(2) 4.50(-2)
1(0) 9.19(-2)  7.01(-2) 9.55(-2) 141(-1) 185-1) 2.09-1) 2.14(-1) 2.15(-1)
2(0) L77(-1)  1.95(-1) 321(-1) 444(-1) 520(-1) 549(-1) 555-1) 5.59(-1)
5(0) 406(-1)  578(-1) 9.42(-1) 113 (0) 119 (0) 122 (0) 122 (0) 1.22 (0)
1(1) 734(-1) L11 (0) 160 (0) 176 (0) 1.80 (0) 1.80 (0) 1.80 (0) 1.80 (0)
21) 126 (0) 1.84 (0) 233 (0) 243 (0) 246 (0) 246 (0) 246 (0) 2.46 (0)
5(1) 230 (0) 297 (0) 328 (0) 3.34(0) 335(0) 335(0) 3.35(0) 335 (0)
12) 328 (0) 3.81 (0) 400 (0) 403 (0) 403 (0) 403 (0) 403 (0) 4.03 (0)
2(2) 426 (0) 460 (0) 470 (0) 472 (0) 472 (0) 472 (0) 472 (0) 4.72 (0)
502) 542 (0) 558 (0) 563 (0) 564 (0) 564 (0) 5.64(0) 5.64(0) 564 (0)
1(3) 621 (0) 630 (0) 633(0) 633(0) 633(0) 6330 6330 6330
2(3) 6.96 (0) 7.01 (0) 7.01 (0) 7.01 (0) 7.01 (0) 7.01 (0) 7.01 (0) 7.01 (0)
5(3) 787 (0) 793 (0) 793 (0) 793 (0) 793 (0) 7.93(0) 7.93(0) 7.93 (0)
1(4) 857 (0) 8.63(0) 863 (0) 863(0) 863(0) 8.63(0) 8630 863 (0)
2(4) 932(0) 932(0) 932(0) 932(0) 932(0) 9320 9.32(0) 932 (0)
5(4) 102 (1) 102 (1) 102 (1) 1.02(1) 1.02(1) 1.02(1) 102(1) 102 (1)

Table 2 Values of F (u,0,1/re,,) for o = 107

u 1y, =1 2 5 10 20 50 100 200

5(-1) 499(-3)  2.13(-3) 2.11(-3) 3.52(-3) 747(-3) 2.03(-2) 3.44(2) 435(-2)
1(0) 991(-3)  7.99(-3) 1.32(-2) 2.69(-2) 6.12(-2) 142(-1) 191(-1) 2.11(-1)
2(0) 197(-2)  240(-2) 540(-2) 121(-1) 2.63(-1) 4.65-1) 531(1) 5.51(-1)
5(0) 489(-2)  834(-2) 233(-1) S512(-1) 9.15-1) 116 (0) 120 (0) 1.2 (0)
(1) 9.67(-2)  1.93(-1) 5.67(-1) 112 (0) 158 (0) 178 (0) 181 (0) 1.82 (0)
21) 1.90(-1)  4.16(-1) 118 (0) 1.95 (0) 232 (0) 244 (0) 246 (0) 2.47 (0)
5(1) 453(-1)  1.03 (0) 242 (0) 3.11(0) 329 (0) 334 (0) 335(0) 3.35 (0)
12) 8.52(-1) 1.87 (0) 348 (0) 3.90 (0) 4.00 (0) 4.03 (0) 4.03 (0) 4.03 (0)
202) 1.54 (0)  3.05(0) 443 (0) 4.65(0) 471 (0) 472 (0) 473 (0) 4.73 (0)
502) 304 (0) 478 (0) 552 (0) 561 (0) 563 (0) 5.64(0) 5.64(0) 564 (0)
13) 455 (0) 590 (0) 627 (0) 631 (0) 633(0) 633(0) 633(0) 633 (0)
2(3) 603 (0) 681 (0) 699 (0) 701 (0) 7.02(0) 7.02(0) 7.02(0) 7.02 (0)
5(3) 756 (0) 7.85 (0) 7.92 (0) 7.94 (0) 7.94 (0) 7.94 (0) 7.94 (0) 7.94 (0)
1(4) 844 (0) 8.59 (0) 863 (0) 8.63(0) 863 (0) 8.63(0) 8.63(0) 863 (0)
2(4) 923 (0) 930 (0) 933 (0) 933(0) 933(0) 933(0) 933(0) 933 (0)
5(4) 102 (1) 1.02(1) 102 () 1.02(1) 1.02() 1.02(1) 102(1) 102 (1)
1(5) 109 (1) 109 (1) 1.09 (1) 109 (1) 1.09 (1) 1.09 (1) 109 (1) 1.09 (1)
2(5) L16 (1) 116 (1) 116 (1) 116 (1) 1.16 (1) 116 (1) 116 (1) 1.16 (1)
5(5) 125 (1)  125(1) 125(1) 125(1) 125(1) 125(1) 125(1) 125 (1)
1(6) 132 () 132(1) 132() 132() 1327) 132() 132(1) 1.32()
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Annex 11.1 (cont.)

Table 3 Values of F (u,0,1/rey,) for o = 107

1o /ey =1 2 5 10 20 50 100 200

5(-1) 5.00(-4)  2.15(-4) 2.15(-4) 3.70(-4) 8.35(4) 3.05-3) 8.38(-3) 1.50(-2)
1(0) 9.99(-4) 8.11(-4) 137(-3) 295(-3) 7.58(-3) 281(-2) 7.56(-2) 1.47(-1)
2(0) 200(-3) 245(-3) S5.77(-3) 142(-2) 3.90(-2) 154(-1) 3.23(-1) 4.78(-1)
5(0) 499(-3)  871(-3) 2.67(-2) 724(-2) 2.03-1) 659-1) 1.02 (0) 1.17 (0)
1(1) 9.97(-3) 207(-2) 7.16(-2) 201(-1) 541(-1) 138 (0) 1.70 (0) 1.79 (0)
2(1) 199(-2)  4.66(-2) 1.74(-1) 487(-1) 1.19 (0) 227 (0) 240 (0) 245 (0)
5(1) 495(-2) 129(-1) S.05-1) 131 (0) 252(0) 3220 3.32(0) 3.35(0)
12) 9.83(-2) 270(-1) 1.04 (0) 238 (0) 3.59 (0) 3.96 (0) 4.02 (0) 4.02 (0)
202) 195(-1)  547(-1) 196 (0) 3.68 (0) 450 (0) 4.69 (0) 472 (0) 4.72 (0)
5(2) 473(-1) 131 (0) 381 (0) 523 (0) 555(0) 563 (0) 564 (0) 564 (0)
13) 9.07-1) 239 (0) 534 (0) 613 (0) 628 (0) 632(0) 632 (0) 632 (0)
23) 169 (0) 398 (0) 657 (0) 692 (0) 7.00(0) 7.02(0) 7.02(0) 7.02 (0)
5(3) 352 (0) 644 (0) 777 (0) 7.90 (0) 7.93 (0) 7.93 (0) 793 (0) 7.93 (0)
1(4) 553 (0) 795 (0) 8.55(0) 8.61 (0) 8.63(0) 8.63(0) 863 (0) 8.63 (0)
2(4) 763 (0)  9.02 (0) 928 (0) 931 (0) 931 (0) 931 (0) 931 (0) 931 (0)
5(4) 9.68 (0) 1.0l (1) 102 (1) 102 (1) 1.02(1) 1.02() 1.02(1) 102 (1)
1(5) 107 (1) 109 (1) 109 (1) 109 (1) 1.09 (1) 109 (1) 1.09 (1) 1.09 (1)
25) 115 (1) 116 (1) L16 (1) 116 (1) 116 (1) 116 (1) 116 (1) 116 (1)
5(5) 125 (1) 125 (1) 125(1) 125(1) 125() 125(1) 125(1) 125 (1)
1(6) 132 (1) 132(1) 132() 132() 132() 132() 132() 132()
2(6) 139 (1) 139 (1) 139 (1) 139 (1) 139 (1) 139 (1) 139 (1) 139 (1)
5(6) 148 (1) 148 (1) 148 (1) 148 (1) 148 (1) 148 (1) 148 (1) 148 (1)
1(7) 155 (1) 155 (1) 155 (1) 1.55(1) 1.55(1) 1.55(1) 1.55(1) 1.5 (1)
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Table 4 Values of F (u,0,1/r,,,) for o = 107

1/u 1/t =1 2 5 10 20 50 100 200
5(-1) 5.00(-5)  2.17(=5)  2.18(=5) 3.73(-5)  8.46(-5)  3.16(-4)  9.56(—4)  3.83(-3)
1(0) 1.00(4)  8.15(-5)  1.38(4) 2.98(4) 7.77(4) 3.23(-3) 1.01(-2) 3.42(-2)
2(0) 2.00(4) 247(4) 581(4) 145(-3) 4.10(-3) 1.80(-2) 5.62(-2) 1.75(-1)
5(0) 5.00(-4)  8.76(-4) 2.71(-3) 7.54(-3) 2.27(-2) 1.03(-1) 3.04(-1) 7.10(-1)
1(1) 1.00(-3)  2.09(-3)  7.34(-3) 2.16(-2) 6.69(-2) 2.97(-1) 7.92(-1) 1.43 (0)
2(1) 2.00(-3)  4.72(-3) 1.82(-2) 5.55(-2) L.74(-1) 7.30(-1) 1.62 (0) 2.24 (0)
5(1) 5.00(-3)  1.32(-2)  5.56(-2) 1.74(-1) 5.36(-1) 1.87 (0) 2.95 (0) 3.28 (0)
1(2) 9.98(-3)  2.81(-2) 1.23(-1) 3.86(-1) 1.14 (0) 3.08 (0) 3.84 (0) 4.02 (0)
2(2) 1.99(-2)  5.88(-2) 2.64(-1) 8.13(-1) 2.17 (0) 425 (0) 4.63 (0) 4.71 (0)
5(2) 497(-2)  1.53(-1)  6.89(-1) 1.97 (0) 4.14 (0) 547 (0) 5.60 (0) 5.63 (0)
1(3) 9.90(-2)  3.10(-1) 136 (0) 3.44 (0) 5.61 (0) 624 (0) 6.31(0) 6.33 (0)
2(3) 197(-1)  6.18(-1) 2.53 (0) 526 (0) 6.71 (0) 698 (0) 7.01 (0) 7.02 (0)
5(3) 481(-1) 148 (0) 495(0) 733 () 7.82(0) 7920 794 (0) 7.94 (0)
1(4) 9.34(-1) 272 (0) 7.03 (0) 837 (0) 8.57 (0) 862 (0) 8.63(0) 8.63 (0)
2(4) 177 (0)  4.65 (0) 8.65(0) 9.20 (0) 9.29 (0) 9.32 (0) 9.33 (0) 9.33 (0)
5(4) 383 (0) 787 (0) 1.00 (1) 1.02 (1) 1.02 (1) 1.02(1) 1.02 (1) 1.02 (1)
1(5) 625 (0) 992 (0) 1.08 (1) 1.09 (1) 1.09 (1) 1.09 (1) 1.09 (1) 1.09 (1)
2(5) 899 (0) 112 (1) 116 (1) 116 (1) 116 (1) 116 (1) 1.16 (1) 1.16 (1)
5(5) L17 (1)  1.24 (1) 1.25(1) 1.25(1) 1.25(1) 125(1) 125(1) 125 (1)
1(6) 129 (1) 132 (1) 132 (1) 1.32(1) 1.32() 1.32() 1320) 1.32(Q)
2(6) 138 (1) 139 (1) 139 (1) 1.39() 1.39() 139 (1) 139 1) 1.39 (1)
5(6) 148 (1) 148 (1) 148 (1) 148 (1) 148 (1) 148 (1) 148 (1) 1.48 (1)
1(7) LS55 () 155 (1) 1.55(1) 1.55(1) 1.55(1) 1.55(1) 1.55(1) 1.55(1)
2(7) 1.62 (1) 162 (1) 1.62 (1) 1.62 (1) 1.62() 1.62(1) 1.62 (1) 1.62 (1)
5(7) L70 (1)  L72(1) L72(1) 1.72(1) 1.72() L72() 172 () 172 (1)
1(8) L78 (1) L78 (1) L78 (1) 178 (1) 178 (1) 178 (1) 178 (1) 1.78 (1)
Table 5 Values of F (u,0,1/re,,) for oo = 107

Iu 1/re, =1 2 5 10 20 50 100 200
5(-1) 5.00(-6)  2.27(-6)  2.48(-6)  4.19(-6)  9.00(-6)  3.21(-5) 9.77(-5)  3.15(4)
1(0) 1.00(-5)  8.36(-6) 1.44(-5) 3.07(-5) 7.89(-5) 3.27(4) 1.04(-3) 3.44(-3)
2(0) 2.00(-5)  2.51(=5) 5.94(-5) 1.47(4) 4.14(4) 1.84(-3) 6.02(-3) 2.00(-2)
5(0) 5.00(-5)  887(-5) 2.74(-4) 7.61(4) 231(-3) 1.08(-2) 3.61(=2) 1.19(-1)
1(1) 1.00(-4)  2.11(4) 7.42(4) 2.18(-3) 6.85(-3) 3.30(-2) 1.10(-1)  3.50(-1)
2(1) 2.00(4) 4.77(4) 1.84(-3) 5.65(-3) 1.82(-2) 8.90(-2) 2.92(-1) 8.57(-1)
5(1) 5.00(-4)  1.34(-3) 5.64(-3) 1.80(-2) 5.92(-2) 2.89(-1) 8.91(-1) 2.12 (0)
1(2) 1.00(-3)  2.84(-3) 1.26(-2) 4.09-2) 1.36(-1) 6.49(-1) 1.80 (0) 3.34 (0)
2(2) 2.00(-3) 5.96(-3) 2.74(-2) 9.03(-2) 3.01(-1) 1.35(0) 3.14 (0) 4.40 (0)
5(2) 5.00(-3)  1.56(-2) 7.43(-2) 247(-1) 8.06(-1) 3.03 (0) 501 (0) 5.52 (0)
1(3) 9.99(-3)  3.20(-2) 1.55(-1) 5.15(-1) 1.60 (0) 4.75 (0) 6.06 (0) 6.27 (0)
2(3) 2.00(-2)  6.54(-2) 320(-1) 1.04 (0) 296 (0) 631 (0) 690 (0) 6.99 (0)
5(3) 4.98(-2) 1.66(-1) 8.08(-1) 245 (0) 558 (0) 7.71 (0) 7.89 (0) 7.93 (0)
1(4) 9.93(-2) 3.34(-1) 1.58 (0) 428 (0) 7.54 (0) 8.52(0) 8.6l (0) 8.63 (0)
2(4) 1.98(-1)  6.62(-1) 293 (0) 6.63 (0) 890 (0) 9.21 (0) 9.31 (0) 9.31 (0)
5(4) 4.86(-1) 1.59 (0) 586 (0) 936 (0) 1.01 (1) 102 (1) 1.02() 1.02()
1(5) 9.49(-1) 295 (0) 853 (0) 1.06 (1) 1.09 (1) 1.09 (1) 1.09 (1) 1.09 (1)
2(5) 182 (0)  5.15(0) 107 (1) 1L15(1) 116 (1) 116 (1) 116 (1) 1.16 (1)
5(5) 403 (0) 9.08 (0) 1.23 (1) 1.25(1) 1.25(1) 1.25() 1.25() 1.25()
1(6) 6.78 (0) L18 (1) 131 (1) 132(1) 1.32(1) 132() 1.32() 1.32()
2(6) LOL (1) 134 (1) 139 (1) 1.39() 1.39() 139() 139 1) 1.39 (1)
5(6) 1.37.(1) 147 (1) 148 (1) 149 (1) 149 (1) 149 (1) 149 (1) 1.49 (1)
1(7) LSI (1) LSS (1) 155(1) 155(1) 1.55(1) 1.55(1) 1.55(1) 1.5 (1)
2(7) L6l (1) 162 (1) 1.62(1) 1.62 (1) 1.62(1) 1.62(1) 1.62(1) 1.62 (1)
5(7) L70 ()  L71()  L70()  L71(1)  L70(1)  L71(1)  L71(1) 171 (1)
1(8) L78 (1) 178 () 178 (1) 178 () 178 (1) 178 (1) 178 (1) 1.78 (1)
2(8) 185 (1) 1.85 (1) 1.85() 1.8 (1) 1.85(1) 1.85(1) 1.85(1) 1.85 (1)
5(8) 194 (1)  1.94 (1) 194 (1) 194 (1) 194 (1) 194 (1) 194 (1) 194 ()
109) 202 (1) 202 (1) 202 1) 202(1) 2021 202(() 202() 202
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Annex 12.1 (cont.)

r/rBW
1/u, 5 10 20 50 100 200 500 1000
4 3 0.596 0422 0254  0.066  0.004
6 (3 615 450 287 094 012
8 (3) 627 467 309 116 021 0.000
1.2 (4) 644 490 338 147 039 001
2 (@) 662 517 372 186 068 .006
2.8 (4) 673 533 392 211 089 014
4 @ 685 549 413 237 114 025
6 (@) 696 566 435 264 142 043 0.000
8 (@) 704 577 450 283 161 058 001
1.2 (5) 715 592 469 308 188 081 005
2 (5 727 609 492 337 221 113 014 0.000
2.8(5) 734 620 506 355 242 134 025 001
4 (5 742 631 520 373 263 156 039 002
6 (5 750 642 532 392 285 180 058 007
8 (5 755 650 544 405 300 197 072 013
1.2 (6) 762 660 558 423 321 220 094 024
2 (6) 771 672 574 443 345 247 122 044
2.8 (6) 776 680 584 456 360 264 141 059
4 (6) 782 688 594 470 376 282 160 076
6 (6) 788 696 604 484 392 301 181 .096
8 (6) 792 702 612 493 403 314 196 111
1.2 (7) 797 709 622 506 418 331 216 132
2 () 803 718 633 521 436 352 240 157
2.8(7) 807 724 641 531 448 365 255 173
4 (7 811 730 648 541 459 378 270 190
6 (1) 815 736 656 551 472 392 287 208
8 (7) 818 740 662 558 480 402 299 21
1.2(8) 822 746 669 568 492 Als 314 238
2 (8) 827 753 678 580 506 431 333 258
2.8(8) 830 757 684 587 514 441 344 271
4 (8 833 762 690 595 523 452 357 285
6 (8) 837 766 696 603 533 463 370 300
8 (8 839 770 701 609 540 470 379 310
1.2 (9) 842 774 706 617 549 481 391 323
2 (9 846 780 714 626 560 494 406 340
2.8(9) 849 783 718 632 567 502 Al5 350
4 (9 851 787 723 638 574 510 425 361
6 (9 854 791 728 645 582 519 435 372
8 (9 856 794 731 649 587 525 443 380
1.2 (10) 858 797 736 655 594 533 452 392
2 (10) 861 802 742 663 603 544 464 405
2.8 (10) 863 804 746 668 1609 550 472 413
4 (10 865 807 749 673 615 557 480 422
6 (10) 867 810 753 678 621 564 488 431
8 (10) 869 813 756 682 625 569 494 438
1.2 (11) 871 816 760 687 631 576 502 447
2 (1) 874 819 765 693 638 584 512 457
2.8 (11) 875 821 768 696 643 589 518 464
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Annex 14.1 Values of s,,,/Q, corresponding to values of Q, and Pfor B=1,C=1, P> 1, Q, < Q; and
QiP'l = 100 for well performance tests

P= 17 1.8 1.9 2.0 2.1 2.2 2.3
Q, Q; = 719.7 316.2 166.8 100.0 65.8 46.4 34.6
0.1 1.20 1.16 1.13 1.10 1.08 1.06 1.05
0.15 1.27 1.22 1.18 1.15 1.12 1.10 1.08
0.2 1.32 1.28 1.23 1.20 1.17 1.14 1.12
0.3 1.43 1.36 1.34 1.30 1.27 1.24 1.21
0.4 1.53 1.48 1.44 1.40 1.36 1.33 1.30
0.5 1.62 1.57 1.54 1.50 1.47 1.44 1.41
0.6 1.70 1.66 1.63 1.60 1.57 1.54 1.51
0.8 1.86 1.84 1.82 1.80 1.78 1.77 1.75
1.0 2.00 2.00 2.00 2.00 2.00 2.00 2.00
1.5 2.33 2.38 2.44 2.50 2.56 2.63 2.69
2.0 2.62 2.74 2.87 3.00 3.14 3.30 3.46
3.0 3.16 3.41 3.69 4.00 4.35 4.74 5.17
4.0 3.64 4.03 4.48 5.00 5.55 6.28 7.06
5.0 4.09 4.62 5.26 6.00 6.87 7.90 9.10
6.0 4.51 5.19 6.02 7.00 8.18 9.59 11.27
8.0 5.29 6.28 7.50 9.00 10.85 13.13 15.93
10 6.01 7.31 8.94 11.00 13.59 16.85 20.95
15 7.66 9.73 12.44 16.00 20.67 26.78 34.80
20 9.14 11.99 15.82 21.00 27.99 37.41 50.13
30 11.81 16.19 22.35 31.00 43.15 60.23 84.23
40 14.23 20.13 28.66 41.00 58.85 84.65
50 16.46 23.87 34.81 51.00 74.94
60 18.57 27.46 40.84 61.00 91.36
80 22.49 34.30 52.62 81.00
100 26.12 40.81 64.10

Annex 14.1 (continued)

P= 24 2.5 2.6 2.8 3.0 3.2 34 3.6 4.0

Q, Q=268 21.5 17.8 12.9 10.0 8.1 6.8 5.9 4.6
0.1 1.04 1.03 1.03 1.02 1.01 1.01 1.00 1.00 1.00
0.15 1.07 1.06 1.05 1.03 1.02 1.02 1.01 1.01 1.00
0.2 1.11 1.09 1.08 1.06 1.04 1.03 1.02 1.02 1.01
0.3 1.19 1.16 1.15 1.11 1.09 1.07 1.06 1.04 1.03
0.4 1.28 1.25 1.23 1.19 1.16 1.13 1.11 1.09 1.06
0.5 1.38 1.35 1.33 1.29 1.25 1.22 1.19 1.16 1.13
0.6 1.49 1.46 1.44 1.40 1.36 1.33 1.29 1.26 1.22
0.8 1.73 1.72 1.70 1.67 1.64 1.61 1.59 1.56 1.51
1.0 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
1.5 2.76 2.84 2.91 3.07 3.25 3.44 3.65 3.87 4.38
2.0 3.64 3.83 4.03 4.48 5.00 5.59 6.28 7.06 9.00
3.0 5.66 6.20 6.80 8.22 10.00 12.21 14.97 18.40 28.00
4.0 7.96 9.00 10.19 13.13 17.00 22.11 28.86 37.76 65.00
5.0 10.52 12.18 14.13 19.12 26.00 35.49 48.59 66.66

6.0 13.29 15.70 18.58 26.16 37.00 52.51 74.72

8.0 19.38 23.63 28.86 43.22 65.00 98.01

10 26.12 32.62 40.81 64.10

15 45.31 59.09 77.16

20 67.29 90.44
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Annex 15.1 Values of Papadopulos-Cooper’s function F(uy,o) for single-well constant-discharge tests in
confined aquifers (after Papadopulos and Cooper 1967)

1/u,, a=10" =107 =107 a=10" a=107°
1(-1) 9.75(-3) 9.98(-4) 1.00(—4) 1.00(=5) 1.00(-6)
1(0) 9.19(-2) 9.91(-3) 9.99(—4) 1.00(—4) 1.00(-5)
2(0) 1.77(-1) 1.97(-2) 2.00(-3) 2.00(-4) 2.00(=5)
5(0) 4.06(~1) 4.89(-2) 4.99(-3) 5.00(-4) 5.00(-5)
1(1) 7.34(-1) 9.66(-2) 9.97(-3) 1.00(-3) 1.00(—4)
2(1) 1.26 1.90(-1) 1.99(-2) 2.00(-3) 2.00(-4)
5(1) 2.30 4.53(-1) 4.95(-2) 4.99(-3) 5.00(—4)
12) 3.28 8.52(-1) 9.83(-2) 9.98(-3) 1.00(-3)
2(2) 4.25 1.54 1.94(-1) 1.99(-2) 2.00(-3)
5(2) 5.42 3.04 4.72(-1) 4.97(-2) 5.00(-3)
1(3) 6.21 4.54 9.07(-1) 9.90(-2) 9.99(-3)
2(3) 6.96 6.03 1.69 1.96(-1) 2.00(-2)
5(3) 7.87 7.56 3.52 4.81(-1) 4.98(-2)
1(4) 8.57 8.44 5.53 9.34(-1) 9.93(-2)
2(4) 9.32 9.23 7.63 1.77 1.97(-1)
5(4) 1.02(1) 1.02(1) 9.68 3.83 4.86(~1)
1(5) 1.09(1) 1.09(1) 1.07(1) 6.24 9.49(-1)
2(5) 1.16(1) 1.16(1) 1.15(1) 8.99 1.82
5(5) 1.25(1) 1.25(1) 1.25(1) 1.17(1) 4.03
1(6) 1.32(1) 1.32(1) 1.32(1) 1.29(1) 6.78
2(6) 1.39(1) 1.39(1) 1.39(1) 1.38(1) 1.01(1)
5(6) 1.48(1) 1.48(1) 1.48(1) 1.48(1) 1.37(1)
1(7) 1.55(1) 1.55(1) 1.55(1) 1.55(1) 1.51(1)
2(7) 1.62(1) 1.62(1) 1.62(1) 1.62(1) 1.60(1)
5(7) 1.70(1) 1.70(1) 1.70(1) 1.71(1) 1.71(1)
1(8) 1.78(1) 1.78(1) 1.78(1) 1.78(1) 1.78(1)
2(8) 1.85(1) 1.85(1) 1.85(1) 1.85(1) 1.85(1)
5(8) 1.94(1) 1.94(1) 1.94(1) 1.94(1) 1.94(1)
109) 2.01(1) 2.01(1) 2.01(1) 2.01(1) 2.01(1)

Annex 15.2 Values of s,/s 4 for single-well constant-discharge tests in confined aquifers (after Rushton and

Singh 1983)
S

4KDt/r?, 107! 1072 1073 1074 1073 107
1.0 (-2) 2.49 2.49 2.50 2.50 2.50 2.50
1.78 (-2) 2.48 2.49 2.49 2.50 2.50 2.50
3.16 (-2) 2.47 2.48 2.49 2.50 2.50 2.50
5.62(-2) 2.45 2.47 2.49 2.49 2.49 2.50
1.0 (-1) 2.43 2.46 2.48 2.49 2.49 2.49
1.78 (1) 2.39 2.44 2.47 2.48 2.48 2.49
3.16 (-1) 2.34 2.42 2.45 2.46 2.47 2.48
5.62 (-1) 2.28 2.38 2.42 2.44 2.46 2.46
1.0 2.19 231 2.37 2.41 2.43 2.44
1.78 2.08 2.22 2.30 2.35 2.38 2.40
3.16 1.94 2.10 2.19 2.26 2.30 2.33
5.62 1.78 1.93 2.04 2.12 2.18 2.22
10 1.62 1.73 1.84 1.94 2.01 2.07
17.8 1.47 1.53 1.62 1.71 1.79 1.86
31.6 1.35 1.36 1.41 1.47 1.54 1.60
56.2 1.26 1.24 1.25 1.28 1.32 1.36
100 121 1.17 1.15 1.16 1.17 1.19
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Annex 15.3 Values of u, W(u,) for single-well constant-discharge tests

Uy u, W(uy,) uy u, W(uy)
8 3.014(-4) 8(-6) 8.928(-5)
6 2.161(-3) 6(-6) 6.870(-5)
4 1.512(-2) 4(-6) 4.740(-5)
2 9.780(~1) 2(-6) 2.510(-5)
1 2.194(-1) 1(-6) 1.324(-5)
8(-1) 2.485(-1) 8(-7) 1.077(-5)
6(-1) 2.726(-1) 6(-7) 8.250(~6)
4(-1) 2.810(-1) 4(-7) 5.660(~6)
2(-1) 2.446(-1) 2(-7) 2.970(-6)
1(-1) 1.823(-1) 1(-7) 1.554(-6)
8(-2) 1.622(-1) 8(-8) 1.261(-6)
6(-2) 1.377(-1) 6(-8) 9.630(-7)
4(-2) 1.072(-1) 4(-8) 6.584(-7)
2(-2) 6.710(-2) 2(-8) 3.430(-7)
1(-2) 4.038(-2) 1(-8) 1.784(-7)
8(-3) 3.407(-2) 8(-9) 1.446(-7)
6(-3) 2.727(-2) 6(-9) 1.101(-7)
4(-3) 1.979(-2) 4(-9) 7.504(-8)
2(-3) 1.128(-2) 2(-9) 3.890(-8)
1(-3) 6.332(-3) 1(-9) 2.015(-8)
8(-4) 5.244(-3) 8(-10) 1.630(-8)
6(-4) 4.105(-3) 6(~10) 1.240(-8)
4(-4) 2.899(-3) 4(-10) 8.424(-9)
2(-4) 1.588(-3) 2(-10) 4.352(-9)
1(-4) 8.633(-4) 1(-10) 2.245(-9)
8(-5) 7.085(-4) 8(-11) 1.824(-9)
6(-5) 5.486(-4) 6(-11) 1.378(-9)
4(-5) 3.820(-4) 4(-11) 9.344(-10)
2(-5) 2.048(-4) 2(-11) 4.812(-10)
1(-5) 1.094(-4) 1(-11) 2.475(-10)
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Annex 15.4 Values of si/s 4 for single-well tests with decreasing discharge rates in confined aquifers (after
Rushton and Singh 1983)

Values of s;/s 4, for S = 0.001

4 KDT Discharge Reduction Factor (F)

2
Tew

1.0 0.7 0.4 0.2 0.1 0.07 0.04 0.02 0.01 0.0

1.0 x102 248 2.49 2.49 2.50 2.50 2.50 2.50 2.50 2.50 2.50
1.78x 1072 2.47 2.48 2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49
3.16x 1072 2.46 2.47 2.48 2.49 2.49 2.49 2.49 2.49 2.49 2.49
562x 1072 2.44 2.45 2.47 2.48 2.48 2.48 2.49 2.49 2.49 2.49
1.0 x107" 2.39 2.41 2.45 2.46 2.47 2.47 2.48 2.48 2.48 2.48
1.78x 107" 2.32 2.35 2.41 2.44 2.45 2.45 2.46 2.47 2.47 2.47
3.16x 107" 221 2.27 2.36 2.40 2.43 2.43 2.44 2.44 2.45 2.45
5.62x 107" 2.04 2.13 2.26 2.34 2.38 2.39 2.40 2.41 2.42 2.42

1.0 1.81 1.94 2.12 2.24 2.30 2.32 2.35 2.36 2.37 2.37
1.78 1.55 1.69 1.92 2.09 2.19 2.22 2.26 2.28 2.29 2.30
3.16 1.30 1.43 1.66 1.88 2.02 2.07 2.12 2.16 2.18 2.19
5.62 1.13 1.21 1.39 1.63 1.80 1.87 1.94 1.99 2.02 2.04
10.0 1.04 1.09 1.18 1.37 1.55 1.63 1.71 1.77 1.81 1.84
17.8 1.02 1.04 1.07 1.18 1.32 1.39 1.47 1.54 1.58 1.62
31.6 1.01 1.02 1.03 1.08 1.16 1.21 1.27 1.33 1.37 1.41
56.2 1.00 1.01 1.02 1.04 1.08 1.12 1.15 1.19 1.22 1.25
100 1.00 1.00 1.01 1.03 1.05 1.07 1.09 1.12 1.13 1.15

Values of s,/s 4, for S = 0.01

4 KDT Discharge Reduction Factor (F)

2
Tew

1.0 0.7 0.4 0.2 0.1 0.07 0.04 0.02 0.01 0.0

1.0 x1072 2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49
1.78x 1072 2.48 2.48 2.48 2.49 2.49 2.49 2.49 2.49 2.49 2.49
3.16x 107 247 2.47 2.48 2.48 2.48 2.48 2.48 2.48 2.48 2.48
5.62x 1072 2.44 2.46 2.47 2.47 2.47 2.47 2.47 2.47 2.47 2.47
1.0 x107" 2.40 243 2.44 2.45 2.46 2.46 2.46 2.46 2.46 2.46
1.78x 107" 2.34 2.38 2.40 2.42 2.43 2.44 2.44 2.44 2.44 2.44
3.16x 107" 2.23 2.29 2.33 2.37 2.39 2.40 2.41 2.41 2.41 2.42
5.62x107" 2,07 2.16 2.23 2.30 2.33 2.35 2.36 2.37 2.37 2.38

1.0 1.84 1.97 2.08 2.19 2.25 2.27 2.29 2.30 2.31 2.31
1.78 1.56 1.72 1.88 2.03 2.12 2.15 2.18 2.20 2.21 2.22
3.16 1.30 1.44 1.64 1.82 1.95 1.99 2.03 2.06 2.08 2.10
5.62 1.12 1.21 1.39 1.58 1.73 1.79 1.84 1.89 1.91 1.93
10.0 1.03 1.07 1.20 1.36 1.50 1.56 1.63 1.68 1.70 1.73
17.8 1.01 1.02 1.09 1.19 1.31 1.36 1.42 1.47 1.50 1.53
31.6 1.00 1.01 1.05 1.10 1.18 1.21 1.26 1.30 1.33 1.36
56.2 1.00 1.00 1.04 1.06 1.11 1.13 1.16 1.19 1.21 1.24
100 1.00 1.00 1.03 1.04 1.08 1.09 1.11 1.14 1.15 1.17
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Annex 15.4 (cont.)

Values of s,/s 4, for S = 0.1

4 KDT Discharge Reduction Factor (F)

2

T,

v 1.0 0.7 0.4 0.2 0.1 007 004 002 00l 00
1.0 x102 248 248 249 249 249 249 249 249 249 249
1.78x 102 247 247 248 248 248 248 248 248 248 248
3.16x 1072 245 246 246 247 247 247 247 247 247 247
5.62x 1072 241 243 244 245 245 245 245 245 245 245
1.0 x107" 236 238 240 242 242 242 243 243 243 243
1.78x 107" 228 231 235 237 238 239 239 239 239 239
3.16x1070 216 221 227 231 233 233 234 234 234 234
562x1070 199 207 216 222 225 226 227 228 228 228
1.0 177  1.88 200 209 215 216 218 219 219 219
1.78 153 165 181 193 201 203 205 207 208 208
3.16 1.31 142 159 174 184 187 190 193 194 194
5.62 116 124 138 154 165 169 173 176 177 178
10.0 .07 L12 122 136 147 151 155 159 160  1.62
17.8 .04 107 113 122 131 135 140 143 145 147
316 .03 104 108 114 121 124 128 131 133 135
56.2 102 103 105 110 115 117 120 123 124 126
100 .02 1.02  1.04  1.08 LIl 113 116 118 119 121
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Annex 16.1 Values of the function f(c.,8) for slug tests in confined aquifers (after Cooper et al. 1967; Papadopu-
los et al. 1973; Bredehoeft and Papadopulos 1980)

Table 1. 10710 < o < 107

B a=10°%  a=107 a=10°% o=10° =101
0.001 0.9994 0.9996 0.9996 0.9997 0.9997
0.002 0.9989 0.9992 0.9993 0.9994 0.9995
0.004 0.9980 0.9985 0.9987 0.9989 0.9991
0.006 0.9972 0.9978 0.9982 0.9984 0.9986
0.008 0.9964 0.9971 0.9976 0.9980 0.9982
0.01 0.9956 0.9965 0.9971 0.9975 0.9978
0.02 0.9919 0.9934 0.9944 0.9952 0.9958
0.04 0.9848 0.9875 0.9894 0.9908 0.9919
0.06 0.9782 0.9819 0.9846 0.9866 0.9881
0.08 0.9718 0.9765 0.9799 0.9824 0.9844
0.1 0.9655 0.9712 0.9753 0.9784 0.9807
0.2 0.9361 0.9459 0.9532 0.9587 0.9631
0.4 0.8828 0.8995 0.9122 0.9220 0.9298
0.6 0.8345 0.8569 0.8741 0.8875 0.8984
0.8 0.7901 0.8173 0.8383 0.8550 0.8686
1.0 0.7489 0.7801 0.8045 0.8240 0.8401
2.0 0.5800 0.6235 0.6591 0.6889 0.7139
3.0 0.4554 0.5033 0.5442 0.5792 0.6096
4.0 0.3613 0.4093 0.4517 0.4891 0.5222
5.0 0.2893 0.3351 0.3768 0.4146 0.4487
6.0 0.2337 0.2759 0.3157 0.3525 0.3865
7.0 0.1903 0.2285 0.2655 0.3007 0.3337
8.0 0.1562 0.1903 0.2243 0.2573 0.2888
9.0 0.1292 0.1594 0.1902 0.2208 0.2505

10.0 0.1078 0.1343 0.1620 0.1900 0.2178
20.0 0.02720  0.03343  0.04129  0.05071 0.06149
30.0 0.01286  0.01448  0.01667  0.01956  0.02320
40.0 0.008337  0.008898  0.009637  0.01062  0.01190
50.0 0.006209  0.006470  0.006789  0.007192  0.007709
60.0 0.004961  0.005111  0.005283  0.005487  0.005735
80.0 0.003547  0.003617  0.003691  0.003773  0.003863

100.0 0.002763  0.002803  0.002845  0.002890  0.002938

200.0 0.001313  0.001322  0.001330  0.001339  0.001348
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Annex 16.1 (cont.)

Table 2. 107 < o < 107}

B o=10" oa=1072 a=10"3 a=10" a=10""
1.00x 1073 0.9771 0.9920 0.9969 0.9985 0.9992
2.15x 107 0.9658 0.9876 0.9949 0.9974 0.9985
4.64%107 0.9490 0.9807 0.9914 0.9954 0.9970
1.00x 1072 0.9238 0.9693 0.9853 0.9915 0.9942
2.15%x 1072 0.8860 0.9505 0.9744 0.9841 0.9888
4.64% 1072 0.8293 0.9187 0.9545 0.9701 0.9781
1.00x 107! 0.7460 0.8655 0.9183 0.9434 0.9572
2.15% 107! 0.6289 0.7782 0.8538 0.8935 0.9167
4.64x107! 0.4782 0.6436 0.7436 0.8031 0.8410
1.00 x 10° 0.3117 0.4598 0.5729 0.6520 0.7080
2.15% 10° 0.1665 0.2597 0.3543 0.4364 0.5038
4.64x10° 0.07415 0.1086 0.1554 0.2082 0.2620
7.00 x 10° 0.04625 0.06204 0.08519 0.1161 0.1521
1.00x 10" 0.03065 0.03780 0.04821 0.06355 0.08378
1.40 x 10’ 0.02092 0.02414 0.02844 0.03492 0.04426
2.15% 10! 0.01297 0.01414 0.01545 0.01723 0.01999
3.00 x 10! 0.009070 0.009615 0.01016 0.01083 0.01169
4.64x 10! 0.005711 0.005919 0.006111 0.006319 0.006554
7.00 x 10! 0.003722 0.003809 0.003884 0.003962 0.004046
1.00 x 102 0.002577 0.002618 0.002653 0.002688 0.002725
2.15% 102 0.001179 0.001187 0.001194 0.001201 0.001208

354



Annex 16.1 (cont.)

Table3. 107! <o < 10
B a=0.1 a=0.2 a=0.5 a=1 o=2 a=>5 a=10
0.000001 0.9993 0.9990 0.9984 0.9977 0.9968 0.9948 0.9923
0.000002 0.9990 0.9986 0.9977 0.9968 0.9955 0.9927 0.9894
0.000004 0.9986 0.9980 0.9968 0.9955 0.9936 0.9898 0.9853
0.000006 0.9982 0.9975 0.9961 0.9945 0.9922 0.9876 0.9822
0.000008 0.9980 0.9971 0.9955 0.9936 0.9910 0.9857 0.9796
0.00001 0.9977 0.9968 0.9949 0.9929 0.9900 0.9841 0.9773
0.00002 0.9968 0.9955 0.9929 0.9900 0.9858 0.9776 0.9683
0.00004 0.9955 0.9936 0.9899 0.9858 0.9801 0.9687 0.9558
0.00006 0.9944 0.9922 0.9877 0.9827 0.9757 0.9619 0.9464
0.00008 0.9936 0.9909 0.9858 0.9800 0.9720 0.9562 0.9387
0.0001 0.9928 0.9899 0.9841 0.9777 0.9688 0.9512 0.9318
0.0002 0.9898 0.9857 0.9776 0.9687 0.9562 0.9321 0.9059
0.0004 0.9855 0.9797 0.9685 0.9560 0.9389 0.9061 0.8711
0.0006 0.9822 0.9752 0.9615 0.9465 0.9258 0.8869 0.8458
0.0008 0.9794 0.9713 0.9557 0.9385 0.9151 0.8711 0.8253
0.001 0.9769 0.9679 0.9505 0.9315 0.9057 0.8576 0.8079
0.002 0.9670 0.9546 0.9307 0.9048 0.8702 0.8075 0.7450
0.004 0.9528 0.9357 0.9031 0.8686 0.8232 0.7439 0.6684
0.006 0.9417 0.9211 0.8825 0.8419 0.7896 0.7001 0.6178
0.008 0.9322 0.9089 0.8654 0.8202 0.7626 0.6662 0.5797
0.01 0.9238 0.8982 0.8505 0.8017 0.7400 0.6384 0.5492
0.02 0.8904 0.8562 0.7947 0.7336 0.6595 0.5450 0.4517
0.04 0.8421 0.7980 0.7214 0.6489 0.5654 0.4454 0.3556
0.06 0.8048 0.7546 0.6697 0.5919 0.5055 0.3872 0.3030
0.08 0.7734 0.7190 0.6289 0.5486 0.4618 0.3469 0.2682
0.1 0.7459 0.6885 0.5951 0.5137 0.4276 0.3168 0.2428
0.2 0.6418 0.5774 0.4799 0.4010 0.3234 0.2313 0.1740
0.4 0.5095 0.4458 0.3566 0.2902 0.2292 0.1612 0.1207
0.6 0.4227 0.3642 0.2864 0.2311 0.1817 0.1280 0.09616
0.8 0.3598 0.3072 0.2397 0.1931 0.1521 0.1077 0.08134
1 0.3117 0.2648 0.2061 0.1663 0.1315 0.09375 0.07120
2 0.1786 0.1519 0.1202 0.09912 0.08044 0.05940 0.04620
4 0.08761 0.07698 0.06420 0.05521 0.04668 0.03621 0.02908
6 0.05527 0.04999 0.04331 0.03830 0.03326 0.02663 0.02185
8 0.03963 0.03658 0.03254 0.02933 0.02594 0.02125 0.01771
10 0.03065 0.02870 0.02600 0.02376 0.02130 0.01776 0.01499
20 0.01408 0.01361 0.01288 0.01219 0.01133 0.009943  0.008716
40 0.006680  0.006568  0.006374  0.006171  0.005897  0.005395  0.004898
60 0.004367  0.004318  0.004229  0.004132  0.003994 0.003726  0.003445
80 0.003242  0.003214  0.003163  0.003105  0.003022  0.002853  0.002668
100 0.002577  0.002559  0.002526  0.002487  0.002431  0.002313  0.002181
200 0.001271 0.001266  0.001258  0.001247  0.001230  0.001194  0.001149
400 0.0006307 0.0006295 0.0006272 0.0006242 0.0006195 0.0006085 0.0005944
600 0.0004193 0.0004188 0.0004177 0.0004163 0.0004141 0.0004087 0.0004016
800 0.0003140 0.0003137 0.0003131 0.0003123 0.0003110 0.0003078 0.0003035
1000 0.0002510 0.0002508 0.0002504 0.0002499 0.0002490 0.0002469 0.0002440
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Annex 18.2 Values of the function F(u) for different values of u,; (after Gringarten, Ramey and Raghavan

1974)

Uyf F(uvf) Uyf F(uvf)

1.0(-2) 0.3544 1.0 (1) 5.1200
1.5(=2) 0.4342 1.5(1) 5.5226
2.0(=2) 0.5014 2.0(1) 5.8090
3.0(=2) 0.6140 3.0(1) 6.2130
4.0(-2) 0.7090 4.0(1) 6.5000
50(-2) 0.7926 5.0(1) 6.7228
6.0 (=2) 0.8680 6.0(1) 6.9048
8.0(-2) 1.0014 8.0(1) 7.1922
1.0 (-1) 1.1174 1.0(2) 7.4150
1.5(-1) 1.3580 1.512) 7.8202
2.0 (-1) 1.5512 2.0(2) 8.1078
3.0(-1) 1.8522 3.0(2) 8.5132
4.0(-1) 2.0834 4.0(2) 8.8008
5.0(-1) 22710 50(2) 9.0238
6.0 (-1) 2.4290 6.0(2) 9.2062
8.0(-1) 2.6854 8.0(2) 9.4938
1.0 (0) 2.8894 1.0(3) 9.7168
1.5(0) 3.2688 1.5(3) 10.1224
2.0(0) 3.5432 2.0(3) 10.4100
3.0(0) 3.9352 3.003) 10.8154
4.0 (0) 4.2160 4.0(3) 11.1032
5.0 (0) 4.4350 50(3) 11.3262
6.0(0) 4.6146 6.0(3) 11.5086
8.0 (0) 4.8988 8.0(3) 11.7962
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Annex 18.3 Values of the function F(u,C',y) for different values of u,; and C',¢ (after Ramey and Gringarten

1976)
Cir
Uyp 0.001 0.005 0.01 0.05 0.1 0.5
1 (6) 1.1205 (-3)
1.5 (-6) 1.6450 (-3)
2 (-6 2.1159 (-3)
3 (-6) 2.9508 (-3)
4 () 3.6983 (-3)
6 (-6) 4.9975(-3)
8 (-6) 6.1444 (-3)
1 (-5 7.1851 (-3) 2.6122 (-3) 1.5802 (-3) 3.7982 (-4)
1.5 (-5) 9.4121 (-3) 3.9039 (-3) 2.3653 (-3) 5.6945 (—4)
2 (-5) 1.1347(-2)  5.0794(-3)  3.1096(-3) 7.5684 (-4
3 (5) 14623 (-2)  7.2394(-3)  4.5236(-3) 1.1270(-3)
4 (-5 17436 (-2)  9.2119(-3)  5.8623(-3) 1.4924(-3)
6 (-5) 22169(-2)  12740(-2)  83519(-3)  2.2095(-3)
8 (-5) 26210(-2)  1.5924(-2) 1.0681(2) 2.9145(-3)

1 (-4) 2.9806(-2)  1.8867(-2)  1.2892(-2)  3.6097(-3)  1.8440(-3)

1.5 (-4) 3.7392(-2)  2.5279(-2)  1.7894(-2)  5.2967(-3)  2.7646(-3)

2 (4 43822(-2)  3.0952(-2) 2.2479(-2)  6.9421(-3)  3.6675(-3)

3 (-4) 54598(-2)  4.0687(-2) 3.0617(-2)  1.0104(-2) 54404 (-3)

4 (4 63724(-2)  49174(-2)  3.7945(-2) 13160(2) 7.1772(-3)

6 (-4) 7.8964(-2)  6.3566(-2)  5.0710(-2)  1.8955(-2)  1.0553(-2)

8 (-4) 9.1807(-2)  7.5941(-2)  6.1989(-2)  2.4490(-2)  1.3841(-2)

1 (3 L0315(-1)  8.7001(-2) ~ 7.2239(-2)  2.9815(-2) 1.7060(2)  3.7963 (-3)
1.5(-3) 12716 (-1) 11039 (-1)  9.4200(-2)  4.2169(-2) 2.4757(-2)  5.6926(-3)
2 (-3) 14739 (-1)  1.3033(-1)  1.1326(-1) 5.3746(-2) 3.2169(-2)  7.5650 (-3)
3 (-3) 18114 (-1)  1.6367(-1)  14545(-1)  7.4811(-2) 4.6145(-2)  1.1265(-2)
4 (-3) 20957 (-1)  1.9193(-1)  1.7306(-1)  9.4207(-2) 5.9436(-2)  1.4915(-2)
6 (-3) 25719(-1)  2.3926(-1)  2.1950(-1)  1.2881(-2) 8.4083(-2)  2.2076(-2)
8 (-3) 29732(-1)  27929(-1)  2.5905(-1)  1.6009(-2) 1.0716(-1)  2.9111(-2)
1 (2 33259 (-1)  3.1459(-1)  29411(-1) 1.8894(-1) 1.2901(-1)  3.6045(-2)
1.5 (-2) 4.0667(-1)  3.8857(-1)  3.6420(-1) 2.5162(-1) 1.7833(-1)  5.2848(-2)
2 (-2) 4.6837(-1)  4.5039(-1)  4.2572(-1)  3.0676(-1) 22335(-1)  6.9215(-2)
3 (-2) 5.6981(-1)  5.5205(-1)  5.2624(-1)  4.0032(-1)  3.0260(-1)  1.0059 (-1)
4 (-2) 6.5351(-1) 63608 (-1)  6.0913(-1)  4.8071(-1) 3.7319(-1)  1.3083(-1)
6 (-2) 7.7284(-1)  7.4343(-1)  6.1415(-1)  4.9407(-1)  1.8789 (-1)
8 (-2) 8.8453 (1)  8.5289(-1)  7.2609(-1)  5.9880(-1)  2.4209 (-1)
1 1) 9.8038 (-1)  9.4673(-1)  8.2383(-1)  6.9218(-1)  2.9388(-1)
1.5 (-1) 1.1367(0)  1.0222(0)  8.8500(-1)  4.1248(-1)
2 (1) 1.2891(0)  1.1835(0)  1.0456(0)  5.2188(-1)
3 (1) 15296 (0)  1.4377(0)  1.3019(0)  7.1547(-1)
4 (1) 1.7198(0)  1.6389(0)  1.5081(0)  8.8837(-1)
6 (-1) 1.9478(0)  1.8265(0)  1.1811(0)
8 (1) 2.1856(0)  2.0738(0)  1.4313(0)
1 (0) 23803(0)  22774(0)  1.6505(0)
1.5 (0) 27476 (0)  2.6594(0)  2.0818(0)
2 (0) 3.0212(0)  2.9444(0)  2.4241(0)
3 (0) 3.3628(0)  2.9293(0)
4 (0) 3.6792(0)  3.3057(0)
6 (0) 3.8331(0)
8 (0) 4.2077 (0)
1 (+1) 4.4985 (0)
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Annex 19.1 Values of F(y,t) according to Equation 19.2

T x=.01 x=.025 x=.05 yx=.1 x=25 yx=.5 yx=1.0 x=25 x=50 x=10
0.0010 0.0261 0.0158 0.0058 — - - - - - -
0.0015 0.0337 0.0226 0.0104 0.0014 — - - - - -
0.0025 0.0458 0.0338 0.0192 0.0048 — - - - - -
0.0040 0.0599 0.0474 0.0308 0.0112 - - - - - -
0.0065 0.0783 0.0653 0.0471 0.0224 0.0010 - - - - -
0.010  0.0985 0.0851 0.0657 0.0370 0.0039 - - - - -
0.015  0.1216 0.1079 0.0877 0.0557 0.0102 - - - ~ -
0.025  0.1573 0.1433 0.1221 0.0868 0.0257 0.0016 - - - -
0.040  0.1980 0.1839 0.1620 0.1241 0.0497 0.0070 — - - -
0.065 02496 0.2353 0.2129 0.1729 0.0865 0.0213 — - - -

0.10 0.3046 0.2902 0.2673 0.2258 0.1305 0.0448 0.0027 - - -
0.15 0.3654 0.3509 0.3278 0.2851 0.1826 0.0788 0.0096 — - -
0.25 0.4558 0.4412 0.4178 0.3739 0.2639 0.1398 0.0310 - - -
0.40 0.5538 0.5392 0.5155 0.4707 0.3552 0.2151 0.0689 — - -
0.65 0.6710 0.6563 0.6324 0.5869 0.4666 0.3126 0.1301 0.0045 - -
1.0 0.7888 0.7741 0.7501 0.7040 0.5802 0.4157 0.2040 0.0157 - -
1.5 0.9120 0.8973 0.8731 0.8266 0.7001 0.5270 0.2905 0.0376 — -
2.5 1.0843 1.0695 1.0453 0.9983 0.8687 0.6865 0.4222 0.0857 0.0034 -
4.0 1.2603 1.2455 1.2212 1.1739 1.0419 0.8523 0.5654 0.1530 0.0128 -
6.5 1.4610 1.4462 1.4218 1.3741 1.2401 1.0439 0.7360 0.2574 0.0342 -
10 1.6568 1.6420 1.6175 1.5696 1.4339 1.2324 0.9077 0.3537 0.0670 0.0016
15 1.8594 1.8435 1.8190 1.7709 1.6339 1.4279 1.0886 0.4748 0.1126 0.0049
25 2.1393  2.1244 2.0998 2.0515 1.9129 1.7020 1.3458 0.6595 0.1947 0.0149
40 24283 24134 23888 23403 22004 1.9854 1.6152 0.8650 0.3000 0.0334
65 2.7620 2.7471 2.7225 2.6738 2.5328 2.3139 1.9305 1.1176 0.4445 0.0674
100 3.0919 3.0771 3.0524 3.0035 2.8617 2.6397 2.2456 1.3798 0.6085 0.1152
150 3.4354 3.4204 3.3957 3.3468 3.2041 29795 2.5761 1.6631 0.7983 0.1808
250 3.9197 3.9037 3.8790 3.8299 3.6864 3.4590 3.0450 2.0757 1.0931 0.3001
400 4.4197 4.4049 43801 4.3309 4.1867 3.9569 3.5341 2.5168 1.4270 0.4559
650 5.0019 4.9870 4.9622 49129 4.7680 4.5359 4.1049 3.0416 1.8436 0.6748
1000 5.5809 5.5649 5.5401 54907 5.3453 51115 4.6739 3.5727 2.2816 0.9283
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Annex 19.2 Values of the function F(u,) according to Equation 19.6

10 F(u,) 10 F(u,) 10 F(u,)
0.10 0.0000 10.0 0.5379 1000 0.9449
0.15 0.0001 15.0 0.6083 1500 0.9549
0.25 0.0017 25.0 0.6852 2500 0.9650
0.40 0.0110 40.0 0.7446 4000 0.9722
0.65 0.0401 65.0 0.7955 6500 0.9782
1.00 0.0891 100.0 0.8327 10000 0.9824
1.50 0.1542 150.0 0.8619 15000 0.9856
2.50 0.2543 250.0 0.8919 25000 0.9888
4.00 0.3539 400.0 0.9139 40000 0.9912
6.5 0.4548 650.0 0.9320 65000 0.9931
Annex 19.3 Values of the function F(t) according to Equation 19.9

T F(7) T F(7) T F(7) T F(7)
0.0010 0.0352 0.065 0.259 4.0 1.27 250 3.93
0.0015 0.0430 0.10 0.315 6.5 1.47 400 4.43
0.0025 0.0552 0.15 0.375 10 1.67 650 5.01
0.0040 0.0695 0.25 0.466 15 1.87 1000 5.59
0.0065 0.0879 0.40 0.564 25 2.15 1500 6.19
0.010 0.1082 0.65 0.681 40 2.44 2500 7.04
0.015 0.1313 1.0 0.799 65 2.77 4000 7.93
0.025 0.1671 1.5 0.922 100 3.10 6500 8.96
0.040 0.2079 2.5 1.094 150 3.45

365






References

Anonymous 1964. Steady flow of groundwater towards wells. Proc. Comm. Hydrol. Research TNO No.
10, 179 pp.

Abdul Khader, M.H. and M.K. Veerankutty 1975. Transient well flow in an unconfined-confined aquifer
system. J. Hydrol., 26, pp. 123-140.

Aron, G. and V.H. Scott 1965. Simplified solution for decreasing flow in wells. J. Hydraul. Div., Proc.
Am. Soc. Civil Engrs., 91(HYS), pp. 1-12.

Barenblatt, G.E., L.P. Zheltov, and LN. Kochina 1960. Basic concepts in the theory of seepage of homoge-
neous liquids in fissured rocks. Journal of Applied Mathematics and Mechanics, 24(5), pp. 1286-1303.
Bierschenk, W.H. 1963. Determining well efficiency by multiple step-drawdown tests. Intern. Assoc. Sci.

Hydrol. Publ. 64, pp. 493-507.

Birsoy, Y.K. and W.K. Summers 1980. Determination of aquifer parameters from step tests and intermittent
pumping data. Ground Water, 18, pp. 137-146.

Boehmer, W.K. and J. Boonstra 1986. Flow to wells in intrusive dikes. Ph.D. Thesis, Free University,
Amsterdam, 262 pp.

Boehmer, W.K. and J. Boonstra 1987. Analysis of drawdown in the country rock of composite dike aquifers.
J. Hydrol., 94, pp. 199-214.

Boonstra, J. and W.K. Boehmer 1986. Analysis of data from aquifer and well tests in intrusive dikes. J.
Hydrol. 88, pp. 301-317.

Boonstra, J. and W.K. Boehmer 1989. Analysis of data from well tests in dikes and fractures. In: G. Jousma
et al. (eds.), Proc. Intern. Conf. on Groundwater Contamination: Use of models in decision-making,
Amsterdam, 1987. Kluwer Acad. Press, Dordrecht, pp. 171-180.

Boulton, N.S. 1954. The drawdown of the watertable under non-steady conditions near a pumped well
in an unconfined formation. Proc. Inst. Civil Engrs. 3, pp. 564-579.

Boulton, N.S. 1963. Analysis of data from non-equilibrium pumping tests allowing for delayed yield from
storage. Proc. Inst. Civil Engrs., 26, pp. 469-482.

Boulton, N.S. and T.D. Streltsova 1976. The drawdown near an abstraction of large diameter under non-
steady conditions in an unconfined aquifer. J. Hydrol., 30, pp. 29-46.

Boulton, N.S. and T.D. Streltsova 1977. Unsteady flow to a pumped well in a fissured waterbearing forma-
tion. J. Hydrol., 35, pp. 257-270.

Bourdet, D. and A.C. Gringarten 1980. Determination of fissure volume and block size in fractured reser-
voirs by type-curve analysis. Paper SPE 9293 presented at the 1980 SPE Annual Fall Techn. Conf. and
Exhib., Dallas.

Bouwer, H. 1978. Groundwater hydrology. McGraw-Hill Book, New York, 480 pp.

Bouwer, H. and R.C. Rice 1976. A slug test for determining hydraulic conductivity of unconfined aquifers
with completely or partially penetrating wells. Water Resources Res. Vol. 12, pp. 423-428.

Bouwer, H. and R.C. Rice 1978. Delayed aquifer field as a phenomenon of delayed air entry. Water
Resources Res., Vol. 14, pp. 1068-1074.

Bruggeman, G.A. 1966. Analyse van de bodemconstanten in een grondpakket, bestaande uit twee of meer
watervoerende lagen gescheiden door semi-permeabele lagen. Unpublished research report.

Bukhari, S.A., A. Vandenberg, and D.H. Lennox 1969. Iterative analysis: bounded leaky artesian aquifer.
J. Irr. Drain. Div., Proc. Am. Soc. Civil Engrs., Vol. 95(IR1), pp. 1-14.

Butler, J.J. 1988. Pumping tests in nonuniform aquifers — The radially symmetric case. J. Hydrol., 101,
pp. 15-30.

Cinco Ley, H., F. Samaniego, and N. Dominguez 1978. Transient pressure behavior for a well with a
finite-conductivity vertical fracture. Soc. Petrol. Engrs. J., 18, 253-264 pp.

Clark, L. 1977. The analysis and planning of step drawdown tests. Quart.J. Engng. Geol. Vol. 10, pp.
125-143.

Cooley, R.L. and C.M. Case 1973. Effect of a watertable aquitard on drawdown in an underlying pumped
aquifer. Water Resources Res., Vol. 9, pp. 434-447.

Cooper, H.H., J.D. Bredehoeft, and I.S. Papadopulos 1967. Response of a finite-diameter well to an instan-
taneous charge of water. Water Resources Res., Vol. 3, pp. 263-269.

367



Cooper, H.H. and C.E. Jacob 1946. A generalized graphical method for evaluating formation constants
and summarizing well field history. Am. Geophys. Union Trans. Vol. 27, pp. 526-534.

Dagan, G. 1967. A method of determining the permeability and effective porosity of unconfined anisotropic
aquifers. Water Resources Res., Vol. 3, pp. 1059-1071.

Darcy, H. 1856. Les fontaines publiques de la ville de Dijon, V. Dalmont, Paris, 647 pp.

De Glee, G.J. 1930. Over grondwaterstromingen bij wateronttrekking door middel van putten. Thesis.
J. Waltman, Delft (The Netherlands), 175 pp.

De Glee, G.J. 1951. Berekeningsmethoden voor de winning van grondwater. In: Drinkwatervoorziening,
3e Vacantiecursus: 38-80 Moorman’s periodieke pers, The Hague.

De Marsily, G. 1986. Quantitative hydrogeology. Academic Press, London, 440 pp.

De Ridder, N.A. 1961. The hydraulic characteristics of the Tielerwaard calculated from pumping test data
(in Dutch). Inst. Land and Water Manag. Res., Wageningen, Report no. 83, 15 pp.

De Ridder, N.A. 1966. Analysis of the pumping test ‘De Vennebulten’ near Varsseveld (in Dutch). Inst.
Land and Water Manag. Res., Wageningen, Report no. 335, 5 pp.

Dietz, D.N. 1943. De toepassing van invloedsfuncties bij het berekenen van de verlaging van het grondwater
ten gevolge van wateronttrekking. Water, Vol. 27(6), pp. 51-54.

Driscoll, F.G. (ed.) 1986. Groundwater and wells. 2nd edition, Johnson Division, St. Paul, Minnesota,
1089 pp.

Dupuit, J. 1863. Etudes théoriques et pratiques sur le mouvement des eaux dans les canaux découverts
et a travers les terrains permeables. 2éme edition; Dunot, Paris, 304 pp.

Earlougher, R.C. 1977. Advances in well test analysis. Monograph Vol.5, Soc. Petrol. Engrs. of Am. Inst.
Mining Met. Engrs., Dallas, 264 pp.

Eden, R.N. and C.P. Hazel 1973. Computer and graphical analysis of variable discharge pumping test
of wells. Inst. Engrs. Australia, Civil Engng. Trans., pp. 5-10.

Edelman, J.H. 1947. On the calculation of groundwater flows. Ph.D. Thesis, Univ. Techn. Delft, 77 pp.
(in Dutch).

Edelman, J.H. 1972. Groundwater hydraulics of extensive aquifers. Int. Inst. for Land Reclam. and Improv.,
Wageningen, Bull. 13. 216 pp.

Ferris, J.G. 1950. Quantitative method for determining groundwater characteristics for drainage design.
Agr. Engineering, Vol. 31, pp. 285-291.

Ferris, J.G., D.B. Knowless, R.H. Brown, and R.W. Stallman 1962. Theory of aquifer tests. U.S. Geological
Survey, Water-Supply Paper 1536E, 174 pp.

Gambolati, G. 1976. Transient free surface flow to a well: An analysis of theoretical solutions. Water
Resources Res., Vol. 12, pp. 27-39.

Genetier, B. 1984. La pratique des pompages d’essai en hydrogéologie. Bur. Rech. Géol. Min.. Manuels
et méthodes, No. 9, 132 pp.

Gringarten, A.C. 1982. Flow-test evaluation of fractured reservoirs. In: Narasimhan, T.N. Recent trends
in hydrogeology. Geological Soc. Am. Special Paper 189, pp. 237-263.

Gringarten, A.C. and H.J. Ramey Jr. 1974. Unsteady state pressure distributions created by a well with
a single horizontal fracture, partial penetration or restricted entry. Soc. Petrol. Engrs. J., pp. 413-426.

Gringarten, A.C., H.J. Ramey Jr, and R. Raghavan 1975. Applied pressure analysis for fractured wells.
J. Petrol. Techn. pp. 887-892.

Gringarten, A.C. and P.A. Witherspoon 1972. A method of analyzing pump test data from fractured
aquifers. In: Int. Soc. Rock Mechanics and Int. Ass. Eng. Geol., Proc. Symp. Rock Mechanics, Stuttgart,
Vol.3-B pp. 1-9.

Groundwater Manual 1981. A water resources technical publication. U.S. Department of the Interior;
Water and Power Resources Service. U.S. Government Printing Office, Denver, 480 pp.

Hantush, M.S. 1956. Analysis of data from pumping tests in leaky aquifers. Trans. Amer. Geophys. Union,
Vol. 37, pp. 702-714.

Hantush, M.S. 1959a. Non-steady flow to flowing wells in leaky aquifers. J. Geophys. Res., Vol. 64, pp.
1043-1052.

Hantush, M.S. 1959b. Analysis of data from pumping wells near a river. J. Geophys. Res., Vol. 94, pp.
1921-1932.

Hantush, M.S. 1960. Modification of the theory of leaky aquifers. J. Geophys. Res. Vol. 65, pp. 3713-3725.

Hantush, M.S. 1961a. Drawdown around a partially penetrating well. J. Hydraul. Div., Proc. Amer. Soc.
Civil. Engrs. Vol. 87(HY4), pp. 83-98.

368



Hantush, M.S. 1961b. Aquifer tests on partially penetrating wells. J. Hydraul. Div., Proc. Amer. Soc. Civil
Engrs., Vol. 87(HYS), pp. 171-195.

Hantush, M.S. 1962. Flow of ground water in sands of nonuniform thickness; 3. Flow to wells. J. Geophys.
Res., Vol. 67, pp. 1527-1534.

Hantush, M.S. 1964. Hydraulics of wells. In: V.T. Chow (editor). Advances in hydroscience, Vol. I, pp.
281-432. Academic Press, New York and London.

Hantush, M.S. 1966. Analysis of data from pumping tests in anisotropic aquifers. J. Geophys. Res., Vol.
71, pp. 421-426.

Hantush, M.S. 1967. Flow to wells in aquifers separated by a semipervious layer. J. Geophys. Res., Vol.
72, pp. 1709-1720.

Hantush, M.S. and C.E. Jacob 1955. Non-steady radial flow in an infinite leaky aquifer. Trans. Amer.
Geophys. Union Vol. 36, pp. 95-100.

Hantush, M.S. and R.G. Thomas 1966. A method for analyzing a drawdown test in anisotropic aquifers.
Water Resources Res., Vol. 2, pp. 281-285.

Hemker, C.J. 1984. Steady groundwater flow in leaky multiple-aquifer systems. J.Hydrol., 72, pp. 355-374.

Hemker, C.J. 1985. Microcomputer aquifer test evaluation. Aqua-VU No. 9. Free Univ., Inst. Earth
Sciences, Amsterdam, 52 pp.

Huisman, L. 1972. Groundwater recovery. MacMillan, 336 pp.

Hurr, R.T. 1966. A new approach for estimating transmissibility from specific capacity. Water Resources
Res. Vol. 2, pp. 657-664.

Jacob, C.E. 1940. On the flow of water in an elastic artesian aquifer. Trans. Amer. Geophys. Union, Vol.
21, Part 2, pp. 574-586.

Jacob, C.E. 1944. Notes on determining permeability by pumping tests under watertable conditions. U.S.
Geol. Surv. open. file rept.

Jacob, C.E. 1947. Drawdown test to determine effective radius of artesian well. Trans. Amer. Soc. of Civil.
Engrs., Vol. 112, Paper 2321, pp. 1047-1064.

Jacob, C.E. and S.W. Lohman 1952. Non-steady flow to a well of constant drawdown in an extensive
aquifer. Trans. Amer. Geophys. Union, Vol. 33, pp. 559-569.

Jahnke, E. and F. Embde 1945. Tables of functions with formulas and curves. Dover Publ., New York,
306 p.

Javandel, I. and P.A. Witherspoon 1980. A semi-analytical solution for partial penetration in two-layer
aquifers. Water Resources Res., Vol. 16, pp. 1099-1106.

Javandel, I. and P.A. Witherspoon 1983. Analytical solution of a partially penetrating well in a two-layer
aquifer. Water Resources Res., Vol. 19, pp. 567-578.

Jenkins, D.N. and J.K. Prentice 1982. Theory for aquifer test analysis in fractured rocks under linear (nonra-
dial) flow conditions. Ground Water, Vol. 20, pp. 12-21.

Johnson, A.J. 1967. Specific yield. Compilation of specific yields for various materials. U.S. Geol. Survey
Water Supply Paper 1662-D, 74 pp.

Kazemi, H., M.S. Seth, and G.W. Thomas 1969. The interpretation of interference tests in naturally frac-
tured reservoirs with uniform fracture distribution. Soc. of Petrol. Engrs. J., pp. 463-472.

Kohlmeier, R., G. Strayle, and W. Giesel 1983. Determination of water levels in observation wells by mea-
surement of transit-time of ultrasonic pulses and calculation of hydraulic parameters. In: Proceedings
International Symposium on Methods and instrumentation for the investigation of groundwater systems.
Noordwijkerhout, 1983, Netherlands Org. Appl. Sci. Res. TNO, pp. 489-501.

Krauss, I. 1974. Die Bestimmung der Transmissivitat von Grundwasser leitern aus dem Einschwing-
verhalten des Brunnen-Grundwasserleiter-Systems. Z. Geophys., Vol. 40, pp. 381-400.

Kroszynski, U.I. and G. Dagan 1975. Well pumping in unconfined aquifers: the influence of the unsaturated
zone. Water Resources Res., Vol. 11, pp. 479-490.

Lennox, D.H. 1966. Analysis of step-drawdown test. J. Hydr. Div., Proc. of the Amer. Soc. Civil Engrs.,
Vol. 92(HY6), pp. 25-48.

Maini, F. and G. Hocking 1977. An examination of the feasibility of hydrologic isolation of a high level
waste repository in crystalline rocks. Invited paper, Geologic Disposal of High Radio-active Waste Ses-
sion. Ann. Meeting, Geol. Soc. Am., Seattle, Washington.

Matthess, G. 1982. The properties of groundwater. John Wiley & Sons, New York, pp. 406.

Matthews, C.S. and D.G. Russel 1967. Pressure buildup and flow tests in wells. Soc. Petrol. Engrs. of
Am. Inst. Min. Met. Engrs., Monograph 1, 167 pp.

369



Mavor, M.J. and H. Cinco Ley 1979. Transient pressure behavior of naturally fractured reservoirs. Paper
SPE 7977 presented at the 1979 California SPE Regional Meeting, Ventura, California.

Merton, J.G. 1987. Interpretations des essais de pompage en milieu fissuré. IWACO — Bureau d’Etudes
en Eau et Environnement. Rotterdam, Pays-Bas, 120 p.

Moench, A F. 1984. Double-porosity models for a fissured groundwater reservoir with fracture skin. Water
Resources Res., Vol. 20, pp. 831-846. -

Moench, A.F. and P.A. Hsieh 1985. Analysis of slug test data in a well with finite thickness skin. In: IAH
Memoires, Vol. XVII, Part 1. Proceedings of the 17th IAH Congress on ‘The Hydrology of Rocks of
Low Permeability’. Tucson, Arizona, pp. 17-29.

Mulder, P.J.M. 1983. Rapportage putproef Hoogezand. Dienst Grondwaterverkenning TNO Delft, OS.83-
24,7 p.

Muskat, M. 1937. The flow of homogeneous fluids through porous media. McGraw Hill Book Co., New
York, 763 pp.

Najurietta, H.L. 1980. A theory for pressure transient analysis in naturally fractured reservoirs. J. of Petrol.
Techn. July 1980, pp. 1241-1250.

Nespak-Ilaco 1985. Optimal Well and Well-field Design Report. Panjnad-Abbasia Salinity Control and
Reclamation project. Supplement to the Final Plan Report. Pakistan Water and Power Devel. Auth.,
Lahore/Arnhem, 109 pp.

Neuman, S.P. 1972. Theory of flow in unconfined aquifers considering delayed response of the watertable.
Water Resources Res., Vol.8, pp. 1031-1045. )

Neuman, S.P. 1973. Supplementary comments on Theory of flow in unconfined aquifers considering delayed
response of the watertable. Water Resources Res., Vol. 9, pp. 1102-1103.

Neuman, S.P. 1974. Effect of partial penetration on flow in unconfined aquifers considering delayed gravity
response. Water Resources Res., Vol. 10, pp. 303-312.

Neuman, S.P. 1975. Analysis of pumping test data from anisotropic unconfined aquifers considering delayed
gravity response. Water Resources Res., Vol. 11, pp. 329-342.

Neuman, S.P. 1979. Perspective on ‘Delayed yield’. Water Resources Res., Vol. 15, pp. 899-908.

Neuman, S.P., G.R. Walter, H.W. Bentley, J.J. Ward, and D.D. Gonzalez. 1984. Determination of horizon-
tal anisotropy with three wells. Ground Water, Vol. 22, pp. 66-72.

Neuman, S.P. and P.A. Witherspoon 1968. Theory of flow in aquicludes adjacent to slightly leaky aquifers.
Water Resources Res., Vol. 4, pp. 103-112.

Neuman, S.P. and P.A. Witherspoon 1969a. Theory of flow in a confined two aquifer system. Water
Resources Res., Vol. 5, pp. 803-816.

Neuman, S.P. and P.A. Witherspoon 1969b. Applicability of current theories of flow in leaky aquifers.
Water Resources Res., Vol. 5, pp. 817-829.

Neuman, S.P. and P.A. Witherspoon 1972. Field determination of the hydraulic properties of leaky multiple
aquifer systems. Water Resources Res., Vol. 8, pp. 1284-1298.

Papadopulos, I.S. 1965. Nonsteady flow to a well in an infinite anisotropic aquifer. Intern. Assoc. Sci.
Hydrol., Proc. Dubrovnik Symposium on the Hydrology of fractured rocks, pp. 21-31.

Papadopulos, 1.S. 1966. Nonsteady flow to multi-aquifer wells. J. Geophys. Res., Vol. 71, pp. 4791-4797.

Papadopulos, 1.8. 1967. Drawdown distribution around a large diameter well. Symp. on Groundwater
Hydrology, San Fransisco. Proc. Amer. Water Resources Assoc., No. 4, pp. 157-168.

Papadopulos, S.S., J.D. Bredehoeft, and H.H. Cooper 1973. On the analysis of ‘slug test’ data. Water
Resources Res., Vol. 9, pp. 1087-1089.

Papadopulos, 1.S. and H.H. Cooper Jr 1967. Drawdown in a well of large diameter. Water Resources
Res., Vol. 3, pp. 241-244.

Ramey Jr, H.J. 1976. Practical use of modern well test analysis. Paper SPE 5878, presented at the SPE-AIME
46th Annual California Regional Meeting, Long Beach, Ca.

Ramey, H.J. 1982. Well-loss function and the skin effect: A review. In: Narasimhan, T.N. (ed.) Recent
trends in hydrogeology. Geol. Soc. Am., Special Paper 189, pp. 265-271.

Ramey, H.J., R.G. Agarwal, and I. Martin 1975. Analysis of ‘Slug test’ or DST flow period data. J. Can.
Petrol. Technology, July-September, pp. 37-47.

Ramey Jr, H.J. and A.C. Gringarten 1976. Effect of high-volume vertical fractures on geothermal steam
well behavior. In: Proceedings Second U.N. Devel. and Use of Geothermal Resources, San Fransisco,
1976, U.S. Government Printing Office, Washington D.C., Vol. 3, pp. 1759-1762.

Reed, J.E. 1980. Type curves for selected problems of flow to wells in confined aquifers. In: Techniques
of water resources investigations of the U.S. Geological Survey, Book 3, Chapter 3, Washington D.C.,
54 p.

370



Robinson, T.W. 1939. Earth-tides shown by fluctuations of water-levels in wells in New Mexico and Iowa.
Trans. Amer. Geophys. Union, Vol. 20, pp. 656-666.

Rorabaugh, M.J. 1953. Graphical and theoretical analysis of step-drawdown test of artesian well. Proc.
Amer. Soc. Civil Engrs., Vol. 79, separate no. 362, 23 pp.

Ross, B. 1985. Theory of the oscillating slug test in deep wells. In: Interb. Assoc. Hydrogeol. Memoires,
Vol. 17, Part 1. Proc. 17th IAH Congress on hydrology of rocks of low permeability, Tucson, Arizona,
pp- 44-51.

Rushton, K.R. and K.W.F. Howard 1982. The unreliability of open observation boreholes in unconfined
aquifer pumping tests. Ground Water, Vol. 20, pp. 546-550.

Rushton, K.R. and K.S. Rathod 1980. Overflow tests analyzed by theoretical and numerical methods.
Ground Water, Vol. 18, pp. 61-69.

Rushton, K.R. and V.S. Singh 1983. Drawdowns in large-diameter wells due to decreasing abstraction
rates. Ground Water, Vol. 21, pp. 671-677.

Serra, K., A.C. Reynolds, and R. Raghavan 1983. New pressure transient analysis methods for naturally
fractured reservoirs. J. of Petrol. Technol., pp. 2271-2283.

Sheahan, N.T. 1971. Type-curve solution of step-drawdown test. Ground Water, Vol. 9, pp. 25-29.

Skinner, A.C. 1988. Practical experience of borehole performance evaluation. J. Inst. Water Environm.
Manag., Vol. 2, pp. 332-340.

Streltsova, T.D. 1972a. Unconfined aquifer and slow drainage. J. Hydrol., Vol. 16. pp. 117-124.

Streltsova, T.D. 1972b. Unsteady radial flow in an unconfined aquifer. Water Resources Res., Vol. 8, pp.
1059-1066.

Streltsova, T.D. 1973. On the leakage assumption applied to equations of groundwater flow. J. Hydrol.,
Vol. 20, pp. 237-253.

Streltsova, T.D. 1974. Drawdown in compressible unconfined aquifer. J. Hydraul. Div., Proc. Amer. Soc.
Civil Engrs., Vol. 100(HY11), pp. 1601-1616.

Streltsova, T.D. 1976. Progress in research on well hydraulics. Advances in groundwater hydrology. Amer.
Water Resources Assoc., pp. 15-28.

Streltsova-Adams, T.D. 1978. Well hydraulics in heterogeneous aquifer formations. Adv. in Hydrosci.,
Vol. 11, pp. 357-423.

Theis, C.V. 1935. The relation between the lowering of the piezometric surface and the rate and duration
of discharge of a well using groundwater storage. Trans. Amer. Geophys. Union, Vol. 16, pp. 519-524.

Thiem, G. 1906. Hydrologische Methoden. Gebhardt, Leipzig, 56 pp.

Thiery, D., M. Vandenbeusch, and P. Vaubourg 1983. Interprétation des pompages d’essai en milieu fissuré
aquifére. Documents du BRGM, no. 57, 53 pp.

Uffink, G.J.M. 1979. De bepaling van k-waarden in het veld aan de hand van ‘putproeven’ en ‘puntproeven’.
Resultaten van het onderzoek aan de Parkweg (Den Haag). R.1.D. mededeling 79-02, Voorburg, 61 pp.
Uffink, G.J.M. 1980. De bepaling van de doorlatendheid van watervoerende pakketten. R.I.D. mededeling

80-8, Voorburg, 37 pp.

Uffink, G.J.M. 1982. Richtlijnen voor het uitvoeren van putproeven H,0, Vol/15, pp. 202-205.

Uffink, G.J.M. 1984. Theory of the oscillating slug test. Nat. Institute for Public Health and Environmental
Hygiene, Bilthoven. Unpublished research report, 18 pp. (in Dutch).

Vandenberg, A. 1975. Determining aquifer coefficients from residual drawdown data. Water Resources
Res., Vol. 11, pp. 1025-1028.

Vandenberg, A. 1976. Tables and type curves for analysis of pump tests in leaky parallel-channel aquifers.
Techn. Bull. No. 96. Inland Waters Directorate, Water Resources Branch, Ottawa, 28 pp.

Vandenberg, A. 1977. Type curves for analysis of pump tests in leaky strip aquifers. J. Hydrol., Vol. 33,
pp. 15-26.

Van der Kamp, G. 1976. Determining aquifer transmissivity by means of well response tests: The under-
damped case. Water Resources Res., Vol. 12, pp. 71-77.

Van der Kamp, G. 1985. Brief quantitative guidelines for the design and analysis of pumping tests. In:
Hydrology in the Service of Man. Mem. 18th Congress Intern. Ass. Hydrogeol., Cambridge, pp. 197-206.

Van Golf-Racht, T.D. 1982. Fundaments of fractured reservoir engineering. Developments in Petroleum
Science, 12. Elsevier Sci. Publ. Co., Amsterdam-Oxford-New York, 710 p.

Walton, W.C. 1962. Selected analytical methods for well and aquifer evaluation. Illinois State Water Survey
Bull., No. 49; 81 pp.

Warren, J.E. and P.J. Root 1963. The behavior of naturally fractured reservoirs. Soc. of Petrol. Engrs.
J., Vol. 3, pp. 245-255.

371



Weeks, E.P. 1969. Determining the ratio of horizontal to vertical permeability by aquifer-test analysis.
Water Resources Res., Vol. 5, pp. 196-214.

Wenzel, L.K. 1942. Methods for determining permeability of water-bearing materials, with special reference
to discharging well methods. U.S. Geol. Survey, Water Supply Paper 887, 192 pp.

Wit, K.E. 1963. The hydraulic characteristics of the Oude Korendijk polder, calculated from pumping
test data and laboratory measurements of core samples (in Dutch). Inst. Land and Water Manag. Res.,
Wageningen, Report No. 190, 24 pp.

Witherspoon, P.A., J. Javandel, S.P. Neuman, and R.A. Freeze 1967. Interpretation of aquifer gas storage
conditions from water pumping tests. Amer. Gas. Assoc. New York, 273 pp.

Worthington, P.F. 1981. Estimation of the transmissivity of thin leaky-confined aquifers from single-well
pumping tests. J. of Hydrol., Vol. 49, pp. 19-30.

372



Author’s index

Anonymous

Abdul Khader, M.H.

Agrawal, R.G.
Aron, G.
Barenblatt, G.E.
Bentley, J.J.

Bierschenk, W.H.

Birsoy Y.K.
Boehmer, W.K.

Boonstra, J.

Boulton, N.S.
Bourdet, D.
Bouwer, H.
Bredehoeft J.D.
Brown, R.H.

Bruggeman, G.A.

Bukhari, S.A.
Butler, J.J.
Case, C.M.
Cinco Ley, H.
Clark, L.
Cooley, R.L.
Cooper, H.H.
Dagan, G.
Darcy, H.

De Glee, G.J.
De Marsily, G.
De Ridder N.A.
Dietz, D.N.
Driscoll, F.G.
Dupuit, J.
Earlougher, R.C.
Eden, R.N.
Edelman, J.H.
Embde, F.
Ferris, J.G.
Freeze, R.A.
Gambolati, G.
Genetier, B.
Gonzalez, D.D.
Gringarten, A.C.

Groundwater Manual

Hantush, M.S.

Hazel, C.P.
Hemker, C.J.
Hocking, G.
Howard, K.W.F.
Hsieh, P.A.

4.1.1,10.1.1, 10.1.2, 10.3, Annex 10.1

9

16,16.1.1

12.1.2

17.1

8.1.3

14.1.1

12,12.1.1, Figure 12.1,13.3.1

19.1,19.2.1, 19.2.2, 19.3.1, 19.3.2, Table 19.1, Figure 19.2, Figure 19.3, Figure
19.4, Figure 19.5

19.1,19.2.1, 19.2.2, 19.3.1, 19.3.2, Table 19.1, Figure 19.2, Figure 19.3, Figure
19.4, Figure 19.5

5, 11,11.2.1,17.1,17.2, Annex 11.2

17.2,17.3,17.4, Figure 17.2

Table 1.2, 5, 16, 16.2.1,

3.22,16,16.1.1, Annex 16.1

6.2.1,18.1

9,9.2,9.2.1

6.3.1

3.1.1

5

17.3,17.4,19.1

14.1.1, Table 14.1

5

3.2.2,12.3.1,15,15.1.1, 16, 16.1.1, Figure 16.2, Annex 16.1
5,10.5.1

1.6

4.1.1

1.6,1.7.2,1.7.9,14.2.1

4,5.1.1, Table 4.1, Table 4.2, Table 5.1, Figure 4.2, Figure 5.3
6.1.1

24,243,24.4,2.6.1,2.6.2.1

5.2.1

16.1.1

14.1.2

18.1

3.2.1

6.2.1,18.1

424

5,5.1.1

24,26.1.1

8.1.3

17.1,17.2,17.3,17.4, Figure 17.2, 18.2, 18.3, 18.4, Annex 18.2, Annex 18.3
24,2.6.1.1
4.1.2,42.1,42.2,423,62.2,7.1.1,7.3.1,8.1.1,8.1.2,8.2.1,8.3.1,8.4.1,9,10.2.1,
10.2.2,12.2.1,12.2.2,13.1.2, 13.1.4, 14.1.1, 15.1.3, 15.2.3, Annex 4.1, Annex 4.2,
Annex 4.3, Annex 6.4, Annex 10.2, Annex 12.1, Annex 15.5
14.1.2

9

1.7.2

5.1.1

16

373



Huisman, L.
Hurr, R.T.
Jacob, C.E.
Jahnke, E.
Javandel, I.
Jenkins, D.N.
Johnson, A.J.
Kazemi, H.
Knowless, B.D.
Kochina, I.N.
Kohlmeier, R.
Krauss, I.
Kroszynski, U.I.
Martin, I.
Matthess, G.
Lennox, D.H.
Lohman, S.W.
Maini, F.
Matthews, C.S.
Mavor, M.J.
Merton, J.G.
Moench, A.F.
Mulder, P.J.M.
Muskat, M.
Najurietta, H.L.
Nespak-Ilaco
Neuman, S.P.
Papadopulos, L.S.

Prentice, J.K.
Ramey, H.J.
Rathod, K.S.
Reed, J.E.
Rhaghavan, R.
Rice, R.C.
Robinson, T.W.
Root, P.J.
Rorabaugh, M.J.
Ross, B.
Rushton, K.R.
Russel, D.G.
Scott, H.

Serra, K.
Sheahan, N.T.
Singh, V.S.
Skinner:A:C.
Stallman, R.W.
Streltsova, T.D.

Streltsova-Adams, T.D.

Summers, W.K.
Theis, C.V.

Thiem, G.

Thiery, D.

Thomas, R.G.
Uffink, G.J.M.
Vandenberg, A.

Van der Kamp, G.
Van Golf-Racht, T.D.

374

24.3,24.4,41.2,7.2.1

15.1.4
3.2.1,3.2.2,4.1.2,42.1,5,12.3.1,14.1,15.2.2
3.2.1

424,9.1.1

18.1

Table 1.3

17.3

6.2.1,18.1

17.1

2.6.1.1

16

S

16,16.1.1

1.7.9

6.3.1,14.1

15.2.2

1.7.2

14.1,14.2.1

173,174

Figure 18.4, Figure 18.5, Figure 18.6
16,17.1,17.4, Table 17.1, Figure 17.5, Figure 17.6
15.1.3, Table 15.1

6.1.1

17.1

10.2.1, Table 10.1, Figure 10.3
4,424,43,5,51.1,8.1.3,9,10.5.2, 13.1.3, Annex 5.1
8.1.1,8.1.3,9,11,11.1.1,15,15.1.1, 16, 16.1.1,17.4, Table 8.1, Figure 16.2, Annex
11.1, Annex 16.1

18.1

14.1,15.1.3, 16, 16.1.1, 17.4, 18.1, 18.2, 18.3, 18.4, Annex 18.3
13.2,15.3.1

12.2.1,15.2.3, Annex 12.1

18.2,18.3,18.4

5,16,16.2.1

Figure 2.11

17.1,17.3

14.1

16

5.1.1,13.2,15.1.2, 15.3.1, Annex 15.2, Annex 15.4
14.1,14.2.1

12.1.2

17.2

14.1.3, 14.1.4, Table 14.3, Figure 14.7

15.1.2, Annex 15.2, Annex 15.4

14.1

6.2.1,18.1

5,10.5.1,11,11.2.1, 17.1, Annex 10.3, Annex 10.4, Annex 11.2
17.1

12,12.1.1, 13.3.1, Figure 12.1

3.2.1,13.1.1, 18.1

3.1.1

18.2

8.1.2

13.1.2,13.1.4,15.3.1,16,16.1.2

6.3.1,13.1.2, Annex 6.5

5,5.1.1,16,16.1.2

17.3



Veerankutty, M.K.

Walter, G.R.
Walton, W.C.
Ward, J.J.
Warren, J.E.
Weeks, E.P.
Wenzel, L.K.

Wit, K.E.
Witherspoon, P.A.
Worthington, P.E.
Zheltov, I.P.

9

8.1.3

4.2.1, Annex 3.1

8.1.3

17.1,17.3

8.3.1,8.4.1,10.4.1, Annex 8.1
3.1.1

3, Table 3.1, Figure 3.2
4,42.4,43,9,9.1.1,18.1, 18.2, Annex 4.4
15.1.4, Figure 15.5

17.1

375



Currently Available ILRI Publications

No. Publications Author ISBN No.
16  Drainage Principles and Applications (second 90 70754 339
edition, completely revised)
17  Land Evaluation for Rural Purposes R. Brinkman and A.J. Smyth 90 70260 859
19 On Irrigation Efficiencies M.G. Bos and J. Nugteren 90 70260 875
20  Discharge Measurement Structures (third edition) M.G. Bos 90 70754 150
21 Optimum Use of Water Resources N.A. de Ridder and E. Erez =~ —
24  Drainage and Reclamation of Salt-Affected Soils J. Martinez Beltran -
25  Proceedings of the International Drainage Workshop  J. Weéseling (Ed.) 90 70260 549
26  Framework for Regional Planning in Developing J.M. van Staveren and -
Countries D.B.W.M. van Dusseldorp
29  Numerical Modelling of Groundwater Basins: J. Boonstra and 90 70260 697
A User-Oriented Manual N.A. de Ridder
31  Proceedings of the Bangkok Symposium on Acid H. Dost and 90 70260 719
Sulphate Soils N. Breeman (Eds.)
32 Monitoring and Evaluation of Agricultural Change J. Murphy and L. H. Sprey 90 70260 743
33 Introduction to Farm Surveys J. Murphy and L. H. Sprey 90 70260 735
38  Aforadores de caudal para canales abiertos M.G. Bos, J.A. Replogle and 90 70260 921
A.J. Clemmens
39  Acid Sulphate Soils: A Baseline for Research and D. Dent 90 70260 980
Development
40  Land Evaluation for Land-Use Planning and W. Siderius (Ed.) 90 70260 999
Conservation in Sloping Areas
41  Research on Water Management of Rice Fields in S. El Guindy & 90 70754 08 8
the Nile Delta, Egypt L.A. Risseeuw;
H.J. Nijland (Ed.)
44 Selected papers of the Dakar Symposium on Acid H. Dost (Ed.) 90 70754 13 4
Sulphate Soils
45  Health and Irrigation, Volume 1 JM.V. Oomen, J. de Wolf 90 70754 21 5
and W.R. Jobin
45  Health and Irrigation, Volume 2 J.M.V. Oomen, J. de Wolf 90 70754 177
and W.R. Jobin
46 CRIWAR 2.0: A Simulation Model on Crop M.G. Bos, J. Vos and 90 70754 398
Irrigation Water Requirements R.A. Feddes
47  Analysis and Evaluation of Pumping Test Data G.P. Kruseman and 90 70754 20 7
(second edition, completely revised) N.A. de Ridder
48  SATEM: Selected Aquifer Test Evaluation Methods:  J. Boonstra 90 70754 193
A Computer Program
49  Screening of Hydrological Data: Tests for E.R. Dahmen and M.J. Hall 90 70754 27 4
Stationarity and Relative Consistency
51 Influences on the Efficiency of Irrigation Water Use ~ W. Wolters 90 70754 29 0
52 Inland Valleys in West Africa: An Agro-Ecological ~ P.N. Windmeijer and 90 70754 320
Characterization of Rice Growing Environments W. Andriesse (Eds.)
53 Selected Papers of the Ho Chi Minh City Symposium M.E.F. van Mensvoort (Ed.) 90 70754 31 2
on Acid Sulphate Soils
54  FLUME: Design and Calibration of Long-Throated ~ A.J. Clemmens, M.G. Bos 90 70754 30 4
Measuring Flumes and J.A. Replogle
55  Rainwater Harvesting in Arid and Semi-Arid Zones ~ Th.M. Boers 90 70754 36 3

376



No. Bulletins Author ISBN No.
1 The Auger Hole Method W.F.J. van Beers 90 70754 816
4 On the Calcium Carbonate Content of Young Marine B. Verhoeven -
Sediments
8  Some Nomographs for the Calculation of Drain W.F.J. van Beers -
Spacings
10 A Viscous Fluid Model for Demonstration of F. Homma 90 70260 824
Groundwater Flow to Parallel Drains
115 Analisis y evaluacién de los datos de ensayos por G.P. Kruseman and -
bombeo N.A. de Ridder
117 Interprétation et discussion des pompages d’essai G.P. Kruseman and -
N.A. de Ridder
13 Groundwater Hydraulics of Extensive Aquifers J.H. Edelman 90 70260 794
No. Bibliographies
18  Drainage: An Annotated Guide to Books and Journals G. Naber 90 70260 93 X

Special reports

Liquid Gold Paper 1: Scarcity by Design: Protective
Irrigation in India and Pakistan

Liquid Gold Paper 2: Irrigation Water Division
Technology in Indonesia: A Case of Ambivalent
Development

Liquid Gold Paper 3: Water Control in Egypts Canal
Irrigation: A discussion of institutional issues at
different levels

Liquid Gold Paper 4: Coping with Water:
Water management in flood control and drainage
systems in Bangladesh

Liquid Gold Paper 5: The Respons of Farmers to
Political Change Decentralization of irrigation in the
Red River delta, Vietham

Wageningen Water Workshop 13-15 October 1997
Groundwater Management: Sharing Responsibility
for an Open Access Resource

Wageningen Water Workshop 2-4 November 1998
Water and Food Security in Semi-Arid Areas

Public Tubewell Irrigation in Uttar Pradesh, India
A case study to the Indo-Tubewell Project

Sustainability of Dutch Water Boards:
Appropriate design characteristics for self-governing
water management organisations

M. Jurriéns and P. Wester

L. Horst

P.P. Mollinga, D.J. Merrey,
M. Hvidt and L.S. Radwan

P. Wester and J. Bron

J.P. Fontenelle

A. Schrevel

A. Schrevel

J.H. Alberts

B. Dolfing and W.B. Snellen

90 70754 40 1

90 70754 42 8

90 70754 45 2

90 70754 47 9

9070754 48 7

377








