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Section News (cont. from page 355)

de Marsily Receives
94 Horton Award

The Robert E. Horton Award for outstand-
ing contributions to the geophysical aspects
of hydrology was presented to Ghislain de
Marsily at the 1995 AGU Spring Meeting Hon-
ors Ceremony in Baltimore on May 30, 1995.

re given here.

“By conferring the Horton Award on Ghis-
de Marsily, the Hydrology Section of
U and the larger hydrological community
honors one of its distinguished members.
Though primarily arecognition of the
evements of an individual, the prize also
»gnowledges the school of thought and the
- ““C envnronment in which the rec1p1ent

“Due to Ghislain, Fontainebleau has be-
come a place of pilgrimage for groundwater
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The “Rstatts,” well diggers since the tenth century in the R’hir wadi, Algeria. At the begin-
ng of this century these men were still able to dig and maintain the wells, diving in the dark
ore than 80 m down to find the water, “this marvellous element which can bring life to all
things” (the Koran). (Photo by Roger Viollet.)
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Foreword

Understanding the factors that control the flow of water through soils and
rocks has led to the development of one of the most important fields in the
earth sciences: groundwater hydrology. Over the years, an impressive body
of theory and practice has been developed. It was recognized very early that,
although the basic concepts of fluid mechanics must still hold, the nature of
underground flow paths must be understood in order to develop meaningful
solutions to groundwater problems. This is not an easy task because the
complexities of the geologic process cause many variations in natural flow
systems.

Early treatises on the subject of groundwater hydrology usually started
with the simplest flow systems: isotropic and homogeneous porous media. In
this way, it was possible to develop analytic solutions through the application
of rigorous mathematical methods. These have provided valuable insighis
into what to expect in the field, but as the groundwater hydrologists gained
experience, it became clear that these solutions were often inadequate.

Groundwater systems are not often very homogeneous over distances of
any practical significance. In the case of an aquifer in a porous medium
(sandstone or limestone), variability of the flow properties in both the hori-
zontal and vertical directions is a result of the vagaries of sedimentation. And
there is another problem that the groundwater hydrologist has had to face.
Discontinuities of one kind or another are commonly present in rock sys-
tems. These may create boundaries that limit the flow regime or produce
unusual flow conditions internal to the system. The presence of fractures or
joints in the rock mass can have a profound effect on the flow regime. The
groundwater hydrologist has thus been forced to develop methods of analyz-
ing fluid flow in rock systems with very complex geometries.

The spatial variability of the flow regime due to the geologic processes at
work has led to another problem that must be treated in the field of hydro-
geology. The flow field will usually extend for significant distances outside
the area where a detailed record of hydraulic properties has been developed

ix



X Foreword

through drilling and testing. Thus, the flow regime will be adequately known
in one part of the total flow system and less and less well known as distances
extend to more remote regions.

In general, the spatial variability of the controlling parameters of a
groundwater system (aquifer thickness, hydraulic head, permeability, trans-
missivity, storage, etc.) is not purely random; it can often be shown that some
kind of correlation exists in the spatial distribution of these parameters. The
problem then is to develop through the methods of geostatistics an appropri-
ate expression for the spatial correlations that exist. Kriging can be used asa
method for optimizing the estimation of a regionalized variable, i.¢., a hy-
draulic property that is distributed in space and measured at a network of
points. When the uncertainties associated with these estimates are too high,
the problem should be considered as a stochastic rather than a deterministic
process. Stochastic partial differential equations can then be used to analyze
the problem.

The widespread pollution of groundwater with various chemicals and
toxic wastes has necessitated the study of chemical transport. Solutes are
diffused and advected during this process, and the dissolved (or suspended)
species may or may not react with the rock matrix through which the
groundwater solutions flow. Considerable variation in the microscopic and
macroscopic velocities within the complex flow paths of the rock mass
results in dispersion of the dissolved species.

It is not surprising that numerical solutions to groundwater problems are
often necessary to solve the complex problems that can be encountered in
the field. A tremendous effort has been expended in developing accurate
numerical methods of handling both the flow and transport equations.
Sometimes the semianalytical approach is used when it is possible to first
obtain a solution in the Laplace transform domain and then apply numerical
methods of inversion to obtain the final solution. Numerical methods have
been developed using either finite differences or finite elements. More re-
cently, boundary elements of boundary integral methods have been pro-
posed for solving the flow equations.

As the application of fluid mechanics to the problems of water moving
through rock systems has progressed, the science of groundwater hydrology
has slowly emerged. The complications of the geologic environment indicate
the need for care in the application of established theories and an awareness
of the validity of the assumptions that one must make. Realistic solutions to
groundwater problems must involve a combination of the right application
of physical principles with a mature insight developed through experience in
the laboratory and field.

This approach is very well demonstrated in this book. Emphasis is placed
on the fundamental properties of porous and fractured rocks that control the



Foreword x1

flow regime. The basic equations and methods of their solution for single-
and multiphase flow are presented in detail. An extension of the treatment of
flow equations to include transport is included. The author was one of the
first to recognize the value of the geostatistical and stochastic approaches in
hydrogeology and he has developed a thorough treatment of these topics.
Numerical methods of solving the flow and transport equations are also
reviewed. The reader will find this a very comprehensive treatment. The
appearance of Quantitative Hydrogeology represents a significant step for-
ward for this field.

Berkeley, California PAauL A. WITHERSPOON






Preface

This book attempts to combine two separate themes: a description of one
of the links in the chain of the water cycle inside the earth’s crust, i.c., the
subsurface flow, and the quantification of the various types of this flow,
obtained by applying the principles of fluid mechanics in porous media. The
first part is the more descriptive and geological of the two. It deals with the
concept of water resources, which then leads us on to other links in the ¢cycle:
rainfall, infiltration, evaporation, runoff, and surface water resources. The
second part is necessary in order to guantify groundwater resources. It
points the way to other applications, such as solutions to civil engineering
problems, including drainage and compaction, and solutions to transport
problems in porous media, including aquifer pollution by miscible fluids,
multiphase flow of immiscible fluids, and heat transfer in porous media, i.c.,
geothermal problems. However, the qualitative and the quantitative aspects
are not treated separately but are combined and blended together, just as
geology and hydrology are woven together in hydrogeology.

This book is intended for engineers with a mathematical background.
They will find a fairly detailed description of the physical processes occurring
in porous and fractured media followed by the development of the basic flow
and transport equations for both steady and transient states. Outlines are
given of the methods for solving these basic equations as well as the most
common znalytic expressions used in handling practical problems. Basic
geologic structures containing groundwater and the hydrologic processes
occurring within them are described together with practical methods for
measuring the relevant physical parameters of the media. We normally give
orders of magnitude of these parameters for various rock types in order to
provide an initial data base for solving practical problems. The International
System of units (SI, i.e., metric) is used throughout. The appendix contains
complete definitions and conversion factors for nonmetric units.

Geologists who do not want to burden themselves with the mathematics
will find a complete description, given in simple terms, of the assumptions
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and conditions required for applying the equations and formulas, which is
not always found in other treatises.

Apart from the classical basic flow equations, the main chapters concern
(1) transport phenomena and pollution problems, (ii) the stochastic defini-
tion of medium parameters for addressing the problem of spatial variability,
which includes a chapter on kriging as applied to hydrology, and (iii) the
principle of numerical techniques, finite differences, integrated finite differ-
ences, and finite elements, which nowadays are prerequisites for solving
practical groundwater problems.

A great effort was made to keep the book short. Asin a quote from Goethe
in a letter to a friend, “If T had had more time, the letter would have been
shorter.” The developments have been kept as brief as possible and the strict
selection of the material is guided by the criterion of practical applicability.

This book was originally written in French aslecture notes for the students
in engineering at the Paris School of Mines. It was later extended during a
sabbatical that the author spent at the Department of Hydrology and Water
Resources at the University of Arizona, Tucson. The help and advice of
colleagues both at the Paris School of Mines (M. Armstrong, J. P. Del-
homme, A. Dieulin, P. Goblet, P. Hubert, P. Iris, E. Ledoux, G. Matheron,
and H. Pelissonnier) and at the University of Arizona (S. N. Davis, L.
Duckstein, T. Maddock, D. E. Myers, S. P. Neuman, and E. Simpson) were
greatly appreciated. Professor James Philip O’Kane of University College,
Dublin, kindly reviewed the manuscript and helped to improve it im-
mensely. Professor Paul A. Witherspoon (University of California, Berkeley)
has often acted as a guide for the author’s own research and has contributed
the foreword. Professor Daniel F. Merriam (Wichita State University,
Kansas) has provided constant encouragement from the earliest stages of the
book. Professors Lynn W. Gelhar (Massachusetts Institute of Technology,
Cambridge) and Alan L. Guijahr (New Mexico Institute of Mining and
Technology, Socorro, New Mexico) were very helpful guides to the new
stochastic theories during their sabbaticals in Fontainebleau and later as
well.

This book is dedicated to Dr. Richard E. Jackson (Environment Canada,
Ottawa), who strongly urged its translation from the French and with whom
the author believes he shares the irresistible fascination for the magic of alost
paradise: the Arizona desert.
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Chapter 1

The Water Cycle

1.1. Wetting and Infiltration
1.2. Surface Runoff
1.3. Evaporation
1.3.1. Empirical Estimation
1.3.2. Measurements
14. Snow
1.5. Schematization of the Hydrologic Cycle
1.5.1. Statics )
1.5.2. Dynamics
1.6. Different Branches of HydréIogy
1.7. Other Possible Origins of Groundwater

N OO O 0O B W W

—

Precipitation (rainfall and snow) falling on the surface of the earth accounts
for almost all of the water entering into the soil. We shall study the case of
rainfall and snow separately and follow up with other types of recharge.

When rain falls on the ground, three processes are set in motion: (1) wetting
of the soil and infiltration, (2) surface runoff, and (3) evaporation.

1.1. Wetting and Infiltration

In most countries where it rains, the ground contains a significant amount
of water in normal conditions. A usual profile of the quantity of water versus
the elevation is given in Fig. 1.1.

This moisture content is obviously dependent on the porosity and the
permeability of the soil. Below a certain elevation N, the water content no
longer increases with depth. The soil is said to be saturated: all the empty
spaces (pores) in the soil contain water. This water is said to belong to the
water table aquifer, or phreatic aquifer. The term aquifer will be further
defined in Chapter 6. The water table is the surface, at elevation N, constituting
the upper limit of the aquifer.

Above the elevation N, the soil is said to be unsaturated, as the empty spaces
in the soil contain both water and air simultaneously. The relationship

1



2 1. The Water Cycle

Elevation Z

0 Seil surface

Unsaturated zone

N ________________ Aquifer surface

{water table)
Saturated zone

Moisture content

Fig. 1.1. Typical moisture profile in a soil.

between the two is discussed in Chapter 2. It is sufficient to note here that the
water 13, on the whole, subjected to the forces of gravity in the saturated zone
and, furthermore, to the capillary forces (which very soon become the most
influential) in the unsaturated zone.

Water falling on the soil surface begins by moistening its upper layer (a few
centimeters). The resuiting moisture profile is shown in Fig. 1.2. This increase
in moisture on the surface does not necessarily cause an immediate significant
vertical flow. The water is retained as in a sponge.

As the water content continues to increase, the water spreads downward
and moistens a deeper zone. If rain continues long enough, the moistening will
be progressively greater and eventually cause infiltration, 1.e., an inflow into
the aquifer. However, this process is very slow: depending on the depth at
which the aquifer is situated and the permeability of the soil, it may take a
week, a month, or several months for the water to reach the aquifer.

In the case of a continuous and large flux of water at the surface {e.g,
extremely long rainfall, or artificial recharge), a decrease in the infiltration rate
can be observed: from an initially large value, the infiltration flux decreases to
a much smaller value. The mathematics of infiltration will be described in
more detail in Chapters 2 and 9.

In temperate zones, a first-order estimation of the height of water naturally

infiltrated into the aquifer is about 300 mm/yr, ie., 10 literss ! km 2.

z
Soil surface
[ ) S o o ——— —
Aguifer surface
=, (water table}
N——— = amam —— o —
Maoisture content

Fig. 1.2. Typical moisture profile during a storm.
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Elevation Z

0 Soil surface

Unsaturated zone

Agquifer surface
(water table)

N

Saturated zone

Moisture content

Fig. 1.1. Typical moisture profile in a soil.

between the two is discussed in Chapter 2. It is sufficient to note here that the
water is, on the whole, subjected to the forces of gravity in the saturated zone
and, furthermore, to the capillary forces (which very soon become the most
influential) in the unsaturated zone.

Water falling on the soil surface begins by moistening its upper layer (a few
centimeters). The resulting moisture profile is shown in Fig. 1.2. This increase
in moisture on the surface does not necessarily cause an immediate significant
vertical flow. The water is retained as in a sponge.

As the water content continues to increase, the water spreads downward
and moistens a deeper zone. If rain continues long enough, the moistening will
be progressively greater and eventually cause infiltration, i.e., an inflow into
the aquifer. However, this process is very slow: depending on the depth at
which the aquifer is situated and the permeability of the soil, it may take a
week, a month, or several months for the water to reach the aquifer.

In the case of a continuous and large filux of water at the surface (e.g.,
extremely long rainfall, or artificial recharge), a decrease in the infiltration rate
can be observed: from an initially large value, the infiltration flux decreases to
a much smaller value. The mathematics of infiltration will be described in
more detail in Chapters 2 and 9.

In temperate zones, a first-order estimation of the height of water naturally

infiltrated into the aquifer is about 300 mm/yr, i.e., 10 liters s™* km 2.

z

Soil surface
{0 T S VU

Aquifer surface
{(water table)

N e e — - e e

Moisture content

Fig. 1.2. Typical moisture profile during a storm.
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1.2. Surface Runoff

If the rain is heavy, the soil is unable to absorb the water. After the first
moments, when the uppermost layer of the soil is moistened, an excess of
water appears on the surface (Fig. 1.3).

The upper layer of the soil is saturated in a zone of no great depth, and the
moisture does not spread fast enough for the falling rain to be absorbed. Thus
a film of water may move around on the ground surface. This is what we call
runoff. One even distinguishes, somewhat artificially, between pure surface
runoff and “hypodermic flow,” which takes place in the first few centimeters of
the'soil or the vegetation. This runoff moves along the line of the steepest slope
of the ground and feeds the natural drainage network of the soil: ditches,
brooks, rivers, etc. It gathers up solid particles through erosion, which gives
rise to the transport of solids in streams.

In cases where the ground is almost completely impermeable (urban areas
or zones with outcrops of rocks of very low permeability) the runoff appears
almost instantaneously, as soon as the water has filled the first hollows in the
ground (e.g., puddles).

Finally, it is worth noting that the vegetation creates a screen for the above-
mentioned mechanisms: the first of the rain is caught up by the trees and grass,
and this may prevent a slight rainfall from starting the wetting process.

1.3. Evaporation

Even during the rainfall a large portion of the water immediately
evaporates. Indeed, the moisture in the atmosphere is rarely at the saturation
point even during a thunderstorm. Once the rain stops, this evaporation
continues and gradually dries the water caught up by the vegetation or
remaining on the surface. It does, of course, continue on the surface waters
(streams, lakes) and on the ground surface.

pA Film of water
( R R R R Rt

Soil surface

\

3 Moisture content

Fig. 1.3. Appearance of surface runoff.
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Evaporation also continues inside the ground itself. Because of the existence
of an air phase in the unsaturated zone, this evaporation might occur
simultaneously over the entire profile and even extend nearly as far as the
water table itself: however, because the mechanism by which this moisture is
extracted into the air phase is so slow (diffusion toward the surface), the
evaporation at the soil surface is the dominant phenomenon when the soil is
not extremely dry. The water in the soil is “sucked up” and ascends by
capillarity to the surface, where it evaporates.

The power of the atmosphere to extract water from the soil decreases with
the moisture content of the soil: the smaller this is, the more the water is bound
to the ground by capillarity and the more energy is needed to extract it. The
effect also depends on the power of the atmosphere to cause evaporation, i.e.,
on the temperature, the wind, and the exposure to the sun. In the summer,
when this evaporation is intensive, the atmosphere generally takes back all the
moisture received by the profile during a storm. Eventually there is no
infiltration into the aquifer. Figure 1.4 shows a succession of characteristic
moisture profiles in the soil in summer and winter, illustrating the seasonal
differences. In summer, when there is no rainfall, evaporation at the surface
causes water to move upwards from the water table to the surface by
capillarity, but the deeper the water table, the smaller the flux.

In practice, it is accepted that the loss through evaporation from the aquifer
becomes negligible, even in tropical or arid zones, when the aquifer is situated
at a depth of 10-15m below the ground surface. We shall explain this
capillary rise in Chapter 2.

Another phenomenon plays a role similar to that of the evaporation on the
ground: plant transpiration. The roots of the plants are able to take up water
from the soil in the unsaturated zone, or even in the saturated zone, if it is near
(some trees have roots 10-m long or longer).

This transpiration thus gradually reduces the moisture content of the soil.
Below a certain border-line value of moisture content, the plants are not able
to extract water from the soil: this is the wilting point, which varies from one
species to another. This is generally expressed as suction or tension in bars,
rather than in moisture content (see the study of the unsaturated zone in
Chapter 2).

The two phenomena, evaporation and transpiration, are generally treated
together without distinction under the term “evapotranspiration,” and it is
this quantity which one tries, with difficulty, to estimate or measure.

1.3.1. Empirical Estimation

Several empirical formulas that give the evapotranspiration have been
developed. They are based on climatological measurements (temperature,
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Fig. 1.4. Changes in the moisture profile of the ground after a rainfall.
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sunshine, wind velocity, etc.). We give, in Appendix 1, as an example, the
formulas of Thornthwaite, Turc, and Penman. They estimate a monthly
“potential” evapotranspiration (called ETp) that represents the evaporating
power of the atmosphere observed on the ground in a plant-covered area
where there is at all times sufficient water in the soil for the needs of the
vegetation. If there were a shortage of water, the real evapotranspiration
(called ETg) would be a function of the ET; and the quantity of available
water.

As a first approximation, one imagines that the upper layer of the soil (the
first meter, for example) constitutes a reservoir, the readily available supply in
the soil (RAS), the maximum capacity of which is estimated (usually 100 mm).
In this reservoir, evapotranspiration may occur freely at the potential ET,
rate. When it is empty, the evapotranspiration can only feed on the
precipitations of the given month. When it is full, the excess moisture generates
infiltration towards the aquifer. During a given month, one calculates the
balance of the rainfall, the ET}, and the reserve in the RAS, which makes it
possible to compute the ETy and the infiltration into the aquifer.

Table 1.1 gives an example, for a given year, from the Camlibel (Turkey)
plateau region, using the Thornthwaite formula to calculate the ETp. Thus we
can estimate, as a first approximation, that infiltration is 37 mm/yr and the
real evapotranspiration 392 mm/yr.

1.3.2. Measurements

There are also direct methods for measuring the evapotranspiration on a
portion of the ground, based on measurements of its energy balance (radiative,
convective, and conductive heat flux). The term for latent heat of evaporation
given by the balance is converted into water mass [see, in particular, Choisnel
(1977)]. But this method is painstaking and, at the moment, it is applicable
only to very small surfaces of the order of 1 m?2. Projects are underway for
extending its use by means of remote sensing [see Seguin (1980)].

Another method is the use of a lysimeter. This is a large barrel (e.g. diameter
1 m, depth 2 m) filled with soil and buried in the ground so that its top is at the
same elevation as the ground surface. Vegetation can be grown on and around
the lysimeter. One can either measure the infiltration flux seeping out of the
bottom of the barrel (which can be reached by a tunnel) or weigh the barrel
regularly, thus determining rainfall and daily evapotranspiration. Lysimeters
are very expensive and not very precise: when the soil dries up, voids can
develop where the soil is in contact with the barrel, creating short-cuts for
infiltration that do not exist in nature. Furthermore, the limited depth of the
barrel causes a discontinuity in the pressure and moisture profile of the soil,
which is not present in nature (see Chapter 2).



Table 1.1

Estimation of Evapotranspiration and Infiltration

Jan. Feb. March Apr. May June July Aug Sept. Oct. Nov. Dec. Annual
Mean temp. (°C) 6 82 131 183 231 276 29 299 267 21 147 87 18.9
ET, (mm) 52 96 308 658 1183 171.5 189.5 1906 1332 754 314 105 10318
Rainfall (mm) 499 381 487 479 583 381 8.7 5.7 176 284 364 511 428.9
RAS (mm) 90 100 100 821 221 — — — — - 5 45.6
Infiltration (mm) 18.5 179 — — — — — — — — — 36.4
ETy (mm) 5.2 9.6 308 658 1183 602 8.7 57 176 284 314 105 392.2
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Evaporation is a very important phenomenon in hydrology. Indeed, if we
try to assess the entire hydrologic cycle on the planet, we find the mean figures
in the accompanying tabulation (Budiko et al., 1962).

Depth of water fallen on dry land 720 mm
Evapotranspiration 410 mm (57%)
Stream and groundwater flow toward oceans 310 mm (43%)
Direct evaporation from oceans 1250 mm
Depth of water fallen on oceans 1120 mm

The figures nearly balance, if one takes into consideration that the oceans
take up 709 of the surface of the earth and the continents 30%;:

Excess of precipitation on land in relation to evapotranspiration: 310 x
0.3 = 93 mm;

Deficit in precipitation on the oceans as compared to the evaporation:
130 x 0.7 = 91 mm.

The infiltrated water circulating in the aquifers (which is our main concern
in this book) flows out and is eventually found in the streams, which it feeds
even when there is no rainfall; this recharge from the underground medium to
the surface flow net is called baseflow, as opposed to stormflow, which includes
a component of surface runoff.

This is the reason that engineers working in surface hydrology often call the
real evapotranspiration “the flow deficit™: it is indeed that part of the
precipitation that does not eventually find its way into the streams.

In spite of the great variations in the rainfall, which depends on the
geographic location, the altitude, the year, etc., and the large variety of runoff,
infiltration, and evapotranspiration mechanisms, this deficit, strangely
enough, does not vary a great deal; in temperate climates, it is, on the average,
on the order of 470 mm/yr.

1.4. Snmow

The precipitation that falls in the form of snow has a fate similar to that of
rain, but with a time lag. At the outset, there is no wetting, infiltration, or
runoff. Evaporation occurs as sublimation of the snow. When the snow melts,
infiltration and runoff begin.

The infiltration rate is generally higher because the recharge of water into
the soil is slower than in the case of rain. However, if the soil is constantly
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frozen at a certain depth (permafrost), a large portion of the water becomes
runoff and may carry away the top layer of the soil, which is not frozen (mud
slide).

L.5. Schematization of the Hydrologic Cycle

In Fig. 1.5, the elements of the hydrologic cycle described above are
schematically summarized, based on Eagleson (1970). Some figures should be
added, as follows.

1.5.1. Statics

Estimation of the volumes of water available in the world is given in the
accompanying tabulation.

Oceans 1320 million km? 97.20%
Snow and ice 30 million km? 2.15%
Groundwater at a depth of

less than 800 m 4 million km3 0.31%
Groundwater at a depth of

more than 800 m 4 million km3 0.31%
Unsaturated zone 0.07 million km? 0.005%
Fresh water lakes 0.12 million km®  0.009%,
Salt water lakes 0.10 million km®  0.008%
Rivers 0.001 million km®  0.0001%
Atmosphere 0.013 million km®  0.001%

1.5.2. Dynamics

The annual volume of precipitation in the world may be estimated at 0.5
million km?, i.e., about 0.04% of the volume of water on the earth, or, again, 40
times the volume of water vapor in the atmosphere. This implies a very fast
renewal of this atmospheric moisture: the average time the water vapor
“spends” in the atmosphere is only 9 days.

1.6. Different Branches of Hydrology

The study of the water cycle or hydrology in its wider sense is usually
divided into three separate disciplines: meteorology, surface hydrology, and
hydrogeology.
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Meteorology or climatology comes first in the study of the water cycle. It has
several aspects: (1) composition and general circulation of the atmosphere; (2)
energy balance of the atmosphere; (3) precipitation, rainfall and snow,
snowmelt, artificial rain; and (4) evaporation and evapotranspiration.

The random nature of the climate results in a great variability, on different
levels of time and space, of the precipitation, which is the first link in the chain
of the hydrologic cycle. This precipitation is consequently studied from a
statistical viewpoint, which is also used in the following links in the chain.

Surface hydrology is concerned with flow in the hydrographic network. It
may be studied with several aims in mind:

(1) Evaluation of available resources, either in their natural state or after
development (dam), and the calculation of the reservoir volume necessary to
ensure a given flow.

(2) Forecasting of flood risks and the works required to control them
(drainage network, retarding basin). Very often the works (dams) have to fulfill
several simultaneous and often contradictory needs: a reservoir to control
floods must be emptied as fast as possible, and this is directly antagonistic to
the objective of a reservoir meant to increase flow at low water. Hence the
difficult management problems attached to multipurpose installations.

In hydrology, two methods are commonly used:

(1) The stochastic method: because of the variability of rainfall, stream-
flow is studied as a random variable.

(2) The deterministic method: the process of runoff and infiltration is
studied from a physical deterministic viewpoint (low equations) based on an
impulse assumed to be known, rainfall, on which the entire variability is
concentrated.

The basin may be represented as a black box in which its components are
lumped together, which one studies according to the theory of systems
analysis (Fig. 1.6).

On the other hand, one may study the watershed from a physical point of
view by considering all the physiographic parameters of the medium.
Groundwater hydrology or hydrogeology is our main concern in this book.

Input Black Output

(rainfall) | box (flow)

Fig. 1.6. Black box system.
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Collected
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Fig. 1.7. Condensation of atmospheric water vapor.

1.7. Other Possible Origins of Groundwater

Most of our groundwater is part of the hydrologic cycle described above
and is called cyclic water. However, there are other ways in which the ground
may be recharged with water:

Condensation of atmospheric water vapor in the empty spaces of the
ground. This is the equivalent of morning dew omn the surface. This
phenomenon can be of some importance and is usually called “occult
precipitation.” In ancient times, it was reported that the city of Theodosia in
Crimea was supplied with water from a huge pile of rocks linked to seven
fountains. Experiments made in Montpellier (France) have given (based on
Geze, 1967) a flow of 2 liters/day for a pile of 5 m? of rocks (see Fig. 1.7). This
is also cyclic water.

Juvenile water. This water has its origin deep down. A granitic magma
expells a small amount of water when it cools. It has been calculated that a
magma of 1000 m thickness, containing 59, water in weight, gives rise to a flow
of the order of 25 liters min~! km ™2 a figure that should be compared to 10
liters s™! km™? (the order of magnitude of infiltration in temperate climates
of cyclic waters). It is therefore usually negligible (Geze, 1967).

Fossil water. This is cyclic water dating from a more humid period in the
Quaternary period. A good example is the Sahara desert, which contains large
amounts of fresh water infiltrated a few thousand years ago. However, a minor
recharge still occurs during exceptional storms (about once every 30 yr).
Another case of fossil water is connate water, generally saline, which dates
back to the formation of the sediments.

Thermal water. This is mostly cyclic water which follows complicated
paths, is heated at depth and then ascends toward the surface by way of
thermal springs.
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Most rocks and soils naturally contain a certain percentage of empty
spaces, which may be occupied by water or fluids. This is what i1s known as
their porosity. These voids must be distinguished from their interconnecting
pathways, which allow fluids to circulate through them: this second property,
the permeability, is examined in Chapter 4. Suffice it to say that porosity is a
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In the study of porosity, we distinguish between (1) the existence of voids
and their geometry proper, defining the total porosity, and (2) the manner in
which the fluid is distributed in these voids and the ensuing fluid—solid rela-
tions, which enable us to define the kinematic (or effective) porosity.
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2.1. Total Porosity

(a) Granulated rocks. Most rocks are constituted by solid mineral
particles, more or less tightly stuck together, forming a skeleton around which
empty spaces remain. These are porous media in terms of fluid mechanics. For
example, sand and sandstone have a total porosity that may reach 30%.
However, even rocks that are generally thought to be solid have a certain
porosity; examples are limestone, dolomite (particularly secondary), and even
crystalline and metamorphic rocks (from 1 to 5%).

Clays belong to a separate category. Their constituent elements resemble
thin shavings and are organized into “sheets,” which are stacked in parallel
layers separated by variable intervals where a fluid might lodge. This gives the
clays, in particular, the property of swelling in the presence of water.
Furthermore, we shall see that this water is strongly linked to the solid clay
particles. All the same, the percentage of voids may be very high, on the order
of 409, and even up to 90%,, in unconsolidated marine red clays.

(b) Fractured rocks. Fracturing is a special case of voids in solid rocks.
Because of tectonic movements, e.g., faults, fissures, joints, cracks, openings
along bedding planes almost all rocks in the earth’s crust are fractured. These
fractures are generally oriented in at least two (generally three or four) main
directions, which cut up the rock into blocks (Fig. 2.1).

We then have a network of fractures, more or less interconnected, which
may create voids in the rock, if the fractures are not sealed by some kind of
deposit (clay, calcite, quartz, etc.). In this case, we talk about fracture porosity,
as opposed to the interstitial porosity already mentioned. Moreover, these two
types of porosity may coexist (sandstone, limestone, etc.).

(c) Definition.

volume of the voids
total volume of the rock

Total porosity o =

Soil mechanics also uses

volume of the voids
volume of the solid

ey
\ ~

Fig. 2.1. Typical fracture network.

Void ratio e =
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Both are of course dimensionless. We shall always use w, but one may pass
from ome to the other by
) ew=¢e¢—w
Le.
e W

“=y + 1’ €= w—1

(d) Representative elementary volume or random functions: Definition of the
local properties of a porous medium. The notion of porosity is easy enough to
understand but, on reflection, it poses some problems if we want to define it
with precision. We shall discuss them here while keeping in mind that the
following applies to other properties of the porous medium as well, such as
permeability.

There are two accepted ways of defining the local properties of a porous
medium: the notion of the representative elementary volume (REV) and that
of the random functions (RF, which is also expressed as “ensemble average™).
We shall see that these two notions implicitly influence any description of the
spatial variations of the hydrogeological parameters.

The whole problem stems from the fact that the notions of porosity and
permeability, which are notions concerning points in an equation with partial
derivatives, for instance, cannot be defined or measured at single points, since a
porous medium is a conglomeration of solid grains and voids. Below a certain
scale of volume, porosity and permeability have no physical significance.

The REV method consists in saying that we give to one mathematical point
in space the porosity or permeability of a certain volume of material
surrounding this point, the REV, which will be used to define and possibly
measure the “mean” property of the volume in question. Consequently, this
concept involves an integration in space. It is obviously the first method that
comes to mind. Behind it lies the idea of a sample, which is collected and from
which the relevant property is estimated by measurement. More exactly, the
size of the REV is defined by saying that it is

(1) sufficiently large to contain a great number of pores so as to allow us to
define a mean global property, while ensuring that the effect of the fluctuations
from one pore to another are negligible. One may take, for example, 1 cm® or
1 dm3.

(2) sufficiently small so that the parameter variations from one domain to
the next may be approximated by continuous functions, in order that we may
use the infinitesimal calculus, without in this way introducing any error that
may be picked up by the measuring instruments at the macroscopic scale,
where meters and hectometers are the usual dimensions.

This is, incidentally, a bit like the problem in fluid mechanics of passing
from the “corpuscular” scale to that of the “particle of matter.” It should be
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Size of the REV

4

i
I
H
=

Fig. 2.2. Definition of the REV.

noted that in a fractured medium, the size of the REV may be quite
astonishingly large so as not to satisfy the second hypothesis of “continuous
functions” on the scale of the measuring instruments.

The size of the REV (measured, for example, by one of its characteristic
dimensions [, such as the radius of the sphere or the side of the cube) is
generally linked to the existence of a flattening of the curve that connects the
studied integral property P with the dimension I (Fig. 2.2). However, nothing
allows us to assert that such a flattening always exists. The size of the REV thus
stays quite arbitrary.

Other important objections that can be made to this conception of the
porous medium are of two kinds. First, it is very badly suited to the treatment
of discontinuities in the medium. When, in a thought experiment, the REV is
moved across a discontinuity, the studied property is subjected to a
continuous variation (Fig. 2.3). This sometimes poses problems of how to
correctly represent boundaries or limits between two media. Second, the most
important objection is that it gives no basis for studying the structure of the
property in space. The most that can be said is that the spatial variations of the
studied property must be smooth in accordance with the same thought process
as above concerning the discontinuities.

Marle (1967) has suggested a more rigorous conception of spatial integra-
tion. In order to achieve this, he proposes the use of an integrable nonnegative
weighting function m(x) such that its integral, when extended over the whole
space, is equal to 1; this weighting function would not necessarily have a
bounded support. The macroscopic magnitude {a)(x) will then be defined

1 Property

REV

2

i

1

i

Medium 1 i !
ium Line of Jl‘

Medium 2 discontinuity

z

Fig. 2.3. Definition of the properties of a discontinuous medium using the REV.
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from the local microscopic magnitude a(x) by a convolution extended over the
whole space of a by m:

{a)(x) = fa(x + xYm(x’) dx’

where x stands for the coordinates in three-dimensional space (x,, x,, x5). For
the study of porosity, we choose an indicator a(x). If the point x is in a pore,
a(x) = 1;if itis in a grain, a(x) = 0.

Furthermore, Marle suggests that this definition be generalized to the
properties “a” that are not continuous in the whole space* and that can be
described by distributions. The convolution is then taken in the sense of
distributions.

This method has the advantage of making the function {a) continuous and
indefinitely differentiable, even if a is not, by a suitable choice of m. If the
problem of the size of the REV is eliminated, that of the choice of the
weighting function still remains arbitrary. However, with the help of this
weighting function it is possible to establish the conmection between this
method and the second, which we examine in the following.

The random functions (RF) method is a more powerful concept. It consists
in saying that the studied porous medium is a realization of a random process.
Let us try to visualize the concept. Suppose that we create in the laboratory
several sand columns, each filled with the same type of sand. Each column
represents the same porous medium but is somehow different from the others.
Each column is a “realization” of the same porous medium, defined as the
ensemble of all possible realizations (infinite in number) of the same process.

A property like porosity can then be defined, at a given geometrical point in
space, as the average over all possible realizations of its point value (defined as
0 in a grain and 1 in a pore). One speaks of “ensemble averages” instead of
“space averages.” For the sand columns just described, it is obvious that the
ensemble average (or expected value) of these point porosities will be identical
to the space average defined by taking the column itself as the REV.
Furthermore, this ensemble average will be the same for any point of the
column. We will define later the conditions necessary for this to be true.

In more general terms, a property Z will be called a random function (RF)
Z(x, &) if it varies both with the spatial coordinate system x and with the “state
variable” £ in the ensemble of realizations. Then Z(x, &, ) is a realization of Z;
Z(xq, ¢)is arandom variable, i.e., the ensemble of the realizations of the RF Z
atx,; and Z(x,, £, ) is the single value of Z at x, for realization &, . To simplify
the notations, the variable ¢ is generally omitted.

* For example, a surface density of the adsorbed matter on the fluid—solid interface.
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If we want to find a less abstract example of a random porous medium, we
can recall the countless alluvial plains and fans (debris cones) descending over
several thousands of kilometers from the Andes to the coasts of Peru and
Chile, which are created by erosion of the same materials under the same
conditions and consequently constituted by the same kind of deposits. There,
we have a very large number of realizations of the “same” medium.

The immense advantage of the stochastic approach is that one can study
other statistical properties of the porous medium in the ensemble of
realizations than just the expected value. One very often uses the variance
(called dispersion variance, see Chapter 11) of the property, which character-
izes the magnitude of the fluctuations with respect to the mean, and the
autocovariance (or simply covariance), which characterizes the correlation
between the values taken by the property at two neighboring points in space.

However, when studying a given porous medium, there will be only one
realization of the conceptual random medium. Some assumptions are
necessary to make this concept useful. The most common are stationarity and
ergodicity.

Stationarity assumes that any statistical property of the medium (mean,
variance, covariance, a higher-order moment) is stationary in space, i.e., does
not vary with a translation. It will be the same at any point of the medium.
Weak stationarity refers to a medium where only the first two moments are
stationary: if Z(x)is the studied property, x being the coordinates in one, two,
or three dimensions, then the random function (RF) Z(x) satisfies:

(1) expected value
E[Zx)]=m not a function of x
(2) Covariance:
E[(Z(x) — m{(Z(x + k) — m] not a function of x,

but a function only of the lag h,
a vector in two or three dimensions.

By developing, and labeling this covariance C(h),

C(h) = E[Z(x) - Z(x + h)] — m? (2.1.1)
By definition,
C(0) = E[(Z(x) — m)*] = o7

is the variance of Z.

In more rigorous terms, strong stationarity means that all the probability
distribution functions (pdf) of the random function Z(x) are invariant under
translation, whether we consider one point p(Z(x)) or n points p(Z(x,),...,

Z(x,)).
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Ergodicity implies that the unique realization available behaves in space
with the same pdf as the ensemble of possible realizations. In other words, by
observing the variation in space of the property, it is possible to determine the
pdf of the random function for all realizations. This is called the “statistical
inference” of the pdf of the RF Z(x). We will see in Chapter 11 how it can be
done.

In the vocabulary of stochastic processes, a phenomenon that is “station-
ary” and “ergodic” is called homogeneous. We would then use “uniform” to
describe a medium in which some property does not vary in space. Geologists
traditionally call it “homogeneous.”

Other less stringent hypotheses can also be defined, e.g., stationarity of
increments of Z. These will be defined in Chapter 11.

Marle (1967) compares this method to the one based on spatial integration
and shows that the stochastic definition may be regarded as the limiting case
of an integral definition when the porous medium is assumed to be infinite,
ergodic, and stationary and the weighting function does not have a bounded
support. As a matter of fact, spatial integration in an infinite volume
reproduces the mathematical expectation over all possible realizations, if the
medium is indeed stationary and ergodic. We shall use, in turn, these two
methods for defining the properties of porous media.

Other approaches can also be used to define the properties of porous media.
One is that of composite materials (Beran, 1968) and, has been applied to
porous media by Dagan (1979, 1981, 1982b).

(e) Porosity and grainsize. If one studies conceptual porous media, which
consist of a cluster of spheres with the same diameter, one can show that there
are six possible ways of packing the spheres, resuiting in porosities of 26,
309, 40%, and 489;. These are, of course, independent of the size of the
spheres.

In the case of spheres of different sizes, the porosity is always lower because,
as Houpeurt (1974) states, if one reasons on the basis of the large grains, one
can say that the small ones take up part of the pores that may exist between
them. Conversely, if one reasons on the basis of the small grains, one can say
that any large grain gives a greater compactness by its mere presence.

In the case of nonspherical grains, this tendency to lower the porosityis to a
certain extent compensated by the irregularities in the shape of the grains,
which prevent them from being tightly pressed together.

For unconsolidated media (e.g., sands), one tries to establish the size
distribution of the grains in the medium. In general, the wider this distribution
is, the smaller the porosity.

A grain-size analysis of the medium, by sieving for example, is represented
by the grain-size curve, which gives the percentage (by volume or usually by
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Fig. 2.4. Grain-size curve of an unconsolidated medium.

weight) of the elements passing through a sieve, with holes of a given size
(Fig. 2.4). Effective grain-size d, , is the sieve-dimension at which 109 of the
elements of the medium are smaller than d 4. Itis accepted that d, is the most
important parameter among those governing the permeability properties of a
porous medium (see Chapter 4).

However, it is always necessary to measure the porosity of the medium
without destroying the arrangement of its grains (see Section 2.3). We know
that the porosity varies with the arrangement of the grains from the study of
packed spheres and that this arrangement is a function of the consolidation, or
compression, of the medium.

Figure 2.5 (from Bear, 1972) gives a few examples of grain-size curves and a
classification of the terms used, according to the International Society of Soil
Sciences: gravel, sands, silts, clays.

(f) Surface porosity. Using a section of the porous medium, we can
define the total surface porosity

surface area of the voids on the section

W, —

total surface area of the section

If the size and distribution of the voids are entirely random, the surface
porosity is independent of the orientation of the studied section. Furthermore,
it has the same value as the volume porosity. To be certain of this, one only
needs to integrate the surface porosity on an elementary length at right angles
to the section plane. It is, of course, necessary to choose volumes and surfaces
of the order of the REV.

The situation is, however, not at all the same if the distribution of the voids
is not random, but follows a law of organization resulting from the deposition
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process when the medium was formed. It would be possible to determine such
directional surface porosities using a “texture analyzer,” a device that
determines geometrical properties of images. However, this is not usually
done, and the surface porosity is assumed isotropic and identical to the volume
porosity.

(g) Specific surface area. This is defined by

S total surface area of the interstitial voids

Sp:

total volume of the medium

with dimensions of (length)™*. It varies greatly from one medium to another.
The more divided the medium, the greater it is. For example, spheres of radius
R in a cubic arrangement exhibit

Sy = /2R
Here are a few orders of magnitude for S:
1.5 x 10*m?/m*®  for sand
1.5 x 10° m?/m3  for fine sandstone
1.5 x 10° m?/m®  for montmorillonite (clay)

This parameter is of great importance for the phenomena of fluid—solid
relations that we shall now discuss.

2.2. Fluid—Solid Relations in Porous Media

2.2.1. Water-Saturated Media

First, we shall discuss two-phase media: solid and water. Apart from the
water that is a constituent part of rock minerals (which will not be discussed),
one must distinguish between adhesive water and free water.

(a) Adhesive water. This is attached to the surface of the grains through
the influence of the forces of molecular attraction. These forces decrease with
the distance of the water molecule to the grain:

(1) A first adsorbed layer, which is of the order of a few tens of molecules
thick (about 0.1 um), corresponds to an orientation of the water molecules
with a bipolar H—OH perpendicular to the surface of the solid. The stress
created by these forces of attraction reaches several 10'? Pa, but decreases
rapidly with distance. In this adsorbed layer, the properties of the water are
greatly changed: strong viscosity, high density (around 1.5). Large numbers of



2.2. Fluid-Selid Relations in Porous Media 23

B
/ Z S pp—— r
0 0.5 um
Adhesive water Free water
rd— e P e e e e e e
le—s] Adsorbed layer

Fig. 2.6. Structure of the adhesive water. [From Polubarinova-Kochina (1962).]

ions, mainly cations, may be retained (adsorbed) by joint attraction of the
water and solid molecules. We shall return to this in Chapter 10.

(2) A transition zone, between 0.1 and 0.5 ym, contains water molecules
that are still subjected to a nonnegligible attraction and stay immobile.

(3) Beyond this, the forces of attraction are negligible, and the water is
said to be free.

It is obvious that this limit of 0.5um is somewhat arbitrary and varies from
one medium to another. Figure 2.6 illustrates the variation of the forces of
attraction of the water molecules and their orientation in the vicinity of a solid
grain. For the adsorbed water layer in contact with a solid particle, the curve
shows the variation of the force of attraction on particles along the radiai
section AB.

This phenomenon of adsorption of water molecules and ionsis linked to the
specific surface area of the medium and is especially strong in clay media,
where it greatly reduces the possibility of water and ions circulating; this leads
us to the definition of the kinematic porosity of a porous medium.
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(b) Free water. We have already defined this. It is the water that is
outside the field of attraction of the solid particles and that can be displaced—
as opposed to the adhesive water—by gravity or pressure gradients (see
Chapter 4).

(c) Kinematic porosity of a saturated medium. From the point of view of
fluid displacement, the adhesive water may be viewed as part of the solid. The
empty volume, where the water can circulate, is smaller than the total porosity:
it defines the kinematic or effective porosity of a saturated medium. It must be
understood, however, that this definition of porosity is already linked to the
concept of fluid circulation and not to the percentage of the volume taken up
by the fluid phase.

Other phenomena besides adhesion have a limiting effect on the kinematic
porosity.

(1) The existence of unconnected pores. These are “bubbles” of liquid
occurring in the solid phase. As their liquid cannot circulate, these voids are of
no account in the kinematic porosity. In Section 2.3, we shall see that certain
methods for measuring the porosity, based on the impregnation of the porous
medium by a fluid, exclude the unconnected pores.

The most common example is that of secondary dolomite, ie., dolomite
formed after the deposition by diagenetic transformation of calcite into
dolomite. This transformation is accompanied by a shrinking with angular
crystallization of the dolomite. The total porosity is high, 20—-30%,, but the
kinematic porosity is low, because the pores are often not interconnected.

{2) The existence of dead-end pores, as in Fig. 2.7. The water contained in
the cul-de-sac is almost motionless. Only the water in the “pipes” of the
medium circulates. Thus, these pores are excluded from the kinematic
porosity, but they do play a role when we study the mechanisms of
compressibility or of solute transport in porous media.

(3) Onmnaneven larger scale, a fractured rock in which water circulates only
in the fractures has a kinematic porosity linked to the volume of these
fractures, even if the unfractured rock matrix is porous. Hence, a fractured
granite, which has a total matrix porosity of 1-2%;, may have a kinematic
porosity of less than 1%, because the matrix itself has very low permeability.

7/

Fig. 2.7. Dead-end pore.
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Thus, we define kinematic porosity as

__volume of water able to circulate

W

total volume of rock

(d) Comments: Consequences for the tracing of water. We shall see later
that one can link the kinematic porosity to the velocity of water circulating in
the ground, hence the idea of adding a tracer to the water to measure its
velocity by in situ experiments.

This gives rise to a number of problems, because it is necessary to choose a
tracer that will not be adsorbed by the layer of adhesive water or onto the
grain surface. However, even if this problem is solved (e.g., by using a tracer of
the water molecule, such as tritium, >H), there remains another mechanism of
interaction between the tracer and the immobile water. Indeed, our de-
scription of circulating water phase/immobile water phase corresponds to a
certain microscopic scale of observation of the phenomena, that of fluid layers
and flow.

On a molecular scale, things change. There may be a continual exchange of
molecules from one phase to the other through molecular Brownian motion: for
example, a circulating molecule may become immobilized in the course of its
progress, while another one that was originally immobile, may be set in
motion. From the point of view of fluid circulation, nothing is visible, but the
idea of tracing the route taken by an individual water molecule is bereft of
meaning. Are we right to distinguish between two water molecules that we
have no physical means of telling apart? Hence, a molecule which was in the
position A at the instant t,, and in position B at the instant ¢, may very well
have progressed along the route ACB (Fig. 2.8) and been “exchanged” in C for
a molecule which was initially adhesive, and to which it has communicated its
energy. Is there any meaning to the question “Is the molecule in B the one that
was originally in A?”

In a porous medium, the progress of a water molecule may be much
more complex than the microscopic image leads us to suppose and may
make the concept of tracing useful only in ascertaining the circulation
velocity of a substance dissolved in the water. This problem will be discussed
in Chapter 10.

Fig. 2.8. Water molecule trajectory in a
porous medium.

@ w
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2.2.2. Unsaturated Media

This problem is complicated by the existence of a third phase, air, as well as
the water and solid phases.

(a) Moisture content and volumetric saturation. The moisture content f1in
a REV is defined by the ratio

_ volume of water
" total volume of the REV

and the volumetric saturation by the ratio

volume of water

S =
total pore volume

where 0 may vary from 0 to the total porosity w, and s from 0 to 1 or from 0 to
100%.

(b) Air—water relationships for different moisture contents. We observe
that in a soil containing both air and water the free water “wets” the solid
grains, i.e., surrounds them, whereas the air tends to stay in the middle of the
voids. Thus, we have the following descriptions for various moisture contents.

(1) Soil close to maximum water saturation (Fig. 2.9).

(@) The water phase is continuous and may circulate under the
influence of gravity. This is called “funicular” or gravitational water.

(b) The air phase is discontinuous and does not circulate. It may
reach 10-15%; of the porosity, even in a medium said to be saturated,
close to the water table of the aquifer. The imprisoned air bubbles can
only pass through the contractions in the small channels connecting the
pores with each other if there is a sufficiently strong pressure gradient in
the water phase.

(2) Soil at “equilibrium water saturation” or at its “capillary retention
capacity” (Fig. 2.10).

e Grains
7774 Water
C—air

Fig. 2.9. Wet soil.
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v Grains
(L2Z4 water
[ Air

Fig. 2.10. Soil at its retention capacity.

(@) The water phase is still continuous, but it no longer circulates
under the sole influence of gravity. In agronomy, one says that the
ground has reached its “field capacity” a few days after a rainfall when
the water that can percolate by gravity has left the soil profile. The term
specific yield or drainage porosity (wg) is used to describe the part of the
porosity that can be drained by gravity, i.e., the difference between the
moisture content of the saturated medium and that attained at the
equilibrium saturation. Note that pressure is transmitted through the
continuous water phase and that, as a consequence, the equilibrium
saturation varies, in principle, with the elevation above the water table of
the point being considered (to be discussed further).

(b) The air phaseis also continuous, but does not generally circulate.

(3) Weakly saturated soil (Fig. 2.11).

(@) The water forms a thin film around each grain (adhesive water) as
well as rings surrounding each point of contact between the grains.
These are called “pendular rings” or pendular water. The water phase is
still continuous, the pressures are in principle transmitted, but the
movement of water is very slow because the water film is so thin.

(b) The air phase is continuous but usually immobile. In this case,

27

the evaporation inside the porous medium may become considerable as .

compared to the other modes of water movement. However, in order to
leave the medium, the evaporated water must migrate by molecular
diffusion toward the exterior, which is a very slow process. A migration

=g Grains
224 Water
1 Air

Fig. 2.11. Dry soil.
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by density convection cells is also conceivable, but such a phenomenon
has never been observed.

(4) Irreducible saturation. In order to get below the equilibrium satu-
ration, we have already made use of phenomena other than circulation by
gravity, i€., evaporation and plant transpiration. If the moisture content
continues to decrease, we are eventually left with only the adhesive water,
which is sometimes called hygroscopic moisture. This irreducible saturation
depends, in reality, on the drying methods that have been applied.

(a) TIrreducible saturation in a natural medium when the drying-out
is caused by natural phenomena.

(b) TIrreducible saturation at 105°C. A soil sample is generally dried
by heating it to 105°C. This temperature is chosen arbitrarily because
beyond it there is a risk of decomposing certain minerals and extracting
the water that is a constituent part of the solid phase. However, it is
certain that a small fraction of the adhesive water is still present in the
medium. Thus, a clay has to be heated to 900°C for all the water to be
extracted. Indeed, the film of adhesive water creates a continuous layer
that surrounds the grains, whatever the degree of saturation.

(c) Capillary pressure. Let us analyze the balance of pressures between
the air phase and water phase in an unsaturated medium.

Between two fluids in contact withi each other, or a fluid in contact with a
solid, there is a free interfacial energy, created by the difference between the
forces which attract the molecules toward the interior of each phase and those
which attract them through the contact surface. The interfacial energy is
characterized by the interfacial tension oy, defined by the quantity of work
needed to separate a surface of unit area of the substances i and k. The tension
g, is constant for two given substances, and varies only with the temperature.
The interfacial tension g; between a liguid and its own vapor is called vapor
tension or surface tension.

For two fluids in contact with each other, Young’s equation gives the
connecting angle of the interface as in Fig. 2.12. Then 6, measured from 0 to

e Water

Solid §
Fig. 2.12. Interface between air, water, and a solid.
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180° in the denser fluid (here, the water), is given at equilibrium by

O-aw
where the subscript sa stands for solid—air, sw stands for solid—water, and aw
stands for air—water. There is no equilibrium possible if this ratio is larger than
1;1n that case, one of the fluids (here, water) spreads indefinitely over the solid.
If 0 < 90°, the fluid is said to be wetting. This is the case for the water here. If
> 90°, the fluid is said to be nonwetting. This is the case of the air here. The
term o,,, cos 8 is called the adhesion tension.
In the fluids, on either side of the air—water interface the pressure is not the
same. This difference in pressure is called the capillary pressure,

Pe = Pair — Pwater
If r is the mean radius of the interface curvature,

2 1 1

7 "

where v’ and r” are the principal curvature radii (Fig. 2.13). Then the Laplace
equation gives the capillary pressure,

20,

pD -
,
This pressure may be very high if the curvatures are small.

In a capillary tube, interfacial tension causes the water to rise and to form a
meniscus above the level of the tank. The height of this rise is a function of the
radius of the tube and measures the capillary pressure across the air—water
interface in the tube.

Fig. 2.13. Air-water interface curvature.
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In porous media the shape of the interface is very complex, but thereisalso a
capillary pressure, i.e., a difference in pressure between the air phase and the
water phase. As the air phase, if it is continuous, is usually at atmospheric
pressure, the water phase is at a negative pressure, which may reach several
bars. One then speaks of positive suction or tension. For instance, the wilting
point of certain plants is reached at a tension of the order of 15 bars if
standard atmospheric pressure is the reference zero. As the air—water
interfacial tension is of the order of 0.076 N/m at 20°C, this gives a mean
curvature radius of the water menisci in the unsaturated medium of 0.1 um,
i.e., close to the dimension of the adhesive water layer.

To each value of the moisture content of a porous medium corresponds a
certain distribution of the air and water phases. As the water phase is always
continuous, the pressure at equilibrium must be uniform at a given elevation.
As long as the air phase is also continuous, it stays at atmospheric pressure,
and the capillary pressure must therefore be uniform at that elevation. On the
average, the interfaces must thus take on a unique curvature radius. If the
moisture content varies, this radius must change, and so must the capillary
pressure. Hence, this capillary pressure is a function of the moisture content or
the degree of saturation. Assuming that the air pressure is zero, it is usual to
plot the pressure in the water versus the degree of saturation by defining the

suction potential pF:
™ Pwater
pF =log (—)
pg

where p is the mass per unit volume of the water, g is the acceleration due to
gravity, and p,..../ 04 is in centimeters. For example, we find curves such asin

Fig. 2.14. oF

Suction potential

0 .
0 10 20 30 40 50 60 70 8090 100
Saturation

Fig. 2.14. Variation in the suction potential pF with the degree of saturation for different
media. ——, Sands, grains of less than 500 ym; ———, Ramona sands; ~- - -—, Placentia clay loam;
~-—, Hanford sandy loam,; ---, Yolo clay loam; --- Chino silty clay loam. [From Bear (1972).
Reprinted by permission of the publisher from Dynamics of Fluids in Porous Media, by J. Bear.
Copyright 1972 by Elsevier Science Publishing Co., Inc.].
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Drainage curve

Intermediary cycle

Wetting curve

Pressure {or air entry) threshold below
which air does not enter the medium

Trapped air 100%  Saturation
Fig. 2.15. Hysteresis of the suction potential.

However, this capillary pressure shows hysteresis with the saturation
according to whether the soil is dried out or wetted. Indeed, the shape assumed
by the interface at a given saturation is not the same if we soak a dry soil or
drain a wet one: fluid “bubbles” remain imprisoned, the contact angles of the
interfaces are not exactly the same, there are phenomena of dilation or
compression, etc. Thus, we observe two suctions in Fig. 2.15. There is a whole
series of intermediary cycles such as the one drawn between the two enclosing
curves.

Finally, it must be said that if a sufficiently long time is allowed to elapse, in
the end the trapped air is dissolved by the circulating water and the
representative point moves frome one curve toward the other.

(d) Moisture-content profiles. Table 2.1 summarizes the main intervals
that have been defined in the soil-water—air continuum. All these zones are
also found on a soil profile such as the one in Chapter 1. This is illustrated in
Fig. 2.16.

Above the level of the water table, there is first a zone with 1009 saturation
or nearly that, which is called the capillary fringe, where the water pressure is
inferior to that of the atmosphere. This is the equivalent of the capillary rise in
tubes. Indeed, there has to be a certain capillary pressure (threshold pressure)
for air at atmospheric pressure and water to reach an equilibrium through the
interface. However, there may be trapped air inside this zone (whence a
saturation of less than 1009, e.g., 85-90%).

Above this zone, the capillary pressure increases and the saturation
decreases until it reaches the equilibrium saturation and the profile is static.

On the ground surface we have shown a dried-out soil and a wet soil, both of
which are in a transient state. In the case of the wet soil, the gravitational water
is infiltrated and descends along the profile. In the dried-out soil, the drying-
out of the ground surface causes an ascending circulation, which we shall
study together with the circulation in unsaturated media in Chapter 9.

Next to the saturation profile in Fig. 2.16 we have shown the pressurs
profile. According to the laws of hydrostatics, a profile in equilibrium should
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Fig. 2.16. Profiles of saturation and pressure in a soil.
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exhibit a linear variation of the pressure with the elevation. By definition, the
pressure is zero (i.e., equal to the atmospheric pressure) at the water table.
Below it, the pressure grows linearly with the depth; above it, it decreases with
the elevation and becomes a suction. This is evident if we consider that, aslong
as the water phase is continuous, two points at hydrostatic equilibrium at a
vertical distance AZ from each other have a pressure difference of pg AZ. All
representative points situated to the left of the line of pressure equilibrium
show that an ascending flow is occurring, and vice versa.

Note that the existence of the zone AB, where the saturation is approx-
imately constant although the pressure varies, is related to the shape of the
suction—moisture content curves shown in Fig. 2.15. On these graphs, the
suction is marked on a logarithmic scale. Below a certain saturation, the
profiles are almost vertical, i.e., a pressure variation by a factor of 10 only
causes a very small variation of the saturation.

In practice, a medium is hardly ever in hydrostatic equilibrium and the real
pressure profile nearly always deviates from the equilibrium line, but the
orientation of this deviation actually gives the flow direction since inertial
effects are negligible.

These high negative pressures (less than absolute zero) to which the water
in an unsaturated medium may be subjected should not surprise us; they
measure, in reality, a state of energy of the water in the soil, i.e., the quantity of
energy needed to extract a molecule that is bound to the soil by electrostatic
forces.

2.3. Porosity Measurements

2.3.1. Direct Methods on Samples

These methods are rather sophisticated and should be used in a specialized
laboratory.

(1) The total volume of the sample is measured, either by its dimensions (in
particular the dimensions of a core sample of unconsolidated soil taken before
the structure is destroyed), or by the volume of liquid it displaces after its
surface has been made impermeable.

(2) Onme can measure the volume of the solid phase by immersing it in a
wetting liquid (saturation in vacuum, with boiling water or with CO,
subsequently dissolved in water, etc.) and determining the buoyancy force by
weight. Thus, we obtain the porosity of the interconnected voids. The sample
has to be crushed, if one wants to find the porosity of all the voids including
the unconnected ones.

(3) One can also measure directly the volume of the connected pores by
injecting mercury at high pressure into the rock while creating a vacuum in the
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sample to expell the air it contains, by weighing the sample when it is dry and
when it is saturated with water, etc.

2.3.2. Indirect Methods in Situ

(a) Resistivity of the soil. With the exception of clays, the minerals
commonly found in the ground are insulators, and electricity circulates in the
ground in the liquid phase. The resistivity is therefore dependent on the
porosity. A formation factor F is defined by

_ resistivity of a rock
resistivity of the water contained in the rock

Using F, geophysicists suggest the use of Archie’s empirical formula for
finding the total porosity w:

F=Clo™ C~1

where m is the cementing factor, which varies from 1.3 for unconsolidated
rocks to 2 for limestones. The formula may be corrected if there are known
quantities of clay particles in the rock. The porosity obtained by measuring
these two resistivities is close to the total porosity. These formulas are useful in
interpreting electric logs in exploratory borings.

(b) Neutron logging. The ground is bombarded with fast neutrons,
usually from sources containing americium, then one counts the number of
slow neutrons produced by the deceleration of the fast neutrons on the
hydrogen atoms, which are mainly present in the water phase.

In this way, we can determine the porosity of saturated media and especially
the moisture content of unsaturated media. It is, however, preferable to
evaluate the method on a sample of dry soil in order to deduct the fraction of
the hydrogen atoms that are not related to the porosity. Water that is a
constituent part of the minerals, clays, etc., will contain these atoms of
hydrogen.

(c) Density measurement (gamma—gamma method). The ground is bom-
barded with gamma rays. We identify the part of the radiation which is not
absorbed at a fixed distance from the source. This quantity is inversely
proportionate to the mass per unit volume of the medium penetrated by the
radiation. In turn, this mass per unit volume is linked to the porosity through
the expression

Pr = OP + (1 - w)ps

where p,, p,,, and p, are, respectively, the mass per unit volume of the rock at
hand, the water and the solid grains of which it is made up.
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Table 2.2

Drainage of Homogeneous Sands

Seepage: quantity of water collected (%)

Grain size Calculated total First Next 9 Subse- 10 Day to Capillary retention
(mm) porosity (%) O.5hr 05hr quentdays 25yr  Total after 2.5 yr

0.475 38.86 10.68 4.88 8.72 2.60 26.88 6.87
0.083 39.73 126 090 11.29 2.01 15.46 18.87

(d) Sonicvelocity. This quantity is linked to a number of parameters and
especially to the porosity by the quantity of fluid contained in the rock.
However, the method is seldom used.

2.3.3. Some Porosity Values

We have defined a certain number of physical quantities: total porosity w;
specific yield or drainage porosity of an unsaturated soil wy; and its
complement, the capillary retention capacity; and kinematic porosity of a
saturated medium o, and its complement, the saturated retention capacity.
These concepts are not always easy to distinguish and evaluate. Table 2.2 is an
example, using results obtained by King (as quoted by Geze, 1967) on the
drainage of homogeneous well-sorted sands. The difference that exists
between the calculated total porosity and the sum of specific yield and
capillary retention stems from errors made in measuring and calculating the
total porosity. Thus, we observe that the specific yield depends, in reality, on
the length of time during which the rock is allowed to drain. If the object is to
find out what quantity of water may be extracted from a rock by drainage, we
must try to determine the specific yield or drainage porosity. If the object is to
find out how much water flows through a saturated rock, for example for a
calculation of flow velocity, we have to look for the kinematic porosity.
Finally, if we are interested in the total quantity of water contained in a porous
medium—T{for example, in problems concerning the compressibility of the
fluid phase or the possible dilution of the ions in solution in the fluid phase—
we must look for the total porosity.

It must be admitted that, in practice, one often speaks of porosity without
specifying which one. Drainage and kinematic porosities as defined above are
often lumped together under the term effective porosity. This is unfortunate.

The accompanying table gives a few orders of magnitude for interstitial
porosity leaving aside fracture porosity.
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Medium Total porosity

Unaltered granite and gneiss 0.02-1.8%
Quartzites 0.8%
Shales, slates, mica-schists 0.5-7.5%
Limestones, primary dolomites 0.5-12.5%
Secondary dolomites 10-30%
Chalk 8-37%
Sandstones 3.5-38%
Volcanic tuff 30-40%,
Sands 15-48%
Clays 44-53%
Swelling clays, silt Up to 90%
Tilled arable soils 45-65%,

As a general rule, the smaller the grains in a rock, the greater the decrease in
effective porosity and the increase in the retention capacity, as illustrated by
Fig. 2.17. However, this must be used with caution for determining the
porosity as a function of the grain size. (For instance, it hardly lends itself to
the interpretation of King’s experiments.)
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Fig. 2.17. Porosity components as a function of grain size. [After Castany (1967)].
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2.4. Measurements of the Water Pressure in the Ground

One must distinguish between the pressure in the saturated part of the
ground, where the pressure is positive, and the unsaturated part, where the
pressure is negative.

2.4.1. Measurement in the Saturated Medium

(a) Piezometer. If the medium is fairly permeable, a hole is simply drilled
in the ground and is fitted with a perforated tube if the sides of the hole are
likely to collapse. The water level in the tube gives the elevation of the water
table (or free surface), i.e., the point where the pressure is zero (not counting the
atmospheric pressure). Under the free surface, the pressure increases linearly
with depth if the system is hydrostatic.

(b) Pressure gauge. If the medium has low permeability (clay or clay—
sand, for instance), a tube with a porous point (fritter metal) is inserted into the
ground (e.g., by hammering). This is schematically illustrated in Fig. 2.18. Air is
injected using a foot pump or bottle through a small plastic tube at the surface,
and the pressure is monitored. The rubber membrane is opened, when the air
pressure is equal to that of the water, which causes a return of air to the
surface. This is visible if the return tube is immersed in a glass of water.

Electric pressure transducers can also be used.

2.4.2. Measurement in the Unsaturated Medium

To measure the suction in the unsaturated medium, one uses a porous cup
made of ceramics, inserted vertically (or horizontally, from a well or trench).
This is called a tensiometer (Fig. 2.19).
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Fig. 2.18. Pressure gauge.
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Fig. 2.19. Tensiometer.

Through the porous ceramic cup, the water inside attains a pressure
equilibrium with the water in the soil (continuity of the water phase through
the unsaturated soil and the cup, which is a porous medium like any other).
Thus, the suction is measured with a manometer. However, this device is
limited to a suction of around 800-900 millibars; beyond that, water starts to
boilin the cup at the ordinary temperature, and the tensiometer “disconnects.”
Each tensiometer is also defined by its air entry pressure (or threshold
pressure). As we have explained for the porous medium, the porous ceramic
cup always remains 1009 saturated, and no air can enter into the tensiometer
if the suction is kept below this threshold value (generally between 1 and 10
bars for fine ceramics).

To get below 1 bar, we have to use indirect methods such as blocks of plaster
fitted with electrodes and buried in the ground. The water they contain will
then reach a pressure equilibrium with that of the soil. By quantitative analysis
of the relationship of pressure—moisture-content—resistivity of the plaster
block, we can then estimate the suction in the soil. However, this relation may
vary with time because of solutes contained in the water of the soil.

Note that in order to make these measurements in the laboratory (on real
soil samples or plaster blocks) of the suction—moisture-content relationship,
the atmospheric pressure is raised artificially in a pressurized closed circuit to
prevent the suction (difference in the water—air pressure) from causing the
water to boil.
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3.1. General Equations of Fluid Mechanics

In this chapter we are mainly concerned with establishing the form of the
continuity equation in porous media. This equation simply states that in a
fixed closed volume, the variation per unit time of the fluid mass it contains is
equal to the algebraic sum of the mass flux crossing the surface of the volume
in question. This is, consequently, the basic principle of mass balance as
expressed by Lavoisier: “nothing is lost, nothing is created.”

To understand the development of this equation, the reader must have some
notions of general fluid mechanics. If this is not the case, it is sufficient to read
the beginning of Section 3.2.1, then Sections 3.2.2 and 3.3, before going on to
the next chapter.

In fluid mechanics and thermodynamics, we know that solving any flow
problem of a Newtonian* fluid means determining six unknowns:

The mass per unit volume p (mass length™3), the pressure p (mass
length™* time™?), the temperature 6, and u,, u,, u,, the components of the
velocity field u.

* A Newtonian fluid is an isotropic fluid with a pressure that only depends on the standard
state variables p and 6, the viscosity tensor of which is a linear form of the velocity gradient with
coefficients depending only on the standard state variable.

39



40 3. Basic Concepts in Hydraulics

All these unknowns are functions of time ¢t and the point in space.

We shall use Eulerian coordinates (i.e., a fixed point of reference in the
laboratory or medium) and try to express these six unknowns as functions of
the space—time variables x’ and t. To do this, we have:

(1) The equation of continuity, which expresses the mass conservation:
. )
div(pu) + a—‘t’ =0 (.1.1)

established in an elementary volume that is fixed in space.

This may also be written pdivu + dp/dt = 0 in Lagrangian coordinates,
following the movement of the matter at its velocity u.

(2) The Navier—Stokes or dynamic equations, which .express the basic
principle of mechanics f = my for viscous fluids, of which the viscosity
coeflicients are assumed constant:

op AN 2,0 _ i ﬂ
p <C+3>—a—;—i(dlvu)—uv u —p<F dt) (3.1.2)

where { is the coeflicient of volume viscosity, negligible when compared with
(mass length™* time ™), u the coefficient of dynamic viscosity (mass length™*
time™*)* [with v = u/p, kinematic viscosity (length? time )], V2 the Laplace
differential operator ¥, 8%/0(x")*, F; the components of body forces acting at a
distance per unit mass, e.g., gravity (length time™2).

There are three Navier—Stokes equations, one for each direction x'in space.
This, then, gives us four equations. In general, the two remaining equations
are, on the one hand, the heat equation (conductive and convective heat
transport by the fluid), and on the other, the equation of state of the fluid
giving its mass per unit volume p as a function of the pressure and the
temperature. In a porous medium it is often possible to simplify the problem
by observing that the high degree of division in the porous medium and its
enormous heat capacity result in flows that are, in practice, mostly isothermal.
The unknown, which is the temperature, then disappears and we only need one
further equation.

(3) The equation of state of the fluid, which we take as
p= poeﬂ(p—po) (3.1.3)
where B is the compressibility coefficient of the fluid (mass™* length time?).

The case where the temperature varies in the medium will be examined in
Chapter 10.

We shall now examine how these laws may be transposed to the porous
medium.
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3.2. Continuity Equation in Porous Media

3.2.1. Mean Filtration Velocity
and Equations of Macroscopic Continuity

Let us start by setting out our objective. Let u be the real fluid velocity in
each of the pores of the porous medium (also called microscopic velocity). Let
p be the mass per unit volame at this scale and w the point porosity (w = lina
pore, @ = 0 in a grain). At this scale, the ordinary equation of continuity
already mentioned holds for the interior of the pores.

We then define the macroscopic quantities or “averages” in the porous
medium, which, for the time being, we shall call (u), {p), and {w). These
macroscopic quantities are defined either by spatial integration, as proposed
by Marle (1967) [see Chapter 2, Section 2.1.d], through convolution by a
weighting function m or through a probabilistic definition, the mathematical
expectation of u, p, and w at the considered point x, for all possible realizations
of the medium.

We will then establish the equation of continuity in porous media,
equivalent to Eq. (3.1.1):

GVT<py ] + o [p> @] = 0

where { ) designates the average taken, and (u) is the fictitious mean velocity,
sometimes called filtration velocity.

We shall call it U later. Note the appearance of the term {w) in the second
term.

Itisimportant to completely understand the physical significance of the two
terms of this equation. The equation shows that in a closed volume, the sum of
the entering mass flux is equal to the variation of the mass contained in the
volume. Although it is expressed at a point, it is always established for an
elementary volume D which is fixed and completely rigid in space. (In Chapter
5, we shall discuss the case of a volume that is mobile in space.)

If we use Ostrogradski’s formula,* we find that the divergence of {p>{u)
represents the mass flux of {p><u) across the surface  of D. However, one
must keep in mind that {u), which we shall define, is a fictitious mean velocity,
i.e., the mean velocity of a fluid flowing through the entire space, pores plus

* Ostrogradski’s formula is

j divVdy = —J Vendo
D T

where D is the closed volume with outer surface area 2., m is the outer normal on Z, V is the con-
tinuous velocity in D and over Z, and 8V}/dx; is continuous in D and over X.
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grains, instead of only through the pores. Indeed, the term div ((p><{u)) means
that we integrate (p){u) over the whole surface T of the volume D, and not
only over the pores. This is why (u) is called filtration velocity.

Finally, the fluid mass contained in D is not {,, p dv, but |, pw dv, as there is
fluid only in the pores. It is therefore normal that the term {(w) appears in the
second term.

Let us now establish this equation rigorously. The readers who do not want
to pursue the theory any further can skip to Section 3.2.2., but should ook at
the two definitions of the filtration velocity, compressible in Eq. (3.2.1.1) and
incompressible in Eq. (3.2.1.2).

(a) Establishing the equation of continuity in porous media. This develop-
ment follows that of Marle (1967). Let u be the local microscopic velocity
inside the pores of a porous medium. To move to a larger scale, we shall use the
notion of the representative elementary volume (REV), which we have defined
in Section 2.1. Let us agree to extend the field of definition of u to the entire
space with, of course, u = 0 in the grains.

Incompressible fluid and solid. The equation of continuity at the micro-
scopic scale is reduced to

diva=0

because p is constant. Furthermore, the velocity u is continuous in the entire
space, because u is zero at the walls in laminar flow and defined as zero in the
grains.

To define the mean macroscopic velocity (u) or filtration velocity, we shall
integrate in space the local property weighted by a weighting function m(x)
such as

Im(x) dx =1

where x stands for the coordinates in three dimensions and the integral may be
extended either to a certain bounded domain D if m has a bounded support or
to the whole space.

Hence, for example,

x) = 3/4nr3 if  |x|<r
mx) = 0 if |x|>r

where m is the indicatrix of a sphere of radius r centered at the origin, or again

1 —xl/202
m(x)zme Ix12/2 Vx
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which is the normal probability distribution in three-dimensional space, ¢
being the standard deviation.

If a is a local magnitude, the mean {a) of a at the point x in space is then
defined by

{ay(x) = fa(x + x)m(x’) dx’

It is often advantageous to require m to be continuous and continuously
differentiable, so that {a) may have the same properties, even if a does not;
thus, for example,

1 .
Cexp<—m) if [XI <r

0 it |x|>r

where C is chosen in order that the integral of m indeed be 1. However, there is
a great deal of freedom in the choice of m.

As u is a vector, we can define a macroscopic velocity {u) by taking the
weighting by m of each of the components u; of u:

{u; > = Jui(x + x)m(x")dx’ (3.2.1.1)

The equation of microscopic continuity may be written

Ouy | Oup  Ouz

dive=—+_— 0
v 0x, + 0x,  0x,
We multiply by m and integrate in space:
zj% m(x’)dx’ =0
i 0 i|x+x

Since u is continuous, and the domain of integration (or the entire space) is
immobile, the differentiation and integration commute, i.c.,

Zé%—jui(x + x)m(x')dx’ =0

ie.,
au;) _
; ox; 0
or

divdu) =0



44 3. Basic Concepts in Hydraulics

Let us consider for a moment the physical significance of (u), the filtration
velocity. The integral which defines (u) is extended to the entire space evenif u
is, in reality, zero in the grains of the porous medium. Therefore, {u) is a
fictitious mean velocity calculated as if the entire space were accessible to the
flow (pore plus solid).

One must not confuse {u) with the mean flow velocity inside the pores,
which we shall define later.

Case where the fluid is compressible and the flow steady (not a function of
time). This means that dp/dt =0, i.e, that the equation of microscopic
continuity is reduced to div(pu) = 0 and, furthermore, that the porous medium
is immobile.

We shall start by defining a macroscopic mass per unit volume {p). As the
microscopic mass.per unit volume p is defined only in the pores, we must
similarly extend its definition to the entire space by agreeing that p = O in the
grains. But remember that p is now discontinuous at the solid—liquid interface.

Furthermore, if we were simply to define {p) by convolution of p by the
weighting function m we would get a certain inconsistency, because the mean
{p> would be very different from the local p, even in the case where p is
uniform in the pores. The problem stems from the fact that, in the convolution,
p would be weighted by the porosity as well.

Therefore, it is preferable to define the mean porosity first as

(@3 = J O + X)m()dx’  where* wz{g’;g:if;

Then, the macroécopic mass per unit volume is defined by
{p> ! J x + xJm(x)dx’
= e m
P (o> Iy

(If p = const, then {p)> = p with this definition.)

Finally, we could keep the same definition for the filtration velocity as in
Eq. (3.2.1.1). However, this definition implies that the fluid is incompressible.
Indeed, if it is not, there is no physical significance in adding (or taking the
average of) the velocities. Mass is the only magnitude that can be added up, i.e.,
which satisfies an equation of continuity.

* Here we are talking about effective porosity—not in a kinematic sense, i.e., water that can
circulate, but in the sense of compressibility: when we make p vary, we want to identify that
fraction of the medium which contains compressible water. All that is excluded in the end is the
film of adhesive water bound to the solids, which is itself already greatly compressed, and which
we shall assume to be part of the grain. In practice, we use the total porosity w.
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Thus, we shall define the filtration velocity (u) from the mass flux pu and the
average mass per unit volume {p):

1
{upp = ) J p(x + x)uy(x + xym(x) dx’ (3.2.1.2)

If p is constant, this definition coincides with Eq. (3.2.1.1).

Although p is not continuous in space, the product of pu is, as long as the
porous medium is immobile. Therefore, we can also permute the signs of
summation and differentiation, and write the equation of macroscopic
continuity: :

fdiv (p)ym(x")dx’ = div[fpu m(x’) dx’] =0
or from Eq. (3.2.1.2),
div[{py<up] =0

Case where the fluid is compressible, the flow a function of time, and the
medium elastic.  'We shall keep the same definition as above for {w), {p), and

{u), 1.e.,

0i .

(o) = jw(x + x)m(x’) dx’ with o= { i a gram
1 1in a pore

(0> = | plx + x)mixy v  with  p= {0 masmm
p T (w) P " p= p in a pore

1 0 in a grain
=— xJu(x + x)ym(x’)dx’ ith =< .
@ =7s jp(x+ i+ xImx)dx’ W {umapm
We shall use the complete microscopic equation of continuity and integrate
it in space, with a weighting function m:

f [div(pu) + Z—f]

This integral is indeed zero, because, by definition, the term in brackets must
be zero in the pores and the definition of p and w in the grains result in their
being zero in the grains as well. The fact that the spatial derivatives are not
defined on the interface Z, between the pores and the grain does not influence
the calculation of the integral of the volume, because Z; is a set of measure
Zero.

Although the final result is simple, the calculation is trickier, because this
time the signs of differentiation and integration do not simply commute.

mx}dx' =0

x+x
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The problem is caused by the fact that if the medium is compressed the mass
per unit volume of the water varies, but the porous medium itself subjected to
these pressures becomes deformed. Therefore, the porosity varies and the
liquid—solid boundary £, moves at a velocity that we shall call u,. These
velocities are, of course, very small and, more often than not, negligible.
However, here we are endeavoring to rigorously establish the basic equations.

The consequence of this movement is that neither p nor pu is continuous in
space. One can then show that the summation and the differentiation only
commute if differentiation is defined according to the theory of distributions
and not in the usual sense (see Marle, 1967, and Schwartz, 1961). However, we
will not use this approach here.

Let us now examine the term

ap
ot

Without referring to distribution theory, we shall use Leibnitz’ rule* for the
derivative of an integral to evaluate our integral. From the definition of {p>,
we can write

m(x’)dx’

x+x’

(pXw) = fp(x + xYm(x') dx’

Let us assume that m has bounded support, and let D be the domain,
centered in x, in which m is not nil; the external surface of Discalled . As pis
nil in the grains, we can even limit the integration to the domain D, occupied
by the fluid and limited by the external surface £ and by the fluid—solid
interface, which we call £,. We now take the derivative of the above
expression with respect to time:

a a ! I ’
5[<p><w>] = 55Ux+xfepl p(x + x')m(x") dx ]

* Leibnitz’ rule: If

b(x)
Jx)= f Y(x, y)dy

a(x)

then

of db d i
i _ d_l/,[x, b(x)] — —al//[x, a(x)] + J -¥(x y)dy
X dx

O0x ate) 0%

where ¥(x,y) is continuous in x and y, dy/0x exists and is continuous, and a and b are
differentiable.
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As D, varies in time the porous medium is deformed continuously and
Leibnitz’ rule gives us two terms in the differentiation: the time-dependence of
p, and the variation in time of the integration volume D, .

The first one is simply

Lg;[p(x +x)]m(x)dx

which is exactly the one we wanted to estimate at the beginning of this
paragraph.

The second term can be evaluated by noting that the volume swept by a
surface element do belonging to the fluid—solid interface £, during a time dt is
given by the scalar product

—u,-ndt

where u, is the velocity of the interface and n is the normal line at this interface
directed toward the fluid. The variation of the volume D; per unit time is
therefore the integral of this term on the surface X, (the external surface Z of
D, is immobile):

—f px + xNu (x + x) - nx + x)mx’)dx’
x+x' el

Observe that this term appears only because p is not continuous over X, : if
p were equal to zero on X, here, the integral would disappear. Thus, we can

write
6_p
ot

Now for the second term, | div(pu)mdx’.

Astheinterface Z, between fluid and solid moves, the velocity of the fluid at
this interface is only zero as a relative velocity, in relation to the interface
velocity*, i.e., for points on Z,.

m()dx = 2 [(p)<o] + f pu, - nm(x') dx’

x+x’

u—u,=0oru=nuy,.

* In the most general case, the relation of the mass balance that exists at the interface in a
two-phase medium is described by

pi(uy-n—u,-m) — pr(Uy-n —u,-m) =0

where 1 and 2 designate the two phases, nis the normal line at the interface X between 1 and 2, and
u, is the velocity of . This rule assumes that the interface is a single surface and ignores interface
phenomena such as surface tension. It allows the exchange of matter at the interface (e.g., fusion
of ice, chemical reaction). Here it is obvious that the velocity of the solid u, over ¥ is equal to u,;
thus, similarly, u; = u,. See Slattery (1972).
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Thus, uis discontinuous on each side of £, making it necessary to introduce
one more term on X,. We shall calculate a spatial derivative of {p>{u). We
integrate, as above, in a bounded volume D and let D, be the domain occupied
by the fluid in D; Z, is the fluid—solid interface.

From the definition of the filtration velocity in Eq. (3.2.1.2);

m(x') dx’

x+x’

pruy = qui

We take the derivative:

m(x')dx’

x+x’

a 0
5 [P =7 fppu

i

_9 f o
a'xi x+x'eDy '

If we make the change of variable, X" = x + x/, we find

m(x)dx’ as pu;=0 in (D — Dy)

x+x’

mx" — x)dx"

N S

Bx,- axi x'’
However, now only m is a function of x. If we observe that
om(x" —x)  om(x" —x)
0x; B oxy
then
0 om(x" — x)
. — . ____d "
3 P> fD pul o
el
x""eDy axi x

- -—67 |:pui ]m(x” — x)} dax"
0x; <

Similarly, since the interface Z, is a set of measure zero, the fact that the
gradient is not defined on it is of no importance for the calculation of the
integral. If we transform the first term with Ostrogradski’s formula, then

0
— | oyl mx" —x) |dx" = — U;
Ll 0x; [p X’ )J Ll P

where n; is the component in the direction i of the normal line to X, oriented
from the solid toward the fluid. Note that the integral is limited to X, and not

m(x” — x)n; dx"”

X
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to the external surface of D,, because if D is sufficiently large, then m is nil
there.

We cannow go back to the initial variable x through the change of variables
x'=x+x"

0 i)
=[P {up] = pu; m(x)dx' + | pu|  m(x)ndx’
a‘xi D axi x+x’ pY X +x’
i.e., finally,
J div(pu) m(x')dx’ = div[{p)><uy] — J pu - R m(x")dx’
D x+x’ bR x+x’

The fact that D is bounded does not influence the demonstration, which
remains general.
If we regroup the two terms of the equation of continuity, we get

. 0
div[{pr<w] + = [{pr<wr] + J p(u, —u)-nm(x)dx" =0
Zy
but on £, we have shown that u = u,; there remains only

GV + 2 [{p Y] =0 (3.2.1.3)

Observe that we could also define {w>, {p>, and {u) in the sense of random
functions as the mathematical expectations, at point x, of all the values
assumed by the infinite set of possible realizations of the medium. In that case,
the differentiation operator must be understood as in the theory of distribu-
tions in order that it can be commuted with the expectation operator:

d da
— [Blax, )] = E[—a—;(x, 0]

3.2.2. Simplification of the Notation; Source Term

In order to avoid cumbersome expressions, we shall now dispense with the
sign () for p and w and denote the filtration velocity U = (u), while
remembering that these magnitudes have been defined, in a porous me-
dium, by the operation of taking averages, on which we have comment-
ed abundantly.

However, we shall add one more term to the equation of continuity. Indeed,
this equation expresses the balance of matter inside a closed volume. However,
in hydrogeology, one often has to add a source or sink term, which accounts
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for the withdrawal (or recharge) of water that may be made in the medium (e.g.,
bore holes).

We shall define the source term ¢, which will represent the volumetric flow
rate of fluid withdrawn (or added, if it is negative) per unit volume at each
point. The withdrawn mass flow rate is therefore pg, with g defined on the
macroscopic scale. This term is added to the equation of continuity, which is
then

. G
div(pU) + éz(pw) +pq=0 (3.2.2.1)

3.2.3. Mean Microscopic Velocity

From the filtration velocity U, we can define a “mean microscopic velocity”
of the fluid simply by saying that u is nil in the grains. Let X be a section of the
porous medium and w,, the kinematic surface porosity over Z.

surface area of effective pores
total surface area of the section

cs

The mean microscopic velocity is defined by
U

wCS

U=

However, this velocity does not have a great physical significance as opposed
to U, which, by definition, satisfies the equation of continuity.

In practice, it is generally assumed that the porous medium is isotropic in so
far as the distribution of the porosity over a section is concerned, and we admit
that o, = w,, although generally w , < w,, in reality. The mean microscopic
velocity (or mean actual velocity in the pores) is then

u=—
wc

where o, is the kinematic porosity.

3.3. Hydraulic and Piezometric Head

In courses in hydraulics, the hydraulic head at a point M of an in-
compressible fluid subjected only to gravity is defined by the relationship

2
h=l—l—+i+z
29 pg
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where u is the real velocity of the fluid at the point M, the elevation of which is
z (measured positively upwards). Each term can be interpreted in terms of
energy.

Furthermore, we know (Bernouilli’s theorem) that the head can only
decrease in the direction of the flow and that, if the fluid is immobile, its head is
constant in space.

In porous media, the real velocities are always very slow, and we are justified
in omitting the term for the dynamic head u?/2g, which reduces the head to the
static or piezometric head:

h="2 1 (33.1)

Pg
Thus, the piezometric head merges with the hydraulic head, the value of which
is, of course, dependent on the origin chosen on the axis z. Hydraulic heads are
generally expressed in relation to the mean sea level in the same way as
topographic elevations.

If we want to measure this head at a point A of a saturated porous medium,
it is necessary to bore a hole and sink an open-ended tube. After stabilization,
the elevation zy reached by the water in the tube is equal to the head A at the
point of the lower opening of the tube (Fig. 3.1). This kind of apparatus is
called a piezometer. The elevation zg is equal to the head in the piezometer at
point B, which is the same as the one at point A, because the fluid is immobile
in the tube of the piezometer.

Pa P + p9(zs — z,) Py
hy="—"—+z,=— """ 2 4z, =-+zz=h
A og A o4 A g B B
As one always chooses the atmospheric pressure as the zero reference pressure,
indeed, h, = hy = z3.
If the fluid were immobile in a water table aquifer that is directly recharged

by rainfall, the hydraulic head would be the same at all points of the porous
medium. Consequently, the head zy in the piezometer would define the “free

"l B JMje o i’ wm aw'e Free surface

Fig. 3.1. Piezometer.
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surface” of the aquifer, i.., the boundary (where the water pressure is zero) that
separates the saturated porous medium from the unsaturated one.

If the aquifer flows horizontally in the saturated medium, the head varies in
the horizontal direction. However, the hydraulic head remains the same in the
vertical direction, and the elevation of the free surface is given by the one
measured by the piezometer independently of its depth. This is no longer the
case, if the flow is not horizontal; the hydraulic head then also varies with the
depth of the piezometer and the free surface is defined by the head obtained,
when the piezometer begins to enter the saturated medium.

In practice, the piezometer is often perforated along its entire length
{punctures or slots), and the “mean hydraulic head” in the aquifer is measured
in this way.

In order to account for the compressibility of the fluid, the hydraulic head is
sometimes defined by

rod

h=z+ f e (332)
po PP

where p,, is pressure at the origin of the axis z and p is pressure at the point of

elevation z (see Remson et al., 1971; Hubbert, 1940). We shall not use this

formulation.

3.4. Simplification and Integration of the Navier—Stokes Equations
for Schematic Porous Media

The Navier—Stokes equations are not in practice applicable as such in
porous media, because we do not know precisely what happens to pressures
and velocities in the pores on the microscopic scale. Therefore, one must find a
macroscopic law, which may be used on the scale of the elementary domain of
the porous medium, linking pressure, velocity, and external forces. This is an
experimental law, Darcy’s law, which we shall study in Chapter 4.

We shall, however, simplify the Navier—Stokes equations by choosing the
case of slow (laminar) steady flow of an incompressible fluid. Once simplified,
they will be applied to two simple geometric cases: flow between two parallel
plates placed close together, and flow through a cylindrical tube as in the
example borrowed from Houpeurt (1974). We then obtain a macroscopic law
that can be compared with Darcy’s experimental law.

Our purpose is not to prove Darcy’s law, which is a phenomenological law
and has to be admitted, but to rely on theoretical reasoning as a basis for the
generalization of Darcy’s law from the elementary experiment.

However, it is worth mentioning that there are works by Matheron (1967)
and Marle (1967) that deal with the justification of Darcy’s law by integration
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of Navier’s equations in a real medium. In particular, Matheron shows that
Darcy’s law is the result of the linearity of the Navier—Stokes equations, not of
their form.
Simplifications. For steady flow, we can write
du'/ot =0
and, by using the ordinary equation of continuity;
div(pu) = —0p/t =0

If, moreover, the fluid is incompressible, this equation reduces to

diva =0
Then the Navier—Stokes equations reduce to
6 . .
a_i’f — uV2i— pFi =0 3.4.1)

We shall integrate them in three simple cases.

(a) Parallel isothermal and steady movement of an incompressible viscous
fluid in a fracture of width e without any influence of external forces. The
fracture is assumed to extend indefinitely in the horizontal (x—y) plane and its
opening e is oriented along z.

The parallel flow runs in the direction x. The velocity has only one
component, u, . It is evident that the velocity u, then depends neither on x nor
on y, but only on z:

Ou, Ou,
ox  dy

Then, without any influence of external forces (F' = 0), the Navier—Stokes
equations of Eq. (3.4.1) reduce to

u,=u, =0,

Jp u, .
2
0_5 =0 (3.4.3)
2
a—lz’ =0 (3.4.4)

We isolate, in our mind, a length L of the fracture along x, a width b along y
(Fig. 3.2), and as p is independent of all but x, we can determine the boundary
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Fig. 3.2. Fracture geometry.

conditions:
P=p; for x=0
P=D for x=1L, with p, <p,

If we include gravity as an external force, the last equation of Navier—Stokes,
Eq. (3.4.4), would be

o__
62_— Pg

and p would also be a function of z. We ignore the gravity here in order to
simplify the analysis [see Section (c}].

The first of the Navier—Stokes equations Eq. (3.4.2), depends only on the
independent variables x on the left-hand side and z on the right-hand side. The
only means of ensuring the equality of these two quantities is to make each of
them, on its own side, equal to the same constant C.

Consequently, Eq. (3.4.2) is replaced by
%u, d*u

x _ ¢

) d
0= Koz =H e

é}——dx = and

The integration of these two equations leads to

D> — D1
L

p=p; + x

C’, C"” constants

1 2
Uy =—CZ 4 Cz+C"
w2

For z = 0 and z = ¢, one should have u = 0; thus we get

__1_172 — P (z?

U, = % L —ez) (parabolic velocity profile)
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We calculate the flow g across the fracture for the width b:

q=f bu,dz
0

e’ py—py
1=bery 1

If there are n parallel fractures over a depth of [ of an otherwise
impermeable rock, its porosity is then

0 =—

l

The total section of the medium A is bl and gives the flow @ = ng:

we’ 1 py — p,
¢ 124 L

Thus, the Navier—Stokes equations lead to the following conclusions: the
flow @ is proportional to the total section 4 of the rock and to the pressure
gradient (p; — p,)/L and inversely proportional to the viscosity p. The
coefficient of proportionality for the medium in question is here we?/12.

(b) Flow through a circular tube of radius r (Poiseuille’s formula). If we
use radial symmetry and introduce polar coordinates with the flow direction x
as their axis, the first of the Navier—Stokes equations, Eq. (3.4.2), given for the
case of the fracture, becomes

dp d’u  1du

R

The integration leads to

_ ﬂ P1— D2
8u L
Let us consider a porous medium composed of an impermeable matrix
pierced by n circular ducts of radiusr, all parallel to each other. If 4 is the total

surface area of the medium, perpendicular to the direction of the ducts,ithasa
porosity of

w = nnr’/A
Then the total flow through the porous medium is @ = ng, i.e.,

wr? 1 p; —p,
= A e 2 3.4.6)
0 S n L (3.4.6)
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and this expression is similar in all points to the expression of Eq.(3.4.5)for the
flow in the fractured medium, but the proportionality coefficient here is cor?/8
instead of we?/12.

These two calculations suggest—but do not prove—that the flow @ of an
incompressible fluid with viscosity u through a cross-section of area 4 of a
porous medium under a pressure gradient dp/dx has the form

= —A——
udx
where k is the coefficient of proportionality of the porous medium in question.
We shall see that this is indeed the result found experimentally by Darcy.

(c¢) Introduction of external forces. If we want to include external forces
in the Navier—Stokes equations, for example the gravity, we orient the parallel
fracture vertically along the y—z plane. Then, the Navier—Stokes equations are

w_g w_, w0

ox ay 8z~u622 P9

which, when similarly integrated, lead to

p=p, + D2 z P 2
1 (34.7)
U, =Z<p2 Z b1 + ,og)(x2 — ex)

The conclusion is that the force of gravity pg plays the same role as the
pressure gradient dp/dz, to which it should be added. The flow through the
fractured medium becomes

_ we?1 (p, —p,
Q_Alzu( i3 rg

If we calculate the filtration velocity, defined above as that of a fluid, which
might flow through the entire cross section A4 of the fractured medium, we get

Q we’l(p, —p,
U R il T ————
4" 12u\ 1L ¥
and generalizing for all directions in space,
we? 1

U= ————(gradp + pggrad z) (3.4.8)
12 u

where grad z is a vector of coordinates (0,0, 1) and the axis z is vertical and
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oriented upward. The minus sign is due to the fact that the fluids flow from
high pressure toward low pressure or from above downward.
As the fluid is assumed incompressible, we can write

grad p + pg grad z = pg[grad(p/pg + z)]
= pggradh

where h = p/pg + zis the hydraulic head, which we have defined in Eq. (3.3.1),
Le.,
2
we
U=~ ST grad h

The role of the pressure is taken over by that of the hydraulic head a if the fluid
is incompressible.

However, we must remember that in the Navier—Stokes equations as such,
we can associate pressure gradients and external forces:

op )
. — pF*
ox'

That is, if the forces F' derive from a potential such as gravity, then
grad p + pg grad z, but the definition of a unique potential p/pg + z assumes
that the fluid is incompressible, which is not always the case in a porous
medium. We shall use the two forms alternately.
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4.1. Darcy’s Experiment, Hydraulic Conductivity, Permeability,
and Transmissivity

Henri Darcy, while studying the fountains in the city of Dijon, France,
around 1856, established empirically that the flux of water through a sandy
formation (Fig. 4.1) may be calculated by

0 = KAAK/L 4.1.1)

where A is the area of the cross-section of the sandy formation, Ah the
difference in hydraulic head in the water between the top and the bottom of the
sandy formation, K a constant that depends on the porous medium, called
hydraulic conductivity in hydrogeology, or sometimes coefficient of permea-
bility, and L the thickness of the sandy formation.

By dividing both sides by A4, we obtain the fictitious velocity U of the fluid at
the outlet of the formation, bearing in mind that this definition of the velocity
U considers the entire section to be open to the flow. This is what we have
called the filtration velocity:

U=Q/A

Furthermore, if the difference in hydraulic head per unit length of porous
medium traveled by the flow is denoted i = Ah/L, also called hydraulic

58
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Ah

Fig. 4.1. Darcy’s experiment.

gradient, we get
U=Ki (4.1.2)
which is the simplest expression of Darcy’s law.

(a) Intrinsic permeability. If we take Eq. (3.4.8) using dimensional
analysis and experimental verification, we find that the constant K actually
varies inversely with the dynamic viscosity u of the fluid. Moreover, we know
from the calculations based on the Navier—Stokes equations that the real
reasons for fluid displacement in a porous medium are, on the one hand, the
pressure gradients and, on the other, the external gravity forces asin Eq. (3.4.8).

Consequently, Darcy’s law should be expressed in the generalized form

k
U= — ;(gradp + pggrad z) (4.1.3)
which we admit for steady and unsteady flow of compressible fluids. Note that
since U is a macroscopic magnitude, this is also true for g, p, and p, regarding

the averages (given in angle brackets) defined in Chapter 3.*

* In particular, one can show that Darcy’s law applies to the gradient of average pressure,
grad { p), and not to the average gradient of pressure, {grad p). See Marle (1967).
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The intrinsic or specific permeability k relates to the porous medium
regardless of the characteristics of the fluid. It is only defined on the
macroscopic scale. Its dimension, from Eq. (4.1.3), is that of a surface area,

[k] = [01[p]  (length’time™")(mass length™'time™")

— 2
" [AI[PL™'] (length?)(mass length >time™2) (length®)

However, it is often expressed in darcys. One darcy is equal to 0.987 x 10712
m?, and is defined by a medium for which a flow of 1 cm?/s is obtained through
a section of 1 cm?, for a fluid of viscosity 1 ¢P, and a pressure gradient of 1
atm/cm (760 mm Hg/cm).

In practice, the petroleum industry uses the millidarcy (md 1073 darcy)
because the most common permeabilities usually lie between one and a few
thousands of millidarcies.

(b) The hydrogeologist’s hydraulic conductivity. The relation between the
intrinsic permeability k and the hydraulic conductivity K used by hydrogeolo-
gists is established by treating the flow as a function of the hydraulic head
gradient Ah/L = —gradh.

If we assume that the fluid is incompressible, we can write Eq. (4.1.3) as
follows:

k
U= —;grad(p + pyz)

or yet, remembering that the hydraulic head h is defined by h = p/pg + z, and
taking pg out of the gradient,

k
U= — —pg—grad h (4.1.4)
u

When Eq. (4.1.2) is compared to Eq. (4.1.4), we see that
K = kpg/u

Note that the two forms of Darcy’s law,
k
U= ——[gradp + pggradz] = —Kgradh
U

are strictly equivalent even for compressible fluids, if the definition of the
hydraulic head is taken to be
rq
h=z+ f &

o PY

which we have already mentioned above. However, we shall not use it here.
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The dimension of K is that of a velocity:

__ (length?)(mass length™>)(length time™?)
N (mass length™*time 1)

[K] = (length time™*)

It is usually expressed in meters per second (see the conversion factor
in Appendix 2 for U.S. non-SI units). The hydraulic conductivity of aquifer
layers range from 1072 to 1072 my/s.

The hydraulic conductivity depends not only on the fiuid, which is not very
disturbing since we are always dealing with water, but also on its viscosity, and
the viscosity varies a great deal according to the temperature. The following
figure gives the variations in the viscosity of the water with temperature,
compared to the viscosity measured at 20°C, which is equal to 1.002 x
1073 Pa s (or 1.002 cP) (Fig. 4.2).

In spite of the hypothesis of an isothermal porous medium, which we have
formulated, we must be careful when dealing with very superficial aquifers
where the climatic variations between summer and winter result in con-
siderable variations in hydraulic conductivity: it is reduced by 409, if the water
temperature drops from 25 to 5°C. This will be discussed later in relation to
geothermal problems.

In order to compare the intrinsic permeability and the hydraulic conductiv-
ity, it is useful to keep the following relation in mind: for water at 20°C,
1 millidarcy gives

10715 x 103 x 9.81 _8
0.987 000 <1057 = 0.966 10° m/s
Thus, 1 millidarcy is close to 1078 m/s for water at 20°C. (For air at 15°C and
normal pressure, y = 1.8 x 1073 Pasand p = 1.25kgm™3)

WH20 1.8
1.6 .
\ Viscosity in
Pa s at
1.4 \ Temperature atmcspheric
\ °C pressure
" Ry, 0 1.787
- \ 10° 1.310
20° 1.002
1,0 40° 0.653 x10-3
60° 0.466
80° 0.355
08 100° 0.282
0.6
0 10 20 30 Temperature (°C)

Fig. 4.2. Water viscosity as a function of temperature.
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(c) Permeability and porosity. From the analogy of flow in a fractured
medium or through a circular tube, attempts have been made at linking
permeability to the porosity or to the dimension of the pores.

k
Darcy’s law: U=-_"*4 grad h
]

2
Fractured medium: u=_-2¢% grad h
12u
2
Tubular medium: U=-— a)r8 2 grad h

One could therefore consider linking k to we?/12 or wr?/8 but, un-
fortunately, all attempts to do this have yielded mediocre results. The best
known empirical formulas are that of Koseny—Carman,

CO3

T 552(1 — w)?
where S, is the surface area exposed to the fluid per unit volume of the solid
(and not porous) medium and o is the total porosity; that of Hazen,

logk =2logd,o — 3

k

where d , is the “effective diameter” of the grains in the soil (see Section 2.1.¢),
and k is in cm? and d,, in cm; and that of Bretjinski (for sands), with K in
m/day,

w = 0.117 (K)V/7

(d) Permeability tensor. The experiment with Darcy’s permeameter is
made by observing a flow in one direction. When we went from U = Ki to
U = — K grad h, we already admitted that it was possible to generalize the law
to three-dimensional space. Moreover, in doing this, we admitted implicitly
that the hydraulic conductivity K, or yet, the intrinsic permeability k, are
isotropic properties of the porous medium, independent of the orientation in
space.

However, we know a priori that this is not so. For instance, sedimentary
layers of sand or clay—sand have, because of the very fact that they are
stratified, a horizontal permeability that is much higher than the vertical one.
This is also true for alluvial media, usually constituted by alternating layers or
lenses of sands and gravels and occasional clays. For these media the
orientation of the hydraulic head gradients and the flow velocity do not
usually coincide any longer: the flow has a tendency to follow the directions of
the highest permeabilities (Fig. 4.3).

This leads us to consider the permeability as a tensorial property, which is
simply the mathematical translation of this observation. To do this, one
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Direction of
velocity

I

Direction of the hydraulic head gradient
Fig. 4.3. Evidence of the anisotropy of a layered medium.

defines a permeability tensor k, which we take to be a second order®
symmetrical® tensor (i.e., k is a matrix of nine coeflicients, symmetrical with
respect to the diagonal):

kxx kxy kxz kxy = kyx
k=|k, k, k.  with k,=k,
kzx kzy kzz kyz = kZ.V

Some authors have tried to prove this on the basis of models representing the
porous medium (models of capillary tubes, fractures, etc.). These demon-
strations justify the generalization by analogy but do not prove it. However,
Matheron (1967) has established the symmetry of the permeability tensor
through integration of the Navier—Stokes equations.

Thus, we write

U=—Kgradh (4.1.5)
k

U= ——[gradp + pggradz] (4.1.6)
Ji

* A tensor of the second order is defined by the rule of transformation of the tensor components
in a rotation of the cartesian coordinate system: if in one coordinate (x,, x,, x3), the components
of the tensor are Kj;, then the components Kj;' in a coordinate (x’, x,’,x3') are

K/ =3y cosoy;cos,,; K,
I'm

where o;; is the angle of the axis Ox, with the axis Ox;. We can easily establish that this is indeed
how the components of the permeability tensor are transformed by writing a flow balance
equation.

T One can show macroscopically that the symmetry of this tensor is a sufficient condition, at
least for describing the observations. In a stratified medium, it is obvious that the directions
parallel and perpendicular to the stratification are special directions of the flow, for which the
hydraulic head gradient and the flow velocity again coincide, i.e., that the components of the
tensor are reduced to its diagonal component. We know that a symmetric matrix is a sufficient
condition for its eigenvalues to be distinct and its eigenvectors orthogonal. However, to prove
that this condition is necessary, one has to make use of the first and second principle of
thermodynamics.
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Develop, for example, this last relationship by calculating the three
components of the velocity U in the most general manner:
kex © ke, Op k. (0
U = _ﬁ_ﬁ_ﬂ_l_)___.<_p+pg>

k,, (0
U =_oP ____£<_P+ pg> (4.1.7)

k., 0 k,,o0p k., (0
U, = __’E_p_ﬂ_p_ﬁ<_p+pg>

Indeed, it is clear that if kis defined as a tensor, it is possible for a gradient in
a given direction x to generate components of the flow in the perpendicular
directions y and z, which tallies with the experiment. This relationship is
written with six different permeability coefficients and takes the symmetry into
account.

This rather cumbersome expression may be simplified by using a new set of
orthogonal axes X, Y, and Z, deduced from the former by a rotation such that
the permeability tensor is reduced to its diagonal components. Math-
ematically, X, Y, and Z are the directions of the eigenvectors of the matrix k.
Physically, X, ¥, and Z are the directions in which the flow is actually parallel
to the hydraulic head gradient (in practice, one direction at right angles to the
stratification and two directions parallel to it). These directions are called the
principal axes of anisotropy of the medium. In these axes, the tensor k is
reduced to three diagonal components

ke 0 O
k=0 k, O (4.1.8)
6 0 k,
and the Eq. (4.1.7) becomes
kex Op
U= e
k,, op
Uy=——>—~ 4.1.9
T @19)

k,, (0 L . L
U, = ——;—z— (6_17 + pg> {if z is still the vertical direction)
z
In practice, there are two distinct permeabilities in sedimentary media with
more or less horizontal stratification: a vertical permeability k., and a
horizontal permeability k., = k,,. The anisotropy ratio k. /k,, generally
ranges between 1 and 100.
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As the hydraulic conductivity K is equal to the intrinsic permeability k,
except for one scalar factor, the anisotropy concept already developed for k
applies to K as well. In the rest of the analysis, we shall always assume that the
cartesian coordinates are the principal axes of the permeability tensor, while z
remains the vertical axis. [Otherwise the term pg grad z in Eq. (4.1.6) will be
distributed on the three equations in X, Y, Z of Eq. (4.1.9), making the writing
cumbersome. This difficulty disappears if the fluid is incompressible because
the hydraulic head /& may then be used.]

Note that if the anisotropy of the medium is uniform (the same at all points
in space) we can turn it into an equivalent isotropic medium by anamorphosis
on the coordinates (see Section 7.1.6).*

(e) The fractured medium. At present, there are two methods for tackling
flow in a fractured medium: modeling of the flow, accounting for the fractures
one by one, or modeling with an equivalent continuous medium. In an
elementary fracture, the laws governing the flow are (summarizing Louis,
1974) for laminar flow V = K J; and for turbulent flow V = K¢ Jf, where V is
the mean velocity of the flow in the fracture, i.e., a velocity assumed uniform
over the total aperture of the fracture and producing the same flow as the real
one; K; the hydraulic conductivity of the fracture (length time™*); K, the
turbulent conductivity of the fracture (length time™!); J; the right-angle
projection of the hydraulic head gradient on the fracture plane; and o the
degree of nonlinearity of the flow (0.5 < o < 1).

The transition from laminar to turbulent flow is governed by the values of
the Reynolds number R, on the one hand and of the relative roughness R, on
the other.

The Reynolds number (dimensionless) is defined, for a cylindrical pipe, by

_ Vdp
U

where V is the mean velocity of the fluid, d the diameter of the pipe, y/p the
kinematic viscosity.

In classical hydraulics, the flow regime is laminar for R, < 2000 and
turbulent for R, > 2000.

R, (4.1.10)

* It is also possible to define directional hydraulic conductivities either in the direction of the
flow (ratio between U and the component of the head gradient along U) or in the direction of the
gradient (ratio between the component of U along the gradient and the head gradient itself’.
See Bear (1972).

t We have shown in Section 3.4 that the real profile of the velocity, in laminar flow, is parabolic
if the fracture is smooth.
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For a plane fracture, the diameter of the pipe is replaced by the “hydraulic
diameter” defined by

D, = 4S/p 4.1.11)

where S is the cross-section area of the flow in the fracture and p is the outside
perimeter of this cross-section area of the flow. For a very long fracture, D, is
equal to twice its aperture.

The relative roughness (dimensionless) is defined by

R, =¢/D, 4.1.12)

where ¢ is the mean height of the irregularities in the fractures and D, is the
hydraulic diameter of Eq. (4.1.11).
Depending on the values of R, and R,, Louis (1974) defines empirically five
flow regimes and their domains of validity, which are represented on Fig. 4.4.
The laws of the steady-state flow in each regime depend on the aperture e,
the kinematic viscosity u/p, the relative roughness R, and the hydraulic head
gradient in the fracture plane J;:

pge’
Type 1; smooth laminar: V=— ( 124 >Jf 4.1.13)
2pe3\14 417
Type 2; smooth turbulent: V= [Eg_ﬁ( IL ¢ > Je 4.1.14)
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Fig. 4.4. Definition of the flow regime in a fracture.
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3.
Type 3; rough turbulent: V=— <4. /eg In R7>\/.7f (4.1.15)
Type 4; rough laminar: V= pge’ Jo (4116
ype & 1oug : = 7| 12u(1 + 88R) |* 1.16)
1.
Type 5; very rough turbulent: V=-— (44 /egIn R9>\/J-f 4.1.17)

(In these expressions, In is the natural logarithm.)

Finally, if the fracture is not completely open (the two edges touch in places),
we have to multiply the right-hand side of Egs. (4.1.13)—(4.1.17) by the “degree
of separation of the fracture” F:

open fracture surface area
" total fracture surface area

(4.1.18)

For a system of parallel and continuous fractures, in laminar flow, the
equivalent hydraulic conductivity of the medium can be calculated from

i
b

where b is the mean distance between fractures, K, the hydraulic conductivity
of fractures, Eqg. (4.1.13) or (4.1.16), and K, the hydraulic conductivity of the
rock matrix (Iength time™?), if not zero.

The term K is a directional permeability, ie., defined for a hydraulic
gradient parallel to the fracture plane.

If the fracture system is discontinuous (the fractures are of finite length and
unconnected), the largest part of the transfer happens in the matrix and the
fractures work as “short cuts.” For the equivalent directional conductivity,

Louis proposes
1 1 1

where [ is the mean extension of the fractures and L is the mean distance
between two unconnected fractures.

These conductivities are the directional conductivities of the equivalent
continuous medium. In the case of continuous fractures, the continuous
directional conductivity of the equivalent medium is therefore dependent on
the cube of the fracture aperture:

K=—Ki+ K, (length time™1) (4.1.19)

Fgp
— 3
K= T2mc
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where F = degree of fracture separation, Eq. (4.1.18), C = 1, regime of type 1,
and C = 1 + 8.8R!"5, regime of type 4.

Maini and Hocking (1977) give the equivalence between the hydraulic
conductivity in a fractured medium and that of a porous medium in Fig. 4.5.
For example, the flow through a 100-m-thick cross-section of a porous
medium with a hydraulic conductivity of 1077 m/s could also come from one
single fracture with an opening not wider than 0.2 mm in a fractured medium
with an impervious rock matrix! This shows the immense importance for the
flow of one single fracture that is not even wide. Figure 4.5 gives the relation
between the aperture of the single studied fracture, the hydraulic conductiv-
ities of the equivalent medium, and the thickness of the section of the
continuous medium equivalent to this fracture.

Consequently, there are two possible ways of modeling the flow in a
medium constituted by several conducting fractures. The first is the method of
the continuous medium: each family of fractures defines a directional
conductivity, thus constituting a hydraulic conductivity tensor. As we know
the intensity and the direction of these conductivities, we can calculate the
principal axes of anisotropy of the tensor and the conductivities in these
directions.
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Fig. 4.5. Comparison between the hydraulic conductivity of the porous medium and the

fractured medium versus the aperture. [From Maini and Hocking (1977). Reproduced with
permission from the Geological Society of America.]
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Ky

Fig. 4.6. Principal axes of anisotropy of a fractured medium.

For example, in two dimensions, two fracture systems with the same
directional conductivity give the principal axes of anisotropy shown in
Fig. 4.6. Maini and Hocking (1977} give the following expressions for
calculating the directions of anisotropy and the principal hydraulic conductiv-
ities of the equivalent medium:

vy = 1 arctan sin 20
) cos20K, /K,

K — K,K,sin20
'K, sin?y, + K, sin(0 — )

where K, and K, are the equivalent directional hydraulic conductivities of the
fracture networks a and b, as shown in Fig. 4.7.

In three dimensions, Feuga (1981) gives the following expressions for
determining the hydraulic conductivity tensor of a fractured medium with
several fracture directions:

1 XN
K = 7 Z eikiRi
i=1

where [ 1s the arbitrary dimension of the side of a square block of the fractured
medium, large enough to statistically sample all the families of fractures, N the

Fracture b, hydraulic conductivity Kb

e pydaic o
A\ // [/

Fracture a,
hydraulic
conductivity Ka

Fig. 4.7. Orientation of the principal axes of anisotropy in a fractured medium in two
dimensions. [From Maini and Hocking (1977). Reproduced with permission from the Geological
Society of America.]
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number of fractures in the block of side I, ¢; the aperture of each individual
fracture, and k; the hydraulic conductivity of each individual fracture

1 — cos?*d;sin?p; 1sin2d;sin?p, —1sin2p;cosd,;
R;=| %sin2d;sin?p; 1 —sin?d;sin*p;  $sin2p;sind;
—1sin2p;cosd, 1sin2 p;sind,; sin? p;

In the matrix R;, the direction d; and the dip p; of each fracture are defined as
in Fig. 4.8.

Once the tensor K has been determined, the principal axes of anisotropy
and the diagonal components of K in these directions can be determined by
calculating the eigenvalues and the eigenvectors of the matrix K.

This method of the continuous medium approximation is valid for a certain
scale of observation: the flow velocities or the hydraulic heads in each fracture
are not described with precision, but a mean value of these magnitudesis taken
over all the fractures.

The definition of the hydraulic conductivities of each family of fractures
may be approached in two ways: either (1) by measuring (or estimating) the
mean geometric properties of the fractures (aperture, distance from each other,
roughness, etc.) and using the expressions given above, or (2) through in situ
tests by injecting water and measuring the hydraulic conductivities K; of the
elementary fractures directly.

The drawback of both methods is that they assume the fractures to be
infinite and to have the same properties everywhere. Their results must be
taken with caution. The directions of the principal axes of the conductivity
tensor are probably more accurate than the value of the conductivities; these

v {North)

x {East)

Fig. 4.8. Direction and dip of a fracture in three dimensions.
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are better defined by large-scale flow and pressure head measurements (e.g.,
pumping tests; see Section 8.2).

Research is at present being done on systems of fractures of finite length
using the theory of percolation: see Clerc et al. (1983), Hammersley and Welsh
(1980), Kirkpatrick (1973), Long et al. (1982), Shante and Kirkpatrick (1971),
Wilke et al. (1985), Engelman et al. (1983), and Rouleau and Gale (1985).

The second method of modeling the flow in a fractured medium, the
method of the “discontinuous medium,” takes into account either the
elementary fractures of the system or equivalent fractures representing several
elementary fractures of the same family. This contrasts with the first method.

The model is composed of “nodes,” where the fractures cross each other,
joined by planes, where the fluids flow according to the directional laws given
above. The hydraulic head is calculated at the nodes, and the velocities are
calculated in the planes. Louis (1974) showed that in laminar flow a potential I"
may be defined by

I' = K¢(p/pg + 2)

The velocity is then given by gradients of this potential.

Although this method enables us to represent the flows with more precision
on the small scale, it requires precise knowledge of the position in space and
the properties of each of the fractures, taken one by one or grouped into
families.

Remark: unsteady flow in fractured media. So far, we have assumed that the
water flow is steady, i.e., does not vary with time. If we introduce transient
flows, one of the fundamental properties of fractured media appears: double
porosity.

Indeed, in the general case, the fractured medium may be looked upon as
two coexisting systems of voids: the apertures of the fractures and the porosity
between the grains of the blocks of rock separating the fractures. The
definition of the equivalent permeability of the medium, given in Eq. (4.1.19),
really points to this double system, since it adds the hydraulic conductivity K;
of the fractures to the conductivity K, of the blocks.

In the steady state, this double porosity and the double conductivity are
accounted for by the notion of equivalent hydraulic conductivity. However, it
is easily understood that in a transient state the transmission of the pressure
variations is much faster in the fractures than in the matrix of the blocks if
K; > K,,. It therefore becomes necessary to define, in a representative elemen-
tary volume, two different pressures, one in the fractures and the other in the
matrix, as well as a term for the exchange of mass between the intergranular
porosity and the porosity of the fracture.
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These problems have been studied by, among others, Warren and Root
(1963), Barenblatt et al. (1960), Braester (1972), and Lefebvre du Prey and Weill
(1974). Barrenblatt suggests a law of movement as follows:

u ot
where k; is the intrinsic permeability of the fracture (k; = K;1/pg), p; 1s the
pressure in the fractures, n = k;/« is a characteristic parameter of the degree of
fracturing, where o is the intensity of transfer between the blocks and the
fractures, and f, is the usual coefficient of elastic compressibility of the
complex water plus porous medium (see Chapter 5).

This leads us in fact to adopt a special darcian law for fractured media,
which is dependent on time and is written

.1k 0 0
dw[—f grad p; + nfo = grad pf] = Bo

k d
U= ——fgradpf - "Iﬁo'a“gl'adpf
/] t

(f) Transmissivity. If the aquifer is a layer of thickness e, as in Fig. 4.9,
and we want to calculate the flow @ in the direction x through the layer over a
unit length in the direction perpendicular to the figure, we get

e e
0= J U:ndz = J U.dz

8] (4]
where nis the normal line to the axis Oz and U, is the velocity component in the
direction x.

Assuming that z is a principal direction of anisotropy [i.e., that the two

other directions are in the same plane as the layer (x, y)] then at all points M of
Oz,

U= —Kygradh

where K, is the hydraulic conductivity tensor in the plane x—y and grad h is
the hydraulic head gradient in this plane. If we further assume that this
gradient is constant on the transverse line Oz, then

Q= Mgradhj K, dz
0

Fig. 4.9. Aquifer layer.
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This integral has been named the transmissivity;

Tzf Kdz

0

If K is isotropic and constant along Oz,
T =Ke

where T is expressed in meters squared per second and is very often used in the
case of groundwater aquifers, whether they are horizontal or not.

4.2. Limitations on the Validity of Darcy’s Law

The various generalizations of Darcy’s elementary experimental law are in
fact validated by practice: we find that the calculations made with the help of
this generalized law tally with what we observe. However, at the extremes,
toward the weak as well as toward the strong hydraulic gradients, there are
distortions of the law, which, in truth, are not encountered very often.

(a) Where the hydraulic gradients have low values. In compact clays, the
most general law of variation for the low values of the gradient is given by
Fig. 4.10 (Jacquin, 1965a, b): below a value i, the permeability is zero; between
ip and iy, the relation is not linear; and the proportionality corresponding to
Darcy’s law only applies for i > i; and is expressed by a formula such as
U = K({i — i,).

The values of iy, i,, and i, vary a great deal according to the type of clay and
its structure; the mineral content of the water also plays a part. As an example,
montmorillonite often has reported i, values on the order of several tens.
However, these concepts are still controversial.

(b) Where the hydraulic gradients have high values. When the hydraulic
gradient is increased, we observe experimentally that there is no longer any

Fig. 4.10. Darcy’s law for small hydraulic
1! gradients.
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proportionality between the gradient and the filtration velocity:
grad h = aU + BU?2

where a U is the loss due to the viscuous friction against the walls of the matrix
and BU? the loss due to the inertia of the fluid (dissipation of kinetic energy in
the pores, where the flow lines converge and then diverge again rapidly; these
losses are similar to those in bends or narrowing sections of a pipe).

The borderline hydraulic gradient, beyond which Darcy’s linear law is no
longer valid, depends largely on the medium. In order to make this borderline
gradient an intrinsic property of the medium, we sometimes define a
“Reynolds number in porous media” (dimensionless) by

R, =Up/k/n
or
R.=Udp/p

where U is the filtration velocity (length time™!), \/E the square root of the
intrinsic permeability (length), p/u the kinematic viscosity (length? time™1),
and d the mean diameter of the grains (length) or effective diameter d,, (see
Section 2.1.e).

Note that the exact definition of the Reynolds number in a circular pipe is
udp/u (u is mean velocity of the fluid in a pipe of diameter d). In view of
the difference between the definitions, one must not try to compare these
numbers to each other.

In practice, we admit that Darcy’s law is valid if the Reynolds number in a
porous medium (taking the mean diameter of the grains) is below a limit
somewhere between 1 and 10. In this case, the flow is purely laminar inside the
pores (Chauveteau and Thirriot, 1967). From 10 to 100 there is the beginning
of transient flow, where the forces of inertia are no longer negligible and
Darcy’s law no longer holds. Beyond 100, the state of flow is turbulent inside
the pores and Darcy’s law applies even less.

In practice, with the exceptions of karstic systems and the immediate
vicinity of wells, the critical Reynolds number is not reached and the flow stays
laminar. The result is that, even in the vicinity of a well, the quadratic terms
appear only in a limited zone, usually within the gravel pack (gravel
introduced as a filter around the well), and is of little importance.

Sichardt’s empirical formula for the borderline gradient is worth noting:

i=1/15/K
where K is expressed in m/s.

(¢) Darcy’s law in the transient state. Darcy’s law is established for
steady-state flow (independent of time) both experimentally and theoretically.
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We have already said, in Section 4.1.e, that in fractured media the phe-
nomenon of double porosity causes a transient term to appear, which is new
to Darcy’s law. It is also possible to prove theoretically that, in a porous
medium, an additional term appears in Darcy’s law in the transient state.

We shall return for a moment to the Navier—Stokes equations. We have
seen, in Section 3.4, how in artificial media in a steady state we move from the
case where the external forces are nil to that where they exist by simply adding
the term pF; to the pressure gradient dp/dx;. Going back to the complete
Navier—Stokes equations Eq. (3.1.2), we see that the transient terms p du,/dt
have the same role in the equations as the external forces. In the steady state if
we write

k
U= ——(gradp + pggradz)
U
then in the transient state we write

k p U
U= —; <gradp + pggradz . 6t>
The factor 1/w for the transient term originates in the integration, in the
REV, of the microscopic transient term* p du/dt. However, this additional
term is in practice always disregarded, because, as U is small in porous media,
dU/ot is negligible versus the other terms, except maybe during a time of the
order of a second, when the flow gets underway in a porous medium.

4.3. Permeability Measurements on Samples

(a) Medium with high hydraulic conductivity. If the hydraulic conductiv-
ity of the medium is not too low, we can use a difference in hydraulic head
generated solely by gravity.

Constant-head permeameter. We return to Darcy’s experiment (Fig. 4.11).
If A is the cross-sectional area of the sample of porous medium, Darcy’s law
takes the form

_ ¢L
T (hy+L—hy)A

Falling-head permeameter. If the hydraulic conductivity is less than
107> m/s the constant-head permeameter must be replaced by the falling

0= —KAgradh ie. K

* The theoretical demonstration is made by first rewriting the Navier-Stokes equations as a
partial derivative of time instead of a total derivative.



76 4, Darcy’s Law

L .+.- Porous .0+
“..medium .-

N

Measurement
of the flow Q

Fig. 4.11. Constant-head permeameter.

head permeameter (Fig. 4.12), where a larger head gradient is created through
a long pipe with a small section a. If Q is the flow through the sample of

cross-sectional area A, we can write
Q0 =KA4h/L  (Darcy’s law)

Q = —adh/dt
and thus
alh~ A@
h~  al
h AK
—= (-t
lnho aL( o)

If we trace In k on a graph versus time, we obtain a straight line, the slope of

which is proportional to K.
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Fig. 4.12. Falling-head permeameter.

0 Fig. 4.13. Flow versus head losses in a
) Ah  porous medium.

(b) Medium with low hydraulic conductivity. 1If we want to measure lower
hydraulic conductivities, we apply larger pressure differences with the help of
pumps and measure the pressures upstream and downstream for different
values of the flow . The slope of the line that gives Q versus Ah (see Fig. 4.13)
makes it possible to calculate the permeability. Quite often, the permeability to
a gas is measured, since it is easier to obtain. The knowledge of p and y enables
us to pass from permeability to hydraulic conductivity.

The various measurements carried out in the laboratory do not reflect the in
situ hydraulic conductivity, which may be quite different.* In order to measure
the latter, the reaction of the terrain to pumping or injection is used, depending
on whether we are dealing with a permeable or impermeable terrain. This
reaction is examined in detail in Sections 8.2 and 8.6.

Hydraulic conductivity could also conceivably be determined indirectly in
an aquifer by measuring the mean pore velocity of water in the medium, using
tracers, as u¥* = U/w. If the kinematic porosity and the head gradient are

* If the rock is not compact, the sample is often modified by the sampling technique; moreover,
the permeability usually varies a great deal in space, and one sample may not be representative.
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known, K can thus be obtained. Hanshaw and Back (1974) used natural *4C as
a tracer for this purpose in a limestone aquifer in Florida. However, the
mechanisms of diffusion and dispersion in the medium (see Chapter 10) make

the determination of the mean velocity very imprecise [see also Pearson et al.
(1983)].

(¢) Hydraulic conductivity values. The permeability of a rock is, of course,
due to its effective porosity, i.e., to the existence of interconnected voids.

In the same way as we have defined an interstitial porosity and a fracture
porosity, it would be possible to define two types of permeability (interstitial
and fracture), which were formerly described as small-scale permeability and
large-scale permeability, because the REV used to define them was not the
same. In practice, it is difficult to distinguish between the two types of
permeability that may coexist in the field.

For unconsolidated detrital rocks with interstices, the hydraulic conductivity
depends on the size of the grains, as in the accompanying table.

Medium K (approximate) (m/s)
Coarse gravels 107-1072
Sands and gravels 1072-107°
Fine sands, silts, loess 10735-107°
Clay, shale, glacial till 107°-10"13

The limit separating permeable rocks from impermeable ones is arbitrarily
set at 107° m/s. The clays are impermeable in spite of their great total
porosity, because their small pores give them a very low effective
porosity.

For hard rocks, hydraulic conductivity depends on the permeability of the
matrix and that of the fractures. The following table of ranges is given for
unfractured rocks.

Medium K (m/s)
Dolomitic limestones 10731073
Weathered chalk 1073-107°
Unweathered chalk 1076-10"°
Limestone 107°-10"°
Sandstone 1074-1071°

Granite, gneiss, compact basalt 107°-10"13
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For fractured rocks, the hydraulic conductivity depends very much on the
density and aperture of the joints. However, fractures may either seal with time
or, on the contrary, increase in aperture. In limestones, CO, is dissolved by
water in the atmosphere and in the superficial soil; H,CO; then dissolves
limestone deep in the aquifer, thus enlarging the fissures. This may evolve into
a karstic system, where some of the fractures may locally become very large
and form an underground system of chambers, tunnels, pipes, and siphons,
through which most of the water flows. The concept of hydraulic conductivity
no longer applies in such cases. However, all limestone aquifers are not
necessarily pure karstic systems: the dissolution of limestone may create a
network of open fractures with hydraulic conductivities in the range 1073 to
10~ m/s.

In crystalline rocks, on the other hand, fractures are very often sealed
(partially or totally) by deposits of calcite, silica, or clay. Fractured crystalline
rocks have hydraulic conductivities in the range 10~ % to 10~ 8 m/s.

Fractured basalt can be highly permeable. In some circumstances, the
cooling of a basalt layer creates a dense network of vertical joints, which
divide the layer into contiguous pillars or prisms of basalt (diameter in the
order of 0.5 m with around six facets). The hydraulic conductivity may reach
107t m/s.

In fractured rocks, the hydraulic conductivity generally decreases with
depth due to the increase in the mechanical stress, causing the fractures to
close. In crystalline rocks, Snow (1968) and Carlsson and Olsson (1977) have
suggested the following empirical laws:

K(z) = (K)(107")
K(2) = (K.)z"*)
K(2) = (K)z""°)

where ! is in the range of 100500 m, z is in meters with origin at the surface,
positive downward, and K| is hydraulic conductivity at the surface.

These laws may apply in the average, ie., for a large number of
measurements of hydraulic conductivity as a function of depth in boreholes
(see also Section 8.6). Occasionally, in a given borehole, an open fracture or a
crushed zone with high hydraulic conductivity may be encountered, even at
great depth.

In a given network of fractures, high fluid pressure may locally increase the
aperture of the fractures and thus the conductivity (e.g., near an injecting well};
see Gale (1975) or Witherspoon et al. (1973). At even higher pressures, an
injected fluid may create a new fracture in the rock. This is known as hydraulic
fracturing, and is often used for increasing the permeability of an oil reservoir.
[See Cornet (1979, 1980), Fairhurst and Cornet (1981), and Cornet and Valette
(1984).]
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4.4. Probabilistic Approach to Permeability and Spatial
Variability

We have seen in Section 2.1.d that a probabilistic definition of a property
like porosity can be given in porous media. However, the definition of the
permeability as a random function requires a change of scale, which was
proposed by Matheron in 1967 referring to the works of Schwydler (1962). As
a matter of fact, point permeability cannot be used in the same way as point
porosity, because, on the microscopic scale, Darcy’s law implied by the notion
of permeability does not apply to the flow: it is the Navier—Stokes law that
governs the relationship between the hydraulic head and the velocity.

Matheron (1967) has shown that Darcy’s law is simply a consequence of the
linearity of Navier’s equations, not of their form. It is, however, the spatial
integration of Navier’s equation in the very complex geometry of a porous
medium that leads to Darcy’s law and the definition of permeability. We can
thus, conceptually at least, link permeability to the geometric description of a
porous medium. Such a geometric description of a medium (e.g., size and
shape of pores) can be made stochastically, exactly as we have done in Section
2.1.d for porosity. For instance, we have seen in Section 3.4 that the
permeability of simple geometrical media (fractures, tubes) depends on the
aperture of the fractures or the diameter of the tubes. These can be given a
stochastic definition at a point in space (probability distribution function,
expected value, spatial covariance, etc.). In a more complex medium, the
number of descriptors of the geometry increases, but conceptually, each of
them can be given a stochastic definition on the microscopic scale.

As a consequence, permeability on the macroscopic scale, depending on
stochastic microscopic quantities, can be regarded as a stochastic property
and can be defined conceptually as a random function. This will have a
probability distribution function, expected values, spatial covariance, etc.

Quite a number of authors have studied the pdf of permeability, hydraulic
conductivity or transmissivity (see Section 4.1.f) in a given aquifer. Their
analysis is biased most of the time because they assume that the measurements
taken at different locations are statistically independent, whereas, in reality,
permeability usually displays a strong spatial correlation. Nevertheless,
following Law (1944), Walton and Neill (1963), Krumbein (1936), Farengolts
and Kolyada (1969), Ilyin et al. (1971), Jetel (1974), and Rousselot (1976), we
can admit that permeability usually has a log-normal probability distribution
function, whatever the nature of the rock. The variance of this spatial
variability of permeability is quite high: if Y = In k, 6% is generally in the range
between 1 and 2 but can reach 10 in some cases.

The spatial correlation of transmissivity has also been studied, e.g., by
Delhomme (1974, 1978a,b, 1979). He found that, in general, the stationarity
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hypothesis did not hold, and that stationarity on the first increments (called
the intrinsic hypothesis) should be used. Instead of the covariance C(k)
(Section 2.1.1), one must then use the variogram y(h), which we will define in
Chapter 11. The spatial correlation is important over distances that can be
short (e.g., 10 m) or very long (up to 100 km), depending on the type of aquifer.
There is, however, very often a strong erratic component (spatially uncorre-
lated) in the transmissivity, which may cause two wells not very far apart to
have quite different transmissivities.

This spatial variability of permeability (or hydraulic conductivity, or
transmissivity) leads us to the question of how to compose local permeability
valuesin order to obtain an average permeability. In a deterministic approach,
itis easy to show that the composition of uniform “blocks,” placed side by side
in space, gives:

(1) A law of harmonic composition, if the blocks are in series (Fig. 4.14):

K

2h vk
_ZK,-

mean

(2) Alaw of arithmetic composition, if the blocks are in parallel (Fig. 4.15):
Kmean Z ei = Z eiKi

Here, we recognize the same law as that of the composition of resistances
derived from Ohm’s law in electricity.

In a probabilistic approach, where the permeability may vary in all
directions of space, Matheron (1967) has obtained the following results:

(1) If the flow is uniform (parallel flow lines), whatever the spatial
correlation of the permeability and whatever the number of dimensions of the

= |] — |2 ‘3

Ky K, K3 — Flow

Fig. 4.14. Blocks in series.

e Ky
€2 K2 —  Flow
e3 Ks
——— Fig. 4.15. Blocks in parallel.
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space, the average permeability always ranges between the harmonic* mean
and the arithmetic* mean of the local permeabilities.

(2) If the probability distribution function of the permeability is log-
normal and if the flow is two-dimensional, the average permeability is exactly
equal to the geometric* mean of the local permeabilities in uniform flow.

(3) If the flow is not uniform (converging radial, for example), there is no
law of composition, constant in time, that makes it possible to define a mean
darcian permeability. This problem is quite worrying from the conceptual
viewpoint in so far as it is precisely through pumping tests in wells that the
permeability (or transmissivity) of an aquifer is measured in situ (see Chapter
8). On this point, research continues.

Gelhar (1976), Bakr et al. (1978), and Gutjahr et al. (1978) also give
linearized approximations of the average permeability in uniform flow, for a
normal probability distribution function of permeability:

1-D: ky = kg(1 — 64%/2)
2'D: kM = kG
3"D: kM == kG(l + 0'Y2/6)

where ky is average permeability, kg is geometric mean permeability, and oy?
is the variance of Y = Ink.

4.5. Movement of Water due to the Influence of Other Forces

The hydraulic head gradient is the main force influencing the movement of
water in the ground. Itis, however, not the only one. Indeed, experiments show
that the flow of water through porous media is caused by other gradients as
well, of which the following are the most important:

(1) Gradient of electric potential: water moves from high voltage towards
low voltage. This principle has been used for electrokinetic drainage of soils
with weak permeability; see Terzaghi and Peck (1967), Casagrande ( 1952), and
Rocheman, in Filliat (1981).

* Harmonic mean: 1/Ky = E(1/K)
Arithmetic mean: Ky = E(K)

Geometric mean: InKy = E(InK)
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(2) Gradient of chemical concentration: water moves from zones with high
concentrations towards those with low concentrations. This effect is also part
of the osmotic effect, which generates a selective filtration of the ions in
solution.

(3) Thermal gradient: flow from zones of high temperature to zones of low
temperatures. This phenomenon is important in the formation of ice lenses in
the soil (Harlan, 1973).

We can then write a generalized darcian law as follows:
U= —K gradh — K, grad E — K, grad C — K, grad 6

The coefficients K; may be scalar or tensorial.* Similarly, the other flows in
porous media {electricity, solutes, heat) are linked to the same gradients by
other series of coefficients:

i=—K, gradh — K, grad E — K; gradC — -

A hydraulic head gradient therefore causes flow of electricity, of solutes, of
heat, etc.

In thermodynamics, we therefore need to study all the flows and gradients
simultaneously according to what are called coupled transport processes.

Table 4.1

Coupled-Process Terminology

Gradients
Hydraulic Electric
Flow head potential Temperature Concentration
Fluid Darcy Electro-osmosis, Thermal Chemical
Casagrande 0smosis osmosis
Electricity Rouss Ohm Seebeck or Sedimentation
Thompson current
Heat Thermal Peltier Fourier Dufour
filtration
Solutes Ultra- Electrophoresis Soret Fick
filtration

* Casagrande has found that the “electro-osmotic permeability” K, does not vary a great
deal for disturbed or loose soils and is of the order of 5x 10™° m? V™! s™! [Rocheman, in Filliat
(1981)].
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Refer to the works of Onsager (1931) or Casimir (1945) quoted by Bear (1972)
on the subject of the thermodynamics of irreversible processes. The coefli-
cients K are called “phenomenological coefficients” and must be measured
experimentally. In certain cases, we find relations of symmetry and non-
negativity in the matrix of these coefficients. In practice, however, the
nondiagonal coefficients (i.¢., those that are different from the coefficient of
the hydraulic head for the velocity, from that of the electric potential for the
current, from that of the temperature for the heat fiow) are relatively small and
negligible versus the diagonal terms.

Table 4.1 briefly reviews the main names given to the mechanisms of
coupling. The word “law” is used for the diagonal terms, and “effect” for the
nondiagonal ones (Fourier’s law, Darcy’s law; Soret’s effect, Dufour’s effect).
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The three equations for the circulation of a fluid in a porous medium,
established in the two preceding chapters, are significant only for elementary
volumes of a porous medium. The first is the continuity (or mass balance)
equation:

. i
div(pU) + —a-z(pco) +pg=0 (3.2.3)

where p is mass per unit volume of fluid (mass length—3), U is filtration velocity
of the fluid (length time ™) (as if the whole section were accessible to the flow),
@ is the total porosity of the porous medium' (dimensionless), and g is
volumetric flow rate of fluid per unit volume of rock withdrawn (or added if it
is negative) in the porous medium (time 1), to which is added a term for the
displacement of the fluid—solid interface if the medium is deformed.

The second equation is Darcy’s law:

k
U= ——(grad p + pggradz) (4.1.6)
U
where k is the intrinsic permeability tensor (length?), u is dynamic viscosity of

the fluid (mass length ™! time™!), p is fluid pressure (mass length ™ time~2), g is
acceleration due to gravity (length time™2), z is the vertical axis directed

t See footnote to Section 3.2.1, p. 44.
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upward, and gradz is a vector with components (0,0, 1). This law can be
simplified for incompressible fluids as follows:

k
U=—{?gﬁh=—Kth (4.1.5)
where £ is the hydraulic head or piezometric head (length),
h=L 4y (3.3.1)
pg

and K is the permeability tensor (length time™?). The law is also expressed by
Eq. (4.1.5) for compressible fluids if we agree to define the hydraulic head as

P od
h=z+J—JL (332)
20 P(P)g
where p,, is pressure at the origin of the axis z.
The third is the isothermal equation of state of the fluid,

p= poeﬂ(p—po) (3.1.3)

where f is the coefficient of fluid compressibility (mass ™! length time2).

We shall combine these laws in what is called the diffusion equation, the
integration of which allows us to calculate the evolution of the fluid in porous
media, retaining only one unknown: the pressure p or the hydraulic head h,
from-which we can deduce the other four unknowns, p and the velocity U
{three components). This equation is equivalent to what is called “the heat
equation” in thermal problems,

2q_ PC 00
V=T
where @ is the temperature, pC the heat capacity, A the conductivity, and V2 the
Laplacian operator.

It is easier to establish this equation separately in two special cases
according to the hypotheses concerning the behavior of the porous medium
before establishing its more general form. We shall look at (1) the unconfined
aquifer (incompressible water, incompressible medium), (2) the theory of
consolidation (incompressible water, compressible porous medium), and
(3) the general case (compressible water and porous medium).

5.1. Diffusion Equation in Unconfined Aquifers

A water table aquifer is a porous medium that is only saturated up to a
certain elevation and overlaid by a dry or unsaturated porous medium. The
aquifer is generally limited at the bottom by impermeable bedrock.
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In this case, we can disregard the compressibility of the water (p constant),
as well as that of the porous medium (w constant). All variations in hydraulic
head cause a movement of the free surface, which increases or decreases the
amount of stored water by saturating or draining the porous medium; in the
continuity equation, one must consider an elementary volume that includes a
section of mobile free surface. Consequently, we take a vertical prism, of
thickness, ¢, which penetrates the aquifer between the impermeable bedrock
and the free surface.

We now assume that in this water table aquifer, all the velocities are
horizontal and parallel to each other along the same vertical line. This
hypothesis, called Dupuit’s hypothesis, is quite well borne out in reality at
some distance from the outlets or from the water divide.

We assume that the permeability tensor allows the vertical axis to be one of
its principal directions. Then, according to Darcy’s law, if there is no vertical
velocity component, there is no vertical hydraulic gradient (0h/0z = 0). We
then take the hydraulic head h(x, y) as the unknown, thus making it a two-
dimensional problem, since h is independent of z; h then represents the hy-
draulic head at any point on the vertical axis and is, in particular, equal to the
elevation of the free surface of the aquifer (Fig. 5.1).

We choose the axes x and y along the two principal directions of anisotropy
in the plane. Here, we reestablish the three terms of the continuity equation for
the prism dx, dy, (h — o).

Mass flux per unit time entering the two faces perpendicular to Oz.

h(x,y) h{x+dx,y)
szpdy[J Ux(x:yaz)dz——J‘ Ux(x+dx7yaz)dz:|

a(x,y) o(x+dx,y)

U, is the component of the filtration velocity along x. This yields

a h
F, = ——pdya—x[J dez:Idx

h{x, y): Free surface

dy 0(x, y): Impermeable bedrock

Fig. 5.1. Elementary prism in an unconfined aquifer.
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Darcy’s law allows us to calculate U,

oh
U, = —K,.(x, V:Z) 5=
Ox
If we substitute, we notice that dh/dx does not depend on z. If the term
corresponding to the flux entering through the face perpendicular to Oy is
added, we get

0 k oh o " oh
F: e e e bt
+pdxdy{ax |:L Kxxdzax] -+ 6y|:L Kyydzay]}

It is assumed that no flux enters or exits through the upper and lower faces
(see below).

Variation in the elemental mass. The water mass that can be moved by
gravity (specific yield, or drainage porosity, w,) contained in the element is
pwy(h — 0)dx dy, and its variation per unit time is

Oh
pwdEE dxdy

The variation of the elevation # in the free surface indeed causes the specific
yield w4 to come into play and not the total porosity w.

The volumetric flow rate of fluid withdrawn from the element. This is found
by integration; g is positive if withdrawn and negative if injected.

h
J‘ qgdzdxdy = Qdxdy

a

where @ is now the flow rate per unit surface area withdrawn from the aquifer.
The mass flux is then pQ dx dy. This term for the flux per unit surface area
makes it possible to take into account the exchanges between the aquifer and
its surroundings (withdrawal, infiltration, etc.), assuming that they take place
over the whole thickness of the aquifer. This hypothesis means that the vertical
component of the velocity of the fluid is negligible compared to the horizontal
one: it is again the Dupuit hypothesis.

Balance. When we write the mass balance, adding together these three
guantities and dividing by p, which is constant, and by dxdy, which is the
elementary area of the aquifer, we get

0 k oh 0 b oh oh
I Z- — = — 5.1.
o |:L K"xdzax] + 3y [L K, dz 6y] Wy 5 +Q (5.1.1)

This is the diffusion equation in a water table aquifer. It is nonlinear in A.
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If K,, and K,, are constant along the entire vertical axis, we can make the
integral on z disappear

0 oh 0 oh oh .
—a; |:Kxx(h —_ 0')5;] -+ a—y [Kyy(h - U)@] = a)da + Q (512)’

It is still nonlinear in h. However, it can, in some cases, be linearized by
considering the quantities

h h
Ty = j K,.dz and T, = f K, dz

which have already been defined as the anisotropic transmissivities of the
aquifer (integral of the permeability over the thickness of the aquifer). This
transmissivity may sometimes be assumed to vary little with the hydraulic
head—i.e., the variations of h are negligible compared to (h — o), for example,
less than 10%;. Alternatively, the vertical distribution of K can be assumed to
be such that the variations in 4 do not cause a variation in T of more than 109
(this is the case when the permeability is higher at depth than on the surface,
e.g., a deep layer of gravel overlayed with fine sands). It then becomes

0 oh 0 oh oh

Finally, if the transmissivity is isotropic and constant in the entire aquifer,

., Oh 62h_cod8h ) ‘
V*h = p + =T ar + T (5.1.4)

which is a partial differential equation of the second order and parabolic type,
similar to the heat equation. The symbol V2 is the Laplace operator, already
defined for two dimensions.

As will be seen later, the expressions Eqgs. (5.1.3) and (5.1.4) are very often
used in practice.

Yet another solution may be suggested in the case where the bedrock ¢
is horizontal. If ¢ = 0 is chosen as the reference plane for the elevation z,
h — @ = h is the thickness of the aquifer and Eq. (5.1.2) becomes

0 oh ] oh Oh
— I K h— I+ — | K h— | = 04—
6x[ = ﬁx:|+6y|: » 6y:| Dag + @
If we can assume that K, = K, = K is constant in space (isotropic and

uniform medium), we find:
yope 200k 20

Ko K
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i.e.,an equation in h?. In steady state (0h/8t = 0), the equation is linear in h%. It
will be used for studying the flow around a well.

5.2. Terzaghi’s Theory of Consolidation. Effect of
Imterstitial Water on Porous Media

First, we shall examine the interactions between solid and liquid as
developed by Schneebeli (1966). This paragraph mainly concerns civil
engineering in relatively shallow layers. The medium is assumed to be made up
of grains without cohesion (sand, silt, clay).

(a) Effective stress and fluid pressure. The porous medium is assumed to
be saturated and to contain only grains (solid phase) and a liquid phase filling
all the interstices.

What is the effect of an external load acting on such a medium? Terzaghi’s
experiment can be described as in Fig. 5.2 (Terzaghi and Peck, 1967).

In case b (external load = column of water), the pressure at the surface of
the porous medium is pl. It does not cause any compaction. In case ¢ (external
load = lead pellets), the same pressure on the porous medium causes a
compaction Je.

Conclusion. Only the loads applied directly to the solid skeleton have
mechanical effects on the porous medium. The effect of a load of water is
simply that the pressure increases in the liquid that fills the pores, and since the
solid grains are virtually incompressible in the range of pressure of interest
here, there is no apparent effect on the medium.

Definition. Terzaghi uses the term “effective stress” & to describe the stress
that is transmitted directly from grain to grain as in the case of the lead pellets.
Itis the only one that influences the solid phase, as opposed to the pressure p of
the fluid filling the interstices. The total stress ¢ applied to the liquid—solid
complex is thus composed of effective stress and fluid pressure. We get

oc=0+p

Lead
pellets

el

Saturated sand |-

a b c

Fig. 5.2. Terzaghi’s experiment of compaction.
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This is the equation on which this section is based. In the most general case, ¢
and ¢ are tensors with three normal stresses and three tangential stresses.

Hypotheses. For Section 5.2, the following are assumed: (1) the liguid is
incompressible, ie., p is constant; (2) the solid grains of the medium are
incompressible; and (3) the porous medium is compressible by reduction of the
porosity w.

(b) Buoyancy. Takeacolumn of drysoil (Fig. 5.3)and let us conceptually
divide it into two parts with a section at elevation z,. Let [ be the height of the
column above z,. The lower part of the column is subjected to a stress
corresponding to the weight of the upper part (overburden). By definition, this
is an effective stress, since it is transmitted by the grains.

Ez = pdgl = ps(l - w)gl

where o, is the effective stress in the vertical direction, p, the mass per unit
volume of the dry soil, p, the mass per unit volume of the solid grains in the
soil, and w the total porosity.

Note that in soil mechanics one usually works with specific weight y = pg,
but we shall keep the usual notation of mass per unit volume (sometimes
called mass density or density). Here, the total stress is equal to the effective
stress o, = 0,.

If the column is now saturated with immobile water up to the top, the total
stress at the section z, of the column becomes (weight of the soil + weight of
the water):

0. = p(1 — w)gl + pwgl = pygl

where p,, = p(1 — @) + pw = mass per unit volume of saturated soil, and p is
the mass per unit volume of water.

& =

Fig. 5.3. Stress in a soil column.
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According to its definition, the effective stress is

0, = 0, — p = pugl — pgl = (p,, — p)gl

From the mechanical point of view, everything happens as if the mass per
unit volume of the soil were now smaller than p, and given by

Pa=pw—p=(1—)p;— p)
where p, is the buoyant mass per unit volume of the saturated soil.

The apparent decrease in the mass per unit volume of soil is in reality only
the effect of the buoyancy of the water (Archimedes’ force).

(c) Seepage force. Let us consider an elementary volume dxdz x [ of a
saturated porous medium, where the interstitial water is now moving at a
filtration velocity U in the plane x—z.

Three types of forces act on the system: (1) forces due to the fluid pressure, (2)
forces of gravity, and (3) forces transmitted by grain-to-grain contact due to
the effective stress.

Fluid pressure. A normal force p dz acts on the face AD and a normal force
[p + (0p/0x)dx]dz on the face BC (Fig. 5.4). The sum of the two forces directed
along Ox is

dp
— 6_x dx dZ

Similarly, the sum on AB and CD is

op
% dx dz

i.e., the sum of the pressure forces is — grad p per unit volume.

d
p+—p dz
z
D ¢ c
o
p— |dz - p+__E dx
Ox
dx
A [y B

p
Fig. 5.4. Elementary volume of porous medium and pressure forces.
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Gravity. The sum of the forces of gravity on the element (weight of the
solid and water) gives

—pwggradz

Sum of fluid pressure and gravity. If we introduce the hydraulic head
instead of the pressure, namely & = p/pg + z, we find

—gradp = —pggradh + pggrad z
whence the sum of the fluid pressure and gravity on the element:

R = —pggradh + pggradz — p, ggradz

i

—pggradh — p,ggradz

The second term — p,g grad z is again the buoyant weight of the saturated
soil. The first term — pg grad h is called the seepage force. It is a volumetric
force working in the opposite direction to the hydraulic gradient, i.e., in the
direction of the filtration velocity U if the medium is isotropic (for anisotropic
media, the seepage force is simply in the opposite direction of the hydraulic
gradient, not in the direction of the velocity U. It is very important to notice
that the seepage force is independent of the magnitude of the hydraulic
conductivity or of the velocity: it depends only on the magnitude of the
hydraulic gradient. Thus the seepage force can beidentical in a medium of very
low hydraulic conductivity, where the velocity of the flow is almost negligible,
and in a coarse medium, where the velocity is very high. This must be kept in
mind when dealing with civil engineering problems.

The variation in effective stress balances these two forces in order to arrive at
an equilibrium in the element. In conclusion, the flow of water gives rise to
variations in the effective stress affecting the solid phase which sometimes have
to be taken into account in civil engineering.

Example: Quicksands. The following experiment (Fig. 5.5)is carried out on
ascending flow in a column of sand. The flow is uniform and the hydraulic
gradient is grad h = H/l directed upwards. The sum R of the seepage force and
the buoyant weight is the volume force:

(pa — pgrad h)g

If we gradually increase the hydraulic head H, there comes a moment when
this volume force vanishes. The sand appears to be freed from the influence of
gravity: it becomes “unstable” and “quick.” A heavy object placed on the
column sinks into it. If H is increased even more, the entire sand column rises
up. The critical gradient at which all volume forces disappear in this particular
case of upward vertical flows is

grad h = Pa
P
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Flexible tube

Fig. 5.5. Experiment for obtaining
quicksands.

This is fundamental in soil mechanics. Take a dike of homogeneous soil
without any sealing curtain, i.c., through which a small amount of water can
leak. At first sight, it might seem as if the upstream face of the dike were
subjected to the uplift pressure of the water in the dam. This is completely
erroneous. As a matter of fact, the pressure acting on an element of the
upstream facing is a fluid pressure, not an effective stress, which is therefore not
transmitted by the solid grains. The force of the water is not transmitted on the
upstream facing of the dike but is decomposed into a system of volume forces
(seepage force) affecting the whole of the saturated volume. The solidity of the
dike depends essentially on the nature of the seepage flow through the dike,
which therefore has to be calculated.

When the seepage forces in a porous medium are able to initiate a movement
of the constituent grains (e.g., at the outer wall of a dike) piping is said to occur.

(d) Theory of comsolidation according to Terzaghi. When certain satu-
rated low-permeability soils are loaded (e.g., buildings are constructed on
them), there is at first only a slight compaction. However, eventually,
sometimes after a long period of time, compaction may attain a considerable
degree. This phenomenon of compaction in the course of time is called
consolidation. It occurs especially in clay soils.
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Weight

Weight
LS A Porous sheet

Pistons
Saturated clay

Fig. 5.6. Terzaghi’s analogy for the consolidation of clay: cylinder with pierced pistons.

Terzaghi has shown that the phenomenon of consolidation is caused by the
slow outflow of the interstitial water contained in the soil as shown by the
analogy of the pierced pistons (Fig. 5.6). If there is no water in the container to
the left when the overload is applied, this overload is entirely absorbed by the
springs, which are shortened: the compaction is immediate and elastic.
However, if the container is filled with water and the holes in the pistons are
very small, the latter will not immediately move downward. The overload wiil
first cause a pressure in the water (without compaction if the water is taken to
be incompressible). The water will then gradually escape from the system and
leave the springs to react to the overload by contracting.

Similarly, the compaction of saturated clays is obtained by expelling water,
which has to be drained by means of a porous sheet. This can be demonstrated
with an oedometer, which is an apparatus for measuring the consolidation of
clay by draining it while it is under compressive stress, as shown in the right-
hand side of Fig. 5.6.

The theory of consolidation assumes that:

(1) The outflow of the interstitial water obeys Darcy’s law.

(2) The permeability K of the soil does not vary during the consolidation
process (which is only an approximation of reality).

(3) The water and the solid elements in the soil are incompressible;
compression then means decrease in porosity.

(4) The compressibility of the soil (decrease in porosity) is “elastic,” ie.,
there is a linear relation between the effective compression stress and decrease
in soil volume. This is also an approximation of reality (see Section 5.3).

The mechanism of consolidation assumes that an external overload applied
to the soil is absorbed in part by the solid phase (increase in effective stress) and
in part by the interstitial water (increase in fluid pressure). As a result of this
increase in pressure, a transient flow is started, the water is drained, and the
effective stress gradually increases, causing compaction.



96 5. Integration of Equations, Consolidation

We shall try to establish the state equation of the soil. During consolidation,
the external loads remain constant as well as the resulting total stress.

o = 0 + p = constant
Thus
dg+dp=20 (5.2.1)

At the beginning of the consolidation process, the excess load is entirely
absorbed by p but is gradually transformed into increased effective stress until
the pressure reaches a hydrostatic equilibrium (no outflow).

According to hypothesis (4), the relative variation in volume of a soil
element should become

—dV)V = adi (5.2.2)

with « the compressibility coefficient of the soil (mass™* length time?) and &
the effective stress.

According to hypothesis (3), the variation in volume of the element is
altogether due to the variation of its porosity. If V is the total volume of the
soil element, V; is the volume of the pores and T} is the volume of the solid
phase:

V=K+ 1 and av =dV,

According to this assumption, when we calculate dV/V as a function of the
total porosity w we get

Ve
Q) =
i+ W
Vet Vo— ¥ - av
dw:-”—V%—"dV;,: Lk =(1—w)

That is, taking into account Egs. (5.2.1) and (5.2.2),
do = (1 — w)adp

Further, if we consider the local derivatives of these magnitudes (in an
Eulerian coordinates system), we have
Jw op
—=(1- — 5.2.3
o = L@y (5:2.3)
which we use to describe the behavior of the porous medium.

The compaction is given directly by Eq. (5.2.2) if the variation of effective
stress is known. The latter can be calculated by Eq. (5.2.1) if the evolution of
the pressure is known. Therefore, the transient evolution of the pressure in the
soil must be calculated.
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We choose the pressure as the principal unknown and write the con-
solidation equation using:

(1) the equation of continuity:

0
div(pU) + E(pw) +pg=0 (3.2.3)
(2) Darcy’s law:
K
U= -;g(gradp + pg grad z) (4.1.6)

(3) the state equation of water:
p = constant (incompressible fluid) (5.2.4)

(4) the equation of state of the porous medium:

ow op
i (1 - co)aE (5.2.3)

These equations are easily combined to yield

0
Eq. (3.2.3) + Bq. (5.2.4) > divU + a—‘f +q=0
. op
same + Eq. (5.2.3) » —divU = (1 — co)oc-é? +4q

same + Eg. (4.1.6) — div(K grad p) = pg(1 — a))ocg—f + pgq (5.2.5)

because when pg is constant, div{grad z) = 0.

This is the consolidation equation. Remember that g represents the
withdrawn (or added, if it is negative) flow rate per unit volume in the porous
medium. Here it is usually zero, unless drains (e.g., well points) are set into the
soil to accelerate the consolidation.

If the permeability K is isotropic and constant, the equation is simplified as
follows:

_ (1 — w)apg p

2
v'p K o

(5.2.6)
where V2 is the Laplace operator and the flow ¢ is assumed to be zero.

The coefficient C, = (1 — w)apg/K is called the consolidation coefficient
(length~? time). One sometimes disregards the term (I — w) if it is close
to 1.
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Freeze and Cherry (1979) give the following ranges of values for soil

compressibility («) in m?/N or Pa™!:

Clay 1076-1078
Sand 1077-107°
Gravel 1078-10"1°

Jointed rock 1078-10710
Sound rock 107°-10"1¢

Having calculated the evolution of the pressure p, we know that of the
effective stress ¢ because & + p = constant. The compactions are deduced
from

aAG = —AV/V = —Al/l

where [ is the thickness of the consolidating layer if the compaction occurs
only in the vertical direction.

Remember that in clay media the compression is, as a rule, elastic only in the
very first approximation. In particular, the compaction is almost irreversible
(for the same |Ac}, expansion would be ~ % of compaction). Clay subjected to
successive cycles of compression shows a change in the slope of its compaction
when the stress reaches or exceeds the maximum stress which it has previously
undergone. This is called consolidation stress (Fig. 5.7).

The same behavior is found for clay sands, but with a smaller compressi-
bility. Clean sands and gravel, which do not contain interbedded clay layers,
tend indeed to have an elastic behavior, and compressibility is almost
reversible. Jointed or sound rocks generally follow the elastic hypothesis, but
their compressibility is very small.

In hydrogeology, consolidation is generally referred to as subsidence. The
problem is not that of an additional external load on a soil but of a decrease of

Compaction

R 'y
<o,
o
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‘Y\f‘/‘é .
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Fig. 5.7. Compaction of clay showing the consolidation stress.
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the pressure in the aquifer caused by heavy withdrawals. Because of the
relation dé + dp = 0, theresultisidentical to compaction: the effective stress &
increases, the aquifer is compacted, and the land surface subsides. Inside the
aquifer layer, subsidence is instantaneous (i.e., a variation of pressure — Ap
instantly gives a variation of effective stress + A, which instantly causes a
compaction Al/l = —a Ad: the delay in the consolidation due to an external
load is caused by the time necessary to drain the water, as already explained in
the analogy with the pierced pistons). However, the layers of material above
and below the aquifer that is pumped may be slowly drained by this pressure
variation Ap (see Section 8.3 on leakage). As they drain they also compact, and
this delay in drainage causes a delay in the additional compaction of the
system.

Subsidence due to heavy withdrawals can be very important: several tens of
centimeters in Venice, several meters in Mexico City! When it is high, it means
that « is large, that the aquifer or its overlaying and underlying beds are rich in
clay, and the subsidence is almost irreversible, even if the withdrawals are
stopped and the pressure recovered. This is what is observed in Venice at
present [see Gambolati and Freeze (1973) and Gambolati et al. (1974).]

Finally, it must be pointed out that in a few rare cases, where there are
unconnected pores between which the pressures are not transmitted, the
relation ¢ = ¢ + p does not hold: an increase in the total stress ¢ may be
sustained almost immediately by the effective stress 6.

(e) Effective stress in an unsaturated medium. 1In asaturated medium with
constant total stress, there is a linear relation of slope —1 between p and 4.
However, in an unsaturated one, when the pressure descends below the
atmospheric pressure, this relation becomes more complex. It is described in
Fig. 5.8 (Freeze and Cherry, 1979).

Indeed, we observe empirically that as a first approximation the unsatu-
rated soil only sustains the total stress through the effective stress (curve 1).
The pressure plays no role.

In reality, the actual behavior is closer to curve 2, which is dependent on the
structure of the soil and its history of saturation and drainage.

v P

Suction Pressure
- N\ B Fig. 5.8. Effective stress in an unsaturated
atm. medium.




100 5. Imtegration of Equations, Consolidation
5.3. General Diffusion Equation: Confined Aquifers

The complete theory is not very easy to establish, which is the reason why we
have left it to the end. It must be assumed that the fluid is compressible as well
as both the pores and solid grains of the porous medium, but rigorously, if the
porous medium is compressible, we must take into account its displacement in
the equation of continuity: in the fixed elementary volume in Euler
coordinates in which the mass balance is written, there will be a flux of solid
grains as well as of fluid.

The porous medium is assumed to be totally saturated with fluid, since the
complete equation including the three compressibilities only applies to deep,
confined aquifers, ie. aquifers trapped between two impermeable layers
(Fig. 5.9). We shall use the following relationships.

(@) The equation of continuity for the fluid in an elementary volume fixed in
space.

. o
div(pU) + —é—t—(pw) +pg=0 (3.2.3)

(b) The equation of continuity for the flux of solid grains in the same
elementary volume in space. If we define the same mean quantities for the
solid as for the fluid,

1 ’
psy = T—_<a>_> fpsm dx
where p, is the mass per unit volume of the soil, equal to O in the pores and to

that of the solid in the grains; and

o
{psy

where u; is the real velocity of the solid, equal to 0 in the pores and to that of
each point of the solids in the grains.

Qugy = fﬂs“sm dx'’

It can be shown by exactly the same reasoning as for the fluid (Section 3.2.1)
that the equation of continuity for the solid is

V(s> <) + T (1 — (@H)psy] =0

Fig. 5.9. Confined aquifer layer.
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If the angles for averages are omitted in order to simplify the notation, the
equation becomes

0
div(psUs) + o [(1 — w)ps] =0 (5.3.1)

where Ug = (ug) is the fictitious displacement velocity of the solid as if the
whole section were open to the flow of solid.

In the same way as for the fluid, a “mean microscopic velocity” is defined for
the solid by saying that ug is zero in the pores:

(¢) Darcy’slaw. In its classical form, this law applies in effect to the real
mean velocity of the liquid (u* = U/w) in relation to that of the solid
[uf = Ug/(1 — w)] and not in relation to stationary space’. Therefore, it is
necessary to geometrically add the velocities u* and u¥ to obtain an exact
expression of Darcy’s law: it is (u* — uf), which is proportionate to the
pressure gradient and to the gravity, or alternatively (U — wuf) [see Biot
(1955, 1956), Cooper (1966), Remson et al. (1971)].

From the general expression, Eq. (4.1.6), of Darcy’s law, we obtain

k
U—oug = —;(gradp + pg grad z) (5.3.2)
(d) Combining the equation of continuity (3.2.3) with Egs. (5.3.1) and

(5.3.2). We assume that all the magnitudes p, pg, p, @, U, and Ug are Euler
functions, i.e., defined in relation to a fixed point in space. We get

Eqg. (3.2.3) + Eq. (5.3.2) — div[p%(grad P+ pg gradz)}

2
= div(pwug) + E(pw) + pq

but
div(poud) = pw divaf + uf grad(pw)
and

? d
ud grad(pw) + E(pw) = E(pw)

t Rigorously, the kinematic porosity w, should be used here and not the total porosity w.
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which is the material derivative’ of pw following the mean displacement of the
solid at the velocity u¥. Therefore, we look for the variations of w and p inside
the elementary domain formed by the solid during its deformation, i.e., while it
contains a constant quantity of solid.

Furthermore, if we substitute (1 — wju? for Ug in Eq. (5.3.1), we get

. 0
(1 — w)psdivug +ug grad[(1 — w)ps] + = [(1 — w)ps] =0
Similarly,
. d
(1 — w)psdivug + [ —)ps] =0
Finally, by combining these,

d d
dp+ p do po dpg

.| pk _ dp
d1v[ . (gradp + pg gradz)] Rl — T

(e) The state equations of the liquid and the solid. We choose the pressure
p as our only unknown. Thus, we have to estimate dp/dt, dw/dt, dpg/dt in an
clement of the deforming porous medium, which is mobile but contains a
constant quantity of solid.

For the liquid, we know the result: it is the equation of isothermal
compressibility, Eq. (3.1.3):

p= poeﬂx(p~po)

or alternatively:

dp dp
pri By I (534

where f;, may easily be measured. For water, f, = 5 x 1071° Pa~,

For the solid, things become more complicated. The calculations fill several
pages, and an army of coefficients have to be defined in order to find a solution.
Let us begin, keeping in mind that our purpose is to express dw/dt and dp,/dt
as a function of dp/dt*.

 The material or substantial derivative: it is the variation in the unit time interval of a property
(here pw) at a point which moves with the solid grain in a Lagrangian coordinate system. It is
denoted as a total derivative d/dt. The material derivative of a quantity “a”, da/dt in a Lagrangian
coordinate system with a velocity u, is related to the ordinary derivative in an Eulerian coordinate
system, da/dt, by

da_da d
i a -+ ugrada

¥ The reader may be interested only in the results of the following laborious calculations. In this
case, he should simply look at the definition of the coefficients of compressibility in Eq. (5.3.6),
note the resulting values of dw/dt and dpg/dt, and proceed directly to Subsection f.
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Unlike what happens in the theory of consolidation, presented above, the
volumes of pores and solids depend not only on the effective stress & but also
on the pressure p. We note that V is the total volume of the element of mobile
porous medium, V5 the volume of the solid, and ¥, the volume of the pores
(V="Vs+ V).

We define:

(1) The compressibility coefficient of the solid grains

fi.; _ s g (53.5)
s Ps

such that the product pgV5 = mass of solids is a constant in the element of the
mobile porous medium, and fg is measurable on pure minerals or with a
triaxial cell. For quartz, fg ~ 2 x 107! Pa~?!,

(2) Compressibility of the porous matrix: The theory of elasticity of
continuous media, applicable also to porous media, expresses a linear
relationship between the deformation tensor and the tensor of effective stress
increment. We usually choose the case of a medium which is isotropic as far as
the mechanical properties are concerned, i.e., defined by only two coefficients,
Young’s modulus E and Poisson’s ratio v. This hypothesis is not imperative,
however.

If Ag; are the three increments in normal effective stress in the three
principal directions (i, j, k) of the tensor of stress increments, and if &; are the
relative deformations in these directions (g; = Al/l;, | length element), the
theory of elasticity provides that

1

— v — —
EAJ,— — E(Aaj + Ady)

_siz

The volumetric expansion is the sum of the three relative deformations

AV 1 2 _
~5 = —Ya=5(YA5) - L (TAR)

If AG is the mean stress increment, Ac =§Z Ag;, then

AV_ 31-2)
V= E ¢

The minus sign means that the volume V decreases if the effective stress &
increases (compression).

Thus it is shown that the possible anisotropy of the stress increment is
unimportant; it is the average increase in effective stress that is significant.
When we speak of increase in stress, this will always mean average stress in an
isotropic medium.
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Thus, there is a linear relation between dV/V and dg. It is the one we have
written from Eq. (5.2.2) as

av _ 3(1 —2v)

v = add  whence o= —F
in the theory of consolidation. We must realize that, in this theory, we assume
that the total stress ¢ is a constant: the coefficient « is defined for a particular
transformation of the state of stress in the rock, whence do + dp = 0. It may be
found by direct measurements on a sample with a triaxial cell.

We will assume that V, V;, and V; are functions of both & and p and that
these functions are linear, as in the theory of linear elasticity described already.
Actually, V, Vg, and V; are usually given as functions of ¢ and p, total stress and
fluid pressure, which simplifies the calculations. We can always come back to ¢
instead of ¢ by using ¢ = & + p. We write

av
—V= '—CdO' + (Xdp
dv;
—F = _Cpdo + apdp (5.3.6)
Ve
dvg
—S = _Cydo + agdp
Vs

These six coefficients of compressibility are positive. The coefficient « of
Eq. (5.3.6) is really the same as that of Eq. (5.2.2), because if we transform
the state of stress with do = 0, i.e.,, dp = —dg, the first part of Eq. (5.3.6) gives
dV]V = —ada.

These coefficients are not independent; it will be shown that the following
relations may be established between them:

C —-—'a‘{‘ﬁs
szg
[
o .
OCP = 5 - ﬁs (5.3-7)
w
Xs l—a)ﬁs
Bs
Ce =
ST 1-w

Proof: The equations (5.3.6) are general. During this demonstration, we
disregard the real conditions of stress variations encountered in hydrogeology
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and draw up the five relations (5.3.7) between the six coefficients by imagining
that the porous medium is subjected to three special transformations. The
relations, which are made to appear between the coefficients in this way, will be
general as, by definition, these coefficients are constant.

First transformation: Assuming that do = O (constant total stress),

%=o¢dp, dV_V:=°‘PdPa d—;f‘———-ocsdp
Moreover, we have
V=h+¥
and their differentials
av = dVp + dVj
or

Thus, the first relation is written
o= wop + (1 — w)og

Second transformation: Assume that do =0 (constant effective stress).
The arrangement of the grains in the porous matrix is in reality only
dependent on the effective stress: if it is increased, the medium is
compacted and vice versa. Therefore, if do =0, the arrangement is
unchanged. The variation in volume of the porous medium, which may
occur, can only be caused by the expansion or contraction of the grains
themselves, and the medium will be similarly deformed. Consequently,
the porosity w of the medium should not vary. From « = 13/V, we
deduce

Vavpe — VpdV
whence %=EZM=%
b V. V=K kK
keeping in mind that

V="+V
If do = 0, we have do = dp, and therefore

dv; v
»«I—/—§=(ocs-—~Cs)dp and %V—"z(ap—cp)dp and <> =(x— C)dp
S P
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However, we have already defined the compressibility coefficient for
the solid:

Vs

—I;S”= —PBsdp

defined on an isolated mineral, i.e., in fact, when d& = 0. The following
three relations are then deduced:

Bs=Cs—og=Cp—ap=C—u

Third transformation: Geertsma (1957) suggests the use of the

Maxwell-Betti theorem (also called Betti and Rayleigh), which states:
Given two imposed elementary hydrostatic loads do and dp, the
action of the forces due to the first load in the displacement due to
the second is equal to the action of the forces due to the second in
the displacement due to the first.

(&)l A(), ]

The parentheses and subscripts remind us that the derivatives are taken
with either ¢ or p constant.

In this expression, the action of the total stress concerns indeed the
entire volume V, (giving the product AVdos), whereas the pressure only
acts on the volume of the pores in which it occurs, giving the product
AV, dp.

This theorem is a direct consequence of the linearity of the com-
pression equation, which we have admitted (elasticity). It is proved from
the calculation of the potential elastic energy:

ZVIZEiSi +p28,-

which is a quadratic form of the deformations ¢;. See textbooks on the
mechanics of continuous media for details.
ov oV .
% = _6_: 1.€e. oV = Cp¥p or o= wCp
Thus, we have established the five relations (5.3.7) by reordering.

We now return to our unknowns dw/dt and dpg/dt. In order to study the
elementary volume of the mobile porous medium, we make the assumption
that the total stress o does not vary, which is generally well borne out in the
field, where deep confined aquifers are being exploited: the total stress due to
the weight of overlying material does not vary.
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(1) First we consider dw/dt. We can write
Vo=(1—w)V
whence by differentiation
dVs=(1—-w)dV - Vdw

Vs dVg av
or SIS — )= —
7 (1 —w) % dw
ie. do =(1— w)(d—;/ —dV—VSS>

According to Eq. (5.3.6), when we take do = 0, we get
do = (1 — w)o — ag)dp

We can take the material derivative of w and p in a Lagrangian coordinate
system moving with the deforming solid. We finally get

dw dp
L= - o — )P

(2) Next we consider dps/dt. The mass balance of the solid in the
elementary mobile volume is written as

dps | 4¥s
Ps Vs
Similarly, according to Eqg. (5.3.6) with do = 0, and using the material

derivatives of pg and p in the same Lagrangian system moving with the
deforming solid,

dpsVe) =0 e =0

dps _ . dp
dt Psos s

We now have all the state equations of the porous medium.
(f) Synthesis: diffusion equation and simplifications. When we introduce

these three state equations into Eq. (5.3.3) while taking into account the value
of ag obtained from Eq. (5.3.7), we get

[k d
div [—p (gradp + pg grad Z)] = pw [ﬁz —Bs + ﬁ] 2t v
i w | dt

and multiplying by g yields

. o ld
div[K(grad p + pg grad z)] = pwg [ﬁz ~ Ps + 5] d—l; +pgq (5.38)
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The coefficient S, = pwg (/31 — Ps + %)

is called the specific storage coefficient of the aquifer (its dimension is length 1),
In Section 5.2.d, we have given the ranges of values of «, between 10™° and
10~** Pa™*, depending on the aquifer type; B, ~ 5 x 107*° Pa~!; and finally,
Bs ~2 x 107! Pa! for quartz and most minerals: in practice, fs is often
neglected. Values of S, thus range between 1072 m™* (highly compressible
clays) to 10”7 m~! (low porosity hard rocks); in the former case, B, is negligible
with respect to «, in the latter case, §, can play a major role.

Simplifications. Although theoretically correct, Eq. (5.3.8) is impractical. It
1s usual to make the following simplifications, which are not theoretically very
“elegant.”

First, the hydraulic head h is substituted for the pressure p in Eq. (5.3.8) by
making the assumption, acceptable in reality, that p is variable in time
(compressibility) but less so in space. We can then remove the term pg from the
divergence operator:

div[K(gradp + pggradz}] ~ pg div|:K grad <pp;g + z>:l = pgdiv(K grad h)

Moreover, as the velocity of the solid ug is very small, the term uFgradp is
disregarded when compared with Op/0t in the definition of the material
derivative, and we can write

. g op
pgdiv(Kgradh) = S, + pgq

The same result may be obtained by keeping the equation with a material
derivative because, since the measurement instruments (i.€., piezometers) are
connected to the solid, it is actually dp/dt and not dp/dt that can be measured.
Furthermore, when the expression p = pg(h — z) is differentiated, we get

p oh op
2 pg— h—
o P9 T A
That is, when we take Eq. (5.3.4) into account,
dp _
m ﬁz
oh dp
pg o, =7, 11+ pglz — hf]

where pg(z — h)p, may be disregarded in comparison with 1. Indeed, for
g=10m/s%, B; =5 x 1071° and p = 10> kg/m>3, this term is less than 1072
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Fig. 5.10. Confined aquifer.

as long as (h — z) is less than 2000 m'. Hence

on _op
P9% = o
If we substitute in Eq. (5.3.8) and simplify, dividing by pg, we get
Oh

div(Kgradh)= 5,2 + g (5.3.9)

This is the diffusion equation in use for confined aquifers.

(g) Integration of the diffusion equation taking the confining beds into
account. Take a confined aquifer with two confining beds (Fig. 5.10). We
shall neither assume these beds to be necessarily horizontal nor completely
impermeable. We shall try to reduce Eq. (5.3.9) to two dimensions, assuming
that the flow is parallel to the confining beds. In order to do so, we integrate
without approximation the diffusion equation along the x; axis perpendicular
to the confining beds. The following assumptions must then be made.

(1) The beds are plane and parallel; the thickness e of the aquifer is
constant.

(2) One of the principal directions of anisotropy is orthogonal to the
confining beds (x5 on the figure); we shall use the two other principal directions
of anisotropy, x; and x,, which are parallel to the plane of the confining beds,
as the coordinate system in two dimensions.

(3) We assume that the hydraulic head gradient in the plane x,x, does not
depend on x;:

n  *h 0
dx, x5 0x,0%x;

t The term z is the elevation of a point in the aquifer; 4 is the hydraulic head at that point. A
difference of 2000 m would be found, for instance, for an aquifer 2000 m deep with a head close to
the ground surface (e.g., artesian). This situation is not uncommon. But even (7 — z) = 4000 m
would only give an error of 2%.
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{4) Finally, we assume that the variation of the hydraulic head per unit
time, 0h/0t, is not a function of x5. In other words, the head may vary with x,
between the top and bottom of the aquifer, but at every moment, the gradient
and the variation of the hydraulic head are the same at all points in the aquifer
on the same transverse line Ox;. With these assumptions, the integration is

simple:
et 0 oh %, oh 0 oh
R I -Gty IV i DL il
J;{ﬁxl[ lale—Faxz{Kéaxz]-+8x3[K56x3]}dx3

e ah e
- L Ssé?dx3 + L qdx,

For the left-hand side, we know that (Leibnitz’ rule):

6 b(u) b(u) a ab aa
du =| 7 —F _ g
Ou J‘a(u) F(u, U)dv J‘a(u) 8u F(u’ U) dv + du [ua b(u)] du F[u, a(u)]

Here, according to assumption (1), the third and the fourth terms vanish.
Therefore, we can write

Left-hand side:

0 € oh i, € Jh €9 oh
I il v k.24 v o
0% ( fo Ky 0x, dx3> + 9x, <L 2 0x, x3> + L 0x5 <K3 8x3>dx3

According to assumption (3), we can take out 0h/0x, and dh/dx, from the
first two integrals. Hence, the transmissivity of the aquifer, defined in Section
4.1f£ 1s shown:

ﬂzjKJM EzJKﬂ%
0

0

The third integral can be integrated immediately and gives

oh oh
<K3 -ax—3>x3=e B <K3 a—x;>xa=0

According to Darcy’s law, this may be interpreted in terms of flux: it is the
flow per unit surface area entering the aquifer, through its upper and lower
limits respectively. If the orthogonal line to the confining beds is directed
inward, these terms are F = — (K 0h/0n) at the interface with the confining
beds.

These fluxes exchanged between the confined aquifer and its confining beds
are called leakage fluxes. They will be denoted by F, and F, (top and bottom),
and appear on the right-hand side as positive terms, if they are incoming.
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4 Hydraulic
> head profile

Fig. 5.11. Hydraulic head profile in a confined aquifer.

For the right-hand side, 0h/0t comes out of the integral, according to
assumption (4), and we can define a new quantity:

S = f Sydxs = pwge(ﬂl — B+ 5)
0 w

As S, isinlength !, this new quantity S is dimensionless. It is called the storage
coefficient of the aquifer and varies roughly between 5 x 10™2 and 107°.

The integration of the source term has already been defined for the
unconfined aquifer in Section 5.1.c:

f gdxy = Q
0

where Q is now the withdrawn flow rate per unit surface area of the aquifer.
Eventually we get (see Fig. 5.11)7

0 oh 0 oh oh
I N i S g
0x4 (T1 8x1) + 6x2< 26x2> § ot (Fi+ Fy)+Q

If the leakage flux is nil (totally impervious confining beds; see also

T1f @, F,, and F, are given, we can try to integrate this equation and calculate h. For example,
a solution of the following form may be found:

h = h(xy,x,,t)
The general solution as a function of x, x,, x5 according to assumptions (3) and (4) becomes
b= h(xy,x5,t) + f(x3)

where f(x;)is a function independent of x,, x,, and t. In other words, the hydraulic head profile at
one point as a function of x; is not defined, but it is the same at all points and all dates: if it is
known at one point, it is known everywhere. As a rule, this profile (e.g., as shownin Fig. 5.11) is not
considered important, and the assumption is made that h varies little with x.
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Section 8.3), we write

oh
div(T gradh) = S— + @ (5.3.10)

This is an equation that we shall use continuously.

Finally, if T is isotropic and constant in space, Eq. (5.3.10) becomes

0*h *h S oh
Vzhzﬁ+é}7=?~5{+% (5.3.11)

The ratio T/S is called the aquifer diffusivity. Equations (5.3.10) and (5.3.11)
are identical to those of the unconfined aquifer, Egs. (5.1.3) and (5.1.4), but here
S replaces the specific yield wy. However, we must remember that even though
the two equations for the unconfined-confined aquifer are identical, the
mechanisms coming into play (movement of the free surface on the one hand,
and compressibility of water, grains, and soil, on the other) are different as are
the ways of establishing the equations and the approximations used.

5.4. Highly Compressible Soils

Gambolati (1973), while studying the compaction in Venice due to the
pumping at Mestre, has established a slightly different expression for the
storage coefficient of highly compressible soils (e.g., clay, mud).

The expression assumes that the grains are incompressible (p, = constant)
but that the compressibility coefficient of the porous medium, , is important.
Furthermore, the analysis is limited to a one-dimensional vertical flow,
defining the linear dilation instead of the volumetric one:

sZ:~Al—l=-ocAc?=+ocAp if Ag =0

Moreover, this dilation may be explained as the differential in Lagrangian
coordinates of the position vector of the point under examination (Fig. 5.12).

__Ar
=%

82
linked to the velocity u¥ of the deforming solid.
Finally, the analysis expresses the velocity uf by

L _Or
ot
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ir (f, t) - Position

Departure ¢ (Lagrange)

point

T~ t

Fig. 5.12. Movement of an “average point” with time.

which implies that r designates an “average point” of the porous medium,
since u¥ is an average velocity.

Then, the analysis combines, as shown above, the equations of continuity
of the liquid and of the moving solid. However, instead of giving the result in
Eq. (5.3.3) as dp/dt and dw/dt (with dp,/dt = 0), the analysis chooses dp/dt
and divu? as the unknowns.

As the compaction is one-dimensional along z, the component in z, du’/dz,
is expressed in Eulerian coordinates from

0 . .

;ZS =g, = oAp (in Lagrangian coordinates)
or
ras _ %

at uZS

(Buler)  z=(+r&? (Lagrange)
Finally,
ouk o dp

oz 1+oalp—po) dt

In the storage coefficient, « must therefore be replaced by /[ 1 + a(p — po)l.
It becomes important to take this term into account if a{p — py) > 0.5, which
thus represents a compaction ¢, of more than 5%,. Consequently, this effect is
negligible except for special cases of large subsidence.

From the theoretical point of view, this difference in the results is caused by
the change from the system of Eq. (5.3.6) with the three compressibilities of the
total volume, the solid, and the pores to the linear relations in terms of
material derivatives dw/dt and dp./dt, functions of dp/dt that are not wholly
satisfactory. However, Gambolati’s more rigorous result cannot be trans-
posed to three dimensions.

Gambolati also shows that the variation in the hydraulic conductivity with
p (in the term grad pg), which we disregarded in order to arrive at Eq. (5.3.9), is
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actually negligible, when the aquifer thickness is less than 10,000 m and the
pressure variation less than 500 bars, which greatly exceeds the usual ranges.

However, in highly compressible soils, it would probably be necessary to
take into account the variation of K during the compaction (when the pores
close), which is a phenomenon that has not been studied a great deal.

5.5. Other Diffusion Equations

We have discussed the three most important cases. However, there are other
cases where different equations are used:

(1) Movement of the water in the unsaturated zone: see Section 9.1.2.

(2) Exact equations of the movement of the free surface: see Section 6.3.d,
and Schneebeli (1966) and Bear (1972).

(3) Multiphase flow of immiscible fluids: see Section 9.1.1.

(4) Flow of miscible fluids of different density: see Chapter 10.

In Chapter 7, solutions of the diffusion equation are given for the steady
state (Oh/0t = 0, the hydraulic head does not vary with time), and in Chapter 8
they are given for the transient state (0h/dt # 0, the hydraulic head varies with
time).
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We shall examine briefly the main aquifer types encountered in nature, their
reserves, and, finally, their most common boundary conditions.

To begin at the beginning, what is an aquifer? It is a layer, formation, or
group of formations of permeable rocks, saturated with water and with a
degree of permeability that allows economically profitable amounts of water
to be withdrawn.

In practice, an aquifer is an abstraction; it is a more or less isolated “layer”
of rock saturated with water, limited in space at the top, at the bottom and on
the sides, rather like a thin layer of mist in a forest.

An aquifer is by no means equivalent to a single geologic, lithographic, or
stratigraphic unit; two contiguous layers of sand and limestone, for instance,
may form a single aquifer. What is important in the definition is that

(1) the part of the formation that constitutes the aquifer is saturated with
water. An unsaturated permeable layer does not constitute an aquifer.

(2) the variation of the permeability inside the formation, vertically or
laterally, is restricted, so that two zones of the formation may not be separated
by a zone of low permeability, through which the flow would be very small.
For instance, a sand and a limestone layer, separated by a clay or marl layer,
would constitute two aquifers. These two aquifers would communicate by
leakage (see Section 5.3.g) through the layer of low permeability. We shall
come back to that in Section 6.1.3.
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6.1. Aquifer Types

6.1.1. Unconfined Aquifers

The term “unconfined aquifer” as opposed to “confined aquifer” will be
defined in Section 6.1.2, but we shall begin by looking at a few examples of
unconfined aquifers.

(a) Valley aquifer. In temperate climates, if the soil is assumed to be
uniformly porous and permeable, we know (Chapter 1) that rainwater is
infiltrated and saturates the rock up to a certain level, called the free surface, or
water table. This saturated zone is called an aquifer from its free surface down
to its lower limit (e.g., impermeable bedrock, or layer of low permeability
separating it from the next aquifer). The overlying unsaturated zone, above the
water table, forms in fact a continuum with the aquifer (the pressure is
continuous through the water table, see Section 2.2.d) but is usually not
considered as part of the aquifer, strictly speaking.

In the aquifer, the water flows toward the outlets, which are the low points in
the topography (springs, streams in the surface flow network). Recharge occurs
over the whole surface of the aquifer.

The chalk aquifers in the North of France or South of England are
examples, as shown in Fig. 6.1. This cross-section shows the flow lines* and the
lines of equal hydraulic head, which are called equipotential lines (or
equipotential surfaces in three dimensions). If the permeability is isotropic, the
flow lines are at right angles to the equipotential lines, according to Darcy’s
law. The slope of the free surface then indicates the flow direction of the
aquifer, but the water flows through the whole thickness of the aquifer. Only
the velocities are greater on the surface than at depth, since the distances are
shorter, while the hydraulic head differences remain the same.

Only the deepest valleys drain the aquifer; the others are called dry valleys.
The outlet is not a single point in space; it is 2 whole face of the aquifer from
which water emerges and wells up. It is called the seepage face.

In chalk there is, strictly speaking, no actual bedrock, because the chalk is
very thick (several hundred meters) in certain areas, and only the upper
portion (10-30 m, for example) is fractured, weathered, and permeable,

* The flow lines give the direction of the velocity in the aquifer at a given time ¢. If the flow is
steady, i.e., does not vary with time, the flow lines are constant. A particle of water (or of a tracer)
would then follow a trajectory in the medium identical to the flow line that passes through the
initial position of that particle. Such a trajectory is called a streamline or a flow path.

However, in transient flow conditions, i.e., when the flow varies with time, the flow lines also
vary. At each time, they only show the direction of the velocity at each point. The trajectory of a
particle in such a system is still called a streamline., but is no longer identical to any of the flow
lines.
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Fig. 6.1. Unconfined valley aquifer.

whereas the undisturbed chalk at depth has a very low permeability. The top
of this undisturbed chalk is then taken as the lower limit of the aquifer.

Let us suppose that a piezometer, open only at the bottom, is installed in
such an aquifer, to measure the local hydraulic head (and not the average head
over the whole thickness of the aquifer). If the piezometer is drilled vertically
into the zone of the seepage face, the deeper the piczometer, the higher the
head: due to the upward direction of the flow, the head increases with depth, as
shown by the equipotential lines. The situation is reversed at the summits of
the free surface, where the flow is diverging: the head decreases with depth.
Between these two limits, the head is more or less constant on a given vertical
line. However, even at these limits, the variations in head in the vertical
direction are very small, almost negligible.

The cross section of Fig. 6.1 is, in fact, greatly distorted: the vertical scale is
perhaps 10 to 100 times greater than the horizontal one. If this cross-section is
drawn with the same scale in both directions, it becomes Fig. 6.2.

The equipotential lines are, in fact, almost vertical. The assumption is often
made that, in practice, the velocities in aquifers are virtually parallel to the free

Groundwater River
divide ‘ | Soil surface

S PRSI RS
|

Fig. 6.2. Unconfined valley aquifer without scale distortion.
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surface (i.¢., close to horizontal), except in the vicinity of the outlets or of the
groundwater divide lines. This is what we call Dupuit’s hypothesis in
Section 5.1.

The piezometric contour map (Fig. 6.3) shows such a valley aquifer in two
dimensions. It is called a valley aquifer precisely because it is only drained by
the valleys. On a larger scale, there is therefore a succession of small units, each
of which is drained by a stream.

Piezometric maps are drawn in two dimensions and in principle show the
lines where the equipotential surfaces intersect the free surface. However, since
the equipotential surfaces are in practice almost vertical, the piezometric map
gives approximately the hydraulic head at any depth in the aquifer.

The divide line between two valleys (dotted line on Fig. 6.3) separates the
aquifer into several units. Each unit is drained by a given river; i.e., all the
groundwater in that unit flows toward that river. This line is called the
groundwater divide line and is drawn by selecting a set of base points on the
river network (e.g., the tributaries of the rivers) and following from each of
them in the upstream direction the groundwater flow line that ends up at this
point. If the permeability is isotropic in the plane, which we shall assume most
of the time, these flow lines are simply orthogonal to the equipotential lines.
They eventually reach the summit of the aquifer, i.e., the point with the highest
piezometric head. Each unit identified in this way is called an underground
watershed; it is often quite close to the topographical watershed for the surface
water. Like topographical watersheds, the position and number of the
underground watersheds can be modified by selecting a different set of base
points on the river network.

In the course of the year, the level of the water table of the aquifer varies by a
few meters because, as we have seen (Chapter 1), it is fed by rainfall only in the
winter: it decreases in summer and rises again after the autumn rains. If the
water table is far from the soil surface (e.g., 10—30 m), it takes quite a long time
for the infiltration to cross the unsaturated zone and the water table is at its
lowest in October and November, and at its highest in April and May, for
example. This kind of aquifer is also called phreatic aquifer (from the Greek
phreatos, well), which simply means that it is the first aquifer encountered
when a well is dug and therefore the most easily exploited. This type of valley
aquifer is quite common and can be found in many types of rocks, such as
sands, sandstone, limestone, tuffs, etc.

In the United States, the High Plains in the Great Plains are a good example
of such aquifers (Fetter, 1980). The rocks can be the Ogallala formation
(pliocene deposits eroded from the Rocky Mountains) or the Sand Hills
(aeolian sands). Recharge occurs through the surface, and drainage occurs by
the rivers, which sometimes cut the formation down to the bedrock, thus
isolating different units. These aquifers are heavily developed for irrigation.
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The Atlantic and Gulf Coastal plains also contain such aquifers, in continental
or marine sediments or in glacial deposits towards the North.

Toth (1963) has studied the influence of the thickness of the aquifer and of
the position of the streams on the shape of the flowlines and equipotential
lines in a cross section. Freeze and Witherspoon (1967) have also studied
numerically the effect of topography and permeability variations on the flow
and equipotential lines. Freeze (1971) studied, in three-dimensions, the flow in
both the saturated and unsaturated zones of a small underground watershed.

(b) Valley aquifers in arid zones. In arid zones (Fig. 6.4) rainfall is much
lower than potential evapotranspiration, and surface recharge is almost zero.
However, in the valleys, rivers may carry water from the mountains or flash
floods may bring large quantities of water for a short time. This water usually
infiltrates through the river bed into the aquifer and constitutes the only
recharge mechanism. Therefore, the water table is higher beneath the valleys
than elsewhere, contrary to what happens in humid zones. This situation
occurs whenever the rainfall drops below 500 mm/yr in hot climates (e.g., in
Spain, North Africa, Arabian Peninsula, etc.). In the United States, the
sediment-filled basins Southwest of the Rocky Mountains are good examples
of such aquifers.

Itis important that river beds remain permeable so that water can infiltrate;
if silt is deposited, the river beds could eventually become clogged. In natural
systems, this clogging is prevented by erosion during floods. When dams are
built, it is therefore important to create artificial floods in the stream, from time
to time, to erode the silt.

Seen on a map, the rivers in desert-type climates, called wadis in Arabic, may
never reach the sea. The flood water may be dispersed in the low plains,
infiltrate, and later evaporate. This evaporation leaves the dissolved salts,
giving some water in the low plains with very high salt content. Alternatively,
the flood water may reach a depression, called a chott or a sebkha in Arabic
(ie., salt flat), creating a temporary lake, where the water eventually

Flooded wadi

Fig. 6.4. Unconfined valley aquifer in arid region.
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evaporates, leaving a salty crust on the surface (e.g., the salt lakes in Utah).
These lakes are sometimes below sea level

In both cases, the aquifers generally flow towards the same low plains or
Iakes. The water also evaporates there and becomes brackish.

Some of the water infiltrated into the river bed during floods may be con-
sumed by the vegetation growing along the streams. The proportion of water
consumed in this way may become very important in desert-type zones. Thus,
surprisingly enough, recharge to aquifers through streams can be larger in ex-
treme types of desert climates, where there is not enough water for vegeta-
tion to grow along the streams! One must remember that in desert climates,
rainfall is very erratic, and one big storm (e.g., 300 mm) every 30 years may
constitute the only recharge episode. The development of these aquifers must
make allowances for this variability in the recharge.

In tropical zones, the two types of recharge may alternate between surface
recharge during the rainy season and stream recharge in the dry season.

() Alluvial aquifer. This is an unconfined aquifer situated in the alluvial
deposits found along the course of a stream. The water in the aquifer is
generally in equilibrium with that of the stream, which alternately drains and
recharges it.

This is, for example, the case of the Rhine river plain (Fig. 6.5) between
France and Germany, which is a rift filled with recent alluvial deposits. The
alluvial deposits are around 100 m thick in some places and consist of coarse
sand, gravel, and pebbles with high permeability. These materials are
saturated with water almost all the way to the surface, and they form one of the
largest aquifers in France.

Virtually every stream has left fluvial deposits along its bed that link it to an
alluvial aquifer. In the United States, such alluvial aquifers are found, for
instance, on the Colorado plateau and in the Tennessee valley. The aquifer
may vary in size at different points, as in Fig. 6.6. At the entrance of an alluvial
plain, the water level in the stream is higher than that of the aquifer. The
stream feeds the aquifer; the equipotential lines are close together (fast,
diverging flow). In the middle of the plain, the flow is slower, and the river and
the aquifer are at equilibrium. Downstream the situation is reversed, as the

Fig. 6.5. Cross section of the Rhine valley.
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Fig. 6.6. Map and cross section of alluvial aquifer.

narrowing of the plain causes the water of the aquifer to drain toward the
stream. This region is often marshy, as the aquifer surface is then very close to
that of the soil surface and above that of the river. The flow in the aquifer is
sometimes referred to as the “underflow” of the river.

Finally, it may happen that the stream bed is sealed by small particles, which
break this connection. This is often the case of rivers regulated by dams, as
already described. If the river is polluted, this silty layer may become
anaerobic and bacteria may cause ammonia to be formed. The quality of the
aquifer water may then deteriorate, even if only small amounts of water
percolate through the river bed. However, in this anaerobic zone, some
denitrification can simultaneously occur, which may sometimes be beneficial
if the river water is heavily loaded with nitrates. In general, alluvial aquifers are
very sensitive to the pollution of their rivers. Some pollutants carried by the
river may be filtered or adsorbed (see Chapter 10), but many others will move
with the water and reach the producing wells. Because of their high
permeability and good recharge by the streams, alluvial aquifers are often very
heavily developed. They generally produce better water than the streams
themselves by averaging the composition of the river water (plus filtration and
sorption). They also help to regulate the river flow regime: because of the
reserve stored in the aquifer, it is possible to exploit it intensively in summer at
low flows, while recharge will fill the reserves during the next winter. Such
methods are in frequent use in Colorado (see Illangasekare and Morel-
Seytoux, 1982).

(d) Perched aquifers. These aquifers lic on an impermeable lower
formation, and they are not connected to a stream which feeds or drains them.
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Fontainebleau sands

Spring

Water table

Fig. 6.7. Cross section of a perched aquifer.

An example is the unconfined aquifer in the Oligocene Fontainebleau sands
(south of Paris, France), asin Fig. 6.7. On both sides of the formation, there are
lines of springs. Seen from above this gives, for example, the map of Fig. 6.8.
The largest springs are found in the valleys, at the lowest points of the
underlying impervious formation.

If, under the impermeable (or less permeable) layer, in this case the marls,
there is another unconfined aquifer (e.g., in the limestone), the upper one is said
to have a “perched water table.” The underlying aquifer is in fact recharged
vertically by leakage through the marls, which have a low permeability (see
Sections 5.3.g and 8.3.1).

Perched water tables can also be found in alluvial deposits, when a clay lens
creates a local layer of low permeability inside the unsaturated zone
overlaying an unconfined aquifer. The extent of the perched water table will be
limited to that of the clay lens, as shown in Fig. 6.9. It may drain by leakage
through the clay or laterally. These perched water tables may be permanent or
only form during recharge in winter. When drilling a well, it is important not to
confuse a local perched water table with the regional aquifer free surface.

Line of marl
outcrop

Equipotential line

Spring

Fig. 6.8. Piezometric map of a perched aquifer.
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Fig. 6.9. Perched water table above a clay lens in alluvial deposits.

When the bottom of the clay lens has been drilled through, the perched water
will generally drain through the drill hole toward the lower layer, and no water
level will be found in the well until the true water table is reached.

(€) Glacial deposits. During the Pleistocene, Northern Europe, the
Northern United States, and Canada were covered with glaciers, which
deposited large amounts of sediment on the surface.

The lacustrine sediments were deposited in meltwater lakes; they are formed
by silt and clay, and have a very low conductivity.

Glacial till, which is by far the most widespread sediment, was laid down
directly by the glaciers when they melted. This means that it contains particles
with a very wide range of size, from clay to large boulders. In general, glacial
tills have a high clay content and a low permeability, although sets of thin
vertical fractures may increase the regional hydraulic conductivity by a factor
of up to 1000 (Freeze and Cherry, 1979) compared to the values measured on
cores (in the range 1071°-107*? m/s). However, sandy tills may form local
aquifers here and there.

Glaciofluvial deposits were laid down by subglacial streams, and by rivers
during interglacial periods. They consist of sand and gravel and can be highly
permeable. They are often buried inside a thick till layer and difficult to locate.
Their shape can be that of a narrow valley, straight or meandering, or that of
an extended thin strip. The subglacial stream sediments deposited by the last
glacier sometimes lie on top of the general till surface; they form meandering
ridges in the topography, which are called eskers (from the Irish “eiscir”).
Because of their topographic position, they are largely unsaturated, being
drained on the sides, but they may contain some water in the middle.

Glacial outwash is formed by sediments brought by the subglacial streams
and the moraines in front of the glaciers. It forms interbedded layers of sand,
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gravel, occasional clay, and silts, and can contain good aquifers, generally
valley aquifers. They are often exploited as gravel pits. Cape Cod and Long
Island, in the United States, are good examples of glacial outwash.

(f) Permafrost. At northern latitudes (e.g., in Alaska, and the northern
territories in Canada, Northern Sweden, Siberia), the ground can be frozen
down to several hundred meters. This frozen ground is called the permafrost.
Depending on the salinity of the water and the nature of the soil, the mean
annual temperature may have to be significantly less than 0°C to cause the
formation of permafrost. The permeability of the permafrost is almost
negligible, even in sands or coarse material. In the summer, the upper layer of
the permafrost (e.g., 1 m) may thaw (melt), but as the rest of the layer is
impervious, the drainage is poor, and the soil is marshy (tundra). In a hilly
topography, this wet soil may start to flow, and create mud slides towards the
valleys. When the great pipeline from Alaska to Washington was built through
Canada, great care was taken that the pillars, on which the pipe is laid and
which are anchored in the permafrost, would not melt the ground, thus
jeopardizing its stability. To achieve this, heat exchangers were installed on
each pillar so that the heat brought by the pipe can radiate toward the
atmosphere.

Aquifers may sometimes be found beneath the permafrost if it is not toc
thick, e.g., alluvial valleys, or alluvial fans, beneath lakes where the permafrost
is thinner or missing. Because of the permafrost, the recharge to these aquifers
may be poor. The aquifer layer can also become confined (Section 6.1.2)
beneath the permafrost. Wells can then be artesian. If this groundwater
discharges naturally at the surface, large cones of ice called pingos are formed
in the winter.

(g) Karstic systems, limestone aquifers. We have seen in Section 4.1.¢ that,
in fractured limestone, the dissolution of carbonates by carbonic acid present
in the atmosphere and in the top soil creates enlarged fractures, conduits,
caverns, or caves. This is called the karstic regime. Very often, the surface water
network communicates with the groundwater through numerous systems of
sinkholes, losses, and resurgences (i.e., outlets where the water reappears).
Under a limestone plateau, the karstic system is defined by its base level, i.e.,
the elevation of the downstream outlet(s). The groundwater flows through the
system (conduits, fractures) toward these outlets, which are generally limited in
number (springs). The elevation of the water (the head) in this system 1is, of
course, always higher than that of the outlets, but the gradient is usually very
small. In rainy seasons, karst can have floods very similar to surface-water
networks.

In the “blocks” between the conduits (or drains) of the network, recharge
water from the surface may percolate slowly through a finer network of joints
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or fractures. This brings a delayed flux to the main system, where flow is very
rapid. This secondary system of fractures builds up the reserves of the karst
and makes it possible for karstic springs to continue to deliver a decaying flow
in dry seasons. This base flow may, however, sometimes dry up. The water in
the blocks, above the water level in the drains, will saturate the smaller fissures,
while the larger ones will dry out. This is due to surface tension, as greater
capillary pressure is needed to drain a small fissure than a larger one. The low-
permeability limestone matrix itself, between the fractures, can be saturated or
unsaturated.

Beneath the “base level” of the karst, all the fractures are filled with water
and form a continuous aquifer. The question is whether or not this zone has
open fractures. Generally, dissolution does not occur much below the base
level, because the water has already become saturated with carbonate;
therefore the answer is no. However, the base level may have changed during
geological time (e.g., change in sea level, change in river level due to sediment
deposits, etc.). Thus, beneath the present base level, there may exist a
“paleokarst” where a real aquifer can be found.

Choosing a well site in a karstic system is very tricky: if a conduit is not
found, the water available (in the blocks) is negligible. The best location for the
well is on a fracture or, even better, at the intersection of two fractures. One
tries to detect the fractures with the help of aerial photographs or geophysical
measurements (electric resistivity, etc.). Before abandoning a dry well, one may
try to inject tons of acid (HCI) to open existing fractures, in the hope that they
will eventually connect the well with a drain. Alternatively, dynamite blasting
in the well may create such a fracture. One may also try to deepen the well
beneath the base level in the hope that an open network of fractures will be
found.

Karstic systems are very common all around the Mediterranean. Some of
the springs are even found off-shore, beneath the sea level. They were formed
during the ice age, when the sea level was lower, as was the base level. Attempts
are being made to exploit these submarine springs before they mix with sea
water [see for example, Potié (1973)]. In the United States, karstic systems are
found, for instance, in Kentucky, Florida, and the Dakotas.

Not all limestone layers are truly karstic. Dolomitic rocks, for instance, tend
to be naturally permeable without being fractured, and they are much less
soluble. Dissolution features occur along the fractures, and locally increase the
hydraulic conductivity, but they usually form continuous aquifers and not
networks of conduits. The same thing is true for chalk, or for marly limestone.
In valley aquifers in such terrains, the hydraulic conductivity is generally
higher near the valleys than beneath the plateaus, because the drainage in the
rivers has Iocally increased the conductivity by dissolution.

Karstic-type features can also be found in evaporites, when they are in
contact with water. However, the dissolution is much more rapid, and general



6.1. Aquifer Types 127

subsidence or local collapses of caverns into sinkholes reaching the surface can
be observed after a few years (see Johnson, 1981). Salt layers have themselves a
very low hydraulic conductivity (10~12~1071% m/s) unless they contain thin,
interbedded sediment layers (clay, siits, etc.).

(h) Volcanic rocks. Volcanic tuffs and ashes are generally highly porous,
but their permeability is quite low. In Nevada, for instance, very thick layers of
welded and nonwelded tuffs are found up to 600 m above the water table. They
form an unsaturated zone where water can slowly infiltrate (but the recharge is
very small in Nevada). The weathering of these tuffs produces clay, which
decreases their permeability even more.

Lava flows (e.g., basalts) tend, in general, to be more permeable. We have
already described, in Section 4.l.e, the basalt columns, which are highly
conductive. Gases escaping from lava create bubbles and pores. The cooling
also creates joints. Within successive lava flows sediment deposits can form
interbedded, highly permeable layers. Finally, during cooling, the upper
surface solidifies first and can form a “bridge” under which the lava continues
to flow. Openings are thus created in the direction of the lava flow. For all
these reasons, lava can be highly to moderately permeable.

In the volcanic Canary Islands (trachytes and basalts), the moderately
permeable rock is exploited by man-made blind tunnels several kilometers
long, which dip slightly towards the entrance so that the collected water flows
out by gravity. Flow rates per tunnel can reach several liters per second. The
same system is also used in the Hawaiian Islands (Fetter, 1980) and is called
Maui tunnels, but the reason for them is different: the basalt is much more
permeable, but conventional wells would produce salt water, because there is
only a thin lens of fresh water on top of salt water (see Section 9.4). On the
Columbia plateau, in the states of Washington, Oregon, and Idaho, the basalt
layers (which are up to 3000 m thick) can be very permeable and form good
aquifers. At the same time, very compact basalt layers are found at depth,
where the hydraulic conductivity, measured at a local scale, is in the range
1078-1071 m/s (Freeze, 1979). A shaft is being sunk in the Hanford,
Washington, area to study such layers in more detail, with a view to using
them as possible radioactive waste repositories. However, it is highly
debatable whether such thick layers have indeed, at a large scale, such a low
hydraulic conductivity.

(1) Crystalline rocks. Granitic and metamorphic rocks generally have a
very low permeability if they are not fractured or if their fractures are sealed.
Because fractures have a tendancy to close with depth (see Section 4.1.¢), wells
are usually not drilled below 50 or 100 m, unless a crushed zone is known to
exist at depth. Here again, aerial photographs help locate the position of
fracture intersections, where the wells can be put down. Geophysical resis-
tivity measurements are also useful. Flow rates per well are usually small
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(1-10 m3/h, occasionally up to 30 m3/h). Most of the Precambrian
shield of Central and West Africa contains such mediocre aquifers, as do the
northeastern United States and Canada.

Some localized aquifers may also be found in areas where weathering has
occurred (arena sands, laterite, etc.), not to mention alluvial deposits.

(j) Coastal aquifers. These aquifers bring terrestrial fresh water into
contact with marine salt water; we shall study the related mechanisms in
Section 9.4.

6.1.2. Confined Aquifers

An aquifer is said to be confined if it is overlaid by a formation with low (or
zero) permeability and if the hydraulic head of the water it contains is higher
than the elevation of the upper limit of the aquifer (Fig. 6.10). Whena well or a
piezometer is drilled into such an aquifer, the water wells up suddenly in the
borehole as soon as the impermeable upper limit of the aquifer is broken
through. The water contained in the aquifer is in fact at a pressure higher than
that of the atmosphere: hence the term confined aquifer.

If this pressure is sufficient for the water to reach the ground surface and
well up (i.e., the piezometric head is higher than the elevation of the ground),
the confined aquifer is said to be “artesian” and the well “artesian” or
“flowing” (from the province of Artois, France, where the phenomenon was
first observed). An example of artesian conditions is shown in Fig. 6.11.

These artesian conditions may, however, disappear with time, if the aquifer
is exploited, because the hydraulic head in the aquifer decreases.

A water table or unconfined aquifer, as opposed to a confined aquifer, is one
where the piezometric surface coincides with the free surface of the aquifer,
which is overlaid by an unsaturated zone, as in Fig. 6.1 or 6.2.

The conceptual surface joining the water levels in all the piezometers is
called the piezometric level (or surface) or piezometric head. It has no physical

Well and static level

Hydraulic head of the water in the well
of the aquifer

Confined
aquifer

Confining beds

Fig. 6.10. Cross section of a confined aquifer.
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Fig. 6.11. Example of a confined aquifer: cross section of the Gironde eocene sands (France).

significance. On the contrary, for unconfined aquifers, this piezometric surface
coincides with the water table.

(a) Multilayered systems. In the example of the Fontainebleau sands
given in Section 6.1.d, the aquifer in the underlying limestone is confined over
most of the area. Figure 6.12 illustrates this.

In large sedimentary basins (e.g., the Paris basin in France, the Gulf Coastal
Plain or the Illinois—Wisconsin basin in the United States, or the continental
formations in North Africa), successive layers of sands, sandstones, clays,
marls, limestone, dolomites, evaporites, etc. can be found. Except for the first
layer, all others form confined aquifers and confining beds. They are referred to
as multilayered systems. They are generally very productive, and wells 20600 m
deep or more can be drilled. In general, the deeper the aquifer, the higher the
head, because deeper aquifers generally outcrop at a higher elevation on the
periphery of the basin, and therefore their initial head is higher. At great depth,
the water is hot due to the geothermal gradient and can be used as a
geothermal resource. In the Paris basin, the Dogger aquifer at 1800 m

Hydraulic head of the unconfined
aquifer in the Fontainebleau sands

Hydraulic head of the confined
aquifer in the limestone

Confined part of the limestone aquifer

Fig. 6.12. Cross section of a two-layer system, confined and unconfined.
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Fig. 6.13. Cross section of a confined—unconfined aquifer.

produces water at 70°C; in the Sahara, the Albian aquifer at 2000 m produces
water at 60°C, which must be cooled in atmospheric towers, before it can be
used for irrigation. Deep aquifers, however, often contain brackish waters.

(b) Unconfined aquifers becoming confined. Figure 6.13 is a schematic
cross-section of the aquifer in the Jurassic dolomite near Brignoles (Var,
France), which contains a top layer of bauxite lenses. The extraction of this
bauxite poses serious problems of mine drainage. The aquifer is unconfined at
the dolomite outcrops but becomes confined as soon as the dolomite is
covered by the impermeable cretaceous clays.

A confined aquifer can be compared to a U-shaped permeameter as in
Fig. 6.14. The head is always above the upper limit of the permeable medium.

(c) Difference between confined and unconfined aquifers when the piezo-
metric surface is lowered. It must be remembered that when there is a
drawdown in an aquifer (ie., when its hydraulic head is decreased by

Fig. 6.14. Analogy between a confined aquifer and a U-shaped permeameter.
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withdrawals) (1) the saturated thickness decreases in an unconfined aquifer,
causing a reduction in the transmissivity (permeability x saturated thickness)
and of the area open to flow; and (2) none of this happens in the case of a
confined aquifer. The area open to flow stays the same as well as the
transmissivity, as long as the drawdown does not push the piezometric surface
down below the upper limit of the aquifer (in which case the aquifer becomes
unconfined).

Any of the different formations that we have considered in Section 6.1.1 can
constitute confined aquifers if there exists a confining layer to cover it and if
the hydraulic head in the aquifer becomes higher than the lower limit of this
confining bed.

6.1.3. Media with Low Permeability

Strictly speaking, these media do not constitute aquifers as they cannot be
exploited. However, as a general rule, they contain water and form either an
unconfined system, if the layer in question outcrops, or a confined one, if the
layer lies at depth beneath a less permeable formation. Media with low or very
low permeability should never be taken to “have no water”; instead, one must
remember that the medium is probably saturated with water, which flows out
very slowly or scarcely at all owing to the low permeability of the medium.

When a mine is opened and air starts to circulate, the medium may well dry
out and any sign of flow may disappear. This is why salt mines, for example,
although pronounced completely dry, may in certain cases be considered as
water-saturated media, since the flow of water passing through is so small that
it evaporates when it enters the galleries.

This type of medium plays a significant role in numerous problems, where
water content is of importance:

(1) Civil engineering: consolidation, compaction, seepage force, and
stability.

(2) Hydrogeology: recharge of deep aquifers through aquitards by
leakage.

Generally, we distinguish between (1) aquitards, which are less permeable
beds from which water cannot be produced economically through wells, but
where the flow is significant enough to feed adjacent aquifers through vertical
leakage, and (2) aquicludes, which have very low permeability and cannot give
rise to any appreciable leakage, at least on a small scale (e.g., during a pumping
test). Leakage through them may, however, not be completely negligible over
very large areas.
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6.2. Aguifer Reserves

(@) Unconfined aquifers. If there is a drawdown Ah of the free surface (or
the piezometric surface} of an unconfined aquifer (Fig. 6.15), the liberated
volume of water is obviously the product of the volume comprised between
the two successive positions of the free surface and the specific yield w4 of the
aquifer.

However, this volume is not immediately available as the moisture profile of
the unsaturated zone must have time to decline by Ah, as shown in Fig. 6.16. If
the final profile is a parallel shift of the initial profile, the liberated volume is
indeed w4 Ah per unit surface area.

The time needed for the movement of the profile depends on the grain size of
the porous medium: see, for example, the table from King’s experiment in
Section 2.3.c.

The reserve of an unconfined aquifer is therefore given by the differences
between the present piezometric surface and the piezometric surface to which
it is acceptable to lower the water level in the aquifer; this difference is then
multiplied by the area and the porosity. An example is shown in Fig. 6.17. One
could, however, decide on other piezometric surfaces of maximum drawdown
(e.g., the suitable depth of wells).

(b) Confined aquifers. Imagine an elementary volume of a confined
aquifer, the hydraulic head of which is lowered by Ah as shown in Fig. 6.18.

Fig. 6.15. Drawdown in an unconfined aquifer.

Ah

& A / Saturation

Moisture content

Fig. 6.16. Shift of the mositure profile by a drawdown Ak in an unconfined aquifer.
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— Present piezometric
surface

Maximum drawdown of the piezometric
surface (here it would be, for example, the
level at which the aquifer would stabilize
naturally, if it were no longer recharged)

Fig. 6.17. Reserve in an unconfined aquifer.
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Fig. 6.18. Drawdown Ah in a confined aquifer.

=— Confined aquifer

«— Impermeable confining layer

The variation in hydraulic head Ak produces no dewatering of the confined
aquifer. However, we have seen in Chapter 5, when we established the diffusion
equation for a confined aquifer, that this decrease in hydraulic head
causes a “production” of water under the influence of two phenomena (see
Section 5.3):

(1) Decompression of the water: term wf, (compressibility coefficient of
water; @ = total porosity).

(2) Compaction of the porous medium: term o — wf, (compressibility
coefficient of the porous matrix, minus o times the compressibility coefficient
of the solid grains).

Both these effects are combined in the definition of the storage coefficient,

S = pwge(B — Bs + o/w)

where e is the thickness of the aquifer, p is the mass per unit volume of water,
g is the acceleration due to gravity, and S is dimensionless.

By definition, the volume of water produced by the variation in the
hydraulic head Ah per unit surface area (in the horizontal plane) of a confined
aquifer is ¥V = S Ah. In other words, in the case of a confined aquifer, the
storage coefficient S plays the same role as the specific yield w4 in the case of an
unconfined aquifer. The reserve of a confined aquifer is then the product of
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Fig. 6.19. Reserve of a confined aquifer.

the storage coefficient S, the area of the aquifer, and the difference between the
present piezometric surface and that to which it is agreed to draw down the
head in the confined aquifer. However, this coefficient S is about 1000 to 10,000
times smaller than the specific yield w,.

Figure 6.19 illustrates the reserve for a confined aquifer. It should be pointed
out that the volume contained between the two successive positions of the
piezometric surface does not have any physical meaning. Here, for example, it
is located in part in the air (the aquifer was initially artesian) and in part in the
first few meters of the soil.

Furthermore, we must remember that if there is a drawdown of the
piezometric head in a confined aquifer below the upper limit of the aquifer, it
becomes unconfined; the additional reserve, which then becomes available, is
calculated in the same way as that of an ordinary unconfined aquifer. An
example is given in Fig. 6.20. If the piezometric surface in this aquifer is
lowered from (1) to (2), the volume withdrawn is the area 4 multiplied by the
specifie yield plus the area B multiplied by the storage coefficient.

Fig. 6.20. Reserve in a confined—unconfined aquifer.
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6.3. Usual Boundary Conditions and Initial Conditions

In Chapter 5 we established the diffusion equation, which is a partial
differential equation of elliptic type in steady flow (0h/dt = 0) or of parabolic
type in transient flow (0h/0t # 0). We have now seen the different types of
aquifers encountered in the field, which are the domains in which we shall try
to integrate the diffusion equation.

However, in order to do this, we must first define the boundary conditions of
these domains of integration. In mathematics, we have three types of
boundary conditions:

(1) Dinchlet’s conditions, which concern the dependent variable: % is
prescribed on the boundary.

(2) Neumann’s conditions, which concern the first derivative of the
dependent variable: 6h/0n is prescribed.

(3) Fourier's conditions, which concern h and 0h/dn such that h +
a(0h/0n) is prescribed.

We shall add a fourth type: the conditions on a free surface or on a seepage
face, which are double boundary conditions. Then we shall examine the
problem of initial conditions.

(a) Prescribed head boundaries. Dirichlet’s conditions are imposed on a
boundary if the hydraulic head on the boundary is independent of the flow
conditions in the aquifer. This is generally the case where there is contact
between the aquifer and a free expanse of water (sea, lake, river, etc.) Figure
6.21 illustrates this. Along the contact area (A) of the aquifer—river, the
potential (hydraulic head) is constant and imposed by the water level in the
river. The river may recharge or drain the aquifer.

Hence, on a map, a river may be a prescribed head boundary of an aquifer.
Of course, the hydraulic head in the river varies along its course and

Ground surface

Water table

Fig. 6.21. A river as a prescribed head boundary condition.
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Fig. 6.22. An outcrop of an aquifer forming a prescribed head boundary condition.

sometimes with time as well, but these variations are controlled by the surface
conditions, not by the flow in the aquifer.

An outlet of an aquifer (line of springs) may also be considered as a
prescribed head boundary: i.e, that of the water level in the spring as long as
the aquifer flows outwards.

The outcrops of an aquifer layer (Fig. 6.22) can also, in certain cases, play the
part of a constant head boundary, as long as the infiltration rate of the rainfall
on the outcrops is higher than the flux of water flowing toward the center of
the aquifer. In other words, the aquifer layer on the outcrops is assumed to be
always “waterlogged,” as the excess of infiltrated water is drained by the
surface stream network on the outcrop.

(b) Prescribed flux boundaries. This is a Neumann condition. If we
impose the value of the normal hydraulic head gradient 0h/dn, on the
boundary, this is, according to Darcy’s law, equal to imposing the value of the
flux — K 0h/0n or — T 0h/dn on this boundary:

n

We distinguish between

(1) No-flow boundaries: 0h/on = 0. For example, the contact between an
aquifer formation and an impermeable layer, a fault*, or a confining bed as
shown in Fig. 6.23.

* A fault is not always a no-flow boundary. Some faults may let water flow through the
surrounding crushed zone or put the aquifer in contact with another permeable layer. Such faults
do not constitute boundaries.
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Fig. 6.23. A fault as a no-flow boundary
condition.

Rainfall

Piezometric head

Infiltration

Fig. 6.24. An outcrop as a prescribed flux boundary condition.

(2) Boundaries with a prescribed nonzero flux, such as (a) an outcrop in a
zone where the rainfall infiltration rate is lower than the potential of the
aquifer to “soak” it up (Fig. 6.24) [ the prescribed flux is equal to the infiltration
rate: it is the infiltration rate of the rainfall that determines the incoming flow],
or (b) a withdrawal with a prescribed production rate in an exploitation
(wells, ditches, etc.), which also constitutes a boundary with a prescribed flux

(Fig. 6.25).
oh
K-—do =
J w On ¢

The contact surface between two adjacent media cannot, in principle, be
regarded as a boundary for either medium. Indeed, if the hydraulic conductiv-
ities K; and K, are isotropic, we can write two conditions at the interface:

hy=h, {equality of hydraulic head)
Oh, oh, .
Kla—n =K 27, (equality of flux)
j f E/F!ow Q
& o L -,
" i =g (R
ST S

Fig. 6.25. Prescribed flux in a well or ditch.
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Fig. 6.26. Boundary between two media of differing hydraulic conductivity.

Furthermore, it is possible to evaluate the angle of refraction of the velocity U
(Fig. 6.26). As h, = h, all along the interface between 1 and 2, we can write:

hy _ Ohy
om  om
and as
. ch ) oh
U1 Sll‘l(xl = —Kl—l UZSIIIOCZ —_— “‘Kz‘-'z'
om om
oh oh
Ujcosa; = ——Kla—nl U,cosa, = —Kz—a—i—
we get
U;sina U,sina
lKl L ZKZ 2 and U cosa; = Uycosa,
Hence
tgay  tgoy
K, K,

In some cases, however, it is possible to consider the interface as a prescribed
flux or head boundary when the hydraulic conductivity contrast is large. As an
example, consider a highly permeable alluvial aquifer deposited in a much less
permeable bedrock. The bedrock receives recharge on the plateaux on each
side of the valley; this recharge flows through the bedrock toward the central
alluvial aquifer with high gradients and low velocities. The flux at the
bedrock—alluvium interface can then be considered as prescribed for the
alluvial aquifer since this flux depends very much on the flow conditions in the
bedrock and very little on the flow conditions in the alluvial aquifer. Inversely,
the interface could be considered as a prescribed head boundary for the
bedrock because the head in the alluvium will depend very little on the flow in
the bedrock.

() Fourier’s conditions. Take a stream draining (or feeding) a water table
aquifer, but with a low permeability silt layer, deposited on the bottom of the
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Stream,
elevation hg

Aguifer,
hydraulic head h

Water table

Aquifer,

hydraulic conductivity K
Silt, hydraulic
conductivity K/,
thickness e’

Fig. 6.27. Fourier’s condition between an aquifer and a stream.

“$tream (Fig. 6.27). The difference in hydraulic head Ah = hgoam — Faquiser
across the silt layer (denoted by h, — h) creates the necessary gradient for a
certain flow g per unit surface area of contact between aquifer and stream, in
accordance with Darcy’s law.

Ah hy—h
g=K-—= K’—s—;—
e e
However, when evaluated in the aquifer according to Darcy’s law, this flux is
given by
oh
= -— K ——
1 on
..where n is the normal line to the contact surface oriented towards the stream.
By equating the two expressions, we get
oh K’ K’
on e e

which is a Fourier condition definition. However, this condition is used much

less frequently than the two previous ones.

(d) Free surface. Two conditions define a free surface (see Fig. 6.28):
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Fig. 6.28. Free-surface condition. The hydraulic
head in M is equal to the elevation of the water table in
M.

(1) The pressure p is equal to the atmospheric pressure at any point M of
the free surface (see Section 2.2.d). Expressed in hydraulic head, 0 is by
convention taken as the atmospheric pressure, and we write

h=z

(2) The free surface is a no-flow boundary, if the aquifer is not recharged
through its surface:

oh
an =0

Thus a second condition is imposed on the same surface.

However, sometimes the aquifer is recharged through its free surface and the
flux that transits across it is prescribed (e.g., mean annual recharge), so that

oh _
8n_a

where n is the normal line oriented outward. The situation is the same if
evaporation takes away water from the aquifer (a is then negative).

The whole problem with the free surface is that we do not a priori know its
position. We have to find by-successive approximations a surface in space that
simultaneously satisfies

h=z and Oh/0n = a

Consequently, this problem is quite an intricate one. Usually an estimated
position of the free surface is chosen initially, which then determines the
boundary of the domain of integration. On this boundary the hydraulic head
(h = z) is prescribed, and after integrating the equation we verify that the
calculated flux K @h/0n is correct. If it is not correct, the position of the free
surface is moved in the desired direction and the calculation is repeated.

Another way of solving the problem is to consider the free surface not as a
boundary of the flow but as part of a continuum comprising the saturated
aquifer and the overlying unsaturated zone up to the soil surface. The diffusion
equation of the unsaturated medium must now be solved (see Section 9.2). The
free surface then becomes the area where the points of zero pressure are
located.
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In transient states and for a homogeneous medium, the diffusion equation
in an aquifer bounded by a free surface becomes
0%h %h 0%h

K"ax—2 + Kyay—z + I<262—2 =0 in the aquifer

oh\? oh\? oh\? oh oh
K, [ — — Kl—) =0o—+(K,—q— —
x<6x> + K”(@y) + z<6z> FY + (K.~ oz 1
on the free surface, where g is the flux (volume per unit horizontal surface area

per unit time) exchanged between the aquifer and the outside (evaporation,
infiltration) across the free surface, and q is positive if it is withdrawn.

(¢) Seepage face. When the water in an aquifer seeps outward along an
outlet surface (Fig. 6.29), the contact surface (S) is called a seepage face. The
boundary conditions are (1) h = z, since the pressure is by definition equal to
the atmospheric pressure, and (2) oh/dn < 0 where n is directed outward.
Indeed, the flow in the aquifer goes outward.

The seepage face poses the same kind of problems as the free surface: al-
though the elevation z along the seepage face is known, it is necessary to
determine, by successive approximations, the points A and B where the'seep-
age face begins and ends, respectively, and where the free surface starts.

Usually the position of the surface is imposed, and subsequently one checks
that the flow is indeed outward.

Free-surface and seepage-face conditions can also be treated graphically or
analytically in two dimensions by the hodograph method, if the flow is in a
steady state. This consists of representing the flow in the hodograph plane, the
axes of which are the components of the filtration velocity U, and U, [see
Polubarinova-Kochina (1962), Bear (1972), and Strack (1985).]

(f) Noboundary conditions. Finally, in certain cases, when the domain of
integration is assumed to be infinite, it is possible to disregard boundary

Fig. 6.29. Seepage face condition.
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conditions. The boundary conditions are then prescribed at infinity without
any need to define their character.

This kind of situation is very often created when one looks for analytical
solutions to the diffusion equation, whereas numerical or analog methods are
better suited to cases where the boundary conditions are known at finite
distances. Examples will be given in other chapters.

(g) Initial conditions. It is worth remembering that for transient-state
problems (0h/0t # 0, parabolic equation), it is also necessary to define the
initial conditions of the problem, i.e., the value of the hydraulic head 4 at all
points of the domain for ¢t = 0.
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7.1. General Properties of the Diffusion Equation

(@) There is only one solution. Let D be a given domain of integration of
the diffusion equation equipped with its boundary and initial conditions. It
can be shown that, if & satisfies these boundary and initial conditions as well as
the diffusion equation

div(K grad h) = SS%? +4q

then h is the unique solution to the problem. This is true in both a steady and
a transient state.

In this and the following chapter, we shall give a few analytical solutions to
the diffusion equation. As this equation is identical to the heat equation, many
other solutions can be found in books on heat conduction. (One of the most
widely used reference books in hydrogeology is therefore Conduction of Heat
in Solids, by Carslaw and Jaeger (1959, and its later editions). The current
analytical methods for integrating this equation in order to forge new
solutions are based on the use of Fourier and Laplace transforms and of
conformal mapping.

(b) Principle of superposition. A fundamental remark must be made
before we turn to the solution of the diffusion equation: this equation and its
boundary conditions are linear in h.

143
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Therefore, in 2 domain D with boundaries that are stable in space or at
infinity, the equation

div(K grad h) = Ss—aa—}tl +4q

is linear in h and q. Consequently, if (h,,q,) and (h,,q,) are two special
solutions of the diffusion equation that satisfy the given boundary conditions,
then (Vo ) ah, + Bh, is a solution of the same equation with the flows
ag, + Bg, and their resulting boundary conditions («h,; + ph,) on the
prescribed head boundary condition, («dh,/dn + B dh,/0n) on the prescribed
flux boundary condition.

Example. Assume that, in a domain D, an aquifer with steady-state flow
satisfies

div(T grad hy) = g,

where g, is the distribution of the source term in space. If this flow is disturbed,
for example by the installation of a well with a production rate g starting at
time ¢t = 0 at a given point M, the distribution of the hydraulic heads & in the
aquifer is a solution of the equation™®

oh
div(T grad h) = S% +4q0+4
where h satisfies the same boundary conditions as h, and has as initial
condition & = kg for t = 0.
Let us then define the drawdown in the aquifer by

s=ho—h

Substituting h = hy — s in the preceding equation, we get
. 0
div{ T grad(h, — s)] = S-a—t(ho —8+4go+4g

Because of the linearity, we write

ohy 0
div(T grad hy) — div(Tgrads) = 20 — s

ot o "ot 4

or yet, taking into account the first relation that k, satisfies, and keeping in
mind that dh,/0t = 0 (steady state),

as

i ds)=3S
div(T grad s) o

-4

* Here, g, and g represent the spatial distribution of the algebraic source term in the aquifer; as
the new source term g is in fact a sink representing a single well located in M and zero elsewhere, it
should be written g6(M) where §(M) is the Dirac é function (zero everywhere but in M, where
é = oo, and with an integral over space equal to 1). We will keep the simplified notation g here.
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The drawdown s satisfies the diffusion equation with the following
conditions:

(1) Imitial:s=0fort=0.

(2) Prescribed head boundaries: & = constant, so s = 0, since k = h, —
s = constant.

(3) Prescribed flux boundaries: 6h/dn = constant, so 0s/dn = 0; since

Oh _0Ohy Os tant
n on on oman

In other words, the drawdown s due to the pumping g satisfies an equation
in the domain D, where the boundary and initial conditions are very much
simplified compared to those of the original problem. Moreover, a drawdown
as would correspond to the production of «g: by calculating only one solution
s of the drawdown for a given flow ¢, it is possible to give an infinite number of
solutions s = h, — as to the problem of pumping at any arbitrary rate «g.
Accordingly, it is possible to add together the influence (i.e., the drawdown) of
production in several different wells.

We shall use this property of linearity very often in order to superimpose
known solutions (the method of images, for example), or even to fashion a new
solution by integration of a given solution.

However, one must remember that, strictly speaking, the diffusion equation
in two or three dimensions is only linear for a confined aquifer; in an
unconfined aguifer, the transmissivity 7 may vary with the hydraulic head 7,
causing the eguation to become nonlinear and making it impossible to
rigorously apply the method of superposition.

Furthermore, in a vertical cross-section, this method cannot be applied to
an unconfined aquifer, because the position of the free surface varies and
the domain of integration is no longer stable.

The problems of the unconfined aquifer are therefore more intricate. We
shall see later on that the best way of treating them is sometimes to take the
overlying unsaturated zone into account. This does not mean, however, that
the problem of nonlinearity is solved.

Strack (1985) was however able to show that the method of superposition
can still be applied to unconfined flow conditions in steady state in two
dimensions by using as variable the “discharge potential” ¢ = 1Kh? + const,
where K is the hydraulic conductivity of the aquifer, and  the head measured
above the elevation of the impervious base of the aquifer (assumed to be
horizontal, as in Section 5.1, where we obtained a diffusion equation in ©2). See
also Section 7.5.

(c) Anisotropy. We shall mainly study analytical solutions in homog-
eneous isotropic media. The problems of anisotropic media may be expressed
as equivalent isotropic ones by stretching the coordinates.
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If K,, K,, and K, are the three diagonal components of the hydraulic
conductivity tensor in the principal directions of anisotropy, then Darcy’s law
and the diffusion equation (assuming that these conductivities are uniform in
space) give

ch ch oh

U=—Kg U=-Kz U=-Kg
62h 0%h %h oh
6 2+K)’a 2+K oz a2 _SSE

where S; is the specific storage coeflicient of the aquifer.
A change of coordinates yields

xl K r K r K
= —X = _— ZzZ = —Z
K, Y =Jk,” K,

where K is an arbitrary coefficient with the dimensions of a hydraulic

conductivity:
Oh Ohdx  [K, dh
ox'  éxdx’ \ K ox

and h 3 (oh\dx K, &h
ax* ox\ox' ) dx K ox?

Therefore, the diffusion equation becomes (in the new coordinate system):
0*h  &*h  *h S, 0h
12 + 72 + 2T R A
ox ay 0z K ot
which is an ordinary Laplace equation in the new axis system. It must be noted-
that, with anisotropy, the equipotential lines and the flow lines are no longer at

right angles in the system of real coordinates x—y—z, while they are at right

angles in the system x'—y’'—z’. The velocity components in the new system are
oh oh oh
U,=—-K U,=-K U,=—-K—

ox' oy’ 0z

Hence, we deduce that

K K K
U= [-2U., U= [-2U, U,= |-2U
* K% y K’ =Jx U

If we calculate the flux Q' of the vector U’ across an arbitrary surface 2/,

Q’=f U’-ndo"=f (UL, + U, + ULJy) dudo
z )4

where J| is the direction cosine of the normal line to £’ and u, v are arbitrary
parametric coordinates of the surface Z'.
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It is then clear that if we try to calculate the flux of the vector U in the
homologous surface Z, defined by the same parametric coordinates u, v, we get
the following relations between the Jacobian functions (direction cosines) J;
and J| of the two sufaces £ and X"

D(y',z") K? . D(y, z)
J f = = J et 2
TP B - A T

If U, is substituted for U, in the above integral, we see that

K3 K.KK,
kKEZ O 2= &

Qr —_ Q/

which gives the relation between the flows in the anisotropic system and the
equivalent isotropic system. In order to make these flows identical, we only
have to take K = YK, K,K,. The same problem would arise for S, if a different
value were chosen for K.

Using transmissivities in two dimensions, an identical development
would give T = /T, T, and we would define the change of coordinates to be
x'=/T/T,x and y' = JT/T,y.

7.2. Parallel Flow: First Solution in a Steady State

An aquifer with parallel (or uniform) flow is an aquifer where the velocityis a
constant (in intensity and direction) at all points. The hydraulic head satisfies

h=ax+by+cz+d
which is a solution of
V2h=0

and which indeed gives a constant velocity U, = —Ka, U, = —Kb, U, =
—Kc. The constants are identified using the boundary conditions. A
polynominal expression of the second degree is a solution of the problem
V2h = g (constant infiltration). Of course, the velocity is no longer uniform.

7.3. Two-Dimensional Solutions in Radial Flow

(a) Dupuit’s elementary solution. In polar coordinates (r,8) in two
dimensions, the Laplace operator is written

2
vho L2 ), 10

ror rar r2 66
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Fig. 7.1. Radial flow toward the origin.

An elementary solution to the problem is the one that depends only on r:
0%h/06% = 0. Hence,
10/ oh
v or <0_> =0

This is easy to integrate, giving:
h=alnr+b

where r 0h/0r = a, a and b are constant, and In is the natural logarithm.

If we look at this solution in two dimensions, we find that it is a flow
converging radially on the origin (Fig. 7.1). The equipotentials (h constant) are
circles. If we calculate the flow crossing a given equipotential line at the
distance r from the origin, then, according to Darcy’s law,

2n 6h
Flow = T—d0 =2nTa = const = @
o Or

This constant flow then represents the flow rate @ withdrawn from the
aquifer at the point of origin, for example in a borehole with a given radius r,
as shown in Fig. 7.2. The elementary solution just given is therefore that of a
well in a confined aquifer. The constant ais given by the flow rate produced by

<«— Boring, radius rg. flow Q

ol 4—-—— Confined équi;‘er . .

Fig. 7.2. Cross section of a confined aquifer through a borehole.
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the well according to the integral of the flow:

a2
2nT

The constant b is given by the boundary conditions. The simplest boundary
condition is obtained by imposing the value 4 at a distance R from the point of
origin:

Then

_ o

Finally, the hydraulic head % in the vicinity of the borehole is given by

0 r
hr)— H = 2nTlnR
which is Dupuit’s or Thiem’s formula.

This formula corresponds exactly to the problem of “the well on an island:”
the boundary condition # = H,r = Ris only satisfied for a confined aquifer on
a circular island, as in Fig. 7.3.

However, in reality, the water level in a borehole in any aquifer often
stabilizes after some time (arriving at steady state) for a number of reasons,
which we shall examine later (recharge boundary, leakage). The profile of the
hydraulic head, depending on the distance from the boring, is then a
logarithmic function (Fig. 7.4), which allows us to define a “fictitious radius of
action” R corresponding to the distance from the borehole where the
drawdown (M. — #1) would be zero. This is mostly quite far from the
physical reality, but it is often used in practice. It will be discussed again in
Section 8.1.3.

(b) Well in an unconfined aquifer. 'We have seen in Section 5.1 that, if the
bedrock is horizontal and the velocity is assumed to be always parallel to it, the

l Borehole, flow Q
| h=H

(sea or lake)

Fig. 7.3. The “well on an island” problem.
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h __ _ Initial hydraulic head in the
aquifer (before pumping)

R

& log r

Fig. 7.4 Hydraulic head in an aquifer as a function of the distance to a well. Observations are
marked with x ‘s.

diffusion equation for an unconfined aquifer in steady state may be written
Vi =0

By repeating the above reasoning, we can immediately deduce that for the
radial problem, the square of the hydraulic head is a logarithmic function of
the radius. More precisely,

2 2 Q To
h§— H* = KPR
where R is the radius of action already defined, r, the radius of the well, K the
hydraulic conductivity, H the hydraulic head at the boundary, and A, the
hydraulic head in the aquifer around the well (Fig. 7.5.). This is known as the
Dupuit-Forchheimer formula.

Observe that, in reality, the surface of the water in the well does not exactly
correspond to the free surface in . There is a certain length of seepage face in
the borehole and head losses due to the well screen, which have not been taken
into account here. The piezometric profile in the aquifer is given by

g

h2 = H? 4 < Inl
+7'cKnR

/ Y /v-“

Fig. 7.5. Well in an unconfined aquifer.
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0 0

Fig. 7.6. A two-well system. M

In fact, the Dupuit assumption that the velocities are always horizontal
becomes less and less acceptable closer to the well. The true piezometric profile
lies above the Dupuit approximation.

() Method of images. Take two different wells with centers O and O/,
each producing at a steady rate of Q and Q’, respectively. We want to find the
hydraulic head at all points M of the domain (Fig. 7.6). According to the
principle of superposition, this could be done by adding up the elementary
logarithmic solutions of all these wells. At M, we can write

Y o

hy =—=Inr +

TnT 7T Inr’ + const

We identify the constant from the boundary conditions, if this is possible.

First special case: Prescribed head boundary. Assume that in the well O’ 2
flow of —Q is produced; ie., in fact, the flow @ is injected. The solution
becomes

Iy = i%ln:—, + const

If we study the points M where r = r’ (i.e., on the mediator of QO’), as in
Fig. 7.7, we see that hy, is constant. In other words, a constant hydraulic head is
prescribed on the mediator of OO’.

This means that we have found an exact solution to the following problem: a
single well O, situated at a distance d from an infinite straightline boundary
with a prescribed head h = H (see Fig. 7.8):

o r
h=—"In—+H
2T nr’ +

Fig. 7.7. Mediator of the OO’ segment.



152 7. Steady-State Solutions of the Diffusion Equation

Fig. 7.8. Prescribed head boundary, real well and image well.

where r is the distance to the real borehole O and ' is the distance to the
fictitious point O’ symmetrical to O with respect to the boundary.

This solution is indeed the unique solution of the present problem, because
it satisfies the boundary conditions and the diffusion equation.

The only reservation we make is that, at the well O, the radius of the
borehole r, must be negligible compared to the distance 2d between O and O’,
so that the hydraulic head h, in the well O is really a constant around its
circumference. If this is not the case, O and O’ are no longer the centers of the
boreholes, but the poles of the pencils of circles, i.e., the positions of the points,
where the ratio »/r’ is constant.

Usually, the fictitious point O’ is called the image well of the well O, an
image that has an opposite sign, because the flow of the fictitious image well is
the opposite of that of the real well.

We must, however, remember that the above solution also describes the case
of two wells with the same flow rate but of opposite sign in an infinite medium.

Second special case: No flow boundary. In the initial expression with two
borings O and O, we now let @' = Q.

g

hy = ——=Inrr’ + const
M7 onT Tt

It is immediately obvious from symmetry that on the mediator of OO,

oh
on 0
This may easily be demonstrated by switching to Cartesian coordinates
r? = x2 + y? and calculating dh/dx.
Thus we have found the analytical solution of the problem of a single well O
situated at a distance d of an infinite straight-line boundary with a no-flow
boundary condition dk/dn = 0 (Fig. 7.9):

h= %ln rr’ + constant

where r' is the distance to the “fictitious image well” symmetrical to the weli O
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Fig. 7.9. No-flow boundary, real well and ﬁ’_ _

image well. on ©

with respect to the boundary, but this time, the image well has the same sign
(flow + Q) as the well O.

The same remark applies to the relation between the radius r,, of the boring
compared to d and the description of the solution for two real boreholes in an
infinite medium.

Several boundaries. By this method of images (a well giving rise to an
image with respect to a boundary) it is therefore possible to describe a problem
with several boundaries.

First example. Alluvial half-aquifer: two parallel boundaries, one
with a prescribed head (the river) and the other with no flow (the hillside),
as shown in Fig. 7.10. However, each fictitious image well gives rise to
another fictitious image (of the same or opposite sign) with respect to the
other boundary, thus producing an infinite double series of images
farther and farther away. In practice, only a few terms are used.

Second example: Confluence of two rivers (prescribed head bound-
aries). If the angle of the two boundaries is exactly 2n/n (n integer),
n fictitious images arranged in a circle are generated as in Fig. 7.11.

There are numerous examples of the use of the method of images.

(d) Wellline. Tt is sometimes useful to imagine an infinite series of wells
separated from each other by a distance a and producing at the same rate Q in
an infinite aquifer. The solution is obviously found by adding an infinite
number of elementary solutions. However, the symmetry of the flow may also

+Q

No /h=H
o flow
Q -Q -Q
] o @ @
Real
well

Fig. 7.10. Infinite series of image wells for a two-boundary system.
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N Fig. 7.11. Intersecting prescribed head bound-
aries.

be used to advantage, as the mediators of the segments joining two nearby
wells are flow lines marking the limits of the flow towards each of the wells
(Fig. 7.12). The flow is then a succession of identical “modules” defined for

instance in
c a + a
x -zt =
272

Schneebeli (1966) has shown that, in such a module, the elementary solution
is expressed by

) In cosh(2ny/a) — cos 2nx/a)

h= T 2

When y becomes large compared to a (in practice, y > a), the cosh term
becomes predominant compared to the cos term and we can write

This is equal to a uniform flow paraliel to the y axis with the constant
gradient

oh_ 2
dy  2aT
VT
\I
—
I - “Tia - - ~

Well

N

Well Well 2

\]

Fig. 7.12. Line of wells.
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As soon as one moves away from the well line (y > a), one can therefore
represent it as a continuous drainage ditch, located along the x axisat y = 0,
and withdrawing the same flow from the aquifer as the line of wells with a
constant prescribed head given by

h(y =0)= —%ln2

taking as a reference i = O for y = 0, x = + a/2 in the complete exact solution
above.

This procedure is often useful in drawdown projects, when the aim is to pass
from a well line to a ditch or vice versa. It is easy to generalize to the case where
the well line is parallel to a boundary by means of the method of images.

(¢) Characteristic curve of a well. In steady state the flow rate of a given
well may be expressed as a function of the drawdown (initial hydraulic head
minus that of the stabilized state) in the borehole:

(H-h)

In(R/ro)

in confined aquifers (Dupuit’s formula) where r, is the well radius, and in
unconfined aquifers,

Q=2n

(H? — b?)
In(R/ro)

Hence, we deduce that the curve describing the evolution of the flow O
versus the stabilized drawdown s = H — h should be a line for a confined
aquifer and a parabola for an unconfined one.

In reality, the “characteristic curve” of a well, which gives the drawdown s
versus @, always has a parabolic shape, as in Fig. 7.13.

There are always quadratic head losses (nonnegligible term v?/2g) in the
first 10 or 20 ¢m surrounding a well, in the filtering gravel pack, and in the
central well screen as shown in Fig. 7.14. The characteristic curve of the well
describing this quadratic loss of hydraulic head is particularly useful for
determining the power of a pump in order to obtain a given production rate.

Q0 =nK

4
S

Fig. 7.13. Characteristic curve of a well. Q
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Slotted tube {well screen)
Wall of /

the borehole
*—— Sorted gravel pack
1

2
ol

dliil

195000000080 000000809]

Cross section of a well
Fig. 7.14. Gravel pack and screen of a well.

In practice, it is admitted that the quadratic form of the head losses in the
formation, in the well screen, and even in the well casing allows us to formulate
alaw of variation in the stabilized drawdown with the flow rate, which has the
following form:*

s = AQ + BQ?

Therefore, tests are made on the well at several flow rate steps, each of them
sufficiently long for the water level to be fairly stabilized (after a while, s does
not vary much with time; each step lasts a few hours). Then s/Q is plotted
versus Q. This should be a line of slope B and vertical intercept 4. Walton
(1970) characterizes the state of the well by the value of B:

B< 675 m/(m?/s)? good well, highly developed'
675 < B <1350 m/(m%/s)*  mediocre well

B> 1350 m/(m3/s)>  clogged or deteriorated well

B > 5400 m/(m3/s)*>  well that cannot be rehabilitated

* See Note Added in Proof at the end of this chapter.

* If a well in an alluvial medium is to be developed, the fine particles in the formation around the
borehole are set in motion through alternating pumping and injection so that they may be
extracted by pumping. In this way, the permeability of the sediment close to the well is increased
and the quadratic losses in hydraulic head decrease. In a limestone formation, the quality of the
well is improved by injection of acid (HC1), which dissolves the rock and opens the fractures. In a
fractured medium, blasting may also be used to increase fracturing locally. In a formation
containing clay particles or drilling mud, polyphosphates are used to remove the clay.
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7.4. Elementary Solution in Spherical Coordinates

In spherical coordinates in three dimensions {p, 8, ¢), the Laplace operator
is written as
190 oh 1 i oh 1 0*h
28 e 277 . : - —_—
Vh="% (p ap> t 756 0 <Smeae>+ 27 sinZ 6 062

A solution that depends only on the distance p at the origin satisfies

G oh
2 _ 2— —
Vh_ﬁp (p 0p> 0

that is, h=-240p

P

It can also be shown that this solution is a flow converging on the origin, which
corresponds to a constant withdrawal Q in all spheres of radius R centered on
the origin. The flow Q is

Q = 4na

‘As an example of how to calculate a new solution by integration of an
elementary solution, we look for the solution h that corresponds to a
withdrawal at a constant flow rate on a segment of the line z = +C with a
constant withdrawal density dQ = 1d¢ on this segment.

The elementary solution for a withdrawal at a point ¢ of the segment (+ C,
—C) of the z axis is

dQ
h _
dn /x* + y* + (z — &)?
whence by integration, +C
+C —
sz AdE e ]
—cdn/x*+ Y+ (z — &)?

0 —_—

A lnz+C—I—\/x2+y2+(z+C)2
dn ;- C— /x*+y* +(z~C)? e

7.5. Complex Potential in Two Dimensions

If the hydraulic conductivity K (or the transmissivity T) is constant,
uniform, and isctropic, the velocity potential ¢ = Kh (or Th) is defined.
Darcy’s law and the steady-state diffusion equation become, as functions
of ¢,
U= —grad ¢

Vip =0
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Tt is then possible to define a conjugate function s called the “stream function”
by
o 09 oy 09

ox  dy’ dy ox
This definition is possible because V2¢ = 0, which means that V2y = 0. The
above conditions are Cauchy’s conditions on the two functions ¢ and y, which
define an analytical function T,

T'=¢+ip

which is an analytical function of the complex variable z = x + iy (and not of
x and y separately; cf. Cauchy’s conditions). The function I is called the
complex potential of the flow.

Why is i called the stream function? This can easily be expldined. Let P and
P’ be two neighbouring points of the complex plane, as in Fig. 7.15.

Now calculate the flow crossing the segment PP’ using

dQ =U-nds
The components of U and nds are

oh o oy

N 8x_—8x_—a

v oh op
K 2 Y
0y dy 0x
and
—dy
nds {dx
Hence
dg =glll—dy + %dx = dyfs
dy O0x

Thus, between two points A and B as in Fig. 7.16, the flow crossing any curve
that joins A to B is

flow = y/(B) — y(A)

P’ {(x+dx, y+dy)
A(x,y)

x> Fig. 7.15. Complex plane.

Y
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Fig. 7.16. Complex plane. x

Hence, the lines of constant ¢ are equipotentials of the flow, and the lines of
constant i are the stream lines of the flow, whence the name stream function
for .

Example. The elementary radial solution in two dimensions is very easily
expressed in terms of the complex potential:

Y Y .00 :
Iﬂ(z)--27rlnz—2nlnr+127t =¢ + iy
Therefore, the equipotentials are ¢ = (Q/2n)Inr. We recognize the same
expression given already if we remember that the velocity potential is ¢ = Kh
(or Th).

The complex potential is valuable in that it permits the use of a number of
analytical methods of transformation. In particular, conformal mapping
(inversion, for example), which retains the angles, may be applied to this type
of problem and makes it possible to find simple analytical solutions to
problems that appear not to have any. See Polubarinova-Kochina (1962)
Bear (1972), or Strack (1985) for this type of approach in mathematical
hydrogeology.

The underlying principle of the process is as follows. The complex x—y plane
is transformed into a plane u—v, where the given flow problem has a known
potential I'. By inverse mapping, we obtain the complex potential I' in the
initial plane (x—y). The elementary solution to the problem of Section 7.3.d, for
example, has been calculated by Schneebeli (1966) using the following
mapping:

.onl
I =sin—
a

which transforms the infinite plane into a “module”

e e
xed -2 + 2
272

with the desired boundary. It is then sufficient to separate what is real from
what is imaginary.
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For unconfined flow conditions Strack (1985) uses the potential ¢ =
1Kh? + const, assuming that the head is measured from the elevation of
the horizontal impervious base of the unconfined aquifer. It is clear that

a (1 _on* o (1 on* 0 oh 0 oh
p=—|2K—|+—|zK—|=—|Kh—|=—|Kh— ] =
Ve ox (2 6x> * dy <2 8y> 0x ( 6x> 0y < 6y> 0

is the diffusion equation for the unconfined aquifer, as was given in Section 5.1.
The associated stream function ¥, defined by the same Cauchy conditions as
above, also gives the flow in the aquifer. The method of the complex potential
can therefore also be applied to unconfined flow conditions with this new
definition of the potential. Once the potential has been determined, the head is
calculated by

h=/2¢/K

if the constant is taken to be zero.

Since the unconfined flow equation is linear in ¢, but not in 4, the principle
of superposition can be applied for ¢, but not for &; h can only be calculated
from the sum of the ¢’s.

Example: The elementary solution for a single well is ¢ = (Q/2n)Inr;fora
doublet of wells, one injecting and one pumping with the same flowrate, the
potential is

0 Q Q.7
$=¢1+¢=5-Inr, —=lnr, =Zlnf

The head distribution is then calculated from & = /2¢/K.

Note Added in Proof

In the petroleum industry, it is usual to assume that the medium
surrounding the borehole has been modified by the drilling. A dimensionless
“skin effect” s, is defined by s, = (k/k, — 1)In(R,/R), where k is the intrinsic
permeability of the formation, &, is that of the perturbed zone, R is the radius
of the well, and R, is the radius of the perturbed zone. The skin effect can be
positive or negative, e.g., if the perturbed zone has been clogged by injection of
mud, or, on the contrary, developed by the production or by other operations
(e.g., acidification). The skin effect can be determined by interpretation of the
pumping tests and recovery curves.
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We shall try to find a few analytical solutions commonly applied to the
diffusion equation in transient state. We derived in two dimensions (confined
or unconfined aquifer subject to Dupuit’s hypothesis),

S oh
2p 2 Y%
Vih = T ot
or in three dimensions
S, oh
Vih==—
K 0t
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Note that the general properties of the diffusion equation (uniqueness of
solution, linearity, anisotropy) given in Section 7.1. hold true for the transient
state as well.

8.1. Elementary Solutions in Radial Coordinates

In radial coordinates, we write the diffusion equation in two dimensions,
and if we assume that the solution only depends on the distance r, we obtain

10 an _S o
ror r@r T ot

Let us define

which is called the aquifer diffusivity. One elementary solution is the Laplace
solution™:

h = Cexp(—r?/4at)t 2
withn=1,2, 0r 3,
r=x n=1
r=/x>+y? (n=2)
F= \/m (n=23)
This corresponds to an impulse point injection of fluid at the origin, in an

infinite aquifer, with initial condition A =0 Vr. In the following, other
solutions are given.

8.1.1. Theis’s Solution

Theis (1935) presented an integral solution (possible because of the linearity
of the equations) of this elementary solution in two dimensions, which
corresponds to a continuous point injection of fluid at the origin:

t _ .2
b, 1) = J der
0

This is also the solution of the diffusion equation with boundary conditions
prescribed at infinity and initial conditions A = 0 Vr.

* It is easily obtained by using the Laplace transform, which is a very efficient method for
solving a number of transient problems.
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With this solution we calculate the flow crossing a cylinder of radius r:

oh ] texp(—r2S/4Tw)
= — = 2T — e S a4
Qfr, 1) 2nrT o 2nr p» [C J , . dr
t 2
= anCSJ M‘h
[}

O(r,t) = 4nTCexp(—r*S/4Tt)

If r = O, the flow rate injected at the origin is thus constant; if r — 0 or t — oo,
0 —4xnTC.

The flow rate Q(r,t) crossing the cylinder of radius r, representing a
borehole is therefore constant if 7, is negligible or ¢ is large: this solution, called
the Theis solution, is consequently one that corresponds to injection (or
pumping) at a constant rate in a well with a negligible radius, and C = Q/4nT.

0 (texp(—r*S/4T7) i

M =27, T

If we write
4Tt

TS

U IR 0 DY
h(r’t)_m 1 T dr—4nT[ Ei< u>]

Here, E, is the exponential integral function, which is known and tabulated.
In practice, the so-called “Theis curve” is drawn as a function of the
parameter u:

u

then

hr,t) = ZS—T W(u)

W(u), the Theis function, is generally drawn on log—log paper. See Table 8.1
and Figs. 8.6 and 8.7.

Note that if Q >0, h grows with u (or with t). This is then the case, when
the flow Q is injected, and @ < 0 corresponds to the case where the flow is
withdrawn.

8.1.2. Jacob’s Logarithmic Approximation
If t is large, then so is u, and
—E(—1l/w)—»Inu—y
where y is the Euler constant (y = 0.577, ¢* = 1.781).
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Table 8.1

The Theis Function, W versus u*

u 1.0 0.5 0.333 0.25 0.20 0.167  0.143 0.128 0111
x 1 0.219 0.049 0013 0.0038 0.0011 0.00036 0.00012 0.000038 0.000012
x 101 1.82 1.22 0.91 0.70 0.56 0.45 0.37 0.31 0.26
x 102 4.04 3.35 2.96 2.68 247 2.30 2.15 2.03 1.92
x 107 6.33 5.64 5.23 4.95 4.73 4.54 4.39 4.26 4.14
x 104 8.63 7.94 7.53 7.25 7.02 6.84 6.69 6.55 6.44
x 103 10.94 10.24 9.84 9.55 9.33 9.14 8.99 8.86 8.74
x 108 13.24 12.55 12.14 11.85 11.63 1145 11.29 11.16 11.04

x 107 15.54 14.85 14.44 14.15 1393 13.75 13.60 13.46 13.34
x 108 17.84 17.15 16.74 16.46 16.23 16.05 15.90 15.76 15.65
x 109 20.15 19.45 19.05 18.76 18.54 18.35 18.20 18.07 17.95
x 1010 21245 21.76 21.35 21.06 20.84 20.66 20.50 20.37 20.25
x 101! 24.75 24.06 23.65 23.36 23.14 22.96 22.81 2267 22.55
x 1012 27.05 26.36 25.96 25.67 25.44 25.26 25.11 24.97 24.86
x 1013 29.36 28.66 28.26 27.97 27.75 27.56 27.41 27.28 27.16
x 1014 31.66 30.97 30.56 30.27 30.05 29.87 29.71 29.58 29.46
x 101% 33.96 33.27 32.86 32.58 32.35 3217 32.02 31.88 31.76

o After Wenzel (1942).

In practice, as soon as u = 4Tt/Sr? > 100, the logarithmic approximation
of the Theis formula can be used. This is also called Jacob’s formula.

) I 4Tt Q ln2.25 Tt
2T "e'Sr? 4T . §r2

Foru = 100, 50, 25, 10, the errors in using Jacob’s instead of Theis’s formula
are 0.3%, 0.5%, 1.4%, 5.2%;, respectively.

On semilog paper, the response curve 4(t) at a given point is a straight line
(as shown in Fig. 8.3).

A review of the basic assumptions of the Theis and Jacob formulas may be
helpful. They are

hir,t) = )

(1) Infinite, homogeneous, and isotropic medium.

(2) Constant transmissivity (confined aquifer or, with approximation,
unconfined aquifer with small drawdown; S is then replaced by w4, the specific
yield).

(3) Two-dimensional approximation, i.e., the hydraulic head does not vary
in the third dimension: the velocity is parallel to the confining beds for a
confined aquifer, or to the bedrock, assumed horizontal, for an unconfined
aquifer (Dupuit’s hypothesis).

(4) Boring going through the entire thickness of the aquifer* (so that the
problem remains two-dimensional), pumping at a constant rate with a
negligible borehole radius.

* This is then called a fully penetrating well.
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(5) Imitial conditions h{t,0) =0 Vr, ie., an aquifer that is initially
mmmobile. If this is not the case, according to the principle of superposition,
the drawdown s = h, — h satisfies the initial conditions if h, is a steady state.

Note. The variation of the hydraulic head around the well can be computed
for large ¢ from
oh _ Q exp(—=Sr?/4Tt) Q1

5= dnT ” ~nT 1 if » is small

Hence 0h/0t — 0 as t — co: the hydraulic head variation becomes very slow
in the vicinity of the well. Furthermore, as 0h/dt depends very little on r,
the piezometric profile moves down while remaining parallel to itself in the
vicinity of the well.

8.1.3. Relations between Transient and Steady States

In a steady state, Dupuit’s formula, which gives the drawdown in a boring of
radius ry, is

Q@ R

S, = ——In—
2T rg

where R is the radius of action of the well, i.e., the zone inside which the effect
of the pumping is felt. Beyond R, the drawdown caused by the well is taken to
be zero.

This notion is often accepted in practice. In most cases, this zone R is
fictitious. The drawdown is stabilized and a steady state is established through
the influence of a boundary such as a river at some distance or of a leakage
phenomenon (see Section 8.3) or simply of surface recharge for an unconfined
aquifer.

However, in an aquifer that is not recharged by leakage, infiltration, or
through a boundary, this radius of action around the well may be expressed as
a function of the pumping time. We use Jacob’s logarithmic approximation at
the radius r, of the well itself to find

Q ,225Tc _ 0 | 15/T¢S

o= 4xT © Sr2  2aT "

If this expression is compared to Dupuit’s formula, it gives R = 1.5,/ Tt/S.
If the aquifer is infinite and not recharged, R varies as \/—t_ If tis large, R

varies very slowly and it seems as if a steady state has been obtained.
Moreover, at a given time, a piezometric profile passing through the well

actually has a logarithmic expression as given by Dupuit’s formula (as long as
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Jacob’s approximation can be used, ie., if head measurements are made not
very far from the well).

8.1.4. Application of the Principle of Superposition

Just as in a steady state (Section 7.3.c), the principle of superposition may be
used, either (1) to calculate the influence of several wells pumping in the same
aquifer, (2) to describe artificially the influence of a straight line boundary
(method of images), or (3) to study the recovery of the aquifer after the
production has stopped.

(a) Impervious straight-line boundary (no flow). We shall use the draw-
down as an example. The production is of the same sign in both the well and its

image well (Fig. 8.1).
0 4Tt 4Tt
St W\s7) s

When it becomes possible to use the logarithmic approximation for both W
functions, then

S

2.25T 22
0 [l 5 t+1n 5Tt]

T T | s Sr’2
0 225Tt | 1
ST 4aT 2In sz lanz

If the evolution of the drawdown s is plotted versus the logarithm of the
time (semilog paper) for a given observation point M, the slope of the line
doubles as soon as the logarithmic approximation becomes valid for both the
well and the image (see Fig. 8.3).

(b) Straight-line recharge boundary (prescribed head). The production is
of the opposite sign (injection) at the image well:

0 4Tt 4Tt
=g () ()]

Boundary

Fig. 8.1. Boundary, real and image wells.
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When the logarithmic approximation can be used for both W functions, then

o Q [225Tc | 225Ti
TanT| s T e
_ 2

S—ZnTlnr

The drawdown stabilizes and does not change with time any longer (see
Fig. 8.3). This is one way in which a steady state is obtained.

(c) Cessation of production. To calculate the behavior of a well after it
has been stopped (“recovery curve”), an imaginary injection with the same
constant flow rate is superimposed on the borehole itself, which is supposed to
continue production at the same constant rate. The two flow rates thus cancel
each other, and indeed represent an idle well.

Let t, be the duration of the pumping and ¢, the time counted from the
cessation of production. The drawdown at any time after the end of
production is given by

9 4T (ty + t,) 4Tt
T 4nT {W[ Sr? :| N W< Sr? )}

Three cases may arise:

S

(1) The functions of W must be used for one or both terms.
(2) Jacob’s approximation may be used for both of them:

0 {m 225T(to +1a) 2.25Tt1}

N

~4nT Sr2 Sr2

Q0 Lt 0 fo
R 4nT1n<1 * t1>
If s is plotted as a function of the logarithm of (1 + ¢,/t,), a straight line also
appears. Such a plot is called Horner’s diagram.

(3) It can be supposed that the first function W is stabilized (i.e., that the
pumping has gone on for long enough)—that is to say that, at least during the
first part of the recovery, the drawdown s only varies as a result of the second
function W (or its logarithmic approximation). This term is treated alone as a
single pumping. This last method is known as the Houpeurt—Pouchan
method.
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8.2. Interpretation of a Pumping Test

(a) Jacob’smethod. If awellis pumped at a constant rate, it is possible to
determine the T and § parameters of the aquifer: hence the frequent use of
“pumping tests” in the study of an aquifer.

From an initial condition of the head in the aquifer that is as steady as
possible, pumping at a constant rate is started in the well and the drawdown is
observed in the well itself and, if possible, in a certain number of piezometers
in the neighborhood. The rhythm of the measurements is very fast in the
beginning (once or, if possible, more per minute) and slows down with time.

The pumping test is usually interpreted by graphical analysis of these
measurements so that T and S can be deduced.

Jacob’s method consists in plotting, on semilog paper, the drawdown s at a
given point (well or piezometer) versus time (Fig. 8.2).

It is also possible to plot s/Q versus t/r?, if the flow rate from the well has
varied a little or if the aim is to plot all the piezometers at different distances on
the same graph.

As soon as the logarithmic approximation holds the points must line up on
one straight line, and when this is identified, the interpretation follows
immediately (Fig. 8.3). The problem is that the beginning and sometimes the
end of the curve deviates from Jacob’s straight line, e.g., the end part, if the
aquifer is not infinite or in case of leakage (see Fig. 8.3, Sections 8.1.4 and 8.3).
It may thus be doubtful which is the “right” line. Theis’s method, which will be
discussed later, offers a way of deciding in uncertain cases.

When one line has been selected, two arbitrary points A and B on this line
are chosen (Fig. 8.2):

QltB . ) ty

Sg — 84 = ——In— ie., == n—
BOTA T 4nT e, 4ni(sg — Su) ta

The common practice is to choose

tB = IOtA
which gives
0.183
- 21830
Sg — Sa
s
Sg
Sa

= Fig. 8.2. Drawdown versus time
g '99'  on asemilog plot.

t
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Initial
0 P head
0.1 P 1
=g
o~
0.2 System with straight-
03 Mhed fine prescribed head
3 boundary
% 04 \Q °l ot ol 1n bl b
ERN B 11
£ 05 H [T\ | Infinite
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Fig. 8.3. Evolution of the head in a piezometer during a constant-rate pumping test,

To calculate S, the storage coefficient, we only need to remember that the
fictitious point C, where the axis s = 0 intercepts the Jacob line (Fig. 8.2),
corresponds to

25Tt 25Tt
nzz =0 ie 2——£=

Sr? e Sr? 1

1

whence

_ 2.25Ti,

7'2

S

Influence of a boundary. We have seen that an impermeable boundary
doubles the slope of Jacob’s straight line, as in Fig. 8.4. If the pumping test
were interpreted with the second straight line, an incorrect transmissivity
equal to half the true one would be found.

It is, however, possible to specify the distance from the boundary. The
drawdown expression is

2.25Tt 2.25T
s 2 ln< +1 > t)

~4aT Sr? 0752

Consider the fictitious intersection point I of the two straight lines.
Mathematically, it is at this point that the influence of the image well is zero
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Boundary

Well e e e o Image

o

t log t

Fig. 8.4. Drawdown versus time for a system with a no-flow boundary.

{even though the logarithmic approximation cannot be applied until much
later). In the same way as we calculated S using the fictitious point C, we now
write

2.25Tt
In 577 1=0

v 2.25Tt
- S

which gives an idea of the distance from the boundary. Using two piezometers
and a small simple geometrical construction with two circles, it is even possible
to give the exact position of the image well and, thus, of the boundary.
The procedure is precisely the same for a recharge boundary, as in Fig. 8.5.
Note that it is also possible to use Jacob’s method by plotting s versus log r
at a given date ¢, if several piezometers are available:

that is,

Q
—
s =z—Inr + const

Ly
iy

log t

Fig. 8.5. Drawdown versus time for a system with a prescribed head boundary.
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(b) Interpretation with the complete Theis formula by the curve-matching
method. We use the complete tabulated function, valid even for small times:

Q0 (ATt
S= Tt W(‘r)

A log—log paper is used for:

(1) The “type curve” W(u) versus u (Fig. 8.6 or 8.7),

(2) The experimental measurements s versus ¢ (or possibly s/Q versus t/r?).
A transparent log—log paper (tracing paper) of the same module as the type
curve®* must be used. One of the graphs is drawn on tracing paper so thatit can
be put on top of the other.

Then, if we look at the vertical axes we can write:

_ 0 _ 9
logs = 10g<4nT W= log4nT + logW
In the logarithmic graduation of the vertical axes, s is deduced from W
through a single parallel shift (log Q/4nT); then the corresponding sets of s;
and W points are matched.

Similarly, for the horizontal axes: one point of the horizontal axis u of the type
curve represents, in fact, a given value of

4Tt

sz

If u and ¢ are plotted in logarithmic graduation on the horizontal axes we get
4Tt 4T
logu = logs,-r-z— =logt + logS?

Also, t is deduced from u through a single parallel shift (log 4T/Sr?); the set of
corresponding points ¢; and u; are then matched.

Consequently, on log—log paper, it should be possible to match the type
curve and the experimental curve through a simple parallel shift in the
direction of the two axes, from one paper to the other (see Fig. 8.8), but the axes
have to be kept parallel. When the two graphs are put on top of one another

and matched, identification is immediate. An arbitrary point M of the plane is

* On Fig. 8.6, Theis’ curve is drawn on a log-log paper having a module of 62.5 x 62.5 mm;
this is the standard paper for the interpretation of electric soundings in geophysics. On Fig. 8.7, the
same curve is drawn on a paper with a 1.85 x 1.85 in. module; this is also a very common log-log
paper. Tracing paper of either module can thus be used. Figures 8.6 and 8.7 are each printed on
two pages; to use them as type curves, one must first make a good photocopy of each page
(without any magnification or reduction) and glue them together.
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reconstruct the complete type curve.

= { :_i_
HEESS 4 ! L If i SEESECH ‘,
sRRRRRI i R T
1l /{r" b
;.
]
8 I i
- EEEI i
i = i
] I A L . il j w
RERERENANE 1 @g
I L
sEan ARER il
5 iRyl \ Il
_______ | + i ] il | \\l '
REphl! Bic: \ \ \ \
h il
107 2 3 4 5 678910 2 a5 67890

Fig. 8.6 (continued).




Wi(u)

1 2
1 2 '
1 2 3 4 5 6789, X ‘.1 ? N T ??.‘
110 | Voo : i | P
3 1 8 R i T 7 o111 s IR
8 i EH Y6 i bt
7 5}[ REBE f ‘1:. .
6 i ! il g
5 l * i+
4 v. “4£7[7 i l
1] | N
i e |
SR T i
, i gl
Il LA
¥ 1 1
1 |
9
8
s T
6 _7
5
4
| Il 8t
3 Bl
il
2. i
107 | |
9 i 1| 55
8 KL
7. ! I
6 il
5 B ! H i - -1
. i
: ] il
3 : gk | L f
, 1T T a1 B L [
1 T
- ! SESERIMLL i HTHITH
il i SR R
=]
10 1 10

Fig. 8.7. Theis’ type curve. 1.85 x 1.85 in. log module. By photocopying (without any
magnification or reduction) both parts of this figure and pasting them together, it is possible to
reconstruct the complete type curve.

174



i
,l :
il
il

~g

LTt
rZs

10°

Fig. 8.7 (continued).

10

175



W(u)

Py

W A OOONNOO

W OO NOY=—=

1072

Ras

o e N

VI S S,

Drawdown {m)

HE
BREFINIEN

a .
R
ERIGED

Experimentai curve on top of the type curve

o
i e“‘a\ . pbild
e‘““
3 ST P

S = 0.04 m

to = 54 seconds

s b b oda

1 1Bt

B R0
1

i
Tl Bl B 8-

g

whence
bk

e 4T sq

B3 {F o] rh-E b kit
t
S = 9
2ug

g

it 0
5 T HET
T R T L
i i+ HH g
s [t 12 3
iERRNETE ]
: 1

Ry

G ds |

T

SLITERRE

v s

[

Lo

nil

00 for = e ek

©f e e

L |
2 3 4 5 6789101 2 3 4 56789107
Fig. 8.8. Pumping test interpretation using Theis’ method.

4 56789103

4Tt
r2g




8.2. Interpretation of a Pumping Test 177

then chosen, not necessarily on one of the curves, and its coordinates are
expressed according to the two systems:

M= {SO and {WO
to o

By definition, we can write

2 Q W
= T2 0
So 4nT o . 4r so
A from which we get
4Tt 5= 4 Th
T sr? T r?

However, the influence of a boundary is more difficult to interpret in this
system than in that of Jacob. The only advantages of this system are that it is
not necessary to discard the first measurement points and that, for short-time
tests, there is less ambiguity than when we look for a line on Jacob’s graph.

Either method can give, at best, two significant figures for the parameters T
and S, never three.

A great number of computer (or hand calculator) codes have been written to
adjust automatically the values of T'and S in Theis’ formulaiin order-to match
the measurements. These methods must be taken with caution. Very often,
when the data are represented graphically, one realizes that only some of the
measurements must be used, because there is some deviation from the
hypotheses implied by the formula (e.g., influence of a boundary). A blind
computer code would use all the measurements regardlessly and produce a
meaningless “best fit.” As the departure from the hypotheses may be due to a
number of causes, it is still preferable to use graphical techniques or, atleast, to
check graphically the results of the computer codes.

(c) Interpretation of recovery curves. As we have seen in Section 8.1.3.c,
there are two methods for interpreting a recovery curve:

(1) The Houpeurt—-Pouchan method. Here it is assumed that the pumping
haslasted long enough to allow us to suppose—at least at the beginning of the
recovery—that a steady state has been attained before pumping stopped.
Then, the recovery curve is interpreted as a drawdown curve with the help of
either Jacob’s or Theis’s method.

(2) The Horner method. log(l + t,/t) method. Here s is plotted versus
log(1 + t,/t) (¢, is the duration of the pumping, ¢ the time counted from the
cessation of pumping) on a semilog diagram. With the help of the straight line,
which should then appear, and following Jacob’s method (Section 8.2.a), we
can calculate the transmissivity but not the storage coefficient.

Recovery curves are of particular importance in pumping tests where no
piezometers are available and the only observation point in the aquifer is the
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boring itself. Indeed, during production the level in the borehole is disturbed
by the losses in hydraulic head (quadratic terms), which occur as the fluid
crosses the slots in the well screen and even in the first 10 or 20 cm around the
well. This means that, during the pumping, the dynamic level in the well gives a
poor tepresentation of the hydraulic head in the aquifer around the well,
whereas during recovery all these phenomena are cancelled, and the real level
of the aquifer can be observed in the well, which makes an accurate
interpretation possible.

Observe that the level in the well often fluctuates slightly because of
irregularities in the running of the pump engine: the measurements in the well
during production are not exact. Moreover, it must be noted that, at the
boring, the radius r of the well is ill-defined: of course, the radius of the
borehole itself is known, as well as that of the casing, but the terrain around
the boring has been disturbed during the work on the well. It is accepted that
there is an effective well radius r’ surrounding it, which has to be taken into
account in the interpretations of the level in the borehole and which is usually
slightly larger than the real radius of the borehole. This is called a positive skin
effect. A negative skin effect (' < r) can sometimes be observed if a well is
clogged or poorly developed.

(d) Anisotropic medium. The interpretation of a pumping test can be
extended to the case where the medium is anisotropic in the horizontal plane
(the case where the medium is anisotropic in the vertical/horizontal directions
is examined in Sections 8.3.3 and 8.4.3). Let X and Y be the coordinate system
in the horizontal plane, and x and y the principal directions of the anisotropy
tensor of the transmissivity.

Y
4

X

Let 6 be the angle from X to x in the trigonometric rotation, and T, and T,
the principal components of the transmissivity T. As shown in Section 7.1.c,
the anisotropic system can be transformed into an isotropic one by the change
of coordinates

x' =./T/T,x and y=yT/T,y with T=T.T,

In the (x', ') system, the diffusion equation is again isotropic and the Theis
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equation applies:

0 4Tt .
=W — with 72 =x"2 + y"?
S= 4T U\ 7S ty

To interpret a pumping test in an anisotropic system, let us first suppose that
the principal directions x and y are known and that we have two piezometers
a and b, in the x and y directions, respectively, from the well. We can write
for piezometer a

72 =x"? + 0= (T/T)x*
and for piezometer b

r?=0+y?=(T/T)y*

We therefore have

(0] 4Tt ) 4Tt
5, —mW<x2S> and Sp “4n—TW<yzS>
Interpreting the drawdowns in a and b using Theis’ curve-matching method
will first give us directly the same T for both a and b, and also T,/S for a, and
T,/S for b (instead of only S in the regular case). From these 3 values we can
then determine 7, T,, and S. Now if the principal directions x and y are not
known, at least 3 piezometers are needed. Let X and Y be the coordinates, in

any system, of a piezometer; using the change of coordinates by the rotation g,
we obtain

x= Xcosf+ Ysinf

y=—Xsin6 + Ycosf
Then

r'? = T/T(X cos 6 + Ysin6)* + T/T,(— X sin6 + Y cos6)*

The interpretation using Theis’ curve matching method still gives us first
T = /T, T, for all piezometers, but then the second parameter obtained for
each piezometer is a rather complex expression of T, T,, §, and 0. One can
solve it by trial and error, graphically, or mathematically. See Hantush (1966},
Neuman et al. (1984).

8.3. Leakage in Radial Coordinate Systems

We have defined leakage in Section 5.3.g as the flux F, and F, exchanged at
the upper and lower boundaries of a confined aquifer with its confining beds.
We shall study three analytical solutions of this problem for a well pumping in
an aquifer, where at least one of the confining layers is an aquitard through
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which leakage occurs. These solutions are by Hantush, Boulton, and
Streltsova.

8.3.1. Hantush’s Solution

Hantush (1956) assumed that the confined aquifer is recharged from an
overlying unconfined aquifer, which percolates through the aquitard separat-
ing them, as in Fig. 8.9.

The leakage flux F?, in the steady state, is given according to Darcy’s law
by the hydraulic head gradient in the aquitard between the two aquifers:

0 _
F[__— e/

8.3.1.1)
where K' is the hydraulic conductivity of the aquitard, ¢’ the thickness of the
aquitard, h, the hydraulic head in the confined aquifer, 4, the hydraulic head
in the unconfined aquifer, and the superscript O means steady state.

Hantush examined the reaction of such a system, when pumping at a
constant rate is started in the confined aquifer. He then made two
assumptions:

(1) The hydraulic head 4, in the unconfined aquifer is not going to change
even if the leakage flux F,increases. Thisis true if the unconfined aquifer is well
recharged (e.g., by rainfall) or if the pumping does not last too long.

(2) The increase in the leakage flux is assumed to take place instantly and
to be always given by Darcy’s law. If the drawdown in the confined aquifer is
denoted by s, then
PGSR

!

F=- -

(8.3.1.2)
This disregards the existence of a transient state in the aquitard (see Section
8.5). Thus, the leakage flux is given by

I3

K
Fo=F{+—s (8.3.1.3)

If the initial steady state h satisfies the equation V2h) = — FO/T, the
drawdown s then satisfies the following diffusion equation:

§ds K’

=75t (8.3.1.4)

Unconfined

: aquifer {1}

- Aguitard

Confined

aquifer (2) Fig. 8.9. Leaky system.
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Table 8.2
Values of W'(4T¢/r*S,r/B)*

/B 001 0015 003 005 0075 010 015 0.2 0.3 0.4 0.5 0.6 Q.7 0.8 0.9 1.0 1.5 2.0

2.5

0.000005 | 9.4413

0.00001 | 94176 8.6313

0.00005 | B.8827 B.4533 7.2450

00001 |8.3983 8.1414 7.2122 6.2282 54228

0.0005 | 69750 69152 6.6219 6.0821 54062 4.8530

0.001 6.3069 6.2765 6.1202 57965 53078 48292 40595 3.5054

0.008 47212 47152 4.6829 4.6084 44713 4.3960 3.8821 34567 27428 2.2290

40356 40326 4.0167 39795 39091 3.8150 3.5725 3.2875 27104 22253 1.8486 1.5550 (3210 1.1307
24675 24670 2.4642 24576 24448 24271 23776 23110 21371 1.9283 1.7075 1.4927 1.2955 11,1210 0.9700 0.8409
1.8227 1.8225 1.8213 18184 1.8128 18050 1.7829 1.7527 16704 1.5644 1.4422 13115 1.1791 10505 0.9297 0.81%0 04271 0.2278

02194 0.2194 02193 02193 0.2191 02190 0.2186 0.2179 0.216] 0.2135 0.2103 0.2055 0.2020 0,1970 G.1914 0.1855 0.1509 0.1132 Q.
00011 00011 00011 0001t 00011 00011 00011 00011 00011 00011 00011 0.0011 O0011 00017 0.0 0.0011 G000 0.0010 O

05598 0.5597 0.5596 0.5594 0.5588 0.5581 0.5561 0.5532 0.5453 0.5344 0.5206 0,5044 0.4860 0.4658 0.4440 04210 03007 0.1944 Q.

@ After Hantush (1956) and Walton (1970).

We define the Hantush leakage factor B = /Te'/K’ of dimension (length).
The Hantush radial solution of this equation then becomes

g [ exp(—r—r2/4Bzr)dT= 0 W’<4Tt r>

*TRT | siary T 4nT

This solution depends on two parameters (u = 4Tt/r>S and r/B) and takes
the following form:

»’S’B

(1) The envelope curve is that of Theis (corresponding to negligible /B);

(2) For a given value of r/B (i.e., for a given hydraulic conductivity K’ of
the aquitard and a distance r to the pumping well), the response curve
stabilizes with time: a steady state is reached. Table 8.2 gives the function 7"
from Walton (1970). This function is drawn as a type curve on a log—log paper
in Figs. 8.10 and 8.11.*

This explains why, in certain cases, we obtain a stabilization in a pumping
test that is due to a leakage phenomenon but that may be wrongly interpreted
as a steady state because of the existence of a fictitious “radius of action” R
around the borehole (see Section 7.3.a, Dupuit’s formula).

This stabilization of the drawdown in a piezometer close to the borehole
after a certain lapse of time occurs at the same time in all the borings at the
same distance from the well. This would not be true for a stabilization due to a
recharge boundary (stream), where the piezometers closest to the fictitious
image well would be the first to stabilize. To identify this type of leakage, the
Hantush type curve must be used (Fig. 8.10 or 8.11) and the procedure is the
same as for the Theis curve in Section 8.2.b, but the best fit using the Hantush
type curve has to be found in order to achieve a satisfactory matching, which
also gives r/B.

* See the footnote on p. 171. The same comments apply for Figs. 8.10 and 8.11 as for 8.6 and 8.7,
respectively.
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Fig. 8.10. Hantush’s type curve. 62.5 x 62.5 mm log module. By photocopying (without any
magnification or reduction) both parts of this figure, and pasting them together, it is possible to
reconstruct the complete type curve.
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Fig. 8.10 (continued).
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Neuman and Witherspoon (1968, 1969a,b, 1972) have shown, however, that
this solution, which disregards the storage in the confining beds, may
sometimes lead to considerable errors. They suggest other methods of
interpretation, which take this storage into account as well as the variations of
hydraulic head in the overlying aquifer (see also Section 8.3.3).

We must remember that the identification of a leakage phenomenon during
a pumping test does not in the least affect the direction of the exchanges: the
leakage may stem from an overlying or an underlying aquifer and may be,ina
steady state (before the pumping has begun), a recharge of or a withdrawal
from the studied aquifer; the flow F? of Eq. (8.3.1.1) is algebraic and
Egs. (8.3.1.1)—(8.3.1.4) are valid whatever its sign may be.

8.3.2. Boulton’s Solution

Boulton (1963) made another assumption concerning the leakage flux
caused by the drawdown s: he assumed semiempirically that an increase in the
drawdown As at time t gives rise to a leakage flux Ag, which decreases
exponentially with time:

Aq(r) = S exp[—f(r — )] As
where f is a parameter of dimension (time™*).
The integral of this flux between ¢ and infinity is

q= r) Sfexpl—f(x — )] Asde

qg=SAs

The term S’ is the storage coefficient of the overlying (or underlying) aquifer,
which recharges the confined aquifer through leakage, since a drawdown As
causes accumulated flux §’ As. However, this flow is not instantly released: the
suggested solution corresponds to an exponential decay of the leakage flux.

The diffusion equation is obtained by calculating the leakage flux F, at every
instant by convolution, ie., by adding the elementary fluxes produced by ali
the drawdowns from the beginning of the pumping:

Sos S [* ds
2 T e —— e — - - d
Vs T 3 TLfexp[ f(t — )] <6t>t T
Boulton gives a radial solution to this equation, which takes the following

form for small r:

— Q rr ’
s= 47 W S0

where u = 4Tt/r?S. Figure 8.12 illustrates this solution.
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Fig. 8.12. Drawdown versus time for Boulton’s leaky systems.

The evolution of the drawdown conforms initially to Theis’s solution, which
corresponds to the parameter couple (7, S). Then comes a level stage at which
it might be possible to identify f, and, finally, the drawdown again takes the
form of a Theis function but this time displaced in relation to the first by a
shift parallel to the u axis (no vertical parallel shift) and corresponding to the
parameters (T, S + S’). This type of leakage is therefore easy to recognize and
identify with the help of a Theis type curve, and we can then calculate S'.

If t is the time when the leveling off of the withdrawal intercepts the second
Theis curve (see Fig. 8.12), Berkaloff (1966) shows that

0.561
===

This type of behavior is rather frequent in unconfined aquifers, where the
delayed flow is simply due to the draining of the unsaturated medium when the
free surface is drawn down (see Sections 6.2.a and 8.4.3).

8.3.3. Streltsova’s Solution

A more elaborate solution of delayed leakage has been proposed by
Boulton and Streltsova (1975) and Streltsova (1976b). These authors consider
a confined aquifer with a producing well overlain by an aquitard containing a
free surface. The following assumptions are made:

(1) The aquitard containing the water table is homogeneous and the flow
through it is only vertical downwards. Both the water and the aquitard itself
are supposed incompressible: the production of water in the aquitard is only
by drainage and lowering of the water table. However, this lowering of the
water table is small enough so that the saturated thickness of the aquitard is
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Fig. 8.13. Aquifer and aquitard in Streltsova’s solution.

taken as constant and the position of the water table is considered as fixed (see

Fig. 8.13). There is no vertical recharge in the aquitard.

(2) The confined aquifer is compressible and in general anisotropic, the
horizontal and vertical hydraulic conductivities being constant. It is underlain
by a horizontal impermeable bed. In this aquifer a production well is pumped
at a constant rate from the instant ¢t = 0. This well is only screened over a
portion of the thickness of the aquifer (partially penetrating well). The
discharge per unit length of the unlined part is constant, and the radius of the

well is vanishingly small.

The equations and boundary conditions used are, (see Fig. 8.13) in the

aquifer,
K<6—2S+1@>+Kfs—-——8is O<z<xe
"\or? ror f0z2 ot
drawdown at the water table (see Section 6.3.d)
os’ os’
K ,E = —w; ETE
at the interface between aquitard and aquifer

as as’
K, —==K<=—,
“0z 0z

z=¢+ ¢

z=1e¢, Vrt
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at the impervious bottom

Js
3 , z=0, Vr,

along the well

as 0
e e 2 b, Vit
o = kb —a ‘7<%

along the nonscreened section of the axis of the well

?:0, O0<z<a and b<z<e r=0,Vt
-

at infinity

s =0, r— o0, Vz,t
initial condition

s =0, t=0, Vr,z

with 5,5’ the drawdown in aquifer and aquitard, respectively; K,,K, the
horizontal and vertical hydraulic conductivity in the aquifer; S, the specific
storage coeflicient in the aquifer; where S = S,e is the storage coefficient; K',
w} the vertical hydraulic conductivity and specific yield of the aquitard; ¢, ¢’
the thickness of aquifer and aquitard, respectively; a, b the position of the well
screen (see Fig. 8.13); and @ the flow rate of the well.

The drawdown in the aquifer is given by

s(r,2,0) = o= | 4y I B A o(y) + Y01 dy
4T |, 1
with the transmissivity of the aquifer given by
T=K.,e
and B = (K./K,)(r?/e?)
S
g =
@y
C=K'e/K,e

and
uo(y) = [{1 — exp[ —t,8(y* — y5)1} {sinh(y,b/e) — sinh(y,a/e)}
x cosh(yoz/e)]{[(b — a)/e](y*> — y3)xo cosh(ye)} ~*

where y, is the positive root of the equation

(y* — 5 — Co)yosinh(B,) + C(y> — y§)cosh(Bo) = 0
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and

_ C(y*—7y3) . 2C%q
Xo [1 + V-7 Co Ca:| sinh(y,) + [1 + 02 =2 —Cop Ca)z]yo cosh{y,)
un(y) = [{1 — exp[—1,8(y* + 777} {sinh)(y,b/e) — sinh(y,a/e)}

x cosh(y,z/e)}{[(b — a)/e](y* + y7)x,cosh(y,)} ~*

where y, is the nth positive root of:
(v? + 77 — Coly,sin(y,) — C(y* + y2)cos(y,) = 0

and

Cy*+72) 1. 2C%*¢
In=|1+4—5———F5—""— + 14—
[ y>+y:—Co Sinz.) (2 + 72— Cop | cos(r)

This solution can be computed numerically although it is not very easy
when accurate results are required. J, is the Bessel function of the first kind
and zero order.

The drawdown s is calculated at elevation z in the aquifer, ie., for a
piezometer open only over a short distance at elevation z. If a fully screened
piezometer is used, the average of s from z = 0 to ¢ must be calculated.

This solution is very close to that developed by Neuman for delayed yield in
an unconfined aquifer (see Section 8.4.3). Additional development can be
found in Streltsova (1984).

8.4. Additional Analytical Solutions for the Flow toward a Well

The interpretation of pumping tests is a science in itself. This kind of test is
very useful in hydrogeology, because it is one of the most widely used means of
measuring in situ the values of the parameters T and S. Whole books are
devoted to the subject: see, for example Kruseman and de Ridder (1970).

In the following, some examples of particular importance will be given.

8.4.1. Effect of the Well Capacity

At the beginning of pumping, if the production rateis @, the flow withdrawn
from the formation is not Q, since the well is starting to empty. Papadopoulos
and Cooper (1967) have given the following solution to this problem for
confined aquifers:

0
8, =4—T£T—F(up,oc)
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Fig. 8.14. Well capacity effect.

with

32a2J°°1 — exp(— p%/4u,) a8

M) = |, 5 A

where s, is the drawdown at the well, u, = r2S/4Tt, r, is the well radius at
the well screen, « =r2S/rZ, r, is the well radius at the casing, Q the
production rate, S the storage coefficient, T the transmissivity, and

AB) = [BIo(B) — 20 1(B)]* + [BYo(B) — 221 (B)]?

where J, is the Bessel function of the first kind and order  and Y, the Bessel
function of the second kind and order n.

The difference between r,, and r, is illustrated in Fig. 8.14. This solution is
particularly useful for pumping tests in dug wells with large diameters,
frequently found in developing countries. The function F(u,, «) is given by the
Table 8.3 and the type curve of Fig. 8.15, taken from Papadopoulos and
Cooper. Note that the horizontal axis is graduated in u,, not in 1/u,. Finally,
the expression for the drawdown in a piezometer at some distance from the
well is given by Carslaw and Jaeger (1959).

8.4.2. Artesian Tests

In an artesian boring, when the well is opened the water flows out naturally
at a rate that decreases with time. Instead of a constant flow rate, a constant
drawdown is imposed (k = z at the well head). Jacob and Lohman (1952) have
given the expression for artesian flow versus time:

Q = 2nT(hy — H)G(%)
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Table 8.3

Values of the Well Capacity Function F(u,,%)*

« 107! 1072 103 1074 1078

u

p
10 9.755%x 10 9976 x 10 9998 x 105 1.000x 105 1.000 x 10°
1 9.192x 102 9914x103 9991 x 10* 1.000x 104 1.000x 1075
5x 1071 1.767 x 1071 1,974 x 1072 1997 x 103 2.000 2.000

% z;.ggg 4.890 4.989 4.999 5.000 .

7. 9.665 9.966 9.997 1.000 x 10°

5x1072 1.260x 10° 1.896 x 107 1989 x 1072 1999 x 103 2.000

2 2.303 4.529 4.949 4.995 5.000 ,
1 3.276 8.520 9.834 9.984 1.000 x 107
5x%103 4.255 1.540x10° 1.945x 107" 1.994x10% 2.000

2 5.420 3.043 4.725 4972 4.998

1 6.212 4.545 9.069 9.901 9.992
5x10 6.960 6.031 1.688x10° 1.965x 107 1.997x 1072
2 7.886 7.557 3.523 4.814 4982

1 s 8.572 8.443 5.526 9.340 , 9932 .
5% 10" 9.318 9.229 7.631 1.768 x 10° 1.975x 10
2 1.024 x 10 1.020x 10' 9.676 3.828 4.861

1 . 1.093 1.087 1.068 x 10! 6245 9.493 .
5x10 1.163 1.162 1.150 8.991 1.817 x 10
2 1.255 1.254 1.249 1.174 x 10"  4.033

1 1324 1.324 1.321 1.291 6.779
5x107 1.393 1.393 1.392 1.378 1.013 x 10!
2 1.485 1.485 1.484 1.479 1.371

1 - 1.254 1.554 1.554 1.551 1.513

5% 107 1.623 1.623 1.623 1.622 1.605

2 1.705 1.705 1.705 1.714 1.708

1 ) 1.784 1.784 1.784 1.784 1.781
5%x107° 1.854 1.854 1.854 1.854 1.851

2 1.945 1.945 1.945 1.945 1.940

1 2.015 2015 2.015 2.015 2.015

2 From Papadopoulos and Cooper (1967).
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Fig. 8.15. Well capacity function. From Papadopoulos and Cooper (1967).
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where ( is the artesian flow rate, T is the transmissivity, and hy,— h is the im-
posed drawdown (hydraulic head in the aquifer before the test minus the
head imposed at the opening by the elevation of the top of the well). If the
boring is very deep, losses of hydraulic head in the casing have to be taken into
account, as the hydraulic head h required is the one at the level of the
formation

Tt

o=—z
rZs

where S is the storage coefficient and r,, the borehole radius, and

o]

G(a) = %L xe~ = {g- + arctg[Yo(x)/Jo(x)]} dx

Here J, and Y, are the zero-order Bessel functions of the first and second
kinds, respectively.

The function G and the corresponding type curve are given in Table 8.4 and
Fig. 8.16 respectively.

Table 8.4

Well Function for Artesian Conditions®

63 107 1073 1072 107! 1 10 10? 103
1 56.9 1834 6.13 2249 0985 0534 0346  0.251
2 404  13.11 447 1.716  0.803 0461 0311 0232
3 33.1 10.79 3.74 1477 0719 0427 0294 0222
4 28.7 9.41 3.30 1333 0667 0405 0.283 0215
5 25.7 8.47 3.00 1234 0630 0389 0274 0210
6 23.5 7.77 278 1.160 0602 0377 0.268 0.206
7 21.8 7.23 2.60 1.103  0.580 0367  0.263  0.203
8 204 6.79 246 1.057  0.562 0359 0258  0.200
9 19.3 6.43 235 1.018  0.547 0352 0.254  0.198
10 18.3 6.13 2.25 0985 0534 0346  0.251 0.196
o« 104 10° 10 107 108 10° 1010 101
1 0.1964 0.1608 0.1360 0.1177 0.1037 0.0927 0.0838 0.0764
2 0.1841 0.1524 0.1299 0.1131 0.1002 0.0899 0.0814 0.0744
3 0.1777 01479 0.1266 0.1106 0.0982 0.0883 0.0801 0.0733
4 0.1733  0.1449 0.1244 0.1089 0.0968 0.0872 0.0792 0.0726
5 0.1701 0.1426 0.1227 0.1076 0.0958 0.0864 0.0785 0.0720
6 0.1675 0.1408 0.1213 0.1066 0.0950 0.0857 0.0779 0.0716
7 0.1654 0.1393  0.1202 0.1057 0.0943 0.0851 0.0774 00712
8 0.1636  0.1380 0.1192 0.1049 0.0937 0.0846 0.0770 0.0709
9 0.1621 0.1369 0.1184 0.1043 0.0932 0.0842 0.0767 0.0706
10 0.1608 -0.1360 0.1177 0.1037 0.0927 0.0838 0.0764 00704

“ From Jacob and Lohman (1952).
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Fig. 8.16. Well function for artesian conditions. « = Tt/r2S.

8.4.3. Anisotropic Unconfined Aquifer

Neuman (1972, 1973b, 1974, 1975a,b) has studied the problem of a fully or
partially penetrating well pumping in an anisotropic unconfined aquifer,
taking into account the delayed drainage of the unsaturated zone by gravity.
The anisotropy is understood to be that of the vertical/horizontal hydraulic
conductivity. His solution has a very similar expression to that of Streltsova
(Section 8.3.3): he only assumes that the free surface remains alwaysatz =e
(see Fig. 8.13) and that the boundary condition at this surface is

K, 05/0z = —w43s/0t, z=-e, Vrt

Otherwise he uses all the equations and boundary conditions given for the
aquifer in Section 8.3.3. Note however that his solution was published prior to
that of Streltsova.

If the well is fully penetrating and screened along its entire length, the
drawdown in a piezometer, which is also entirely screened, is given by

.0 =32 | 4B o) + 5, 1y

0
_ {1 —exp[—t,B(y* — 3)]} tanh(y,)
v+ A+ o)yd — (v —v8)?*/0}ve
{1 —exp[—1,8(y* + y2)]} tan(y,)
[y = (1 + o)y7 — (¥ + v /oy,

uo(y)

u,(y) =
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where y, and y, are the roots of

ayosinh(yo) — (y* — y3)cosh(yo) =0 93 < y?
o7, sin(y,) + (y2 + yZ)cos(y,) = 0
with 2n— D(n/2) <y, <nn n>1

where r is the distance from the piezometer to the well, @ the flow rate of the
well (constant), T the transmissivity, J, the Bessel function of the first kind
and zero order, t, = Tt/Sr?, the dimensionless “elastic” time, and S the storage
coefficient of the formation (indeed, in the same way as in a confined aquifer,
owing to the elasticity, the pressures are transmitted up to the free surface,
where the drainage comes into play. Hence the notion of delayed drainage),
t, = Tt/wyr?, the dimensionless “drainage” time, w, is the specific yield of the
formation, o = S/w, = y/t,, B = (K,/K,)(r?/e?), K, and K, are the anisotropic
hydraulic conductivity in the directions z and r, and e is the initial saturated
thickness of the aquifer, assumed constant through time.

This function is given in Table 8.5 and Fig. 8.17 (Neuman, 1975a). The
curves are drawn for ¢ close to zero; thus we obtain two families of curves
(type A and type B), which are united by a horizontal line. The length of
this horizontal stretch is directly dependent on the value of g. To avoid
introducing this parameter into the type curves, the curves A are shown as
functions of dimensionless time ¢, (upper scale) and the curves B as functions
of t, (lower scale).

105 sr?

B=r Kyl (Kee ?)

Theis for t,

10! A Tt
Y wer

Fig. 8.17 Neuman’s well function for unconfined aquifers. [From Neuman (1975a).]
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? From Neuman (1975a).
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The interpretation is done on log—log paper as follows:

(1) Theend of the test is fitted on the B-type curves by the same method as
for the Theis curve, and 8, T, and w, are identified.

(2) The beginning of the test is fitted without vertical parallel shift of the
curves, so that the same 7 and f§ are retained. Then § is calculated on the
A-type curves.

(3) From T we calculate K, = T/e, and with the help of § we can calculate
K, . Therefore, this is one of the few methods that allows us to estimate the
anisotropy of the formation.

The above solution is, however, an approximation, obtained by lineariza-
tion. It omits, for example, the reduction in the saturated thickness with time.
The solution may also be calculated for any piezometer open at a given
clevation z, but not screened along its entire length.

In the case of a partially penetrating well, Neuman (1975a) gives the changes
which should be made in the previous function. However, here the number of
parameters becomes too large to be shown on type curves: a program for
calculating the type curve for a given geometry (well depth, aquifer thickness,
position and intake of the piezometer) is available from the author (Neuman,
unpublished, 1975b). Additional developments on this approach of delayed
yield can be found in Neuman (1979).

8.4.4. Variations in Flow during the Test

All the solutions shown are linear in Q. If the flow varies in time, the
response is obtained by convolution of the elementary solution with the flow
variation. For example, for the Theis solution,

1 4Tt 100 4T — 1)
=T {Q“”W(ﬁ) ¥ L (‘a?)rw[——rzs ]‘”}

Inversely, the step-function response of the system may be calculated by
deconvolution of the observations, i.e., the drawdown s(f) that would have
been observed if the flow @ had been kept constant. This is the one that will be
used for the interpretation.

8.4.5. Flow in Fractured Systems

Pumping tests in porous fractured reservoirs are very common in the
petroleum industry, and a large number of particular solutions have been
developed for such systems, assuming particular geometries for the fractures.
[See Boulton and Streltsova (1977), DeSwann (1676), Gringarten et al
(1974a,b; 1975), Gringarten (1982), Hartsock and Warren (1961), and Strelt-
sova (1976a).]
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8.5. Other (One-Dimensional) Solutions to the Diffusion Equation

We shall only give two analytical solutions for one-dimensional flow that
are especially useful for the interpretation of natural variations of the
piezometric head in aquifers.

(a) Semiinfinite domain, sudden variation of hydr

. 0*h S oh
Equation: T xandt >0
Conditions:  h(x,0) = hq, Vx>0 (initial)
h(©0,t) =0 t >0 (at the boundary)

[ 8
Solution: = e
olution h(x,t) = hgerf (x 4Tt>

where erf (u) is the error function, known and tabulated (Table 8.6) as

2 u
erf (u =—-—f eV dv
) \/7; 0

This solution fits the case of a semi-infinite confined aquifer, initially in
equilibrium at the hydraulic head h, with a stream as one boundary. At the
time t = 0, the level of the stream suddenly drops to the elevation £ = 0 as in
Fig. 8.18.

This solution is also applicable to the study of recharge in an aquifer.
Suppose that the aquifer is initially in equilibrium with a river at h = 0, and
that at time ¢ = Q it receives a uniform and instantaneous recharge h, all over
its surface. The head A(x, t) will be given by the same expression as above.

On the other hand, a sudden raising 4, of the level of a stream, initially in
equilibrium with the aquifer at the elevation 0, causes a variation of the

Head h=0 \2 hix, t) K tnitial hydraulic

head hg

D
!
|
|
i
L

Fig. 8.18. Stream in contact with a confined aquifer.
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Table 8.6

The Error Function®

u erfu erfc u u erfu erfcu
0 0 1.0 1.0 0.842701 | 6.157299
0.05 0.056372 |0.943628 1.1 0.880205 | 0.119795
0.1 0.112463 |0.887537 1.2 0.910314 | 0.089686
0.15 0.167996 | 0.832004 13 0.934008 | 0.065992
0.2 0.222703 |0.777297 14 0.952285 | 0.047715
0.25 0.276326 |0.723674 1.5 0.966105 | 0.033895
0.3 0.328627 [0.671373 1.6 0.976348 { 0.023652
0.35 0.379382 |0.620618 1.7 0.983790 | 0.016210
04 0.428392 |0.571608 1.8 0.989091 | 0.010909
0.45 0.475482 (0.524518 1.9 0.992790 | 0.007210
0.5 0.520500 | 0.479500 2.0 0.995322 | 0.004678
0.55 0.563323 |0.436677 2.1 0.997021 | 0.002979
0.6 0.603856 |0.396144 22 0.998137 | 0.001863
0.65 0.642029 (0357971 23 0.998857 | 0.001143
0.7 0.677801 [0.322199 24 0.999311 | 0.000689
0.75 0.711156 {0.288844 2.5 0.999593 | 0.000407
0.8 0.742101 {0.257899 2.6 0.999764 | 0.000236
0.85 0.770668 |0.229332 2.7 0.999866 | 0.000134
0.9 0.796908 |0.203092 2.8 0.999925 | 0.000075
0.95 0.820891 10.179109 29 0.999959 | 0.000041
3.0 0.999978 | 0.000022

¢ After Carslaw and Jaeger (1959).

hydraulic head:

h(x,t) = h, {1 - erf(x /%):l = h, erfc<x /%)

where erfc = 1 — erf is the complementary error function (see Table 8.6).
By convolution it is also possible to calculate the response of an aquifer to
continuous variations in stream level.
In practice, these solutions are always used for the variation of the head with
respect to an initial steady state, and not for the head itself (see Section 7.1.b).
They are also applied to unconfined aquifers if the variation of the head is
small enough that the saturated thickness of the aquifer can be considered

constant.

Figure 8.19. gives the error function (erf, curve I) and the derivative of &
versus time or space (curve II).

o _x/ron_

he 0t  2hy Ox

(b) Bounded domains.

Equation:

o

S ox x2S
*Jar: P\ Tary
0<xx<l t>0


kenne
Subrayado


200 Transient Solutions of the Diffusion Equation

1.0 ——
erf (u), curve |
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Fig. 8.19. The error function and its derivative. [From Carslaw and Jaeger (1959).]
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Fig. 8.20 Type curve for a bounded domain. The parameter given on the curves is Tt/SI%.
[From Carslaw and Jaeger (1959).]
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Conditions:
h(x,0) = h,, O<x<l] (initial)
7(0,8) = 0, t=0, (first boundary with prescribed head)
oh
<é§> =0, t >0, (second no-flow boundary)
x=1
Solution:

_ ® . 2nl+x [S @Cn+Dl—x |S
h= ho{l HZO( 1) [erfc 3 7t erfc( 5 ﬁ>j}

or again:

h =

L@+ 1)° 4s2 21

This solution corresponds to the same conditions as in Fig. 8.18, but with
an aquifer limited by a no-flow boundary at the distance x = I. Figure 8.20
is the corresponding type curve, where the curves are indexed on the
parameter Tt/S12.

4 = (—1)r . [__(2n+1)2n2Tt:| OS(2n+1)7tx

8.6. In Situ Point Measurements of Permeability

The pumping tests described in Sections 8.2 and 8.4 offer the best estimates
of average hydraulic conductivities in a medium. However, since they are guite
arduous to work out, it has been suggested that more basic and Iocalized
methods should be used to estimate the hydraulic conductivities. We shall
briefly describe three of these, which are chiefly used in civil engineering.

(a) Pocket or Lefranc test. A “pocket” of length I facing the terrain to be
explored is made in a boring (open or screened) of diameter D. This pocket is
created either by putting a casing into the remainder of the borehole or by
isolating the section by means of an inflatable packer (rubber sleeve tightly
fitted to the terrain).

The test consists in injecting (or pumping) at a constant flow rate Q and
waiting until the hydraulic head (or the pressure) is approximately stabilized
(quasi-steady state; one only waits for a few minutes). The hydraulic
conductivity is given by the relation (Schneebeli, 1966):
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where Ahis the change in hydraulic head between the initial condition and the
quasi-steady state, D is the diameter of the pocket, Q is the injected or
withdrawn constant flow rate, and a is a dimensionless coefficient that depends
on the shape of the pocket:

(1) More or less spherical pocket:
_ 1
2n./1I/D + 1/4

(2) Ellipsoidal pocket:

L In@/D + /DY + 1)

2nl/D

(3) Very clongated pocket (I/D > 4):

_ In21/D)
~ 2xl/D

Here, [ is the height of the pocket. When the pocket is close to a no-flow
boundary (free surface or impervious bedrock), the boundary effect creates an
image, which is accounted for by multiplying « by D/8nz, where z is the
distance from the center of the pocket to the boundary, assumed to be large
compared to [ and D.

The test is made with different flow rates in order to verify the linearity of the
relation @ — Ah, since any nonlinearity may indicate a leak in the casing or the
packer or hydraulic fracturing of the terrain.

(b) Lugeon’s test in fractured rocks. This is a very well-known empirical
test using a boring in fractured rocks. A portion of the boring, usually 5 m
long, is isolated by a packer. Quite often, the test is made as the boring
progresses: every time a 5-m-long section of boring is finished, it is sealed off
with a single packer and the test made. The packer is then removed and the
boring resumed. Sometimes the test is made when the boring is already
completed. The procedure is then to isolate 5-m sections using two packers,
inject water under pressure, and measure the stabilized flow (after 5-10 min)
versus the pressure. The measurement program proceeds as follows: the
pressure is made to increase gradually from O to 10 bars, then to decrease from
10 to O bars. Then, the flow rate in liters per minute versus pressure in bars is
plotted as in Fig. 8.21.

The flow is generally stronger when the pressure decreases than when it
increases. This also conveys information concerning the behavior of fractured
rocks (unclogging of fractures, hydraulic fracturing of the terrain, etc.).
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' —
0 10 bars P Fig. 8.21. Lugeon’s diagram.

In this test, the hydraulic conductivity of the terrain is defined in “Lugeon
units,” i.e., the flow injected in liters per minute under a pressure of 10 bars and
per linear meter of boring for a test time of 10 min at constant pressure.

It is admitted that, if the hydraulic conductivity in Lugeon units is small (a
few to some tens of units), then the Lugeon unit is very approximately equal to
1- or 2 x 1077 m/s (Cambefort, 1966).

(c) Slug tests. Whereas the preceding tests are usually interpreted in a
steady state, the slug test consists in creating a very brief pressure pulse at one
point in the aquifer and observing the transient response at the same point.
The interpretation varies depending on the shape of the cavity where the
impulse occurs (cylindrical or spherical symmetry). This test measures chiefly
the transmissivity (or the hydraulic conductivity) and, with a lesser degree of
precision, the storage coeflicient (Papadopoulos et al,, 1973).

In cylindrical symmetry (Fig. 8.22), a slug test may be interpreted in a fully
penetrating well or piezometer, i.e., one that penetrates the entire thickness of
the aquifer. Let T be the transmissivity and S the storage coefficient of the
aquifer, and R the radius of the boring at the level of the aquifer (radius of the
borehole). Let R’ be the radius of the boring at the static level of the water,
assumed to be at equilibrium before the test: R’ is usually the interior radius of
the casing. At time ¢ = 0, a sudden variation Ah, of the hydraulic head in the
borehole of radius R’ is caused by injection or withdrawal of a volume of

|
I v
h | \2R’ 2R
ah] |
{m \\ Porous medium
S . K, Sg
. e
2R Resistance <
{b)

Fig. 8.22. Geometry for a slug test. (a) Cylindrical symmetry. (b) Spherical symmetry.
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Fig. 8.23 (facing page). Solution of the slug test in cylindrical symmetry (62.5 X 62.5 mm log module).

Fig. 8.24 (this page). Solution of the slug test in cylindrical symmetry (1.85 X 1.85 in. log module).
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water tR'? Ah,. We then observe the evolution in time of the residual head
Ah(t) in the casing. It is given by

Ah(t) 4o [®exp(—Ttu?/R2S)

Ahy — 7? |, uF(w)
where o = S(R/R’)?, F(u) = [uJy(u) — aJ;(w)]* + [uYo(w) — aY,(w)]> and J,
and Y, are Bessel functions of the first and second kind, respectively, and
order n.

This solution is given on Figs. 8.23 and 8.24 on log—log paper as Ah/Ah,

versus the dimensionless time Tt/R’? (Degallier and Marsily, 1977). The
measurements Ah/Ah, versus time are drawn on log—log tracing paper of the

same module. The matching of the measured curve with the type curve gives a
and the correspondence between dimensionless time and real time, whence

T = R’Z/ti
S = a(R'/R)?

where t; is real time coinciding with dimensionless time of the value 1 on the
type curve.

Carslaw and Jaeger also consider the case where the observations are made
at a distance r > R from the boring or where there is a zone of low
conductivity between the boring and the aquifer.

If the cavity on which the slug test is made has a spherical shape, the same
authors give the following solution:

Ah()  20y* [ exp(— Ktu?/S,R?)u?
Ahy — m Jo WP +79) —oy]® + @ — oyw)

where K and S, are the hydraulic conductivity and specific storage coefficient
of the aquifer, respectively; « = 4S,R(R/R’)?, the capacity ratio; and y =
K'R/Ke, the hydraulic conductivity ratio.

The sphere of radius R is in contact with the aquifer through a layer with
low permeability of thickness e¢ and hydraulic conductivity K'. The initial
variation of the head Ah, is created in a pipe of R’ radius.

This solution depends on two parameters, « and y, and on the dimensionless
time Kt/S,R2. The series of corresponding type curves are published by
Degallier and Marsily (1977). It can be useful for tests on tensiometers with
a shape approaching that of a sphere in an unsaturated medium or on nearly
spherical pockets opened at the bottom of an unscreened or a partly screened
piezometer.




Chapter 9

Multiphase Flow of Immiscible Fluids

9.1. Theory
9.2. Special Case: Flow in Unsaturated Media
9.2.1. Unsaturated Flow with Immobile Air Phase
9.2.2. Unsaturated Flow with Mobile Air Phase
9.2.3. Solutions of the Infiltration Problem
9.2.4. Measurements in the Unsaturated Zone
9.3. Movement of Separating Interfaces
9.3.1. Special Case: Fresh Water—Salt Water Interface in
a Steady State
9.4. Multiphase Pollution Problems

Thus far, we have only considered the flow of one fluid in porous media.
Many problems, however, involve several immiscible fluids flowing simulta-
neously in the same porous medium. This is the case of oil, water, and gasin a
petroleum reservoir or simply of water and air in the unsaturated zone on top
of a water table aquifer. We will set out the basic concepts and equations for
multiphase flow and examine a certain number of special cases.

9.1. Theory

When several fluids occupy a given porous medium, their relationship with
each other and with the porous medium will be governed by the proportion
of each fluid in the medium. This will be measured by the volumetric saturation

for each of the fluids:

__ part of the porosity occupied by the fluid i

i

total porosity
where s; varies between 0 and 1.
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If we assume that the temperature does not vary significantly in the porous
medium, as we did in the case of one fluid, the solution of the problem requires
us to calculate six unknowns for each fluid i, the pressure p;, the mass per
unit volume p;, the saturation s; and the three components of the filtration
velocity U,.

The equations we can write are:

(1) Continuity equation, one per fluid.

(2) Modified Darcy’s law, three per fluid.

(3) Egquation of state, one per fluid.

(4) Capillary pressure at the interface between two fluids, number of fluids
minus one.

(5) Relation between the saturations, one.

We thus have as many equations as unknowns. Let us examine them.

(a) Continuity equation. For each fluid, a mass balance equation is
written:

iv(piU) + o (pisy) = 0

where p;s;0 is the quantity of fluid i contained in a unit volume of porous
medium. This equation was established in Section 3.2.1 for a single fluid; the
only difference here is that the saturation s; has to be taken into account in
the second term. ‘

(b) Darcy’s law for multiphase flow-— Relative permeability. Itis admitted
that Darcy’s law is valid for each fluid separately, as if it occupied a certain
portion of the porous medium:

U=- %(grad pi + pig grad z)
where U, is Darcy’s velocity of the fluid i, and y;, p;, and p; are its dynamic
viscosity, mass per unit volume, and pressure, respectively. Further, k; is the
intrinsic permeability for fluid i. This permeability will, however, depend on
the saturation s; of the medium by the fiuid i. The larger the portion of the
porous medium occupied by the fluid i, the larger the permeability linked to
this fluid. A relative permeability is defined as

where k is the intrinsic permeability of the porous medium (see Section 4.1.a),
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Kri 4

)

s Kri+Ke2 L4
-~ rs

D o o

K1 Kr2

0

0 100%

?
Irreducible saturation Water saturation

Fig. 9.1. Relative permeability in a two-phase system. K,,, K,, are permeabilities relative o
water, air respectively.

measured when the medium is saturated with a single fluid (remember that k is
independent of the nature of the fluid and depends only on the medium).

For example, for two fluids (e.g., air and water), Fig. 9.1 shows the shape of
curves obtained. Below a certain degree of saturation of air, the air phase is no
Ionger continuous, and the permeability to air is zero. It might be noted that
the sum of the two relative permeabilities for each fluid is not constant and
most of the time is less than or equal to 1: the two fluids interfere with each
other.*

These curves of relative permeability are determined experimentally on
samples. Unfortunately, they are subject to hysteresis, like the capiliary
pressure (see Section 2.2.2.c), depending on whether draining or wetting is
taking place. However, this hysteresis is much less important than that of
capillary pressure and is often disregarded.

The ratio k;/u; is sometimes called the mobility of the fluid i.

Note that the Darcy velocities U; of the fluid are not necessarily parallel;
they may even be diametrically opposed, e.g., during infiltration in the
unsaturated zone, where water moves downward while air is pushed upward.

(c) Stateequation. Themass per unit volume of each fluid is a function of
its pressure. For a liquid a linear compressibility is generally assumed, as for
water:

p; = pioeﬁi(l’i = pio)

where B; is the fluid compressibility coefficient (mass™! length time?).
Hence

dp; = p;B:dp;

* In certain flow experiments with water, oil, and gas, sums of relative permeabilities superior to
1 (up to 2) have been measured. Attempts have been made to explain this by saying that one of the
fiuids works as a “lubricant” for the flow of the others. This shows that the classical theory of
multiphase flow presented here is only a rough approximation.
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For a perfect gas, e.g., air, the state equation is, for one mole,
piV =RT or p; = M;/V = (M;/RT)p;

where V is the volume occupied by one mole of gas, R the perfect gas constant
(8.32 in ST units), T the temperature in Kelvins, and M; the molar mass of the
gas. Hence

dp; = (M;/RT)dp; = p;f;dp;

with B; = 1/p, the gas compressibility coefficient (mass™! length time?). But
Biis no longer a constant. For a petroleum gas, which deviates from a perfect
gas, the state equation is written

pi = (M;/RT)p,/ Z;

where Z, is the compressibility factor of the gas, which is a function of p;.
Hence:

dp; = p;p;dp; with B; = 1/p; — (1/Z,)dZ;/dp;

From these laws, the term 6p;/dt in the continuity equation can be expressed as
a function of dp;/ot.

For the porous medium we have seen in Section 5.3 that the porosity @
varies with the pressure, due to a change in effective stress in the medium

dw op
— = (O ~— @ iy
where a is the compressibility of the porous medium and f, is that of the grains
of the medium (generally disregarded). The variation of w in multiphase flow
is often regarded as negligible compared to the variation in saturation. If this is
not acceptable, the pressure p to consider in the above equation is that of the
wetting fluid, which surrounds all the grains of the medium. ,
. 'E;fn
R
(d) Capillary pressure. We have seen, in Section 2.2.2.¢, that there is a
difference in pressure across an interface separating two immiscible fluids,
called capillary pressure:

pCij =Di— P;

This capillary pressure is a function of the radius of the curvature r of the
interface between the two fluids and of the surface tension o; existing between
them:

20

Pey ==
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Drainage curve

Wetting curve

Intermediary cycle

o

Fig. 9.2. Capillary pressure versus saturation. 100 %

As the radius of curvature of the menisci separating the fluids in the porous
medium is a function of the saturation, the capillary pressure depends on the
saturations. For air and water, p.(s) = Pair — Pwater-

In Section 2.2.2.c, we showed a few curves of the capillary pressure p, versus
the saturation s. Unfortunately, these curves display hysteresis, depending on
whether s increases or decreases (Fig. 9.2). The same phenomena occur when
there are more than two fluids. These curves are obtained experimentally.

(e) Relationship between the saturations. By definition, ¥ s; = 1. Thus, we
obtain the system of equations

0
div[ p;k.;k(grad p; + p;g gradz)] = a(pisiw)

pi “pj = pc,-j

Ys;=1
where k,; and p,,; are functions of the saturations. In general, these equations
are solved numerically. We shall, however, examine some simplified cases
where approximate solutions are available.

Buckley and Leverett (1942) have given a classical analytical solution to the
problem of the injection of a fluid in a medium initially saturated with another
fluid. Both fluids and the matrix are supposed incompressible and the effect of
the capillary pressure gradients on the flow field are neglected. In one
dimension, it can be shown (see Subsection 9.2.2) that the sum of the fluxes (or
velocities) of each fluid is a constant through space. This sum of the velocities
can be explicitly calculated as well as the saturation, although the expressions
are highly complex and nonlinear. A sharp front (jump in saturation) is moved
inside the medium, although the saturation varies before and after the front.
See Bear (1972), Morel-Seytoux (1973) and Allen (1986).

In the oil industry, the problem is even more complex, because exchanges
between the phases have to be taken into account (0il and gas) as the pressure
varies, and thermal problems must be considered (e.g., injection of steam into

an oil reservoir). The variation in viscosity of each fluid must also be included.
(See Allen, 1986.)
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(f) Capillary entrapment and fingering. Two-phase migration makes it
possible to explain the phenomenon of “capillary entrapment,” which is the
cause of the formation of certain oil deposits in sedimentary porous media.
Imagine a flow of oil and water. The oil is assumed to be the nonwetting fluid.
A drop of oil squeezed into a pore that is too small for it looks like the
illustration in Fig. 9.3. Because of the pressure gradients of the flow, it presents
differences in the radii of curvature, r, and r,, between its upstream and
downstream sides. If the drop is to cross the narrow passage of the pore, it has
to be subjected to a minimum pressure gradient producing a sufficiently small
radius r, . Below this gradient the drop of oil is “trapped.” However, if the drop
is moving, its kinetic energy may help it to cross the narrow passage. This
phenomenon has been studied by Legait (1983).

Another problem posed by two-phase flow is that of instabilities or
fingering. If an attempt is made to displace a fhud A by a fluid B, the result will
often be neither a well-defined interface between the two fluids, nor a transition
zone where the saturation varies continuously between A and B, but a
penetration by, for example, the fluid A of the fluid B in the shape of a “finger”
(Fig. 9.4). These fingers have a tendency to progress faster than the average
front, and thus to continuously grow in size. Bubbles of the fluid B can also be
left immobile behind the front, because of fingering, and remain trapped inside
a medium almost saturated with fluid A.

This phenomenon is characteristic of unstable flow. The conditions of
stability or instability of a two-phase flow are quite complex and depend on
the viscosity, the density, the relative permeabilities, and the flow velocity.

Fig. 9.3. Capillary entrapment.

Fluid A Fluid B

Fig. 9.4. Fingering.
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9.2. Special Case: Flow in Unsaturated Media

The flow in the unsaturated zone can be studied either by assuming that the
movement of the air can be disregarded and focusing on the movement of the
water or by taking both into account. We shall briefly present the two
approaches and then give some simplified solutions (see also Hillel, 1971).

9.2.1. Unsaturated Flow with Immobile Air Phase

Most of the time it is assumed that the air phase is immobile in unsaturated
media, so only the movement in the water phase is calculated; the pressure in
the air phase is equal to the atmospheric pressure, taken as zero.

First, we determine experimentally the relation between the unsaturated
hydraulic conductivity K and the moisture content 6 (or saturation), which is
taken to be a single valued function (i.e., no hysteresis), as in Fig. 9.5. In Section
2.2.2.a, we defined the moisture content 8 as (volume of water)/(total volume
of sample).

Next, the compressibility of the water is disregarded and Darcy’s law is
written using the hydraulic head:

U= —K(O)gradh
As usual, the hydraulic head is defined by

h=L 1
pg
but the pressure of the water is then negative (one talks of suction: y = —p).

Finally, the hydraulic head % is used as the single unknown and the relation
between hydraulic head h and moisture content 6 is made through an
experimental relation between suction and moisture content. This relation
does show. phenomena of hysteresis, which may or may not be taken into
account, as illustrated in Fig. 9.6. The description of the mechanism of
hysteresis can be found in Topp (1971), and Mualem and Dagan (1972), its

<

Fig. 9.5. Hydraulic conductivity versus
moisture content.
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suction Y =-p

= O Moisture content
Fig. 9.6. Suction versus moisture content.

approximation in numerical models has been described by Mualem (1974) or
Parlange (1976).
The continuity equation is then written as

. 0
div(pU) + —a—g(p(?) =0
that is,

00
divU+—=0
ot
as p is assumed constant and the porous medium incompressible.

Darcy’s law gives U versus the hydraulic head. The variation of the moisture
content d6 for a variation in hydraulic head dh at a given fixed point remains to
be expressed. If we choose a point in the plane y/(6) on a given cycle of wetting
or draining, the variation of 6 with y is given by the slope of the tangent to this
curve (Fig. 9.6):

do de

v V=—7 7P

The variation in pressure is linked to the variation in hydraulic head at a
given fixed point by

a0

d
dp = pg dh, thus d0 = —pg (ﬁ) dh
]

The term pg(df/dyr ), is sometimes called the specific moisture capacity. itis, of
course, a function of 8. This gives

d6\ oh

i Ogradh) = —pgl — ) —

div(K(6) grad h) pg<d¢>a h
This equation is called Richard’s equation. It can also be written taking
¥/ pg as the unknown, or even 6. It is very definitely nonlinear and is solved

¥

Cfgl:f Qrﬁfdjjﬁ'f‘«%ﬁz ﬁ/g;} = L%Wi:i(@iﬁ{'\“ 4 ,@éiw Mi@ﬂ}yafﬁ:
g by
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numerically [see Vauclin et al. (1979a,b), Neuman (1973, 1975¢), Freeze
(1971)].

The advantages of writing this equation in terms of hydraulic head % and
not in terms of moisture content 8, which is equally possible, are that:

(1) The hydraulic head is continuous when the transition is made from the
saturated to the unsaturated medium. Then the medium as a whole is modeled
as a continuum.

(2) The hydraulic head is continuous even if the medium is not uniform;
on the contrary, there is a discontinuity of the moisture content at the point of
contact between two media of different nature.

9.2.2. Unsaturated Flow with Mobile Air Phase

In this case, the air is supposed compressible while the water and the
medium are incompressible. Both fluids follow the multiphase law

k
U, =k ﬂ'w (grad p,, + pyggradz)

W

k
U, = —k”—"‘(grad Pa + pag grad z)

a

where “w” and “a” stand for water and air. The other symbols are those defined
in Section 9.1.
The continuity equations are written

div(U,) = —w 0s,,/0t
div(p,U,) = —® (pas,)/0t
with the state and auxiliary equations
0pa/0t = (pa/P.)0p./0t  (py = conmst)
Sy +S,=1
Pa — Pw = DolSw)

The last equation gives the capillary pressure. This gives seven equations for
seven unknowns and can be solved numerically.

In the case where the compressibility of the air is neglected (p, = const),
one can add the two continuity equations and thus define a total velocity U =
U,, + U, which satisfies:

div(U) = 0

since sy, + 5, = 1
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For a one-dimensional flow (e.g., vertical infiltration), this total velocity is
thus a constant in space. This may simplify considerably the integration of the
equations. Some analytical solutions or numerical solutions have been
obtained for this case. See Brustkern and Morel-Seytoux (1970), Levan and
Morel-Seytoux (1972), Noblanc and Morel-Seytoux (1972), Morel-Seytoux
(1973).

Using the mobile air phase approach does not, in general, give results
significantly different from the immobile approach: only in very special cases
does the air pressure build up (e.g., ponding due to flooding, stratified soil
profile, etc.). However, Morel-Seytoux and co-workers advocate the use of the
mobile air phase approach because of the simplicity of the calculations when
using the total velocity.

9.2.3. Solutions of the Infiltration Problem

This section summarizes the review given by Vauclin (1984).

Philip (1957) proposed an approximate analytical solution of the problem
of vertical infiltration in a one-dimensional semi-infinite medium. He solves
the single phase flow equation written in terms of moisture content and
obtains an expression for the depth y (counted positively downwards) where
the water content 8 is obtained at time t, with the initial and boundary
conditions given by

6=20

n>

0=60, y=0, tZO

y=0, t<0

96,0 = 3. 60"

The coefficients f;(6) are solutions of ordinary differential equations
depending upon the soil characteristics. This solution becomes unreliable
ast—» oo.

Parlange (1971, 1972) proposed a solution for the same problem with
a prescribed flux boundary condition g, at the soil surface and the same initial
conditions as above. It can be written

01()
y(6,1) = J DB){[g0 — K(B)IL(B — 6,)/(0:1(2) — 6,)]

]
— [K() — K@©,)1} " dp
where #,(t) is the water content at the soil surface, given by

. J e DB)B — 0,)
o [40 — K(B)1[g0 — K(6)]

ap
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and

1 ays
0 E 0 —_
b®) Py K )<d0)o

is the soil water diffusivity.

Green and Ampt (1911) proposed an approximate solution where they
assume that the infiltrating wetting front can be defined by a water pressure p;,
which remains constant as the front migrates downwards. Furthermore, the
soil behind the wetting front is assumed to have a uniform moisture content
and thus a constant hydraulic conductivity K,, which corresponds to that
of a naturally saturated soil. They assume that a constant head &, is applied
at the soil surface (z = 0) at time ¢t = 0. Applying Darcy’s law between the soil
surface and the position z; of the front (z is positive upwards) gives the infiltra-
tion rate i(i is negative if directed downwards):

hy = Py Zg hy, = constant at z = 0

W

i=_—K MZ_K{W.{_I]

s

The cumulative infiltration (positive) is then I = —z; A, where A8 is the
increase in moisture content in the wetted zone. Taking the derivative of I,
one gets:

VL o L kT
dt dt B 2z
By integration, one obtains:
i I
I =K —(pe/pwg — ho) Afln| 1 —W]
- f/FPwd T 0

The pressure at the front p; can be linked to the soil characteristics in the
two-phase flow theory by (Bouwer, 1964; Neuman, 1976)

O
ps = —-j k.w(p)dp
Pn
where p, is the initial water pressure in the soil, and k,, the relative
permeability to water. Note that &, is generally expressed as a function of the
water saturation but can also be given as a function of the pressure through the

suction curve.

Bouwer (1964) also suggests to use for k, one half of the saturated hydraulic
conductivity to take into account the air entrapment which occurs in natural
conditions.
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Another expression for p; has also been suggested by Morel-Seytoux and
Khanji (1974) using the total velocity defined in Subsection 9.2.2.:

[}
Pe = _J fw(pc)dpc
Pen

where p, is the capillary pressure, p,, is the initial capillary pressure below the
wetting front, and f.(p.) = 1/(1 + k,.ptw/k,wita) the “fractional flow”.

On the other hand, empirical relationships have also been proposed to
represent infiltration. These are most commonly used to analyze the results of
infiltrometer tests (see Subsection 9.2.4).

Smith (1972) suggests

i(t) =i, + alt — t5) 7%, t>tg

where i is the infiltration rate and i., «, t, and f are constant for a given soil.
Holtan (1961) gives

i) = i, + a(W — I)"

where i, a, and n are constant for a given soil. W — I represents the available
volume for storage in the unsaturated zone: W is the volume of void above
some impeding layer, and I is the cumulative infiltration. Valuesfori_, a,and n
for most major soils in the U.S. have been collected by the U.S. Dept. of
Agriculture.

9.2.4. Measurements in the Unsaturated Zone

Predicting the flow in the unsaturated zone requires a complex series of
measurements of the soil properties. These are usually made in the laboratory
but can also be made in the field.

The capillary pressure versus moisture content curve is generally deter-
mined in the laboratory as follows: a sample of the soil (if possible,
undisturbed) is placed in a cylinder of known volume (e.g., diameter 0.1 m,
thickness 0.05 m), which is exactly filled. The lower end of the cylindrical
sample lies on a porous ceramic plate, which is saturated with water and
communicates with a water reservoir where the water pressure is recorded (see
Subsection 2.4.2). The upper end of the sample is included in a pressure vessel,
where the air pressure is controlled and measured. The high air entry pressure
of the porous ceramic plate prevents the air pressure from being applied to the
lower water reservoir. The difference between the air pressure and the water
pressure at equilibrium is, by definition, the capillary pressure. The air pres-
sure is increased at low moisture contents so that the water pressure always
remains above atmospheric pressure to avoid boiling. To vary the moisture
content of the sample for the drainage curve, one starts with a saturated
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sample and periodically puts the sample into an oven for partial drying. The
moisture content is monitored by weighing the sample. For the imbibition
curve, known amounts of water are periodically added to the sample.

The hydraulic conductivity versus moisture content curve is generally
determined on an unsaturated vertical soil column where a steady-state flow
has been established (e.g., a prescribed flux at the upper end). Since the flux is
constant all along the column, the hydraulic conductivity is determined by
measuring locally the head gradient; this is done by installing a large number
of porous ceramic plugs or rings at various elevations in the column by which
the water pressure in the porous medium can be measured; hence we find the
head. The corresponding moisture content is measured by a continuous ver-
tical scanning of the volumn by a neutron probe (see Subsection 2.3.2.b). A
transient flow situation can also be analyzed; the flux is then given by the
variation in moisture content. Note that from these measurements it is also
possible to determine portions of the capillary pressure curve. This does not
work for very strong suctions.

The same type of measurements can be made in the field, the water pressure
and the moisture content in the medium being measured by tensiometers and
neutron logging, respectively (see Subsections 2.4.2 and 2.3.2.b). In general, it
will be difficult to establish in the field a steady-state flow regime. Therefore the
method of the “no flow boundary” is generally preferred: in summer, in gen-
eral, when there is no rain, one finds by looking at the measurements of the ten-
siometers at several depths that there is inside the unsaturated zone a “water
divide” plane (e.g., at a depth of 2 m): above this plane, the water migrates
upward to compensate for evapotranspiration at the surface, and below this
plane the water moves downward toward the water table. By performing two
measurements of the water content at a short time interval (e.g., one week), and
assuming that the no flow boundary remains exactly at the same position, it is
possible to determine by continuity the flux migrating into the medium at any
elevation, upward or downward, and thus to determine the hydraulic
conductivity at those elevations. Since the moisture content varies with the
elevation, if the soil profile is assumed to have uniform properties one can thus
determine the in situ hydraulic conductivity versus moisture content curve, as
well as the first portion of the capillary curve (for suctions below one bar). To
go above one bar, indirect methods of water pressure measurements must be
used, eg., the plaster blocks described in Subsection 2.4.2. (See Hillel (1971).)

Slug tests in tensiometers (Subsection 8.6.c) have also been used to measure
in situ the hydraulic conductivity in the unsaturated zone.

Infiltration tests in situ are generally made using the double ring method. A
first large-diameter cylinder (e.g., 0.5 m in diameter, 0.5 m in height) with its
two ends opened, is pushed into the soil (e.g., 0.1 m) to insure a good seal. A
second, smaller cylinder (e.g., 0.2 m in diameter and of the same height) is
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similarly installed at the center of the large one. A prescribed (and identical)
water level is then maintained in each cylinder. However, the flux of water is
only monitored in the smaller cylinder, the larger one being only there to
insure that the flow beneath the smaller cylinder is directed only downwards
(one-dimensional vertical flow) without any lateral migration.

Infiltration tests determine the hydraulic conductivity K, under “natural
saturation,” assumed to be one half of the totally saturated conditions because
of air entrapment (see Subsection 9.2.3.). They can also be used to determine
the empirical parameters of the infiltration formulas given in Subsection 9.2.3.

Recently, the hydraulic properties of soils have been found to have a rather
large spatial variability. Geostatistical techniques (see Chapter 11) are now
being used, as well as the concept of scaling. In this theory, two porous media
are said to be similar if they differ only by the scale of their internal
microscopic geometries. If « is the scaling factor (ratio of some characteristic
length of the pore space, e.g., grain diameter d,/d, ), it can then be shown that a
soil-water property Z can be scaled in the following way:

ZZ = O("Zl

where the exponent nis —1 for pressure, 2 for hydraulic conductivity or flux,
1 for diffusivity, and 0.5 for sorptivity. Of course, this theory only approx-
imately applies to real media, but it can be used to infer soil properties from a
complete set of measurements at a few points and then from limited hydrau-
lic measurements elsewhere,* or to introduce the scaling factors directly into
the flow equations. See Vauclin (1984), Vauclin and Vachaud (1984), Nielsen
et al. (1973), Warrick et al. (1977), and Russo and Bresler (1980).

9.3. Movement of Separating Interfaces

It may sometimes be admitted that, when two immiscible fluids move, one
of them displaces the other entirely: each fluid occupies all of the porous
medium in which it is found (saturation = 1), and a clear-cut interface is
assumed to exist between the two fluids (Fig. 9.7). Then the continuity
equation is solved (using Darcy’s law) separately in each of the domains, and
the dividing boundary is moved with time under the assumption that the flow
is stable (no fingering).

* It is not generally possible to measure the scaling pérameter o directly from geometrical
properties: some simple hydraulic property is measured, from which the scaling parameter is
inferred.
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Fig. 9.7. Interface between two immiscible fluids.

The boundary conditions obtaining at the interface are:

(1) Equality of pressure p; = p, (capillary pressure is disregarded: since
the interface is assumed to be plane, it has an infinite radius of curvature).
(2) Equality of normal Darcy velocities of fluid displacement:

ohy _ o Oy _

on = =P

The displacement of ‘the interface is given by the normal mean microscopic
velocity of the two fluids at the interface, with . as kinematic porosity:
v ,

y =t
(Dc

9.3.1. Special Case: Fresh Water—Salt Water Interface in
a Steady State

This type of contact belongs in fact to the flow of miscible fluids. However, it
is often dealt with by making the following two assumptions for the contact
between fresh water in coastal aquifers and the sea, in a steady state: (1) the salt
water is immobile, and (2) the fresh water flows over the salt water with a clear-
cut interface without mixing.

. This approximation is fairly valid if the flow rate is steady, i.e., with an
immobile interface. In reality, there is a transition zone between the fresh and
salt water, and it has a very slight thickness (of the order of 1 m), as shown in
Fig. 9.8. The reason the immobile transition zone has such a small thickness is
that the fresh water flows toward the coastal outlet, constantly gathering the
salt diffusing into it from the immobile salt water zone.

However, if the interface moves under the influence of the tide or of
variations in the outflow from the aquifer toward the sea (natural variations or
withdrawals), the transition zone becomes larger and the problem must often
be treated as one of miscible fluids if we want to explore what happens around
the contact area (e.g., the problem of salt water intrusion into coastal aquifers).

We shall, however, choose the case of a steady state with a clear-cut
interface, asin Fig. 9.9. The free surface and the salt-water wedge are flow lines.
The equipotential lines are therefore at right angles to them in an isotropic
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Fig. 9.8. Seawater intrusion

medium. At a point P (of elevation z) of the wedge, the equality of pressures
and the immobility of the sea water allow us to write (with subscripts 1 for
fresh water, 2 for salt water):

P2 = — P29z

2 29 } (p2 — p1)gz = —pyghy
p1 = —p19z + p1ghy
that is,

7 = __.__pl__hl

P2 — P

The depth z of the interface is related to the hydraulic head h in the fresh
water and to the difference in density. At a salt content of 32 g/liter (average

Equipotential |7 - s 0
line

Fig. 9.9. Saltwater—freshwater interface.
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Fig. 9.10. Ghyben-Herzberg interface.

sea water), the mass per unit volume of sea water is close to 1025 kg/m?>. This
gives

z ~ —40h

This relation is known as the Ghyben—Herzberg principle. If we further
admit that the equipotential lines are vertical and that the free surface has a
constant slope (both of them rather crude assumptions), the first approxi-
mation of the salt water wedge is a straight line (Fig. 9.10).

In a first approximation, it then becomes possible to estimate the probable
depth of the fresh water—salt water interface in a coastal aquifer. For example,
if, at 200 m from the coast, the piezometric head is 2 m above sea level, the
depth of the wedge is around 80 m, unless it has already been stopped by the
bedrock of the aquifer (i.e, if the aquifer is not 80 m thick) (Fig. 9.11).

However, Verruijt (1968) has calculated exactly the shapes of the free surface
and the wedge in the case of an infinite homogeneous medium. For a constant
seaward flow it is easy to show, by calculating the complex potential of the

. Bedrock ’ s _--.' “toe" of the wedge *.° .

7 LA 7P 7 2
Fig. 9.11. Toe of the interface.
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flow, that the free surface and the wedge are actually two portions of
parabolas, the equations of which are, for the wedge,

»_ 20 0> 1-8
ﬁK(1+/3) ﬂZK21+/3

and for the free surface,

i 280
K1+ p)

which result from the following flow equation, written in terms of the complex
potential I" (see Section 7.5)

Ky=(1 + BT%2B0 + il

with z counted positively upward from the sea level, x counted positively
seaward from the coast, Q as the flow of fresh water seaward in the aquifer per
unit length perpendicular to the plane of the figure, f = (p, — p1)/P1, ¥y =
x + iz (complex affix), and K as the isotropic hydraulic conductivity of the
medium. (For anisotropic media, the solution can be found by a trans-
formation in the coordinate system; see Section 7.1.¢c.) Rumer and Shiau (1968)
have given such an expression in the case where the aquifer is anisotropicin the
x and z directions; they give, with the same notation
2 20 Q> 1-p

CTTIRBE ) TPRETA S

for the wedge and

280
TIKAL + B) ﬁ)
for the free surface where K, and K, are the hydraulic conductivities in the z

and x directions and 4 = /K, /K, is the anisotropy ratio. Their solution also
gives the head and the streamlines in the flow domain, as

g|lp+1
_Kz[ i oY — ¢]
and
Q/’{ ﬁ+1 2 2
[zﬁ @ w—w]

where ¢ = —K_h/Q is the potential function at location (x,z) and ¥ is the
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associated stream function, defined by
o o¢ oy 104
Rt A . At A
ox az M 5 T I

where his the head. Now if the aquifer is confined, i.e.,, theline z = Ofor x < 0is
a confining bed, the same authors give the interface, the head and the
streamlines as:

a2 @

BT TR T
I
- 325 )
2=~ 25

Numerical solutions of the saltwater—freshwater interface problem can
be found in Sa da Costa (1981), Huyakorn and Pinder (1983), and Allen
(1986).

9.4. Multiphase Pollution Problems

This section is mainly concerned with the pollution of aquifers by petroleum
products, which are the most common fluids that do not mix with water. They
are difficult to treat, because pollution of the aquifers occurs through the
surface and it is therefore necessary to begin by dealing with the transfer of the
petroleum products through the unsaturated medium. It then becomes
apparent that a rather large quantity of petroleum products is needed for the
pollution to arrive at the aquifer, since a significant part is retained by
capillarity first in the unsaturated zone and then in the saturated zome. A
minimum oil saturation in the soil is indeed necessary, below which the oil
phase cannot migrate (zero relative permeability and capillary entrapment).

Once it has arrived at the water table, the oil phase accumulates and
migrates downstream. Figure 9.12, taken from Freeze and Cherry (1979) and
from Schwille (1967), illustrates the process.

However, we must remember that certain components of the petroleum
products (especially the aromatic ones, e.g., certain phenols) may be dissolved
in water and spread as miscible fluids, rapidly polluting the aquifers since they
can drastically alter the taste of water, even in very small amounts.
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Fig. 9.12. Movement of spilled oil above an aquifer. [From Freeze and Cherry (1979).]

The organic phase retained by capillarity in the unsaturated zome is
gradually consumed through bacterial oxidation of the hydrocarbons, but this
may take several tens of years. Crude oil or fuel oil is generally more rapidly
consumed than gasoline. However, some of the degradation products of the
hydrocarbons, resulting from this bacterial oxidation, may themselves be
soluble contaminants, further polluting the aquifer.

In order to protect an aquifer on top of which an oil spill has occurred, one
first tries to dig out as much as possible of the contaminated earth and recover
most of the oil. Wells are then installed to create a local drawdown of the
piezometric surface of the aquifer; the oil reaching the water table will then
flow in the direction of the wells and end up on top of the water in the
borehole. It can be recovered by a supplementary skimming pump.
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However, it is difficult to recover more than 50%; of the spill because of the
capillary entrapment. One then generally keeps pumping the wells for several
years, even if oil is no longer found on top of the water in the borehole, in order
to extract the dissolved hydrocarbons and prevent them from polluting the
rest of the aquifer. The flow rate in the wells has to be adjusted so that no
polluted water can leave the area due to the natural gradient in the aquifer [see
Fried et al. (1979), Schwille (1984).]
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We shall discuss problems where a single fluid phase is present in the
medium, but where its composition or its properties vary. It may be the case of
two miscible liquids (e.g., fresh water and salt water) or of a substance
dissolved in variable concentration in a liquid or even of variable temperature
in a fluid. We shall study three cases separately: substances that do not interact
with the medium, substances that do, and finally, heat transport.

For miscible fluids we shall consider a single fluid phase and define the
concentration of one substance in the other, for example, concentration of salt
in water.

There are several ways of defining the concentration:

(1) The volumetric concentration, as mass of solute per unit volume of
solution (kg/m?>, or g/liter.)

(2) The mass concentration, as mass of solute per unit mass of solution
(kg/kg); the ppm or ppb (part per million or billion) is equal to 10° or 10°
times the dimensionless unit, respectively.

(3) The molarity, number of moles of solute per unit volume of solution
(mol/m?). This is the standard definition of concentration in SI units.

228
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(4) The molality, number of moles of solute dissolved in a unit mass of
solvent (mol/kg).

(5) The equivalent per liter (epl), number of moles of solute multiplied by
the valence of the species, per liter of solution. The common unit is the
milliequivalent per liter (meq/liter), 10° times greater than the epl.

(6) The nuclear activity (for radionuclides) per unit volume or per unit
mass of solution (Bq/m? or Bq/kg). The Becquerel corresponds to a quantity
giving one desintegration per second of a radionuclide.

(7) The ratio of the concentration to the maximum permissible concen-
tration in drinking water (MPCW), often used for radionuclides as well.

In the following, we will mostly use the volumetric concentration C and call
it simply concentration. This concentration varies continuously in the
medium; there is no longer a sharp interface between two fluids as in the case
of immiscible fluids. When the fluid moves, the concentration varies in time
and space. This type of displacement is called mass transport or solute
transport in porous media.

10.1. Solute Transport of Nonreactive Substances

In order to clearly distinguish between the laws of transport and the laws of
interaction between the transported substances and the medium, we shall
discuss in this section the transport of substances that are not subject to any
changes, exchanges, or reactions while crossing the porous medium. These are
the nonreactive (or conservative) substances. This therefore excludes radio-
active decay as well as adsorption.

In Section 10.2, we shall deal with the problem of reactive substances and
see how special laws governing their behavior must be added to the transport
equations as such.

It is important to define, at the outset, what is meant by solute transport.
First of all, it concerns constituents included in the chemical combinations of
elements that are soluble in water. These elements may themselves be more or
less iomized* according to their ionic charge. However, these dissolved
substances may also be present in the shape of electrically neutral chemicals or
complexes created by aggregates of different molecules or ions.

Furthermore, salts considered to be “insoluble” may, nevertheless, be
transported in a dissolved state as trace concentrations since, in reality, this
“insolubility” is never total. Because certain radionuclides, for example, are

* Recent terminology calls any dissolved salt an ion, irrespective of whether it is electrically
charged or not. Thus, for example, CaCOj in solution, not disassociated into Ca2~, CO%*, is
called an electrically neutral ion complex.
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toxic even in weak concentrations, these traces may be significant in calcula-
tions of radiological safety studies.

Finally, we must also consider constituents transported in the form of larger
molecular aggregates, such as colloids, which may, in the end, be caught by
mechanical filtration through the porous medium network (see Section 10.2.).

All these transported substances are known as “solutes,” as long as they do
not constitute a mobile phase distinct from the transporting fluid but integrate
themselves into the single fluid phase (the water of the natural medium),
possibly modifying its physical (e.g., mass per unit volume, viscosity) and
chemical properties.

Solute transport is thus contrasted with the flow of immiscible fluids such as
that of oil and water, which obeys completely different laws of migration.

We shall now define the laws of transport in porous and fractured media
and in the unsaturated zone.

10.1.1. Porous Media

Traditionally, three main mechanisms of migration are recognized: con-
vection, diffusion, and kinematic dispersion.

(a) Convection (or advection). This is the phenomenon where dissolved
substances are carried along by the movement of fluid displacement. It is the
most easily understood of the displacements. It must, however, be defined with
precision:

(1) What portion of the fluid in the porous medium is effectively mobile?
(2) What is the real velocity of this fluid?

Indeed, in a saturated porous medium, a distinction must be made between
two fluid fractions: the one that is bound to the solid by molecular forces of
attraction, called adhesive water, and that which is free to circulate under the
influence of the gradients of hydraulic head, called free water. In reality,
especially in media with low permeability, the magnitude of the free fraction
depends on the degree of the hydraulic gradient: for clays, the deviations from
Darcy’s law, mentioned in Section 6.4.2, are accompanied by an increase in the
fraction of free water at the expense of that of adhesive water, when the
hydraulic gradients increase.

It is therefore necessary to define a kinematic porosity ., which corre-
sponds to the voids in the porous medium occupied by the moving water. This
kinematic porosity may thus be dependent on the gradient, but such
measurements have never been made, and o, will be assumed constant.

If it is assumed that the transport is governed only by the phenomenon of
convection in the moving fluid fraction, the resulting transport equation is
easily found on the macroscopic scale of the representative elementary volume
by using the principle of mass balance.
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Take an elementary volume D of a porous medium with an outside
boundary Z. The mass balance of the transported substance in the volume D is
given by writing that the integral over 2 of the mass flux of the transported
substance into D, is equal to the change of mass of the substance in the volume
D per unit time.

The volumetric flux of fluid crossing the area X is given by the Darcy
velocity U. This volumetric flux is transformed into mass flux of the
transported substance through scalar multiplication of the Darcy velocity U
by the volumetric concentration C; the left-hand side of the balance equation
(mass flow entering D) becomes

fCU-nda
p>

where n is the normal vector on X directed toward the outside of D.

The mass of the transported substance contained in the element D at time ¢
is the integral of the elementary volumes of fluid w, dv contained in the porous
medium multiplied by the volumetric concentration C in the fluid of the
substance in question:

J w.Cdv
D .

The porosity o, which must be used here, is the kinematic porosity (i.e., the
fraction of fluid that circulates) because, for the moment, we assume that it is
the only one capable of containing the transported substance; elsewhere, the
concentration C is assumed to be zero. Thus, the assumption is made that it is
possible to define, in the volume D, a mean concentration C, which is the result
of the mixture of all the substances in the mobile fluid fraction of D.

The variation of this mass per unit time is obtained simply by taking the
derivative of this expression with respect to time:

9 o Cdv = J a)ca—cdv

ot |p p 0t
The passage from the first form to the second is made through Leibnitz’s rule,
since D is fixed and w, is assumed constant.

The mass balance of the solute equation becomes

JCU-ndG=J wca—cdv

We transform the integral of the area of the left-hand side into a volume
integral using Ostrogradsky’s formula:

f CU-ndo = — f div(CU)dv
x D
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ie.,

—f div(CU)dv =J a)ca—cdv
D p Ot .

By taking out the integral signs on both sides, since D is arbitrary we find:

oC
ot

(b) Molecular diffusion. This is a physical phenomenon linked to the
molecular agitation. In a fluid at rest the Brownian motion projects particles in
all directions of space. If the concentration of the fluid is uniform in space,
each one of two neighboring points sends, on average, the same number of
particles* toward the other, and the molecular agitation does not change the
concentration of the solution. However, if the concentration of the solution is
not uniform in space—in others words, if there is a gradient of concentration
between two neighboring points—the point with the highest concentration
sends out, on the average, more particles in all directions than the point with a
lower concentration. The result of this molecular agitation is then that
particles are transferred from zomnes of high concentration to those of low
concentration.

Fick has found that the mass flux of particles in a fluid at rest is
proportionate to the concentration gradient:

¢ = —dygrad C Fick’s law

The coeflicient d,, known as the molecular diffusion coefficient, is isotropic
and can be expressed by:

_RT 1
N 6nur

—div(CU) = o, (10.1.1)

do (length? time™!)

where R is the constant of perfect gases, 8.32 SI units (mass length? time™?2
kelvin~'); N is Avogadro’s number, 6.023 x 1023; T is absolute temperature
(kelvin = temperature °C + 273.15); p is fluid viscosity; and r is the mean
radius of the diffusing molecular aggregates. This expression is only valid for
an infinite dilution; otherwise the activity of the elements and the ionic
strength of the solution has to be taken into account. However, this effect is
rather small. As far as variation with temperature is concerned, since u is also
a function of temperature, it is found that d, varies in general exponentially
with T
do(T,) = do(T,) exp[E(T, — T)/RT; T, ]

* Here we are talking about particles of solutes, not about water, in a fluid without any porous
medium.
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where E is the activation energy of the ion in solution, which is on the order of
21 x 10* J/mole for most ions. Most common ions have a diffusion
coeflicient on the order of 107° to 2 x 107° m?/s at 20°C; for instance, for
NaCl in water at 20°C, d, = 1.3 x 107° m?/s.

If the transport of substances in a fluid at rest is only due to Fickian
diffusion, the principle of mass balance is used to establish the law of
movement, exactly as above:

Ltb-ndc = —L div(¢)dv = %JDCdv

If ¢ is replaced by its expression and the integrals are taken out,
. oC
div(d,grad C) = 5

In porous media the molecular diffusion continues ali through the fluid
phase (the mobile as well as the immobile one). Only the solid stops the
Brownian movement of the particles, since diffusion in solids is negligible. For
an immobile fluid in a porous medium this gives a diffusion coefficient in
porous media that is lower than d. It is usually admitted that the ratio d/d,,
called the tortuosity of the medium, is equal to:

d 1
dy  Fo

where F is the formation factor of the geophysicists, defined by the ratio of the
electric resistivity of the rock over the resistivity of the contained water, and @
is the total porosity. In practice, d/d, varies from 0.1 (clays*) to 0.7 (sands).

For a fluid circulating in a porous medium it is easy to combine the pheno-
mena of convection and diffusion, giving for the left-hand side:

J¢-nda+f CU-ndo = -J diviog + CU)dv
z z D

The total porosity comes into play because the integral of the diffusive flux
¢ over X is zero over the solid [area (I — w)Z] and nonzero over the pores
(area wZX), whereas the Darcy velocity is defined as if the entire area X were
open to the flow. Now the right-hand side becomes

0 0 ,
% L)coCCdv + aﬁ)(w — w)C’' dv

* Neretnieks (1979) quotes measurements of d/d, up to 0.01 in highly compacted bentonite for
gases, cesium, and strontium.
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It is necessary to take two porosities into account: the kinematic porosity
w,, which corresponds to the mobile fraction of the fluid phase with the
concentration C, and the porosity which corresponds to the immobile fraction
o — w.(wis the total porosity) with a concentration C’, which may be different
from C.

In the case of pure convection, only the mobile fraction of the fluid could
contain the transported substances, whereas here the immobile fraction
necessarily contains these substances, as the molecular diffusion causes them
to penetrate into the immobile fraction.

By substituting and simplifying as above, we write this equation:

diviwdgrad C — CU) = wc%f— + (@ — wc)a—act— (10.1.2)

Here, it has to be decided whether or not C’ is to be included in the incoming
flux on the left-hand side. Where convection is concerned, it is clear that only
the concentration C of the mobile fraction brings solutes into the elementary
volume. As for the diffusion, the immobile fractions on each side of the area T
of the elementary volume exchange substances according to the gradient of C'.
Rigorously, the diffusive term should be written:

w.div(d, grad C) + (0 — w.)div{d, grad C’)

where w, is the fraction of the area ¥ occupied by the mobile fluid, which is
then diffusing with a coefficient d, , and (w — w,)is the rest of the fluid fraction
of X (immobile fluid) through which the diffusion of the concentration C’ takes
place with a diffusion coefficient of d,. Probably 4, and 4, would be,
respectively, stronger and weaker than the global coefficient d.

We shall disregard this effect, particularly in view of the existence of the
kinematic dispersion, which already makes the diffusion almost negligible.

Section 10.2.a will show how the existence of the concentration C’ in the
immobile fraction may combine with mechanisms of adsorption over the solid
phase of the porous medium.

() Kinematic dispersion. This is a mixing phenomenon linked mainly to
the heterogeneity of the microscopic velocities inside the porous medium on
whatever scale they are observed.

(1) Inside a pore the velocities in the mobile fraction are not uniformly
distributed; in laminary flow, as Poiseuille’s formula suggests for a cylindrical
pipe, the velocity profile is of the type given by Fig. 10.1. This causes a faster
propagation of the transported substances along the axis of the pores, which,
through mixing and molecular diffusion, produces a progressive spreading of
the transported substances compared to the mean movement of convection.
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Fig. 10.1. Parabolic distribution of the ve-
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(2) The differences of aperture and travel distance from one pore to
another create a difference in mean velocities, as in Fig. 10.2. The fluids
traveling by each of the paths mix with each other and cause a dilution of the
concentration. It should be noted that this process also causes a spreading of
the substances at right angles to the main direction of flow, as in Fig. 10.3.

(3) A stratification or any features of large-scale heterogeneity such as
lenses, interlayered deposits, broken or fractured zones, etc. also introduce a
heterogeneity into the velocity field, which, through the same mechanisms as
above, causes the substances transported by the fluid to mix and spread in ali
directions of space.

The kinematic dispersion is therefore in fact the product of an existing real
velocity field of very complex and unknown nature, which is entirely
disregarded in the convection, when the fictitious mean Darcy velocity is used
(which assumes that the whole of the continuous medium is open to flow).

The division of the transport into a convection term, representing the mean
displacement, and a dispersive term, integrating the effects of the heterogene-
ities, is quite arbitrary; the respective role of each of the terms is chiefly
determined by the degree of precision with which the porous medium and the

velocity field can be described.
Fig. 10.3. Variation of the velocity di- % %

rection between pores.
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What mathematical form can be given to the kinematic dispersion? The
answer may be either theoretical or experimental.

The classical dispersion theory has been developed primarily by Taylor
(1953), De Josselin De Jong (1958), Saffman (1959, 1960), Scheidegger (1960),
Bear and Bachmat (1967), Fried and Combarnous (1971) and established by
considering a random distribution in space of the small channels forming the
pathways through the pores of the porous medium.

The suggested mathematical formula adopts a law of transport through
dispersion similar to Fick’s law which accounts for the phenomena of mixing:

dispersive flux ¢ = — D grad C

which is applied to the whole section of the medium, like the Darcy velocity,
but with a dispersion coefficient B which:

(1) Isatensor assumed to be symmetrical and of the second order.

(2) Hasasits principal directions: (a) the direction of the velocity vector of
the flow (i.c., linked to the fluid and not to the medium), and (b) two other
directions, generally arbitrary and at right angles to the first one.

(3) Has coefficients that are themselves dependent on the module of the
flow velocity.

If the dispersion tensor is expressed in its principal directions of
anisotropy, it is limited to three components:

p, 0 0
D = 0 DT O
0 0 Dy

where D, is the longitudinal dispersion coefficient (in the direction of the flow)
and D the transverse dispersion coeflicient (in the two directions at right
angles to the velocity). Note that D is anisotropic, even if the medium has
isotropic permeability: the anisotropy of the dispersion tensor stems from the
fact that the spreading of the concentration is larger in the direction of the
velocity than in transverse directions. For instance, if a briefinjection of tracer
is made through a piezometer in an aquifer, the shape of the traced water
would appear as in Fig. 10.4 at different times. Inside the spotted area the
concentration also decreases with time because of the spreading. Note that if
only convection occurred, according to Eq. (10.1.1), the bubble of tracer would
progress in the medium without any spreading. If only convection and
isotropic molecular diffusion occurred as in Eq. (10.1.2), the bubble would
remain spherical but would spread slightly with time. The large anisotropic
spreading outlined here is due to kinematic dispersion.

This dispersion flux D grad C is added to the diffusive flux wd grad C on
the left-hand side of Eq. (10.1.2).
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Fig. 10.4. Spreading of a tracer slug in an aquifer.

The value of these dispersion coeflicients varies with the absolute value of
the Darcy velocity or with that of the mean microscopic flow velocity:

U
juy =11

For this purpose, a dimensionless Peclet number is defined:

% %
p ol UNE e
(1]

w.d, ¢ dy

where |u*| is the module of the mean microscopic velocity, k is the intrinsic
permeability, d, is the coefficient of molecular diffusion, and I is a
characteristic length of the porous medium (mean diameter of the grain or
the pores, for example.)

In the laboratory of the French Petroleum Institute, O. Pfankuch (1963) has
experimentally verified on small samples the validity of this dispersion law
suggested by the theory, and has established an empirical relation linking the
dispersion coefficient with the Peclet number. Depending on the size of the
Peclet number, five flow regimes are defined, and for each of them an
empirical relation between Dy, D, and P, is found. These five regimes are
shown in Fig. 10.5. These five dispersion regimes correspond to various
distributions of the roles played by molecular diffusion and kinematic
dispersion:

() Pure molecular diffusion.
(I) Combination of I and III.

(IIl) Predominant kinematic dispersion.

(IV) Pure kinematic dispersion.

(V) Kinematic dispersion outside the domain where Darcy’s law is valid.
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Fig. 10.5. Dispersion coefficients versus Peclet number.

In the domain of the usual velocities (domains IIf and IV, P, > 10), the
following relations are generally admitted:

Dy, = oy |U|
Dy = ar|U]|

where o and o, which have the dimension of a length, are known as intrinsic
dispersion coefficients or dispersivities. When measured in the laboratory on a
column of sand «; is on the order of a few centimeters. In the field, it is on the
order of a meter to a hundred meters depending on the degree of heterogeneity
of the formation [see Lallemand-Barrés et al. (1978) and Section 10.3].
However, «y is much smaller, between + and 155 of ay .

A more general type of dispersion coefficient may also be adopted, explicitly
taking into account the molecular diffusion d so as to extend the validity of the
model towards the low Peclet numbers, i.e., the states I and IT, where the Darcy
velocity is weak:

where d is the molecular diffusion coefficient in porous media, and w the total
porosity. This term only comes into play when |U]| is very small.

The transport equation, now including the kinematic dispersion which
takes the place of the diffusion term, becomes

div(D grad C — CU) = a)c%—f— + (0w — a)c)%ct— (10.1.4)

In this case the kinematic dispersion transport indeed concerns the
mobile fraction with concentration C and not the immobile fraction at con-
centration C'.

For the purpose of simplification, we now make the assumption that the
concentration C in the mobile fraction instantaneously reaches an equilibrium
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with the concentration C’ in the immobile fraction, due to the action of
molecular diffusion. Because of the extraordinary interpenetration of the two
fractions, it may then be admitted that

C=C

and
. oC
div(Dgrad C — CU) = o (10.1.5)
which is the usual form for the dispersion equation. If we divide by w, the total
porosity, a mean fictitious velocity appears:

that 1s,
o o
v=d+-—2|U  Di=d+—1|U|
w w

which can also be written
Dy=d+ou| Di=d+oglu|

This shows that the dispersivities o and oy stay the same whatever form is
given to the dispersion equation (with or without w on the right-hand side).
Then the transport equation becomes
. . _ac

div(D'grad C — Cu') = ¥ (10.1.6)
which is the classical form more commonly used in the literature. Fried (1975)
has shown that if the mass per unit volume p of the solution cannot be
considered as constant when the concentration varies, the dispersion equation
should be written

div(D’ pgrad C/p — Cu') = 6C/ot (10.1.7)

In practice, this expression need only be used for studying the movement of
dense brines (see also Subsection 10.1.1.d) and will not be used in the remain-
der of this text.

Conversely, if the immobile fluid fraction is assumed not to be invaded by
the transported substances, it may be admitted that C’ = 0, and the transport
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equation is reduced to
oC

div(Dgrad C — CU) = Do

(10.1.8)

It is also possible to divide both sides by w, in order to make a fictitious
mean convection velocity U/w, = u* appear.

This discussion shows that, contrary to general practice, it is preferable to
retain the Darcy velocity, which has a precise definition and meaning for the
convection term, and make the porosity (or porosities) appear explicitly on the
right-hand side of the equation. We shall come back to the right-hand side in
the discussion of adsorption (Section 10.2.a, fifth case).

The classical theory of dispersion was first established for homogeneous
isotropic media and later extended to and used, without modification, for
heterogeneous and anisotropic ones. In Section 10.1.3, we shall see how
new concepts are currently being developed for these media. In particular, it
appears that the dispersion tensor is no longer oriented in the direction of the
velocity but at an angle to it.

(d) Coupling of the transport equation with that of fluid movement. Tothe
transport equation must be added another needed for the calculation of the
Darcy velocity U:

k
U= —;(gradp + pg grad z)

which is the generalized Darcy equation written in terms of pressure, since p
varies with C. Finally, we have the continuity equation of the fluid with its
state equations:

div(pU) + (—%(pa)) =0 (3.23)

p=p(C,p) pu=pCp)

D = a function of U and of the molecular diffusion coefficient in porous
media d.

These equations are coupled and should thus be solved simultaneously.
(The velocity U depends on the concentration, and vice versa.) Note that
Eq. (10.1.7) should be used instead of (10.1.5) or (10.1.6).

(e) Simplification of the dispersion equation: Tracer hypothesis. The
tracer hypothesis consists in separating the equation of the variation in
concentration from that of the velocity: the concentration C is assumed to be
solow that the mass per unit volume p of the fluid is almost constant. Then, the
velocity U does not depend on the concentration.

The fiow problem is therefore solved separately, and only the dispersion
equation (10.1.5) or (10.1.6) remains to be solved. There are a few analytical
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solutions for the latter [see Section 10.3 and Bear (1972, 1979)], but the
solution must often be numerical, which causes quite a number of difficulties in
numerical analysis due to the discretization, in particular the one related to
the appearance of “numerical dispersion” (see Chapter 12).

(f) Boundary conditions of the dispersion equation. When boundary
conditions are imposed on the dispersion equation, it must be remembered
that this equation contains two separate terms: a diffusive and a convective
term.

The characteristics of a boundary are, first of all, related to the direction of
the flow crossing it:

(1) Boundary with incoming flow. The concentration on this type of
boundary is fixed by the concentration of the entering flux; C = C,.

(2) Boundary with outgoing flow (e.g., the outlet of the geologic formation
toward the surface, such as a superficial aquifer, a body of fresh water or salt
water, etc.). The concentration of the outside medium assumed to be well
mixed does not play a dominant role on the concentration inside the medium.
The concentration in the flux going out by convection is said not to vary when
it crosses the boundary:

oC oC
U '% -m=0 or % =
where n is the normal to the boundary. The dispersive flux is then disregarded.

(3) Boundary with outgoing flow, taking into account the dispersive flux.
If one assumes, as in (2), that the outside domain is well mixed, and has a
concentration C, independent of the flux coming from the inside domain, then
there is by definition a discontinuity in concentration at the boundary, and the
dispersive flux would become infinite. One must therefore consider a small
buffer zone of thickness ¢ between the two media, and assume that the
concentration varies, e.g., linearly between concentration C (inside the
medium) and C,, (outside the medium), in the buffer zone. This zone is further
assumed to have no storage capacity, so that at all times the total flux coming
from the inside medium is equal to the total flux leaving for the outside
medium. The total flux from the inside medium is written

(DgradC — CU)-n

0

and total flux to outside medium is written
do(C — Cy)/e — CoU,

where D is the total dispersion coefficient in the medium (molecular diffusion
plus hydrodynamic dispersion), U is Darcy’s velocity, n is the outer normal to
the boundary, U, is the component of U along m, d, is the molecular diffusion
coeflicient in water, and ¢ the thickness of the buffer zone. Equating these two
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fluxes gives a Fourier-type boundary condition in C and 0C/dn; however, the
choice of ¢is very arbitrary, and therefore the boundary condition given in (2)
is generally preferred. Note that we have written the flux to the outside
medium considering molecular diffusion only and not hydrodynamic disper-
sion, since the buffer zone is supposed here to be made of pure water and not of
a porous medium. This is of no importance as ¢ is arbitrary. The convective
flux leaving the buffer zone is indeed —C,U, since, by definition, the
concentration of the water leaving the buffer zone becomes C,.

(4) No-flow hydraulic boundary. The velocity U is parallel to the
boundary, and the convection flux U-(8C/dn)n will always be zero even if
0C/dn is not.

If there is no solute flow coming in or going out by pure diffusion across the
boundary, we write

8C/on =0

On the other hand, if there is a known diffusion phenomenon across this
boundary, we write

oC/on = f

(g8) Choice of dispersion coefficients. The dispersion coefficients (or
dispersivity) can be measured on a column in the laboratory. However, such
coefficients are of little use in forecasting a real migration in the field, where the
scales of heterogeneities are different and the coefficients much larger.
Consequently, they have to be measured by tracer experiments, which are
interpreted by analytical or numerical methods.

It is found, however, that if the space and time scales of the tracer experi-
ments are changed, different values are obtained for the coefficients. This
means that the problem of choosing coefficients capable of forecasting long-
distance migrations is not completely solved. See Subsection 10.1.3.

(b) Remark: Upstream Migration For the high longitudinal dispersion
coefficients, it may also be doubtful whether a theory that does not distinguish
between the direction of the convective circulation and that of the concen-
tration gradient is valid for determining the dispersion flux. If it is only a
question of molecular diffusion, i.c., a phenomenon that is isotropic in all
directions, it is obviously not necessary to define the flow direction, but in the
case of kinematic dispersion the case is different.

Consider, for instance, an axis ! (longitudinal), which is parallel to the
direction of the flow velocity and assumed to be oriented in the same direction.

U->M
_+__)l
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At a point M, the dispersion and convection fluxes are
aC
¢ = _aLlUlﬁ_*' cu

The absolute value sign may be taken out and the velocity U factored out:

If 0C/0l < 0, i.e., the concentration decreases downstream (e.g., the case of
the substance spreading in a clean medium, propagation of the migration
front), the resulting flux ¢, is always positive: that is to say, convection and
dispersion cause the substance to spread downward. This shows that the
dispersivity «; does indeed accelerate the propagation through the influence of
the velocity heterogeneities.

However, if 6C/dl > 0, which is the case of a clean fluid sweeping through a
contaminated medium, the magnitude of «; 6C/dlin relation to C determines
the sign of ¢,: for strong gradients and dispersivities, ¢, may become negative,
which means that the transported substances start to travel upstream against
the flow. It is difficult to understand physically how the kinematic dispersion,
which, after all, is a heterogeneity of the real velocities as compared to the
average convective velocity, could spread the substances upstream: the real
velocities in a porous medium are probably always oriented downstream
rather that upstream. The only physical mechanism that could possibly
explain an upstream migration of the transported substances is molecular
diffusion, which would then be written

¢, = —a)d%(l:— +CU
which would make the value of the dispersion coefficient depend on the
direction of the gradient compared to that of the velocity.
This effect is diminished, if the dispersion coefficient is made to depend on
the traveled distance (see Dieulin, 1980), but it appears to be one of the
inconsistencies of the classical dispersion theory (Simpson, 1978).

10.1.2. Fractured Media

There are no very elaborate special theories for transport in fractured media
and few experiments to support a theory. The three phenomena (convection,
diffusion, dispersion) already cited exist in fractured media as well, and, if there
is a porosity in the blocks between the fractures, the porosity may also play an
important role.
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(a) Convection. In the fracture network, convection works in exactly the
same way as in the porous medium. Using Darcy’s velocity, we write

. oc
— div(CU) = @, o
in order to identify the convection.

A set of fractures having a spacing of 10 m and an aperture of 0.2 mm has an
equivalent hydraulic conductivity of 1073 m/s (see Section 4.l.e) and a
porosity of 2 x 1073, Compared to a porous medium of the same hydraulic
conductivity with a porosity of, say 20%, the fractured medium has a
kinematic porosity 10,000 times smaller: the average microscopic velocity in
such a medium is thus 10,000 times larger than in the porous medium for the
same hydraulic gradient.

The convection transport is therefore much faster in fractured media than in
porous ones, if the rock matrix is impermeable, impervious, and compact.

(b) Diffusion and dispersion. These two phenomena occur in fractured
media as well, the first one through molecular agitation, the second through
the heterogeneities of the velocities inside a fracture (parabolic profile of the
velocities as in a pore) as well as through that of the velocities from one
fracture to another (different degrees of aperture) and finally through
transverse mixing and dispersion, when fractures with different directions
intersect.

As fractured media are quite often anisotropic, the validity of the classical
assumption that the principal directions of the dispersion tensor is in the
direction of the velocity is very questionable.

However, very few values for dispersion coefficients are known in fractured
media. One of the rare cases where these values are known is that of the
Hanford (Washington) basalts, where an accidental release of tritium polluted
the aquifer over nearly 15 km.

A study made by Ahlstrom et al. (1977) gives

OtL = 30 m

op =20 m
Another study of pollution by radioactive waste was made by Robertson in
1974 {(quoted by Fried, 1975) at the experimental station of Snake River
(Idaho). The aquifer is made up of fractured basalt and interlayered

sedimentary deposits. The model has been fitted on the concentrations of
chlorides and tritium, with the coefficients

o= 91m
or=13Tm (note o > o)

as the pollution had spread over nearly 10 km in 10 years.
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D. B. Grove (personal communication, 1973) quotes a tracer experiment
with tritium in 150-m-thick fractured rocks. With an observation well at 600 m
from the tracer point, he obtains o of 150 m and a porosity of 8 x 1074, For
fractured limestone, he quotes o = 152 m.

Recent developments on transport in fractured systems are now focusing on
random generation of fracture networks and numerical simulation of
transport in these networks. See Schwartz et al. (1983), Smith and Schwartz
(1984), Robinson (1984), Endo et al. (1984), and Anderson (1985).

(c) Secondary porosity. This is understood to mean the case where the
rock matrix itself, which is cut up by fractures, cannot be considered to be
impermeable and compact: the transported substances migrate inside it.

If we take up the line of thought that we followed for the porous medium, we
can write the transport equation including two concentrations C and C”:

. ocC ocC’
div(D grad C — CU) = w, % o
where o, is the kinematic porosity of the fractures, w — @, is the porosity
containing immobile water in the fractures and in the pores of the matrix, C is
then the concentration of the fluid in the fractures, and C' is a “mean”
concentration in the matrix.

We elminate the trivial case, where the migration from the fractures to the
matrix is so fast or the medium so densely fractured that it might be assumed,
at any instant, that the concentration C’ in each block of the matrix is equal to
that of the fluid circulating in the fractures. As we have seen in the case of the
porous medium, this extreme case would imply using a porosity for the
transport equal to the total porosity of the rock (mobile fraction in the
fractures plus immobile fracture plus total porosity in the matrix).

First hypothesis: Porous matrix with almost no permeability. In this case,
the only migration mechanism in the matrix is molecular diffusion. In each
block isolated by fractures, the equation of molecular diffusion has to be
solved:

+ (0 — w,)

diviw'dgrad C') = w’%
where o' is the total porosity of the matrix. This equation has as its boundary
condition at the fracture planes the value of the concentration C in the
fractures, which itself varies with time. Then the flux exchanged with the
fracture per unit surface area of contact between the two media is calculated
on the contact area:

¢ =—w'dgrad C’

This term is then introduced as a source term in the transport equation in the
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fractures:
. oC
div(Dgrad C — CU) = Vo> + agp

where o is the ratio (area of the fracture planes)/(volume of the medium). (A
fracture counts as two surface areas because of its two bounding planes.)

In order to simplify these calculations, the diffusion equation in one block is
solved schematically by reducing it to one dimension, giving the block a mean
half-dimension equal to the mean half-distance between the fractures in all
directions of space, but respecting the volume of the matrix (Fig. 10.6).

We can solve the one-dimensional diffusion equation subject to a condition
of no flow at the distance Land an imposed concentration on the fracture
plane either numerically or analytically. The analytical solution gives ¢ in the
form of a convolution integral of the concentration C in the block. Because of
this added complexity, such a calculation can only be undertaken in one, or
maybe, two dimensions. A spherical solution in the blocks, assuming that they
are equal to spheres of uniform radius, could also be conceived or a calculation
where the dimension L would be taken as infinite, if the spacing of the
fractures is such that, in the time considered, the progression of the molecular
diffusion front inside the blocks is small compared to L. See Barbreau et al.
(1980), Neretnieks (1980), and Sudicky and Frind (1982).

Second hypothesis: Porous and permeable matrix. It must be said at the
outset that, if the hydraulic conductivity of the matrix is of the order of that
of the fractures, the fractured medium will have an equivalent hydraulic
conductivity, which explicitly shows the permeability of the matrix, included
in the expression given in Section 4.1f The transport then takes place
simultaneously in the two media and may be represented by a higher
dispersion coefficient, which takes into account the systematic heterogeneities
of the velocity field (this coefficient must be determined by experiments).

The most difficult problem is the one where the permeability of the matrix is
not zero, but small compared to that of the fractures. It might then be
suggested (O’Neill 1977; Lefebvre du Prey and Weill (1974)) that.

\ 1 Fig. 10.6. Block of fractured medium (L= 1/«).
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(1) It can be solved using one single equation for the hydraulic head by
assuming that in a steady state the pressures in the two media are equal and
by using the overall equivalent hydraulic conductivity.

(2) Two velocity fields can be deduced in each medium by applying
Darcy’s law in each medium with its own hydraulic conductivity (the
assumption is that the two media are continuous and overlapping).

(3) Two transport equations can be written in each of the media with their
own Darcy velocity and porosity.

(4) These two transport equations are coupled by the exchange terms:
(a) a convection exchange term linked to the Darcy velocity in the
matrix, where if C is the concentration in the fractures, and C’ the one
in the matrix, the term is —oU’C in the transport equation for C’ and
+aU’C’ in the transport equation for C, where o is an exchange
coefficient; and
{(b) a dispersion exchange term linked to the difference between the
concentrations C and C'.

10.1.3. New Theories of Solute Transport

The dispersion equation which we have established is known to be an
approximation of reality: how good is it in practice? Working in the
laboratory, on rather homogeneous columns, it is found that the measure-
ments can be well represented by the solution of the transport equation, using
dispersivities on the order of a few centimeters. But in field situations, it was
soon found that things worked much less well. Interpreting a tracer test (or a
real pollution case) at a given observation well, it is always possible to fit a
dispersivity for which the solution of the dispersion equation will, with a good
approximation, match the observations (concentration versus time). However,
if a second observation well is used, at a different distance from the source, one
finds in general that a different dispersivity will be needed to match the
observations: the further apart the source from the observation well, the larger
the dispersivity. Lallemand-Barrés and Peaudecerf (1978) synthesized all
published values of dispersivities and were able to show that, on the average,
the dispersivity increases with the distance between the source and the
observation point. This was called the “scale effect”. Their data ranged
between distances of a few meters to 10 km for several rock types, and, as a rule
of thumb, the dispersivity was on the order of one tenth of the traveled
distance. Did this mean that dispersivity should not be regarded as a constant?
It was thought initially that this might be due to different scales of
heterogeneities that were encountered successively by the tracer (or the
pollutant) during its migration. Dieulin (1980), Dieulin et al. (1980, 1981a,b,c)
was able to show that this was not the case: in a careful field experiment, he
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showed that for a given scale of heterogeneity of the medium (i.e., without any
change of the structure of the medium, without any additional heterogeneity),
the dispersivity was increasing with time or, in other words, with the average
traveled distance of the tracer (for a pulse injection of tracer into a parallel
flow). This meant that at two observation wells, at different distances from the
source, it was possible to fit the observations during a short time interval with
the same dispersivity; for a later time interval, a larger dispersivity should be
used but again identical at the two wells. Now of course, if a global fit was
made for each well, using all the measurements, an average dispersivity would
have to be used. At the well farther from the source, as the tracer is observed
later than at the closer well, this average dispersivity would thus be larger.
Dieulin suggested that the scale effect be called a “time effect.” At the same
time, new theories for representing transport were being developed which also
showed the dispersivity to be a function of time. These were based on a
stochastic description of the velocity field in the aquifer. The reader is therefore
referred to Chapter 11, particularly Section 11.10, before going any further.
As hydrodynamic dispersion is the result of the heterogeneity of the velocity
in porous media, the stochastic approach seems particularly well suited for
representing this variability. We will first summarize here the Lagrangian
approach presented by Dieulin et al. (1981b,c). Transport is studied in the
ordinary space R"(n = 1, 2, or 3) with the following simplifying assumptions:

(1) The velocity variations of the fluid in the medium is the dominant
mechanism, molecular diffusion is negligible.

(2) The Eulerian microscopic velocity field u, which is unknown, can be
regarded as a stationary random process, i€, u is a vectorial stationary
random function, and u is conservative, i.e., divu = 0. This means that the flow
is in steady state with a constant porosity.

(3) A slug of tracer is injected at time ¢t = 0 at the origin X = 0 of the
system (note that u and X are vectors, the components of which are denoted u’
or X' A subscript ¢ will denote the time: X,). The transport can be described
by giving , as a function of time, the position X, of a particle* injected att = 0
at the origin. Kolmogorov (1931) has shown that if the particle is transported
by convection and diffusion (Brownian motion) the probability density p(X, t)
of the particle is identical to the concentration given by solving the classical
transport equation for a stug injection of tracer.

Let V(2) = u(X,) be the Lagrangian velocity, i.e., the velocity of the particle
following its trajectory along a flow path. Matheron (unpublished, 1981) has
shown that if u satisfies the assumptions given above, then V is a stationary
random function having the same probability distribution function as u. We

* This particle has no physical meaning and is just a mathematical symbol.
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can now write:

t

X, = j V(t)dz
0

We then have:

E(X) = JtE[V(r)] dt = tE(V) = tE(u) = @it
0

where @ = E(u). Thus the average position of the particle is just the average
velocity multiplied by the time. Let us now determine the variance of this
position; this variance is now a n X n matrix. Superscript T will denote the
transposition of a vector:

Var [X,] = E{[X, — EX.)]"[X, — E(X,)]}
= (X7X,) - EX)E("X,)

= E{JtV(T) dr JtV(T’) d‘c’} —t¥@"a
0 0

rt r

= t {E[V()"V(x")] —a"a}drdr’
JoJo

= " PtE{[V(T) — @] [V(r) — @]dzdr’

= 5 ”tC(f —t)drdt’ = 2Jt(t — 1)C(1)dr
JOJO 0

where C(t)is the n x ncovariance matrix of the components of the Lagrangian
velocity V taken with a time lag t.

The variance of the position of the particle is the equivalent of the
“spreading” of the pulse of tracer around its mean position; it is therefore
related to the dispersion coefficient. Indeed, Einstein (1905) has shown that
the dispersion tensor D is given by:

1d
D= 5 [Var(X,)]

We therefore obtain here:

t

D= J C(r)dr
0

Very important conclusions can be drawn from this simple result:

(1) The dispersion tensor D is a function of time. As each component of
the tensor varies with time, there is a priori no reason why the principal
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directions of this tensor should remain constant. They will not, in general, be
colinear with the average velocity.

(2) If the covariance matrix C of the Lagrangian velocity is well behaved,
ie., C(t) — 0 sufficiently rapidly as t — co, we can assume that the integral of
C(r) will become constant as t — co. Thus one can, in general, expect that after
a certain time a constant dispersion tensor will be acceptable to represent the
transport. This is called an asymptotic diffusive behavior.

(3) The dispersion tensor is a direct function of the Lagrangian velocity.
If the velocity is increased, e.g., by a factor of 2, but otherwise remains identical
in direction, the dispersion tensor will be increased by the same factor of 2.
Thus a dispersivity could be defined, but this dispersivity is not a function of the
properties of the porous medium only; it is also a function of the velocity field.
If a new Eulerian velocity field is created, e.g., by going from parallel flow to
radial flow, or changing the vertical/horizontal velocity ratio (for instance by
varying the recharge in the aquifer), then the Lagrangian velocity field (ie.,
flow path) will be changed, and therefore the covariance matrix of this velocity
is changed: it is no longer possible to assume that the dispersivity is an intrinsic
property of the medium, independent of the flow field. This is a very important
point.

(4) These results are only valid for a slug injection of tracer. For any other
source, the concept of convolution should be applied. This has not always
been realized in the past and erroneous results have been obtained using a
numerical model where D was simply made a function of time for a step
injection of tracer. This is totally incorrect.

(5) Only in the case where the probability distribution function of the
Eulerian velocity field u is assumed to be Gaussian is it possible to show that
the transport equation equivalent to the particle position is:

62 ;0C oC

R

This is similar to a dispersion equation where the dispersion tensor is made a
function of time (Dieulin et al., 1981b,c). For all other distributions of velocity,
there is no equivalent dispersion equation for early times until the asymptotic
behavior is reached. There is very little reason why the Eulerian velocity field
should have a Gaussian distribution. Therefore there is at present no correct
dispersion equation representing transport for early times.

Quite similar results were obtained for stratified media by Gelhar et al.
(1979a) and Matheron and Marsily (1980) including, however, a local dif-
fusion in the equations. The former used a spectral approach, the latter a
Lagrangian approach. More recently, Gelhar and Axness (1983), Dagan
(1982a), Winter et al. (1984) were able to relate the time-varying dispersivity
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tensor to the Eulerian velocity field and thus to the hydraulic conductivity of
the medium. To arrive at such results, these authors were obliged to make
simplifying assumptions that may—or may not—hold. Long term experi-
ments are planned to check these theories.

In summary, the classical dispersion equation is probably only valid after
large times or large distances traveled by the tracer in the medium; such
distances can be equal to several times (up to 10) the average “correlation
length” of the heterogeneities of the medium (i.e., on the order of 10 times the
characteristic length of the geological structures of the medium). In typical
sediments, this can imply that several hundreds of meters are necessary before
an asymptotic behavior is reached. Meanwhile transport is only approximate-
Iy represented, for a slug injection, by a time-varying dispersion coefficient
and, for any other injection, by the convolution of the response to the slug
injection with the actual source term.

One must also bear in mind that since the controlling parameter of
transport is the Lagrangian velocity field, any field determination of the
channeling properties of the medium {e.g., buried high permeability channels
or highly conductive faults) will improve tremendously the understanding of
transport. In fact, improving the knowledge of the heterogeneity of the
medium is a prerequisite to predicting transport at early times.

10.2. Laws of Interactions between the Immobile Phase and
the Transported Substances and Physicochemical
Changes in the Substances

The purpose here is to describe the mechanisms that can turn the migration
of substances in porous or fractured media into a reactive phenomenon, i.c.,
which tend to invalidate the laws of mass balance during the transport. The
case of the porous medium and that of the fractured medium will be discussed
separately.

10.2.1. Porous Media

The immobile phase includes mainly the solid phase, but also the immobile
liquid bound to the solid by the forces of molecular attraction. Several
mechanisms of interaction, transformation, or decay can make transport
nonconservative (see Jackson, 1980).

Physical mechanisms. The transported substances can sometimes be
stopped by physical filtration through the pores of the medium. This can
happen even if the transported substances are much smaller than the size of
the pores.
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Geochemical mechanisms.

(1) Combining of ions into electrically neutral molecules.

(2) Acid/base reaction depending on the pH of the solute and on
the rocks it travels through.

(3) Oxidation~reduction reactions which condition the state of
valence of the transported ions.

(4) Precipitation—dissolution, which may immobilize or dissolve the
substances.

(5) Adsorption—desorption limited by definition, strictly speaking,
solely to the ion exchanges (mainly cations), which take place on the
surface of the clayey or colloidal minerals.

Radiological mechanisms. These are radioactive decay (vanishing of
substances), and creation of daughter products by this decay (appearance of
new substances).

Biological mechanisms. Biological activity in porous media can decom-
pose or transform some elements; very often, such processes are represented by
a decay reaction, like radioactive decay, with a “biological” half-life.

This whole set of mechanisms is represented by a “net source or sink term”
Q in the transport equation, which expresses the lack of mass balance, when
the balance of fluxes entering into and accumulated in a volume D is
calculated, as we have seen in Section 10.1. It is written as

. ocC
div(D grad C — CU) = 0 +0 (16.2.1)

The term @ represents: the disappearance of substances, if it is positive (sink),
and the addition of substances, if it is negative (source). It is expressed as a
mass of the considered substance, added (or substracted) per unit volume of
porous medium and per unit time; Q is the algebraic sum of the rates of each
individual mechanism.

We shall try to review the laws which allow us to estimate the source or sink
term.

(a) Filtration. We will first consider the case where the transported
clements are actually “sieved” by the medium, i.e., when the size of the pores is
smaller than that of the particles in solution. Greenberg (1971) gives the
following estimate for the pore size, in clays:

(1) Diameter of the clay particles ~20,000 A (A = angstrom = 107° m),
and sometimes much smaller.
(2) Spacing between the sheets of the clayey minerals, 9-15 A.
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(3) Insands, the order of magnitude of the diameter of the pores, given by
the effective grain size d,, defined in Section 2.1.e. It is usually in the range
1072 to 10™! mm (100,000-1,000,000 A).

(4) Diameter of the smallest soluble ions, such as Na* or C17: 1-10 A.

(5) Diameter of the large organic molecules with high molecular weight,
e.g., the chain polyethylene glycol of molecular weight 20,000: up to 500 A.

(6) Diameter of bacteria: 5,000-30,000 A.

(7) Diameter of colloids: extremely variable, usually in the range 1,000
50,000 A.

Thus, it can be admitted that direct sieving can be effective only for very
large molecules, bacteria or colloids, in clayey soils or silts.

However, the term filtration is also used to describe mechanisms where
particles that are much smaller than the size of the pores are nevertheless
stopped and “sedimented” in porous media. See Subsection 10.2.4.

(b) Adsorption and ion exchange. Because solutes become attached to
the mineral particles, a quantity of substances bound to the solid phase
should be defined. A mass concentration F, dimensionless, is generally used,
representing the mass of substances adsorbed per unit mass of solid. In a unit
volume of porous medium, the mass of solid is (1 — w)p,, where w is the total
porosity and p, the mass per unit volume of the solid particles (e.g., the quartz
grains in sands, not the bulk mass per unit volume of the medium). The mass of
substances bound to the solid is then (1 — w)p F.

The source term to be introduced into the equation is the variation of this
mass per unit volume per unit time:

0
0=~

The problem of adsorption consists in defining the relation between the
concentration F and C.

Mechanisms of ion exchange. The adsorption capacity of certain minerals
or colloids is due (Jackson, 1980) to the existence of nonneutralized electric
charges at the surface of and/or inside these minerals. Ions with an opposite
charge attach themselves to it, thus creating a “double electrical layer”, which
may belong to one of the following two types:

Type 1. Imperfections or ion substitutions in the crystal lattice of the
mineral, causing positive or negative electrical imbalance. The surface of the
mineral is then called the stable electrical layer, and the ions with an opposite
charge attracted by the stable layer constitute the mobile electrical layer.
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Type 2. The specific adsorption of certain ions by the surface of a mineral
initially uncharged creates a stable electrical layer to which other ions of
opposite charge become attached, thus creating the mobile layer.

Vermiculite and montmorillonite have, for example, double layers of type 1.
Other clays, metallic hydroxides, and organic and inorganic colloids (silica, for
example) have double layers of type 2. The latter are very much more sensitive
to the pH action of the water.

An order of magnitude for the maximum adsorption capacity of the clayey
minerals is around 74 of their weight. It should rather be given in
milliequivalents per unit mass, as the valences of the adsorbed ions have to be
taken into account: adsorption is an electrical balance. As clays are negatively
charged, the mobile electrical layer is made of cations. Orders of magnitude
of cation exchange capacity are: montmorillonite, 100 meq/100 g; illite,
30 meq/100 g; kaolinite, 1-10 meq/100 g.

First case:  Adsorption is instantaneous. It is then admitted that F and C
are always in equilibrium and linked by a relation where time does not count.
Experiments made up to now with adsorption (not necessarily with desorption)
seem to prove that for clayey bodies and minerals, the time to equilibrium is of
the order of a few minutes, i.e., quite negligible for common cases. James and
Rubin (1979) have shown, however, that a local chemical equilibrium for
calcium is obtained “only when the ratio of the hydrodynamic dispersion
coefficient to the estimated molecular diffusion coefficient is near unity.” This
will very seldom be the case in practice.

Generally, the entire set of transported substances (ions) has to be taken into
consideration and the concentrations C; and F; calculated for each of them.
Thus, the usual transport equation for each constituent i becomes

div(Dgrad C; — C;U) = w% +(1 - a))ps%

ot ot
We then state that the sum of the adsorbed concentrations is equal to the
total ion exchange capacity of the solid; as this exchange capacity fy is
generally expressed in equivalents per gram (epg), the adsorbed mass
concentration F; and the volumetric concentration C; have to be transformed

into epg or epl (equivalent per liter):
G

E
ﬂzMI—ivi Ci=M"Vi

14

where F; is mass concentration (dimensionless), M; is molar mass of
constituent i, v; is valence of constituent i, and C; is volumetric concentration
(kg/m?> or g/liter).
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We then write

m

Zfz = fr
1
where m is the number of substances present.
Finally, the selectivity of the adsorption for certain substances is expressed
by an equilibrium relation (mass action equation), assumed to be reached
instantaneously and to be reversible (i.e, not representing irreversible

fixation):
f;/fT V(o \% _
< Cj ) <fz/fr> =&

where K;; is the ion exchange selectivity coefficient of the solid matrix with
respect to elements i and j and the dimension of K;; depends on the valence
v; and v;. The coefficients K;; are not, of course, independent of each other,
but are more or less independent of the concentrations in the solution.

It is then possible to solve this system of equations for all elements i.

A good example of the application of this method can be found in Valocchi
et al. (1981); they studied the ternary system Na;), Mg,,, Ca s, in the labo-
ratory on core samples from an alluvial aquifer (sand, gravel, silt, and clay)
giving fr = 0.1 meq/g, K,, = 1.7 eq/liter, K5 = 3 eq/liter. They were then
able to reproduce the observed concentration during an in situ injection test,
where Mg and Ca were exchanged with Na as in Fig. 10.7.

The selectivity of ion exchange generally follows the same order of
preference: divalent ions have stronger affinity than monovalent ions, and
within each of these categories, the affinity is: Cs* > Rb" > K" > Na™ >
Li*, and Ba?* > Sr?* > Ca?* > Mg?* (Freeze and Cherry, 1979).

In montmorillonite clays, when 2 Na* are substituted for Ca?*, the clay
swells, and its permeability can be drastically reduced.

Injected

Wa‘tEbl'\s
0097 .
0°ﬂ°
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Fig. 10.7. Comparison between simulated and actual breakthrough of Ca?* and Mg?* at an
observation well. After Valocchi et al. (1981). Reproduced with permission from Water Resources
Research, Vol. 17, pp. 1517-1527. Copyright by the American Geophysical Union.
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In cases where the transported substances are in very weak concentration,
the assumption is made that the adsorption of these substances does not to
any great extent change the f;/c; ratio of other substances that are present in
larger quantities. As this ratio is constant, we get

fi_F_ (f?(];/fT)">1/Vf

¢ G cr Ky

The coefficient K ; is called the distribution coefficient of the substance i in
relation to the porous medium. It assumes that the adsorption is linear,
reversible and instantaneous. As K, varies with temperature, it is also known
as the slope of the adsorption isotherm. Its dimension is length3 mass™, and
it is usually expressed in ml/g. We can then write

F = KuG

= const = Ky;

oC;
div(Dgrad C; — CU) = [0 + (1 — 0)p.K4;] El

1 — R
- w[l 42 pst,-] 9G; (10.2.2)

w o
The term

1—
R=1+ _w_co 0K 4 (dimensionless) (10.2.3)

is generally called the retardation factor due to the adsorption. It is introduced
as a multiplying coefficient of the porosity:
. ac
div(Dgrad C — CU) = cuR~é—t- (10.2.4)

If both sides are divided by wR, an apparent velocity U/wR is defined, while
the transport equation takes the same form as in Eq. (10.1.6): everything
behaves as if the mean microscopic velocity of the convective transport were
divided by R. Under this assumption, the displacement of each substance can
be calculated independently of that of its neighbors. This approach is widely
used, and is probably valid for elements in very low concentration. If there is
no adsorption, R = 1.

Second case: Instantaneous adsorption that is not entirely reversible. If
such a phenomenon occurs, we get adsorption—desorption isotherms with, for
example, the shape shown in Fig. 10.8. The quantity, which is irreversibly fixed,
may then depend on the maximum concentration C, ..

This phenomenon may be included in a numerical model, but this requires
rather a large amount of calculations, because at each time step and for each
mesh of the model, the new concentration C,, ,, is compared to the former
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Fig. 10.8. Partly reversible adsorption.

concentrations C,. Suppose, for example, that we start with an adsorption
phase. If

Crn>C
then we must use the retardation factor for the mesh in question,

1_
R,=1+—2p K,
w

where K 4, is the slope of the adsorption isotherm; however, if
Ct+At < Ct
then we must use

l—ow
Ry=1+ . psKaa
where K 44 1s the slope of the desorption isotherm.

It can be observed that the constant term F;, is eliminated in the course of
the derivation [in desorption, we would write F = F,, + K4,C, but dF/dt =
K 4(0C/0t)], which shows that it is only important to determine the slope of
the desorption isotherm in so far as the various desorption isotherms are, at
leastin the first approximation, parallel to each other (Fig. 10.9). (In reality, the
isotherms are generally curved.)

It must also be noted that there is a risk involved in using this irreversibility,
because it may be due to desorption kinetics. It is possible that, if the
equilibrium lasts for a very long time, the situation might slowly revert to that
of the single adsorption isotherm. Therefore, if irreversible desorption is used
in the calculations, there is a risk of making mistakes, which may jeopardize
the safety of the environment if the adsorbed substance is harmful. Then, the
problem is posed of the long-term validity of measurements made in the
course of laboratory experiments, which include kinetic reactions and which
are necessarily of short duration.
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Fig. 10.9. Partly reversible adsorption.

Third case: Nonlinear adsorption isotherm. In the case where each solute
moves independently of its neighbors, other instantaneous relations between
F and C have been suggested instead of the linear isotherm. They are the
following:

(1) Isotherm of the second degree:
F=K1C'—K2C2 Kl,K2>O
(2) Langmuir’s isotherm:

_ K,C
T 1+K,C

(3) Freundlich’s isotherm:

F=K1C1/n K1>0 nZl

K,,K, >0

(4) Exponential isotherm:
C=K1Fek2F Kl’kl 20

Moreover, these constants depend on the direction of the exchange (ad-
sorption or desorption) if the phenomenon is not strictly reversible.

Fourth case: Kinetics of noninstantaneous adsorption—desorption. Here
we must know the law of variation in time of F versus C. Because of the
complexity of the problem, the phenomenon is generally treated numerically
in two stages, although some analytical solutions have been proposed. First, if
C, and F, are known at the beginning of the time step, F, . ,, is calculated at the
end of the time step according to the law of reaction kinetics, assuming C, to be
constant during the time step:

_ E+At - E



10.2. Laws of Interactions: Immobile Phase and Transported Substances 259

Then this source term, assumed constant over the time step, is introduced into
the transport equation.

The concentration F is, as it were, an explicit term, one time step behind the
concentration C.

If more precision is needed, C and F must be calculated several times
during the same time step, iterating the calculations of kinetics and transport.
For example, it may be assumed that the kinetics of adsorption are linear.
Then we write:

. oF . .o
div(iDgradC — CU) = a)aa—f +{1 - (D)Psg in the liquid phase,
oF .
e K (K4 C — F) on the solid phase,

where K is the kinetic constant of linear chemical adsorption. These two
equations are solved successively or simultaneously. See Harada et al (1980)
and Pigford et al. (1980).

Fifth case: Relation between the adsorption and the concentration C' in
the immobile fluid fraction. 1In Section 10.1.1, we have a transport equation,
Eq. (10.1.4), in which a concentration C’ appears in the immobile fraction. It is
possible to add an adsorption term to this equation, which gives

oC ocC’ oF
(D _ _ 9 N _ oF
div(D grad C — CU) = o, o +{®— o) o + (1 — w)p, o

If we admit that there is a linear adsorption isotherm F = K ,C and that the

relation between C and C’ is linear as well, C' = K'C, we get
— 1-— oC
div(D grad C — CU)=w0<1 $ @ Doy wps d)ﬁ

c <

This makes a new retardation factor appear, in which the adsorption and
the retention in the immobile fluid phase are merged. The same would happen
if a first-order kinetic reaction was used for both F and C'.

In practice, the coefficient K, is measured in the laboratory in a batch
experiment by difference. We start with a known concentration C, in the fluid
phase, into which a certain weight of rock* is introduced. After equilibrium is
reached (constant concentration), the concentration C, is measured in the
remaining liquid phase: the mass of the adsorbed quantity is deduced by
difference. However, in fact, the quantity which has disappeared from the
mobile phase (which is the only measurable) also includes the quantity

* This rock must on no account be crushed, so as to avoid increasing the area of fluid—solid
contact.
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retained in the immobile liquid bound to the solid: the obtained coeflicient Ky
therefore explicitly accounts for the total quantity retained in the immobile
fluid, and when linear and instantaneous adsorption is introduced, it is
unnecessary to consider the concentration C'in the immobile phase. Similarly,
in a kinetic experiment, an average kinetic constant would be obtained.

Recent work on the interaction between the solute and the rock matrix is
now directed toward the coupling of geochemical codes with the transport
codes. Indeed, the semi-empirical partition coefficient approach is quite
insufficient to represent all the complex chemical reactions that can take place
between several solutes and the medium. In general, geochemical equilibrium
is assumed to take place at each time step, although including reaction kinetics
is also considered in some cases. See Morel (1983), Nordstrom et al (1979),
Graven and Freeze (1984).

(c) Adsorption of organics: the hydrophobic theory. Organics present in
trace quantities in groundwater are also found to be adsorbed by the medium,
i.e., to have a retardation coefficient just as ions do. However, the mechanism
of sorption is different; the organics are mostly sorbed on existing solid
organic compounds present in the porous medium.

Just as for ions, an equilibrium partition coefficient K, equivalent to the
distribution coefficient K, (Section 10.2.1.b) is defined by:

F=K,C

where C’ is the massic concentration of the organic compound in water (mass
per unit mass of water) and F is the concentration of the organic sorbed on the
solid (mass per unit mass). K, is dimensionless. As the mass per unit volume of
water is assumed constant, the volumetric concentration of the organic
compound in water (mass per unit volume of water) would be C = pC'. To
write the transport equation in terms of C’, we need to divide it, e.g,
Eq. (10.2.1), by p:

' c oF
div(D grad ¢’ — C'U) = 025 + 2 2% 11 - “’)Bj'g{

a  p ot
where Q is the source or sink term and p, the mass per unit volume of the grains
of the porous medium.
Assuming instantaneous equilibrium, we can define a dimensionless
retardation factor R as in Eq. (10.2.3) by

1—
R_—_1_|.__a_’&Kp
w p

Then the transport equation is again:
oC’

div(D grad C' — C'U) =wR—
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Note that p,/p is used instead of p, in Eq. (10.2.3) because C' is the massic
concentration.

Schwartzenbach and Westfall (1981) report that kinetic effects are unim-
portant for such sorption if the groundwater pore velocity is on the order of
1 m/day but cannot be neglected if the pore water velocity goes to 10 m/day
{for chlorinated benzenes). However, to this day, no satisfactory kinetic
model is available; the first-order one described in Subsection 10.2.1.b does
not seem to give good results; see also Miller and Weber (1984).

The partition coeflicient K, can be measured in static batch experiments or
in dynamic column tests; however the so-called “hydrophobic theory”
(Karickhoff et al., 1979; Schwartzenbach and Westfall, 1981, 1984) provides a
method to estimate this coefficient indirectly, within a factor of 2.

(1) For a neutral hydrophobic compound* one first measures (or finds in
the literature) the dimensionless partition coefficient K, between water and a
reference organic solvent, namely the n-octanol:

KOW = CO/CW

where C, and C,, are the massic concentration of the compound in octanol and
in water, respectively, when the water, the octanol and the compound are in
contact at equilibrium. Some values of K, are given in Table 10.1 (from
Karickhoff, 1981).

(2) Thenaprovisional dimensionless partition coefficient K is defined for
a hypothetical soil made of 1009 of solid organic material as found in small
quantities in aquifer material. It is found that this coefficient K, is very
strongly correlated with the octanol-water partition coefficient K, for a
given compound but depends very little on the actual nature of the solid
organics in the soil. Table 10.1 (from Karickhoff, 1981) gives some values of
K, and K for various organics. This author suggests

K, = 0411K,,

with a correlation coefficient of 0.994. Schwartzenbach and Westfall (1984)
propose a linear regression of the form:

logK, =alogK,, +b

Values of a and b, as well as the correlation coefficient of the regression are
given in Table 10.2 for a series of major organics.
(3) Finally the actual distribution coefficient K, is given by

Kp = Koc.ﬁ)c

* An organic compound is said to be hydrophobic if it is soluble in water, but also more soluble
in an organic solvent. It is neutral if it is not electrically charged (not ionized).
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Table 10.1
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Partition Coeflicients for Octanol-to water (K,,) and Sediment Solid
Organic Carbon to Water (K,,) for Selected Organic Compounds™”

Compound

log K,y log K,

3-methyl cholanthrene
dibenz[a,h]anthracene

Hydrocarbons and Chlorinated Hydrocarbons

7,12-dimethylbenz[a]anthracene

tetracene
9-methylanthracene
pyrene

phenanthrene
anthracene
naphthalene
benzene®
1,2-dichloroethane®
1,1,2,2-tetrachloroethane®
1,1,1-trichloroethane®
tetrachloroethylene®
y BHC (lindane)

o BHC

§ BHC
1,2-dichlorobenzene®
pp’ DDT
methoxychlor
22'.44',66' PCB
22'.44' 55" PCB

Chloro-s-triazines

atrazine

propazine

simazine

trietazine

ipazine

cyanazine

6.42
6.50
5.98
5.90
5.07
5.18
4.57
4.54
3.36
2.11
1.45
239
247
2.53
372
3.81
3.80
339
6.19
5.08
6.34
6.72

2.33
271

2.94

2.16

3.35

394

2.24

6.09
6.22
5.35
5.81
4.71
4.83
4.08
4.20
2.94
1.78
1.51
1.90
225
2.56
330
3.30
330
2.54
5.38
4.90
6.08
5.62

217
221
233
2.20
2.19
2.56
213
2.14
2.33
2.74
3.22
291
2.30
2.26

(Continued)
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Table 10.1 (Continued)

Compound logK,,, logK,. .
Carbamates
carbaryl 2.81 2.36
carboturan 2.07 1.46
chlorpropham 3.06 2.77
Organophosphates
malathion® 2.89 325
parathion® 381 3.68
4.03
methylparathion 332 37
) 3.99
chlorpyrifos 331 4.13
4.82
5.11
Phenyl ureas
diuron 1.97 2.60
2.81 2.58
fenuron 1.00 1.43
1.63
linuron 2.19 291
2.94
monolinuron 1.60 2.30
245
monuron 1.46 2.00
2.13 2.26
fluometuron 1.34 224
Miscellaneous compounds
13Hdibenzo[a,iJcarbazole 6.40 6.02
2,2’ biquinoline 431 4.02
dibenzothiophene 4.38 4.05
acetophenone® 1.59 1.54
terbacil 1.89 171
1.61
bromacil 2.02 1.86

¢ Reproduced with permission from Karickhoff (1981). Copyright 1981
Pergamon Press, Ltd.
¥ Compounds are liquids at 25°C
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Table 10.2

Estimation of K, Based on K, by the Expression log K. = alog K, + b*

Regression
coefficient
Correlation ~ Number of
a b coefficient  compounds Type of chemical
0.544 1.377 0.74 45 Agricultural chemicals
1.00 —0.21 1.00 10 Polycyclic aromatic
hydrocarbons
0937 —0.006 0.95 19 Triazines, nitroanilines
1.029 —0.18 091 13 Herbicides, insecticides
1.00 —0.317 0.98 13 Heterocyclic aromatic
compounds
0.72 0.49 0.95 13 Chlorinated hydrocarbons
alkylbenzenes
0.52 0.64 0.84 30 Substituted phenyl ureas
and alkyl-N-phenyl
carbamates

? From Schwartzenbach and Westfall (1984).

where f,_ is the dimensionless fraction of dry weight of sediment which is made
of solid organic carbon compound. Schwartzenbach and Westfall (1984)
indicate that only the fine fraction of the aquifer material (e.g., grain size
smaller than 0.125 mm) is predominant for sorption; f,. should then be taken
as the product of the fraction of sediment smaller than 0.125 mm times the
fraction of solid organic compound in these fine sediments. Since most of the
solid organics are found in the fine fraction anyway, this should not make very
much difference.

Note that the relationship is only valid if f,, > 1073, otherwise sorption of
the organic compound on nonorganic solids can become significant. The
linear sorption isotherm C’ = K F is approximately valid only if C’ remains
below one half of the solubility limit of the compound.

Other methods of estimating K, have also been suggested based on the
solubility of the organic compound in water, or directly on its chemical
formula. See Karickhoff (1981).

(4) For an ionizable hydrophobic compound, sorption is found to vary
also with pH. Several mechanisms are then responsible for sorption: ion
exchange, ligand exchange, formation of ion pairs, or ion complexes (that
may be transferred into the organic phase) in addition to simple partitioning.
See Schwartzenbach and Westfall (1981, 1984), Schellenberg et al. (1984),
Westfall et al. (1984).



10.2. Laws of Interactions: Immobile Phase and Transported Substances 265

(d) Radioactive decay. If no tramsport occurs, radioactive decay is
expressed by the differential equation

oC
5= AC
which, integrated, gives

C=Cye ™  (exponential decay)
The half-life T is defined by C/C, = %, which yields

In2 0693
=— = 10.2.5)
or A T T (10.2.5)

e AT —

N

Hence, radioactive decay causes a mass AC per unit volume of the liquid
phase to disappear per unit time. In order to restore it to a unit volume of the
porous medium, it must therefore be multiplied by w. The transport equation
then becomes

div(D grad C — CU) = w@—f + ,1c> (10.2.6)

If there is a concentration F in the adsorbed phase, this will also decrease
according to the same law:

oF
ot
This disappearance is expressed here in mass per unit time and per unit mass

of solid. To restore it to the umit volume of the porous medium, we must
multiply by (1 — w)p,. Thus it becomes

= —JF

C
div(D grad C — CU) = w(aa—t + lC) + (1 — co)ps(aa—lj + AF) (10.2.7)

In the case of linear and reversible adsorption (F = K C), this becomes

. oC
div(Dgrad C — CU) = a)R—a—t— + wRIC (10.2.8)
(e) Daughter products. 1If a substance C; disappears through radioactive
decay, it means that it gives birth to a daughter product, i.e., a different
substance C;.* In the transport equation of the substance C;, the source term

* In the following, C; can possibly be the granddaughter of C; through the action of several
nuclear reactions, if the half-lives of the intermediate substances are very short compared to that
of C;and, if only C; and C; are present in significant amounts.
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will then represent a creation of matter. It is written as

. oC; M;
div(Dgrad C; — CU) = wFtl - wliM—Ji Cj
where M;/M; is the ratio of the atomic weights of the substances i and j, if they
are different. We can easily generalize to the case of adsorption.

Thus, the transport equation for j must be solved after the one for i, as the
distribution in time and space of the source term for element j is given by the
solution of the transport of i. For three-member decay chains, analytical
solutions have been developed. The difficulty with numerical solutions lies in
the agreement between the calculation time steps for the two elements. See
Harada et al. (1980) and Pigford et al. (1980).

10.2.2. Fractured Media

All of the phenomena mentioned in connection with porous media may
occur in fractured media. The only case we need to point to here is the one of
adsorption in the fracture planes, when the rock matrix is assumed to be
impermeable and nonporous, i.e., where, in practice, the transported sub-
stances cannot penetrate. It is then necessary to determine experimentally a
distribution coefficient per unit surface area of the fracture. It is, in fact,
possible to define conceptually a “concentration” W adsorbed by the fracture,
where W is expressed in mass of substance retained per unit surface area of the
fracture (Burkholder, 1975).

In order to equate this quantity W of adsorbed substances with the unit of
the source term, W must be multiplied by the ratio « which we have already
defined:

__ area of the fracture planes
" volume of the medium

The source term is indeed the variation of the mass of substances per unit
volume of an equivalent fractured medium, per unit time.

Note that we have defined « by counting two planes for the walls of each
fracture. Hence, the source term for adsorption is

oW
=23

If we admit that there is still a linear relation between this concentration W
and the concentration C in the solution, then

W =K,C
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where K, the fracture distribution coefficient, has the dimension of length
(volume/surface area).
The transport equation becomes

K
div(D grad C — CU) = w<1 + 2 ) o
w /ot
with the “retardation factor”
K
R=1+22

(dimensionless)

R WS

To measure K, experimentally on a core sample containing a fracture, we
proceed as for the porous medium, by difference, but the mass quantity W
bound to the planes of the fracture is attributed to the surface area of the
fracture (i.e., twice its dimension, if the two walls of the fracture are in contact
with the solution).

10.2.3. Analytical Solutions of the Dispersion Equation

(1) If we choose a one-dimensional case (Fig. 10.10) and study the
displacement of a contaminant in a semiinfinite medium, we know an
analytical solution to the dispersion equation with the following initial and
boundary conditions:

C(x) =0, Vx>0, t=0
C@0) = C,, t>0

with the tracer hypothesis, velocity U constant for one-directional flow, and
dispersion coefficient D = «|U| a constant (only longitudinal dispersion in this
one-dimensional problem). The governing equation is

2
TC_y%_ wrE (10.3.1)

D
ox? 0x ot

This equation is identical in one dimension to Eq. (10.1.5) or (10.1.7)if R = 1
or to (10.2.4) if there is adsorption; R is then the “retardation factor” of
Eq. (10.2.3).

CICO - X
0
at t =0 :l U

Fig 10.16. One-dimensional transport system.
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Solution.

(1032)

where erfc is the complementary error function (see Section 8.5).
For given x and after a certain time, the second term becomes negligible
before the first and the expression may be simplified to

C, x — (U/wR)t Co (™ _,
= Oerfel 2 L) 20 r
Cix, 1) 5 er c( 2 /DR > \/;f e " dr,
. x — (U/wR)t
2./Dt/wR

The solution given in Eq. (10.3.2) is shown in Fig. 10.11 versus the three
dimensionless parameters,

v

where

& = Ut/wRx on the horizontal axis

C/Cy on the vertical axis
n=D/Ux curve parameter
(2) If the radioactive decay is added [Eq. (10.2.6) or (10.2.8)], we get (Bear,
1979)
0*C oC oC

where 4 is the coefficient of exponential decay from Eq. (10.2.5) and R the
retardation factor due to the adsorption as in Eq. (10.2.3).

Solution. .
Ot = exp (%) {exp(—ﬁx) erfe [" —t/ (;f/wlf)‘t)/; 2 4/1D/wR]
+ exp(Bv) f[ + w(;f/wg/; d MD/wR]} 1034

(3) Consider an impulse point injection of tracer of mass dM into an
aquifer with parallel flow in two dimensions. If x is the flow direction, with the
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origin of the coordinates at the injection point, we get (Bear, 1979):

0*C 0*C oC ocC
D —— 4+ Di—s —U—=wR— 10.3.5
L ox? + D dy? ox e ( )
Solution.
dM (x — Ut/wR)? y2
dC(x,y,t) = ex [— - 10.3.6
) 4zt /Dy Dy/w?R? P 4D t/oR 4Drt/wR ( )

where D; and Dy are the longitudinal and transverse dispersion coefficients,
and R is the retardation factor [Eq. (10.2.3)].

If the injection at the origin is a continuous flow rate @ with a concentration
C, (but Q small enough not to disturb the parallel flow), the solution is
obtained by convolution:

C(x> ¥, t) =

Co0 J‘ 1
4rn./DyDy/w*R? Jot — 7

[x — Ut — 1)/wR]? y?
P {— 4D (t — 1)/oR 4Dyt — 'c)/a)R}dT

If ¢ is made to tend toward infinity (steady state), we get

CoQ

2n./ Dy Dy/w*R?

X ex ﬁ K v’ X + y:
P\2D, ) 0| \ 4D, wR \D, JoR " Dy/wR

where K, is a modified Bessel function of the second kind and zero order. See
also Bear (1972, 1979), Harada et al. (1980), Pigford et al. (1980), and Javandel
et al. (1984) for additional solutions.

C(x,y, 0) =

10.2.4. Transport of Colloids in Porous or Fractured Media

(a) Description of the physical mechanisms involved. Colloidal particles
transported in a porous medium experience a large number of interactions
with the medium, which can make their behavior quite different from that of
solutes. These mechanisms are referred to as “filtration.” To present them, we
will first consider unretained particles and then analyze the retention
mechanisms on the surfaces.

(1) Unretained particles moving faster than the water. The electrical
charges carried by colloids are in general a function of the pH of the solution:
for each type of colloid, there exists a pH for which they are uncharged, the
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point of zero charge (PZC). When such very small uncharged particles are
injected into a porous medium, a capillary tube, or a thin fracture, they will
generally be transported without retention with the flowing liquid by con-
vection, as well as by diffusion through Brownian motion. The diffusion
coefficient d,, in water is inversely proportional to the radius r of the colloid,
as shown in Subsection 10.1.1.b.

In pores, capillary tubes or fractures, the velocity distribution of the water is
generally more or less parabolic, the maximum velocity at the center being on
the order of 1.5 times the average velocity of the water. Particles transported
in the water will, by diffusion, randomly sample the velocities in the pores,
but, because of their size, they will never reach the walls: their average velocity
will therefore be larger than that of the water, larger colloids being faster than
smaller ones. This effect was discovered by Small (1974, 1977) and is called
hydrodynamic chromatography. It is used for measuring particle sizes. The
ratio between particle velocity and water velocity is, however, small, in general
between 1 and 1.1, in extreme cases 1.4 (Dodds, 1982). For such movements to
be observed, the particles have to be much smaller than the size of the pores
(or fracture aperture). Dodds (1982) gives an upper limit of particles size of
0.25 um, for a porous medium constituted by spheres of 20 um, i.e., roughly a
factor of 100 between grain size and particle size (see Nagy et al., 1981).

If the particles are charged with the same charges as the solids of the porous
medium, repulsion effects will tend to increase the velocity of the particles, as
they are kept further away from the walls. Small (1974, 1977) has evaluated the
thickness of the repulsive layer to 0.39um for particles of 0.357 um in diameter,
in dilute solutions. However, if the ionic strength of the solution is increased,
this repulsive force decreases, and the attractive Van der Waals forces can play
a role in slowing down or retaining the particles. Hydrodynamic chroma-
tography is therefore a function of the ionic strength of the solution (Dodds,
1982).

If the charges of the particles are of opposite sign to that of the solid grains
of the medium, retention mechanisms will start to play a role in the slowing
down (or “filtration”) of the particles. But whatever the electric charges, larger
particles will always interact with the medium and be stopped or move more
slowly than the water, even if their diameter is still much smaller than the
average size of the pores.

(2) Filtration of particles by the medium. Herzig et al. (1970), Wnek et al.
(1975), Tien et al. (1979), Corapcioglu et al. (1986), and Willis (1986) among
others, have described the most important interaction mechanisms, and
proposed equations to represent them. Filtration includes three mechanisms:
(i) particles coming into contact with the walls; (ii) particles becoming fixed to
the walls; (iii) previously retained particles breaking away. We will study them
successively.
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(i) Contacting: several processes can bring the particles into contact with
the solid.

Sedimentation occurs if the particles have a different density from that of the
fiquid: their velocity will be different.

Inertia: due to their weight, the trajectories of the particles deviate from the
uid streamlines and can come into contact with the grain.

Hydrodynamic effects: because the velocity field of the liquid is not uniform,
the particles are subjected to a rotation couple, which modifies their velocity
and trajectory. See Brenner and Gaydos (1977).

irect interception: because of their size, the particles collide with the walls
i the convergent pores.

Diffusion: Brownian motion will send particles toward the walls, or even
to dead-end pores, where the velocity is nil. Diffusion is said to be negligible
for particles larger than 1 pm.

(it} Fixing:

Retention sites can be located on the surface of the solid, on edges between
o convex surfaces, in constriction sites, where the particle cannot penetrate
in dead-end pores or caverns, where the velocity of the fluid is nil.
Retentions forces include axial pressure of the fluid (in a constriction site),
friction forces (on an edge), surfaces forces (Van der Waals forces, which are
always attractive, and, if the particles are charged, electrical forces which can
be attractive or repulsive), and, finally, chemical forces, if chemical bonding
can occur.

(1) Breaking away: a moving particle may collide with a retained particle;
alocal varation in pressure or flow rate (due to clogging) may modify the flow
field sufficiently to bring a retained particle into motion; an external change in
e flow conditions will do the same n the complete medium (e.g., declogging
a filter by reversed circulation).

We will now examine how these mechanisms have been combined to form

filtration equation.

{b) The Transport Equation For Colloids.

(1} Differential equation. A general equation for the mechanisms of
iration has been proposed by Herzig et al. (1970), Wnek et al. (1975), Tien et
al. {1979), Dodds (1982), and Dieulin (1982), among others. It is

div(D grad C) — div(UC) = %(wC + o)

where D is the hydrodynamic dispersion tensor in the medium, C is the
concentration of colloids in the liquid phase, expressed as volume of colloids
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per unit volume of liquid, U is Darcy’s velocity in the medium, w is the
kinematic porosity, ¢ is the concentration of colloids retained by filtration in
the medium, expressed as volume of colloids per unit volume of porous
medium.

It is then assumed that the porosity of the medium can be reduced by
filtration, with a first-order dependence on o:

W = Wy — Po

Here, f is the inverse of the compaction factor of the retained colloids, ic., a
volume ¢ of retained colloids occupies a volume fo of the pores, imprisoning
“dead liquid.”

More complex clogging factors, including the changes in specific surface of
the medium, have been proposed (Herzig et al., 1970} in order to also predict
the permeability variation of the medium and, thus, the pressure gradient
increase with time necessary to maintain a constant Darcy velocity U in the
medium.

The variation in concentration of the retained colloids is

96/t = AUCF (o)

In the hypothesis called “deep filtration,” F(s) = 1, i.c., where there is no
interaction between the particles, the mechanisms stay the same as ¢ increases.
Otherwise, F(o)takes into account the variation with o of porosity and specific
surface. F(o) can be taken, as a first approximation, as 1 — fio. 1 is the filter
coefficient (see Subsection 3 below).

(2) Analytical solutions. Dieulin (1982) developed an analytical solution
to this equation in 1 dimension assuming that the porosity w is constant and
that F(g) = 1. It is

C(x, 1) = g« {exp [ 2?;;) (1— y)] erfc [i-;\[/],_%/m:l
Ux x+ Uty/w
+ exp[m(l + y):| erfc[———z\/ﬁ :|}

o{x,t) = o /'LU {e p|:2UD (1- }’)] JterfC[i—_z——f/]—g_Zﬁ] dz
0 z
Ux. t x + Uyz/w
+ exp[ 1+ y):| L erfc[———2 \/D—z :|dz}

and
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where

_ | 4D
y = + U
C, is the constant concentration of the solution in colloids at the entrance of
the medium (x = 0) prescribed from ¢ = 0.
If the hydrodynamic dispersion can be disregarded, these equations further
simplify into:

C(x, 1) = Cyexp(—Ax), t> %C
wx wx
i) = — . R
o(x,t) = AUC, exp( lx)<t U ), t> U
wx
C=ag=0 < —
g =0, < i

Finally, for large times, the asymptotic solution is:

—2A
C(x, 1) = Cyexp <~1——;—;C>

22
dxgzxmcwq<—l;2)

the C and o profiles become straight lines in a semi-logarithmic plot versus x.
Such behavior was indeed observed for americium colloids filtration experi-
ments on sand columns (Saltelli et al., 1984)

Herzig et al. (1970) also give an analytical solution for the case where the
porosity and the retention vary* according to:

W=, — Bo and Flo)=1— fio
but neglecting hydrodynamic dispersion. They found that:
Co exp(BAUCy1)
—1 + exp(Ax) + exp(FAUCy1)
o) = 1 1 — exp(BAUCy1)
T \B/ 1 — exp(ix) — exp(BAUC,7)

where 1 =1t — wgx/U>20;C=0=0if 7 <O0.

They also give similar expressions for other simple forms of F(o) (e.g.,
1 — B2¢2, /1 — Bo, (1 — Bo)*?). In the experiments of americium colloids
filtration, it was not necessary to take into account any clogging of the

C(x,t) =

* See Note Added in Proof at the end of this chapter.
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medium, @ was constant and F(o) = 1 (Saltelli et al, 1984; Avogadro and
Marsily, 1984).

(3) Filter coefficients. The filter coefficient A takes into account all the
mechanisms described earlier. Tien et al. (1979) propose the following
theoretical expression for small #

)
Y A

where  is the porosity, d,: the grain diameter and # the collection efficiency of
the filter,

n=(1 — 0PPANIENLSE + 3375 x 10731 — w)2PANL2NZO4
+ 443PNF2R

A

g

where,
2(1 — p®) 4H d
Ag = , Np=—>r-, Nzg=-2
ST 2—-3p+3p5—2p° Y 9nud?U d,
(pp — P)d2g 3nud,d,U
=~ PTpY N, = o™
No 187uU ° Fe kT

p=(1— w3 H is the Hamaker constant (~1072°J), d, the particle
diameter, U is Darcy’s velocity, u the viscosity of the fluid, p, the mass per unit
volume of particles, p the mass per unit volume of fluid, and k is the
Boltzmann’s constant (1.38048 x 10723 J/K).

These expressions apply to spherical grains of the medium and to spherical
colloids; similar expressions could also be developed for fractures. Other forms
are suggested by Herzig et al. (1970) or Dodds (1982).

It is interesting to note that the dependence of A on the diameter of the
grains and the particles is rather complex and depends strongly on the
properties of the medium, especially the porosity. In the filtration experiments
of americium colloids, the following values were obtained by fitting the
analytical expression for o(x, f) given above on the measurements:

glauconitic sand: A=31mm™!

clean sand, 100-200 yum: A =0.125mm™!
clean sand, 200-400 ym: A =0.032mm™ 1.

The calculated filter coefficients using Tien’s expression fall within one order
of magnitude of the measured values.

One must also bear in mind that colloids are not necessarily stable in the
medium; they may dissolve, or on the other hand increase in size by
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coalescence or by serving as germs for precipitation. All this depends on their
chemical nature and their geochemical equilibrium in the medium.

10.2.5. Unsaturated Media

So far we have only considered transport in a saturated medium. However,
the transport equation that we have developed also applies to unsaturated
media. The left-hand side of the transport equation [e.g., (10.1.5) or (10.2.1)]
remains unchanged, although it is found that the hydrodynamic dispersion
coeflicient D is now also a function of the saturation. The mass balance on
the right-hand side is however modified to account for the saturation. When
we first developed this mass balance, in Subsection 10.1.1.a, we stated that
the total mass of solute in an arbitrary volume D of saturated medium was

J wCdv
D

Now for an unsaturated medium, the same total mass is

J ws,,C dv or f 0C dv
D D

where s, 1s the water saturation of the medium and 6 the moisture content. We
need to have the rate of change with time of this total mass. The transport
equation is thus
0s,C  00C

ot ot

If the flow in the unsaturated medium is in steady state, 6 (or s,,) is a
constant and can be taken out of the time derivative. However, in a transient
flow situation, it is first necessary to determine 6 and 868/0t from the flow
equation prior to solving the transport equation.

In the unsaturated zone, for certain conditions, the existence of an immobile
water phase needs to be taken into account as in Eq. (10.1.4). In steady-state
flow conditions, this would be written

div[D(0)grad C — CU] = @

div[D(@)grad C — CU] = O/a—c + 0 - 0’)a£

ot ot
where C is the concentration in the mobile water phase, C' the concentration
in the immobile water phase, 6’ the moisture content corresponding to the
mobile water phase, 6 the total moisture content, and 6§ — 6’ the moisture

content corresponding to the immobile water phase.

It is then found that the exchange between the mobile and immobile
functions can often be represented by a first-order kinetic reaction (see
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Subsection 10.2.1.b, fourth and fifth case):

oC’
—=K,(C-C
— = K(C-C)
Recent work on transport in the unsaturated zone can be found in Gaudet er
al. (1977), Dagan and Bresler (1980), Arnold et al. (1982), and Oster (1982).

10.3. Heat Transfer in Porous Media

At first sight, heat transfer in porous media is governed by three separate
mechanisms: (1) conduction in the solid matrix, (2} transport by the fluid
phase, and (3) heat exchange between the two phases depending on their
temperature difference.

The first phenomenon would produce a heat equation relative to the mean
temperature {f,> of the solid. The second would resemble the dispersion
equation for the fluid with the fluid temperature {8 playing the part of the
concentration. The third would be related to the exchange mechanisms
between the solid and the liquid phase, which we have discussed above.

However, in practice, except for a very small number of cases, the
assumption is made that the temperature of the solid and that of the fluid
become identical almost at once, and that there is only one temperature 8 in
the porous medium. Houpeurt et al. (1965) have shown that the temperatures
will become egual in less than a minute in a medium with grain-sizes of less
than 1 mm or in less than 2 h for pebbles of 10 cm diameter.

All that has been said previously on the subject of solute transport can then
be applied to heat transfer in porous media.

A single temperature is calculated for the porous medium. The transport is
characterized by (1) a convection phenomenon similar to that of the solutes
and (2) a phenomenon similar to that of dispersion in porous media: (a8} pure
conduction in the two phases, solid plus liquid, takes the place of molecular
diffusion, while (b) the heterogeneity of the real velocity gives rise to an
anisotropic “fictitious conductivity,” equivalent to the kinematic dispersion,
which experience shows to be a linear function of the absolute value of the
velocity (Ledoux and Clouet d’Orval 1977; Sauty, 1978).

The principle of heat conservation (analogous to the mass balance) makes it
possible to write directly:

oo’ 00

00
dlv(},gradf) — pCUB) = WPC— + (1 _ w)p'cl o a2

ot

=P

with A the tensor of equivalent conductivity, 8 the temperature, pc the mass
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per unit volume and specific heat of the water, p'c’ the mass per unit volume
and specific heat of the solid with a temperature 6’ = 6, p”’¢” the mass
per unit volume and specific heat of the porous medium (water plus solid)
[p"c¢" = wpc + (1 — w)p’c’ ], and w the total porosity.

The tensor of equivalent conductivity A combines the isotropic conductivity
Ao of the porous medium (water plus solid) in the absence of flow and a term
for the macrodispersivity linked to the heterogeneity of the velocity, which is a
linear function of this velocity. We suggest using Darcy’s velocity U multiplied
by the volumetric head capacity of the water pc so that the proportionality
coefficient has the dimension of length like the macrodispersivity in the case
of dispersion. In the longitudinal and transverse axes linked to the velocity, we
get

Jy, = Ao + BrLpc|U]| Ap = Ao + Brpc|U]|

Itis possible to put this equation and that of the dispersion into comparable
expressions in order to bring out the similarities of the dispersion coefficients.
For this purpose, temperatures or concentrations are made dimensionless, as
follows:

Z— Zmin

C 0=————"""-
o Zmax - Zmin

where Z is the concentration or the temperature.

Either the Darcy velocity or the velocity of the advancing front (thermal or
chemical) may be used as a reference, giving the same results if the
dispersivities are compared:

Egquations relative to the Darcy velocity:

oC
Tracer: div(D grad C) — div(UC) = w—é}-,
with D = wd + a|U|
l PN
Heat: div <p—C grad 0) — div(U8) = E/—)—Z— %,
P )
with — =224 p|U|
pc  pc

Equations relative to the velocity of the advancing convective front for tracers
and heat respectively, are

oC
div(D’ grad C) — div(w*C) = Fn with D' =d + aju®|
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A 00 A A
v —— — divw*0) = 2 i _ o o
dlv(pllcll grad 0) dlv(u 9) 6[‘ Wlth pllcll pllcll + ﬂlal I

In these equations, the velocities of the average front of tracer and heat are,
respectively,

pcU
L A~
and ot = —

p'c

u* = v
w

It is then obvious that, in both cases, the dispersivity of the tracer o must be
compared to the dispersivity f of the heat, which are both expressed as lengths.
We have tried to do this at a single experimental site (Bonnaud, Jura, France),
where both tracer tests and heat transport tests were made. The aquifer
consists of relatively homogeneous sands and gravels and is 3 m thick. It is
confined, its transmissivity is of the order of 1072 m?/s, and its storage
coefficient is between 1072 and 107*.

The values of the main dispersivities (Peaudecerf et al., 1975; Ledoux and
Clouet d’Orval (1977); Sauty (1978b), Gringarten et al. (1979)), calculated by
model calibration, are shown in Table 10.3. These results seem to prove that
the dispersivities for the heat and for the tracer are comparable, even though
the conductivity in the absence of flow is around 400 to 1000 times stronger
than the molecular diffusion.

This seems to contradict the first laboratory experiments of such a
comparison: Green [in 1963, quoted by Bear (1972)] suggests that the
equivalence between the thermal and chemical dispersivities occurs for Peclet
numbers of the order of 10,000, and that under 3000 the thermal dispersivity is
negligible.

The Peclet numbers, chemical as well as thermal, in the experiments at
Bonnaud are, at the most, a few tens:

sk
P, tracer = e
0
where if u* (mean pore velocity) is ~0.09 m/hr, [ (mean diameter of the

grains) is ~2 mm, and d, (molecular diffusion coefficient in water) is
~1.0 x 10~°m?/s, then P, is ~ 50.

wl Ul
dolp"c”  Ao/pe

where if U (Darcy velocity at average radius of 6 m) is ~0.03 m/hr, | (mean
diameter of the grains) is ~2 mm, and dy/pc is ~2 x 107 "m?/s, then P,
18 ~0.1.

P, thermal =



Table 10.3

Comparison of Longitudinal Dispersivities in the Bonnaud Aquifer (Jura, France) for a Chemical or Thermal Tracer

Dispersion Conduction
Molecular Relative heat
Longitudinal diffusionin  Longitudinal capacity of the Pure heat
Distance of dispersitivity Porosity porous media dispersitivity porous medium  diffusivity
Authors Tracer Type of flow tracing (m) o, (m) (%) d (m?/s) B (m) pIC pe (%) Ayfp”c” (m?s)
Peaudecerf Todine 131  Parallel, point 13.05 0.70 33
et al. (1975) tracing
Idem, other wells 12.97 1.20 29
Idem, 26.02 223 37
Idem 35.52 2.19 48 ~10x 109
Gringarten et al. (1979) INa Radial converging 13.00 1.6 9 ’
tracing by piezometer
Well doublet 13.00 40 9
(injection +
pumping)
Ledoux and Heat Radial single 13.00 3.00 50 4 x 1077
Clouet d’Orval well (injection +
(1977) pumping)
Sauty Heat?® Radial converging, 4¢0 13 1.00 62.5 9.6 x 1077
(1978%) multiple
observations
of wells
Sauty Heat? Same experiment 0 62.5 192 x 1077
(1978%) interpreted with
constant equivalent
conduction
AL=14%

“ The experiments of 1978 were made after a violent unclogging of the wells by air lift, which might have changed the terrain slightly. The porosities of 1975 are probably
overestimated because of insufficient knowledge of the permeability, i.e., the Darcy velocity, the gradient being the only known parameter, whereas in radial flow the Darcy
velocity is imposed.
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Table 10.4

Thermal Properties of Common Materials

Medium lo(Wm™* K1) p'c’ of the mineral (Jm™3 K1)
Dry sand 0.4-0.8 1.9 x 106
Wet sand 2.5-35 1.9 x 10°
Dry clay 0.8-2.0 2.1 x 10°
Wet clay 1.2-1.7 2.3 x 108
Granite 2.5-3.8 2.1 x 108
Sandstone 1.5-43 2.3 x 108
Water 0.598 4.185 x 10°
Salt 5.86 2.0 x 10°

It then seems, as Sauty (1978b) has observed, that in the field, on the scale
in question, the macrodispersivity clearly dominates the molecular diffusion,
or even the conduction. This is very likely to be due to the heterogeneity
of the velocity in the different layers of the formation, thus making the
dispersivity obtained for each one of the tracers comparable.

However, on a larger scale, in a tracer experiment over a longer distance and
time, the coeflicients of dispersion and conduction reach an asymptotic value,
and the dispersivity of the tracer should be around five times stronger than the
thermal dispersivity. However, there are no experiments confirming this.

A few values of Ay and p’c’ for different rocks are given in Table 10.4.
Remember that, in calculating the volumetric heat capacity of the rock, we
have to take the contained water into consideration:

"

plc" = wpc+ (1 — w)p'c’

With porosities from 10 to 20%, p'c¢” is of the order of 2.1-2.5 x
10°Jm 3 K™%,

Remember also that this equation for heat transfer must be associated with
a generalized form of Darcy’s law and with the continuity equation in porous
media, which will give the velocity U. This association is made through the
mass per unit volume p = p(f) and the viscocity u = u(9).

This association through the mass per unit volume has an important
consequence: hot water injected into an aquifer has a tendency to migrate
toward the top of the aquifer owing to the density effect. This is one of the
problems inherent in hot water storage in aquifers. Furthermore, even when
no human intervention disturbs the state of flow, the flow of geothermal heat
originating at the bottom may create a vertically ascending flow in an aquifer
layer. However, through continuity, a descending flow must arise and thus
“cells of natural convection” develop in the aquifer.
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Fig. 10.12. Convective cells in a porous medium. From Bories (1970). Top: view of the flow lines shown in vertical section (the upper face is cold, the
lower is warm). Bottom: view of the six-sided convective cells, seen from above; H is the thickness of the porous layer.
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Combarnous and Bories (1975)* have studied this phenomenon of natural
convection. They have pointed out that below a minimum thermal gradient in
the vertical direction, convection does not occur. When it occurs, rough six-
sided cells (in two dimensions) appear and their size and migration velocity can
be foreseen (see Fig. 10.12).

These phenomena of natural migration under the influence of thermal
gradients may be at the origin of mineral or hydrothermal deposits.

* They define a “Rayleigh number in porous media” as

k
ap(pc) eAD

R =
=9

with « the coefficient of thermal volumetric expansion of the fluid (1073 to 1074°C™1), p the
mass per unit volume of the fluid, (pc) the volumetric heat capacity of the fluid, k the intrinsic
permeability, 4 the dynamic viscosity of the fluid, A the equivalent conductivity of the porous
medium (immobile), e the thickness of the layer, Af the difference in temperature between the
top and bottom of the layer, assumed to be impermeable and at a constant temperature. Natural

convection appears if R¥cosy > 4n?, where 7 is the angle between the horizontal line and the
layer.

Note Added in Proof

An empirical relation between the increase in pressure drop through a filter
(permeability variation due to clogging) and the concentration ¢ of the
retained particle is Ap/Ap, = 1/(1 — jo)™, where j and m are constant; to first
order Ap/Apy, ~ 1 + mjo. If I is the length of the filter, one can also write, to
first order, p = po(l + mjUC,T/l), where U is Darcy’s velocity, C, the
concentration of particles at the inlet, ¢ the time, and p the pressure applied on
the filter. Values of myj are in the range of 40 to 450 (Herzig et al., 1970).
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The various magnitudes that are important in hydrogeology (e.g., hydraulic
head, transmissivity, permeability, thickness of a layer, storage coefficient,
rainfall, effective recharge, etc.) are all functions of space and are very often
highly variable. However, this spatial variability is, in general, not purely
random: if measurements are made at two different locations, the closer the
measurement points are to each other, the closer the measured values. In other
words, there is some kind of correlation in the spatial distribution of these
magnitudes. Matheron (1965, 1970, 1971) has given the name of “regionalized
variables” to these types of quantities: they are variables typical of a
phenomenon developing in space (and/or time) and possessing a certain
structure. Here, the term “structure” refers to this spatial correlation which, of
course, is very different from one magnitude to the other or from one aquifer to
the next.

Regionalized variables can be divided into two main categories: stationary
and nonstationary. In the latter the variable has a definite trend in space: for
instance, the variable decreases systematically in one direction. This is
generally the case of the hydraulic head. On the contrary, there is no
systematic trend in space for the stationary variables. This is in general the case
of transmissivity. We shall define these terms more precisely in Sections 11.2,
11.3, and 11.7.

Here we will first address the problem of how to estimate a regionalized
variable, which is the most common problem facing the hydrogeologist in the
field. Having measured a variable at a set of points (e.g., heads at several
piezometers, transmissivities at several wells, rainfall at several rain gauges),
how do we estimate the value of the variable at all other locations in order to
produce a contour map of the variable? Kriging is an optimal estimation
method, and its use will be described for both the stationary and the
nonstationary case.

To make this estimation we use the concept of random functions, which was
troduced in Section 2.1.d. It is therefore useful to return to this section and
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read it first. This concept of random functions will also be used to introduce
briefly, in Section 11.10, what is known as stochastic hydrogeology. This
consists in regarding the parameters of the flow and transport equations as
random functions and then looking at stochastic solutions to these equations,
i.e., heads, velocities or concentrations, etc. which are also random functions
and no longer deterministic ones, as we have assumed so far.

11.1. The Problem of Estimation: Definition of Kriging

Kriging is a method for optimizing the estimation of a magnitude, which is
distributed in space and is measured at a network of points. Let (1) x,
X5,...,X, be the locations of the n points of measurement and x; denote
simultaneously the one, two, or three coordinates of the point i (Fig. 11.1isa
two-dimensional representation, but the theory is also applicable in one or
three dimensions), and let (2) Z; = Z(x;) be the value measured at the point i.

The problem of the point estimation lies in determining the value of the
quantity Z, for any point x, that has not been measured. By continually
modifying the position of the point X, it is thus possible to estimate the whole
field of the parameter Z.

In hydrology, kriging has a wide variety of applications:

(1) Calculations of rainfall, temperatures, sunshineg, etc. based on measure-
ments from climatological stations.

(2) Interpolation of thickness or elevation of underground geological
formations based on well logs.

(3) Estimation of hydrogeological parameters such as the transmissivity
of an aquifer, piezometric head, concentration of solutes based on measure-
ments in the piezometers.

(4) Mapping of the concentrations of polluting agents in a lake, etc.

(Z4) (Z5)
* ¥*
X1 Zo? X2
X0
(Z3) (Z4)
¥* *
X3 Xa

Fig. 11.1 The point estimation problem.
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However, kriging is not limited to simple point estimations of the given
magnitude Z but can also be used to:

(1) Obtain the estimation variance of the magnitude Z, ie., roughly, the
confidence interval of this estimation,

(2) Estimate the mean value of Z on a given block, e.g., on the mesh of a
model or a subdomain of any shape of a watershed basin.

(3) Locate the best situation for a new measurement point, e.g., by
minimizing the overall uncertainty in the field under consideration.

A generalization of kriging also makes it possible to create an infinite
number of conditional Monte Carlo simulations of the field Z, i.e., different
realizations of the map of Z, which are compatible with the measured data.
These maps can be used to visualize the uncertainty of the estimation and as
entries into stochastic models (Delhomme, 1979; Chiles, 1977). This will be
described in Section 11.9.

For the sole purpose of making the estimation, we shall choose a
probabilistic framework and assume that the magnitude Z(x} is a random
function (R.F.) Z(x, &) for which we only have one realization (see Section
2.1.d). Here, x denotes the point in the geometrical space and ¢ the state
variable in the space of the realizations; Z(x, &,) denotes a realization and
Z (x4, &) a random variable (R.V.), i.e., the whole set of realizations of the R.F.
Z at the point x,.

In order to use kriging we must try to determine, on the basis of the only
sampled realization Z(x;, &), both (1) the “structure” of the R.F. Z(x, &),i.e,, its
autocovariance function (the problem called statistical inference) and (2) the
“optimal” estimation of Z(x,, &) for any point x,.

The probabilistic method must be seen as nothing more than alanguage and
a tool, which only leads to a system of equations, whence the desired
estimation can be obtained. In most cases there is only one realization of Z,
which is completely determined in space. Our uncertainty concerning the
value of Z only stems from the weakness of the available samples, and the
probabilistic language only supplies a useful tool for expressing this un-
certainty. When we start making hypotheses on Z to make the estimation, e.g.,
on its stationarity, these will be working hypotheses and only required to be
locally compatible with the data. The only objective proof of the validity of
the procedure will come from the confirmation of the predictions it has made
by measurements in the field.

In the following we give kriging equations for three cases: (1) stationary
hypothesis in Section 11.2, (2) intrinsic hypothesis (stationarity of the
increments) in Section 11.3, and (3) nonstationarity hypothesis in Section 11.7.
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11.2. Kriging in the Stationary Case, Use of the Covariance
11.2.1. Hypothesis of Weak Stationarity (or Second-Order Stationarity)

An R F.is said to be second-order stationary if (1) E[Z(x, £)] = m (constant
mean) and (2) the function of autocovariance, or simply covariance, only
depends on the distance and not on the points of reference:

cov(xy,X,) = E{[Z(x;, &) — m][Z(x;, &) —m]} = C(h)  (11:2.1)
where h = x, — x, (distance).* If this expression is expanded, we get
Ch) = E[Z(x;, ) Z(x,,8)] — m® (11.2.2)

The covariance function C(h) determines the “structure” of the phenomenon
(Fig. 11.2). Observe that C(0) = var(Z) = o2 is the variance (or dispersion
variance) of Z.

Note that the expected value is taken here over all possible realizations of Z,
ie., for all values of &. Saying that E[Z(x, £)] = m means that this expected
value would be the same at any location x. But it does not mean that for a
particular realization &, , Z(x, £,) should be constant over x: such a function
would no longer be variable in space!

11.2.2. Kriging with Second-Order Stationarity Hypothesis when the
Mean m and the Covariance C(h) are Known

From now on we leave out the state variable & in order to simplify the
notation. We define a process of mean zero by

Yx)=Zx) —m (11.2.3)
which gives E(Y) = 0. We shail estimate the value of Y at the point x,

* See Note Added in Proof at the end of this chapter.

h Fig. 11.2. Covariance function.
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Y, =Y{x;),i=1,...,n then

Yi=Y*x0) =Y AY, (11.2.4)
i=1

Notation. Y§ is the estimation of the exact unknown value Y; at the point
X, - The asterisk shows by definition that we are dealing with an estimate. The
! are the weights of the kriging estimator. These are the unknowns of our
problem. The indices i and 0 are indices and not exponents. The index i signifies
that the weight 1’ relates to the measurement made at the point x;; the index 0
shows that at each point x,, where Y, will be estimated, there will be a different
set of weights A%
The estimator Y§ is said to be “optimal” if the error of estimation(Y§ — 1)
is minimal. Since the real value of Y, is unknown, we will only minimize the
mathematical expectation of the quadratic mean of this error of estimation:

E[(Y%—Y)?] minimum (11.2.5)

In other words, since Y§ and Y, are random variables, we minimize the
variance of the error of estimation (Y} — Y;). Please note here that the
mathematical expectation is taken for a fixed point in space x,, for all possible
realizations of Y§ — Y, 1i.e., for all possible values of the state variable £ in the
notation Y(x,, &).

In other words, if we were able to estimate Y for an infinite number of
realizations, using always the same weights 1}, for each realization Y(x;, &), we
would make on the average the minimum error. Of course, since in general we
have only one realization, we will make at location x, an estimation error that
we cannot guantify. But by applying the ergodic hypothesis, we can say that on
the average, over a large number of locations x, where we will estimate Y, our
error of estimation will be minimum.

We can develop the expression Eq. (11.2.5) by replacing the value of Y} by
Eq. (11.24):

1(vs - %21 = 2| (T - %) |- 5| (5 xax)(;m)]

~ 2E[ZA§)YiYO] + E[Y3]
= Y 4 ME(GY) — 23 LE(YY,) + E(Y3)
i J i

By definition of the covariance function of Eq. (11.2.2), we can write

E(YY) = C(x; — x;) + m?
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but the mean m of Yis zero. Hence E(Y;Y)) = C(x; — x;) and, in particular;

E(Y%) = C(0) = dispersion variance of Y = var(Y)
Then

E[(Y — %21 =YY M Cx — x) — 23 2C(x; — Xo) + C(O)  (11.2.6)

Equation (11.2.6) is a quadratic function of the weights 1. To minimize this
function, all the partial derivatives with respect to the 1} are equated to zero.
0 .
5;1—1.—E[(Y5k - P 1=2Y 2 Cx — x;)) —2C(x; —Xo) =0  i=1,...,n
0 J
(11.2.7)

This results in a linear system of n equations with n unknowns.
Y MCx; — x;) = C(x; — Xo) i=1,...,n (11.2.8)
J
This system has only one solution if C is a positive definite function and if
the x, are distinct. We assume that this is indeed the case. The solution of Eq.
(11.2.8) 1s easily obtained by inverting the coefficients matrix or by Gaussian
elimination and gives the weights 4}, = 1,...,n.
Note that the left-hand side of Eq. (11.2.8) does not depend on x,: we only
need to invert the matrix of the linear system of Eq. (11.2.8) once, when the
point X, is changed. Only the right-hand side of Eq. (11.2.8)is a function of x,.

(An explicit formulation of the matrix of the kriging system for a less simple
case is given in Section 11.3.2)

11.2.3. Calculation of the Estimation Variance
We know now the estimated value Y§:
Y=Y b
We cannot compute the error of estimation Y§ — Y, but only its variance:
var(Y§ — Yo) = E[Y§ — Yo)’] — [E(Y§ — o)
The second term of the right-hand side is zero, since

E(Y§ — Yo) = E(Y3) — E(Yo) = E;%E(Yi) —E(Y) =0

as E(Y)is assumed to be zero. Then
var(Y§ — Yo) = E[(Y§ — Yo)’] (11.2.9)

But we have already calculated the right-hand side, which is given explicitly in
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Eq. (11.2.6) as a function of the 1}. When we substitute in Eq. (11.2.6) the
values of the A} obtained in Eq. (11.2.8), we get

Zl{,C(xi—xj)=C(x,~—x0) i=1,...,n
J
ZZM‘)H)C(’% — X)) = Z%C(Xi = Xo)
[ i
var(Y§ — Yo) = var(Y) — 3, AC(x; — Xo) (11.2.10)

We can see that the estimation variance of the unknown quantity Y; is
smaller than the dispersion variance or real variance of the R.F. Y. Because ¥
was measured at the points x;, the uncertainty on Y decreases. We can now
return to our original variable Z (Z = Y + m):

ZE=m+ Y A(Z,—m)
; ‘ (11.2.11)

var(Z§ — Z,) = var(Z) — ZABC(xi — Xq)

Further on we shall examine how to estimate a covariance function C from
the data. It is also possible to establish kriging equations when the average m is
unknown, either in order to estimate Z directly or to estimate this average m
[see Matheron (1970), Journel and Huitjbregts (1979)]. We proceed directly to
the case called the “intrinsic case,” where m is unknown and where the second-
order stationarity hypothesis is not satisfied.

11.3. Kriging in the Intrinsic Case: Definition of the Variogram

In the mining industry (estimation of ore grades), it has been shown that the
hypothesis of second-order stationarity with a finite variance C(0) is not
satisfied by the data in certain cases. This is frequently the case in hydrology as
well. The experimental variance increases with the size of the area under
consideration. A less stringent hypothesis, called the “intrinsic hypothesis,”
has been developed to make the estimation possible.

11.3.1. The Intrinsic Hypothesis

The intrinsic hypothesis consists in assuming that even if the variance
of Z is not finite, the variance of the first-order increments of Z is finite
and these increments are themselves second-order stationary, ie., that
[Z(x + b) — Z(x)] satisfies

E[Z(x + h) — Z(x)] = m(h)

i h
var[Z(x + h) — Z(x)] = 2y(h) } functions of h, not x
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where his a vector in the one-, two-, or three-dimensional space and where y(h)
is generally only a function of the distance h.

Although this is not absolutely necessary, it is usually assumed that m = 0.
If this were not the case, but m(x + k) — m(x) = m{h), the function Z(x) — m(x)
would satisfy this condition.

The variance of the increment then defines a new function called the
variogram y(h):

E[Zx+h) —Zx)] =0 (11.3.1)
y(h) = 3var[Z(x + h) — Z(x)] (11.3.2)

Equations (11.3.1) and (11.3.2) make it possible to write
yd) =3E{[Z(x + h) — Z(x)]*} (11.3.3)

where y(h) is the mean quadratic increment of Z between two points separated
by the distance h.

If we compare the intrinsic hypothesis with the hypothesis of second-order
stationarity, we see that Eq. (11.3.1) is equivalent to E[Z(x)] = m (constant
mathematical expectation) but that Eq. (11.3.2) is less stringent than the
condition on the covariance:

C(h) = E[Z(x + h)Z(x)] — m?

Is there a relation between the covariance and the variogram? In the case
where both exist, i.e., in the stationary hypothesis, we can write

y(b) = 1E[Z(x + h)?] — E[Z(x + h)Z(x)] + $E[Z(x)*]
where we can see that
y({) = C(0) — C(h) (11.3.4)

If we know the covariance, the variogram is simply its reflection with respect
to the horizontal axis and with a vertical shift (Fig. 11.3).

When var(Z) is finite, the variogram tends towards an asymptotic value
equal to this variance, which is also called the sill of the variogram (the
distance at which the variogram reaches its asymptotic value is called the
range). However, if the phenomenon under consideration does not have
a finite variance, the variogram will never have a horizontal asymptotic
value (Fig. 11.4). Not just any function y(h) can be a variogram, just as the
covariance must be positive definite. It is indeed possible to show that:

(1) Minus y must be conditionally positive definite, i.e., for all x,,...,
x,e R™" (m=1,2, or 3) and for all 1,,...,4,€ R, n coefficients satisfying
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A
=
o
o -
h
=
>~
0
Fig. 11.3. Covariance and variogram. h
1
= (2)
>
Fig. 11.4. Variogram of a phenomenon with 0
an infinite variance. h

Y A; = 0, then
—Zz_/liljy(xi —Xx;)=0
[
(2) 7(h) for |h| — oo must necessarily increase less rapidly than |h|?, ie.,

h
fim W

i oo [0

In practice, only a limited class of functions is used to describe variograms.
We shall present a few of them in Section 11.5.1 in connection with statistical
inference (determination of the variogram from the data).
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11.3.2. Kriging as Used in the Intrinsic Hypothesis

We shall also try to find the estimate Z§ of the unknown quantity Z, by a
weighted sum of all the available measurements:

Z% = .; MZ, (11.3.5)

Since we do not know the value of the constant mean m in the intrinsic
process Z(x), we impose an additional condition on the estimation ZF,
namely, that its mathematical expectation be equal to that of the true R.F. Z:

E@Z%—2Z)=0 or E@Z% =E(Z,) (11.3.6)

Let m be the unknown mathematical expectation of the process Z.
Introducing Eq. (11.3.5) into Eq. (11.3.6), we can write

E[Z ,1:')2,1 =E[Z,]=m
or
YEZ)=m or Ylgm=m
ie.,
Zl"o =1 (11.3.7)
This condition is required in order to have an unbiased estimator. We now

redetermine the set of weights A} in Eq. (11.3.5), subject to the condition of
Eq.(11.3.7), by imposing the condition that the error of estimation be minimal:

E[(Z% — Z,)*] minimum (11.3.8)

(or var(Z§ — Z,) minimum since E(Z% — Z,) = 0.)
Let us develop Eq. (11.3.8):

B 2 2
bt - 21 - £| (Shizi- 20) | = | (Siz- T4z, |

=E _<z %(Zi - Zo)>2:|

Y2~ Z0) T - zo>]

E
= Zgj%%E [(Z: — Zo)(Z; — Z,)] (11.3.9)

13
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We then use the definition of the variogram:
P(x; — Xj) = %E[(Zi — Zj)z]
3EZ; — Zo) — (Z; — Zo))*]
3E((Z: — Zo)’]1 + 3E[(Z; — Z,)*]1 — EL(Z: — ZoWZ; — Zo)]
V(X; — Xo) + V(x; — Xo) — E[(Z; — Zo)Z; — Z,)] (11.3.19)

From Eg. (11.3.10) we can calculate the mathematical expectation, which we
need in Eq. (11.3.9). By substitution we find

E[(Z§ — Z,)" ] = —ZZ% dyx; — x;) + ZZ% 7(x; — Xo)
+ 2.2 Mo Aby(x; — Xo)

We can factor 3, 45 or ¥, 4% in the last two terms of the right-hand side of this
equation, but according to Eq. (11.3.7) these two sums are equal to one.
Furthermore

I

Z/?-E)Y(Xi — Xo) = Z}L{)(Xj = Xo)
i j
whence
E[(Z* — Zo)*] = =2y Ao Aby(x; — X)) + 22 Aoy(x; — xo)  (11.3.11)
i j i

We again find a quadratic form of the unknowns /}. The minimization of
Eg. (11.3.11), subject to the linear constraint of Eq. (11.3.7), is found using
the Lagrange multipliers; we simply minimize the expression

LEN(ZE — Zo)*] — u[z_ P 1} (11.3.12)

where g is a new unknown, called a Lagrange multiplier, which is added to the
n previous unknowns 5. It can be shown that, when the above expression is
minimum, the linear condition ¥, A, =1 is satisfied for the value of
E[(Z% — Z,)*], which is the smallest one compatible with the constraint.
In Eq. (11.3.12) we have divided by 2 and put a minus sign before u in order
to simplify the following expressions, but, as g is an unknown, this is
unimportant.

The minimum of the quadratic form in A and pz is obtained by equating to
zero its partial derivatives with respect to A} and u. We get

ZA{)Y(Xi"Xj)'i'.u:y(Xi_XO) i=1...,n
J

S =1

(11.3.13)
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Let us for once write the complete linear system of kriging in matrix form:

0 72 vz oo Y 1 A% Y10
Y21 0 vz oo o 1 A3 Y20

S O = (11.3.14)
Vn1 Vn2 Vn3 e 0 1 )"(,) Vno

1 1 1 ... 1 0O u 1

Note: We have denoted y(x; — x;) by y;. The diagonal is zero since y; =
y(x; — %) =9(0) = 0. :

The matrix of the kriging equations is always regular if —7 is conditionally
positive definite. Here again the matrix only needs to be inverted once for all
points X,.

11.3.3. Variance of the Estimation Error

The variance of the error of estimation can also be computed:
var(Z§ — Z,) = E[(Z§ — Zo)’]

because E(Z§ — Z,;) = 0. We can calculate its value by substituting the
solution of Eq.(11.3.13)in Eq. (11.3.11):

var(Z§ — Zo) = ). Aoy(X; — Xo) + (11.3.15)

We have now, at last, obtained the usual kriging equations, which are used
in the intrinsic hypothesis or even in that of second-order stationarity when
the mean is unknown.

11.4. A Few Remarks about Kriging

11.4.1. Kriging is Called a “BLUE”

BLUE is an acronym for best linear unbiased estimate.

Other classes of estimators are also used in practice; for instance, nonlinear
estimators can be built by prior transformation of the data. Disjunctive
kriging (Matheron, 1976) and indicator kriging (see, e.g., Journel, 1984) are
examples of nonlinear estimators (see also Section 11.6.2). Biased esti-
mators can sometimes be preferred to unbiased ones, e.g., when other con-
straints are placed on the estimation or simply when the nonbias condition
is removed. We will come back to this problem in an example in Section 11.6.2.
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11.4.2. Kriging is an Exact Interpolator

If we try to compute the value of Z at a point x,, which has been measured,
1€, X, € (Xq,-..,X,), the kriging system gives

ZE =27y
for a measured value, ie, Af = 1, Al = 0,i # k, and
var(Z¥ — Z) =0
(no uncertainty at a measured point).
This contrasts with a least-squares fitting of a polynomial, which will never

give the true value at the measurement points.

11.4.3. Confidence Interval

Knowing the variance of the error of estimation is, in principle, not encugh
to determine the confidence interval of the estimates. However, one can very
often assume that the distribution of this error is normal: in that case we can
say, for instance, that the 95 confidence intervalis + 20, o being the standard
deviation, i.e., the square root of the variance:

o= ./var(Z§ — Z,)
Then the estimate of Z, with 95%, chance is
zZF = ZABZi + 20
We also know that many other distribution functions also satisfy a +2¢

confidence interval at 959, and consequently this expression is very often
used.

11.4.4 Computation of the Complete Covariance Matrix

Instead of computing only the variance of the estimation error, var(Z§ —
Z,), it is also possible with kriging to compute the complete covariance
matrix of this error of estimation. We can show that

cOV(ZT — Z),(Z3 — Z,)] = —y(Xy — X3) — ZZAUQV(X:‘ —X;)
+ LAY — X2) + ) A y(x; — Xq)
i J

This quantifies the relationship between the estimation error at locations x,
and x,.
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11.4.5. Egquations in the Kriging System do not depend on the
Measured Values Z;

Indeed, we only need to know the coordinates x; of the measurement points
in order to calculate the weights A% If the data vary in time, for instance, these
weights A’ may be used for various situations.

11.4.6. Drawing Contour Maps with Kriging

By solving the kriging system we can estimate Z, at any point X, . In order to
draw a contour map, we generally choose a large number of points x, on a
regular mesh, regardless of the position of the measurement points. The
contour lines are then drawn either by hand or with a standard contouring
package, which generally requires as input the value of Z on just such a regular
mesh. One must also plot the map of the variance of the estimation to
understand the uncertainty. One can also plot the map of twice the standard
deviation, which corresponds to the 95% confidence interval.

11.4.7. Calculating Average Values over a Mesh Instead of Point Values

Instead of estimating the value Z, at a point x,, it is also possible to estimate
directly any linear combination of the value of the variable Z, in particular its
average over a given area Sy:

1
Zso=_J\ Z(x)dx
SO So

Here S, may be a given mesh or the entire domain (e.g., for estimates of the
average rainfall on a watershed basin during a thunderstorm). The estimator
of the average is built directly as a linear combination of the available data:

ngo = ZAIOZL'

Using the same conditions of unbiased and optimal estimation, it is also
possible to calculate the following new kriging system:

Z/’{'{)Y(Xi_xj) +ﬂ=')7(xi7S0)9 = L“':n
J

¥ 5 =
i

(11.4.1)

with
_ 1
P(%;,80) = S_J y(x; — x)dx
Sa

0

(average variogram between ¥; and the area ).
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The estimation variance is given by
var(Z3§, — Zs,) = Z%?(Xi, So) + 1 — 7(So,So)

with
- 1
¥(So,So) ::S‘Tf f y(x — y)dxdy
0 JSodSo

Similarly, it is possible to use as measurements the value of Z obtained as
averages over a certain area; €.g., if the measurement Z; is an average of the
parameter over the area §;, y(x; — x;) will be replaced in the kriging equations
by

1
x,,) = gf ke — 2 dx

T J S

and 7(x;, Sp) on the right-hand side by

- 1
7(S;, S, =—J J y(x — y)dxd
7> S0) Sonsosj( y)dx dy

This makes it possible to simultaneously use data collected by different
methods (measurements from core samples, slug tests, long pumping tests, etc.,
in the case of transmissivities, for example). Note, however, that y here is the
variogram of point-measured data. Non-point-measured data should there-
fore not be used to estimate y {or a prior deconvolution has to be made), unless
all data are measured over the same area. In such cases, y is directly
determined. If measurements made as averages over different areas have to be
used simultaneously both in the determination of y and in kriging, then co-
kriging should be used (see Section 11.9).

11.4.8. Kriging with Uncertain Data

So far we have assumed that the measured values Z; are known without any
uncertainty. In reality this is not always the case, but kriging can also handle
uncertain data. In the case where the errors ¢; linked to each measurement Z;
are

(1) nonsystematic, i.e., E[¢;]=0,i=1,...,n,

(2) uncorrelated with each other, i.e., cov(e;, &) = 0, Vi # j,
(3) uncorrelated with Z, ie, covle;, Z(x)] = 0, Vi, Vx, and
(4) have a known variance o7 (different for each i),

itis easily shown that the equations of the kriging system become, for exampie,
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for estimates of point values, as follows:
(1) Estimator
Z¥ = Z YA

(2) Kriging equations
;/l{)y(xi—xj)— holtu=y(x—%) i=1,...,n
Zii, =1
(3) Variance

var(Z§ — Zo) = Y. Aby(x; — Xo) + 4

The function y is supposed to be the true variogram of the magnitude Z
(without errors). This would be feasible by determining y on those points where
the measurement error is zero only (see Section 11.5.3). The Z; are the
measured values (i.e., with the measurements error, if any). The quantity Z, is
the “true” (unknown) value (without measurement error).

The only change from the usual system is that the equations now have —o?
on the diagonal instead of 0. It is also possible to use both “certain” and
“uncertain” data simultaneously: we simply put ¢? to 0 for the certain data. If
the errors ¢g; are correlated, the equations in the kriging system are a little more
complex. The same equations can be developed for the estimation of averages
instead of point values.

11.5. Statistical Inference

11.5.1. Determination of the Variogram

We have defined the variogram in the case where the mean is constant by
y(h) = 3E{[Z(x + h) — Z(x)]*}

To estimate the variogram we simply use the measurement points Z; and
assume ergodicity on the increments (i.e., that space averages can be used to
estimate the averages in the whole set of realizations).

First we define a certain number of classes of distances between the
measurement points, e.g.,

0<d; <1lkm 1<d, <2km 2<dy;<3km
3<d,<5km S5 <ds
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Then, taking all possible pairs of points i and j for each class of distance, we
calculate:

(1) The number of pairs present in the class.
(2) The average distance in the class.
(3) The average square increment 3(Z; — Z;)*.

With a set of 50 measurements we obtain, for example:

Class d, d, d, d, ds
Number of elements 500 350 250 100 25
Average distance 0.7 1.3 24 3.8 6.2

UZ,— Z)? average 130 275 350 570 400

Note that the number of pairs that can be formed from a set of n points is
n(n — 1)/2; for 50 points this gives 1225 pairs. However, generally they are not
evenly distributed. There are more pairs at short than at long distances. The
variogram becomes more and more uncertain as |h| increases. At large
distances certain points may play a privileged role and introduce errors into
the estimation. It may be necessary to eliminate a few measurements when
calculating the variogram (Fig. 11.5).

However, we have seen that all functions cannot be variograms. In a class of
acceptable analytical functions we choose a given form and fit the parameters
of this function on the observed points. The main types of variograms
commonly used are: linear; in |b}*, 1 < 2; spherical; exponential, Gaussian;
cubic. The forms and equations of these variograms are given in Fig. 11.6,
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Fig. 11.5. Experimental variogram.
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adapted from Delhomme (1976). For example, the variogram in Fig. 11.5
would be interpreted as a spherical one and the two parameters, w and g,
would be fitted by hand on the data (Fig. 11.7). Note that a piecewise linear
variogram (i.e., made of segments of straight lines) is not acceptable;itis notin

general a positive definite function. See Armstrong and Jabin (1981).
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Fig. 11.7. Spherical variogram fitted to the experimental one, @ = 430, a = 3 km.

11.5.2. Behavior of the Variogram for Large h

Note that an unbounded variogram, e.g., a linear one, suggests that the field
has infinite variance and that there is no covariance function: the intrinsic
hypothesis is the only acceptable one here. But if the variogram reaches a sill,
as for example in Fig. 11.7, then the covariance function exists for the
phenomenon in question.

Fig. 11.6. Common variogram models (from Delhomme (1976)). Here, /2 denotes the length of
the vector h. The expressions given are for y(h).

(a) model in h* wh? A<2
. 3(h 1/hm\3
(b) spherical model [7) I e i h<a
2\a 2\a
w h>a

(c) exponential model o[l — exp(—h/a)]

(d) Gaussian model {1 — exp[ —(h/2)*]}
' [P0 -7 ) o) ]
(e) cubic model ol A~} —875{-} +3.5{-) —0.75{-
a a a a
h<a
® h<a

(f) fitting on a “linear plus spherical” model (example)

3/h\ 1R\
1330460 2 )22 h<l.
3 +60[2<1.5> 2<1.5>} <13

133 h 4+ 60 h>15
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11.5.3. Behavior Close to the Origin

Theoretically, for b = 0, y(h) = 0 regardless of the variogram. However,
very often variograms exhibit a jump at the origin, as in Fig. 11.8. This
apparent jump at the origin is called the nugget effect, as it originated in the
mining industry. Indeed, if a core contains a nugget, the concentration will be
very high, whereas neighboring cores even with high mineral concentration
will never be as rich: there is an “erratic” component in the behavior.

Such behavior is very frequently found when data are analyzed (e.g.,
transmissivities). To take it into account, one just adds the quantity C to the
variogram fitted on the data as if C were the origin:

y(h) = C[1 — 6(b)] + '(h)

where 6(h) is the Kronecker § (6 = 1if h =0, 6 = 0 if h # 0) and y'(h) is the
variogram fitted on the data with C as origin.

This nugget effect can also be attributed to measurement errors or to the fact
that the data have not been collected with a sufficiently small interval to show
the underlying continuous behavior of the phenomenon (Fig. 11.9).

A horizontal variogram, i.e., y(h) = C,V h > 0, is called a variogram with
pure nugget effect. It expresses a purely random phenomenon without spatial
structure.

When the variogram has a nugget effect, kriging is still an exact inter-
polator, as stated in Section 11.4.2., but the estimation is discontinuous at the
measurement points, ie., if x, is a measurement point and Z, = Z(x,), then
Z*%(x,) = Z, but Z*(x, + dx) # Z, even if dx — 0. However, the estimation is
continuous everywhere else.

Let C be the nugget effect. Let us write the variogram y(h) = C(1 — ) + y".

An alternative that gives strictly identical results is to subtract the nugget
effect from the variogram, considering that it only represents measurement
errors, and use an uncertainty o2 = C on the diagonal of the kriging system, as
explained in Section 11.4.8, whereas the kriging matrix and the right-hand side
are both built using y’ instead of y. It is easily seen that this new kriging system
is identical to the original one, by adding the last line of the system multiplied
by C to all the others.

h Fig. 11.8. The nugget effect.
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Fig. 11.9. Underlying continuous behavior of a variogram with a nugget effect. The left-hand
side shows the “true” variogram.

However, it is also possible to write the kriging equations using y on the left-
hand side (with zero on the diagonal) and y’ on the right-hand side. De Smedt
et al. (1985) have shown that this corresponds to the case where y” is said to be
the true variogram of the phenomenon (without measurement errors) and y
the variogram of the noisy data. In this case, the estimate Z§ is continuous
everywhere but is no longer exact at the measurement points. The variance of
the error of estimation is also reduced with respect to the normal system. It is
given by:

var(Z§ — Zy) = ) Aoy (x; — Xo) + 1+ C

Finally, if a horizontal variogram is used (pure nugget effect), one finds that
AF = n~1, Vi, n being the number of measurement points. The estimation Z§ is
then constant over the domain and equal to the average of all measurements.

Much work is presently being done to establish procedures that improve the
quality and the robustness of the determination of the variogram. See for
instance Armstrong (1984) and Diamond and Armstrong (1984).

11.5.4. Anisotropy in the Variogram

It may be useful to compute the variogram while assuming that y(h)is also a
function of the direction of the vector h. Of course, this requires more data
points in order to be significant. We could, for instance, use four (or eight)
classes of directions and plot each variogram separately, as in Fig. 11.10.

Generally, variograms do not show anisotropy like Fig. 11.10. If they do,
then (1) this may be a sign that the assumption of stationarity (or even intrinsic
behavior) does not hold (such cases are dealt with in Section 11.7); or, (2) if
the intrinsic or the stationary hypothesis is valid, this anisotropy can be
eliminated by an appropriate linear transformation in the coordinate system.
This will permit us to krige as usual in the new system.
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Y {h)

Fig. 11.10. Directional variogram.

11.6. A Few Additional Remarks about Kriging

11.6.1 Kriging with a Moving Neighborhood

For this case, instead of kriging with ali the measurement points, i =
1,...,n, we use only those that are situated inside a given neighborhood of
the point we want to estimate (Fig. 11.11). This neighborhood can be defined in
several different ways:

(1) As all the data points at a distance less than R from the point x,.

(2) As the set of m points closest to the point x,.

(3) Even better, by selecting the points according to some criterion, e.g., the
quality of the data.

There may be several reasons for using a moving neighborhood:

(1) The variogram is best known for small values of h and becomes less
and less certain as h increases; therefore it is more efficient to use data close
enough to X, that |x; — x;| remains in the range where the uncertainties on the
variogram are still small.

(2) By using only a limited number of neighboring points, the kriging
system has fewer equations and therefore less effort is required to invert the

Point to be kriged
x<—NMeasurement point

=— Neighborhood

Fig. 11.11. Kriging with a moving neighborhood.
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matrix; however, each time the set of neighboring points is modified one must
compute and invert the matrix of the kriging system again.

(3) By this procedure, one can sometimes relax the condition of stationar-
ity (or “intrinsic” behavior) of the phenomenon. One only requires pseudo-
stationarity in a limited area around the estimated point and can allow for a
long-range trend in space.

(4) If data from distant points are used in the estimation, their weights will
be very small and possibly negative. In certain cases, this could lead to negative
estimated values.

For example, if the object were to krige the elevation of the ground in a
mountainous area, the stationarity would be a question of scale (Fig. 11.12).

11.6.2. Kriging of the Logarithms

Instead of working with the magnitude Z it is sometimes possible to krige its
fogarithm. There are several reasons for choosing this procedure.

First, some magnitudes have log-normal probability distribution functions.
In such cases the spatial structure is much better (the variogram shows a
stronger correlation) if we use the logarithm of the variable instead of its
natural value. This is true for the transmissivities, for instance.

Second, if we take mean values over a mesh, the arithmetic mean of the
logarithm gives, in fact, the geometric mean of the natural values, and it so
happens that the latter is a better estimator of the true average than the former
for the transmissivities (see Section 4.4).

It might, however, be desirable to return to a nonbiased estimator. If the
probability distribution function of Z is log-normal and we estimate ¥ =
log Z, then exp[E(Y)] is not an estimator of the average E(Y) but of the
median. Conversely,

E(Z) = exp[E(Y) + 1var(Y)]

However, another bias is introduced by the condition of unbiased estimation,

£ L.arge scale = stationary

\—\_\ Middle scale = nonstationary
\_\\-_\ Small scale = stationary

Fig. 11.12. Stationarity versus scale of observation.
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E(Y§ = E(Y). It can be shown that the optimal estimator of Z§ is
Z§ =exp[Y§ + zvar(Y§ — Yo) — 4]

However, this expression is not very robust (i.e., insensitive to the assumptions
or to error) because it supposes that all the probability distribution functions
of Z (with n variables) are log-normal as well. If this is not the case, it is
preferable to use an iterative process (Journel and Huijbrechts, 1978; Journel,
1980).

When kriging average transmissivities over blocks, it is preferable, however,
to obtain an unbiased estimation of Y =InT, and to use T =exp(Y) as a
biased estimation. It is indeed impossible to have an unbiased estimation of
both Y and T, and we have seen in Section 4.4 that the geometric mean is the
optimal estimation of the average transmissivity, in two dimensions, for
uniform flow conditions.

11.6.3. Verification of the Validity of the Model

To check the validity of all the assumptions used in kriging (e.g.,
stationarity, good estimation of the variogram), it is preferable to test the
ability of the model to predict known data.

(1) One value is taken out of the set used in kriging, €.g., at point i (say Z,).

(2) We compute the predicted value (Z¥) at point i, obtained by kriging
with the other data.

(3) We can then exactly estimate the error of kriging at this point and
compare it with the variance of estimation at the same point (or rather the
standard deviation o).

(4) By doing this successively for all data points, one can check that there is
no systematic bias,

LS @—zn=0
ni=1

and that the kriging errors are coherent with the predicted variance,

1« (Z;, — Z¥\?
N

Oz
11.6.4. Network Optimization

The variance of the estimation is a powerful tool for optimizing a network,
because in the expression:

var[Zo — Z§] = Y Aby(x; — Xo) + 4

the measured values Z; at each measurement point x; are not included. One
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can therefore conceptually add a new “fictitious” measurement point, compute
the map of the variance of estimation with this new point, and compare it with
the previous map. One can then locate the additional measurement points
in the area where the variance of estimation is high.

The quality of the measurement (variance or “uncertainty” of the measure-
ment) can also be included as shown before.

Conversely, a network that is too costly to maintain can be reduced by
maintaining only the observation points that give the most acceptable map of
estimation variance in view of the objectives of the observation (general
surveillance or local zone of interest).

Furthermore, if the purpose of the network is to estimate the average of Z
over the entire domain (e.g., computation of rainfall averages), then the
variance of estimation is only a single figure, not a map for the entire domain.
The fictitious point can then be moved around over the entire domain, and
the “increase in precision” can be plotted. It is defined by

var[Z* — Z] — var[Z* — Z]'

Gl = var[Z* — Z]

where the prime shows the variance computed with the fictitious point.

Having selected the first best additional point, one can repeat the
calculation for a second point, and so on. The suppression of one or several
measurement points can be decided according to the increase of the global
variance.

11.7. Nonstationary Problems

11.7.1. Definition

In nonstationary problems the mathematical expectation of Z isno longer a
constant: E[Z(x)] = m(x), and the variogram cannot be calculated directly
from the data since m(x) is unknown.

y=4var[Z(x +h) — Z(x)] = 3E{[Z(x + b) — Z(x)]*} — 3[m(x + b) — m(x)]°

If we then try to calculate the variogram as shown in the preceding section,
i.e., directly from the data, by

1
) =—>(Z. — Z)?
b4 ( ) ~2nh Z( i J)
where n, is the number of pairs (Z; — Z)) separated by distance h, we find that
the variogram y'(h) is anisotropic because the mathematical expectation m is
anisotropic and Z has a main direction of drift, e.g., the direction of flow, for
hydraulic head.
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In this direction, if m is a linear spatial function, a parabolic function is
added to the true variogram y. Thus the calculation of the variogram in
several direction (see Section 11.5.4.) makes it possible to detect the
importance of the nonstationarity.

There are several procedures for solving nonstationary problems. We start
with three solutions of special cases before turning to the general one in
Section 11.7.3.

11.7.2. Special Cases

In certain cases, it is possible to:

(1) Assume that Z is “locally stationary,” that is to say, that the variogram
stays isotropic for a certain neighborhood, and we can krige with the intrinsic
hypothesis in that area using a moving neighborhood (see Section 11.6.1 and
Chiles, 1977).

(2) Assume that the mathematical expectation m(x) is known. It may, for
instance, be deduced from other types of measurements. Its mathematical
expression might also be known for physical reasons (¢.g., the general shape of
the drawdown in the vicinity of a borehole for the hydraulic heads), and then
the constants of this expression may be fitted on the model. We then verify
that the residues Z(x) — m(x) are stationary and can be kriged under the
assumptions of the intrinsic hypothesis. It is, however, incorrect to fit a
polynomial expression (by least squares) arbitrarily on the data, assimilate it
to m(x), and work on the residues. Indeed, the fitting by simple least squares
assumes that the residues are independent and therefore that no spatial
structure exists. It is usual in statistics to test the independence of these
residues with the Durbin—Watson test. It is thus contrary to the hypothesis to
try to find a variogram for them. It is nevertheless possible to use generalized
least squares if we take this spatial correlation into account iteratively [see
Neuman, (1984)].

(3) Assume that the variogram y is stationary and known. This is an
extension of simple kriging which is called “universal kriging” but which is
usually difficult to apply because the variogram must be known. However,
assume that we know it and that it is stationary and not a function of x:

(h) = tvar[Z(x + h) — Z(x)] (11.7.1)

We have seen that we cannot compute this variogram directly from the data
because the average m(x) is not known. As usual, the kriging estimation is

V7 S WA (11.7.2)
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but the condition for having an unbiased estimator is different:

E(Z8) = E(Z,)

E(Z /lf)Zi> =E(Z,) but E(Z)=m(x)

whence
Z/lf)m(xi) = m(Xo) (11.7.3)

The average m(x) is not known, but we make the assumption that it is
regular and that it may be represented locally by a known set of basis
functions. Polynomial expressions are commonly used for this purpose. For
example, in two dimensions, we write

mx)=ao+a, X +a, Y+ a3 X> + a; XY+ as¥? + -+
where X and Yare the coordinates of point x in two dimensions or

m(x) = ; ap (x)

where the p(x) are polynomials in X and Y.
In order to ascertain that the estimator is umbiased, we impose that
Eq. (11.7.3) is satisfied by any value of a,:

Z%[; akpk(xa] = apt(x,)
or
; ak[z if)pk(xi):i = ; @, p*(Xo)
which is satisfied if
S PH) = pxe),  k=1,..m (11.7.4)
These conditions are the equivalent of the single condition ¥, 44, = 1, which
was imposed in the stationary case. We then minimize the estimation variance
var(Z§ — Z,), subject to the m conditions [Eq. (11.7.4)], in the same way.

The estimation variance is again a function only of the variogram y because of
Eq. (11.7.4), and the equations in the kriging system become

;%V(Xi —x;) + ;ukp"(xi) = p(x; — XO)J i=1,...,n

. . (11.7.5)
Z/IOP (x;) = p(xo)

k=1,....,m
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where the g, are Lagrange multipliers. The solution of Eq. (11.7.5) gives the A}
for calculating Z, with Eq. (11.7.2) and the g, for calculating the estimation
variance with

var(Z§ — Z,) = Z%Y(Xi —Xo) + z;,ukpk(xo) (11.7.6)

Note that the drift m is fitted only locally and that it does not appear directly
in the estimation.of Z but only in the calculation of the variance. Thereforeitis
not the same thing to fit one polynomial expression on the system as a whole
and to krige the residues. BEach new point x, has a new fit for the drift m(x,), the
coefficients of which (the a,) are never calculated. For this reason we generally
use only low-degree polynomial expressions (linear or quadratic in X and Y).

However, the serious problem with universal kriging is that the “true”
variogram y(h) must be known and cannot be estimated directly from the data.
Although efforts have been made to calculate y iteratively (assume that y is
known, krige, verify y once m is known), this is not practical. This is why
universal kriging is used only if (1) there is a drift in part of the system, e.g.,
towards the boundaries (the variogram is fitted in the center, where the
phenomenon is stationary, and is then used to krige the entire domain); or (2) if
there is no drift at all in a given direction in the field as a whole. (Then the
variogram is determined from the data in this direction only and we use it in all
the other directions while assuming that the “true” variogram is stationary
and isotropic. However, it is very difficult to verify the validity of such an
assumption.)

11.7.3. General Solution: Intrinsic Random Functions of Order k

Kriging with the intrinsic
hypothesis, which we have described above for the stationary case, may be
summarized as follows:

(1) Define the weights A} such as
75 = __il 17, (11.7.7)
(2) Write the condition
2":1 i=1 (11.7.8)

(3) Take the (minimal) estimation error given by the kriging system to be.
(by Eq. (11.7.8))

2§~ Zo= Y T~ Zo= Y. (2~ Zo) (11.7.9)


kenne
Subrayado
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(4) Assume that the difference (Z; — Z;) or [Z(x + h) — Z(x}], called first
increment of Z, is stationary. It can then be shown that the variance of
the estimation error with kriging depends only on the variogram:

D=

var(Z§ — Z,) = E[(Z§ — Zo)*] = _.Z": ]

i=1j

AoAby(x; — x;) + 2 _Zl P — Xo)
(11.7.10)

We can formulate all these equations again by arranging them slightly
differently. We define A3 = — 1 (i.e., the value of 1} for i = 0) and associate the
point x, with the value i = 0. Then Eq. (11.7.8)~(11.7.10) can be written as

i =0 (11.7.82)

1

I

i

Z§—Zo= ) AoZ; (11.7.9a)
i=0
E[Z§ — Zof'] = = ), 3 Koyl — ) (11.7.10a)
S A

Equation (11.7.9a), subject to the condition of Eq. (11.7.8a), is called am
increment of zero order of the random function Z. The intrinsic hypothesis
assumes that this increment is stationary. The variance of the estimation error
is then a linear function of the variogram. Finally, it is possible to determine
the variogram directly from the data, as shown in Section 11.5.

This method can be called the procedure for the intrinsic random functions
of zero order, which will be generalized below.

(b) Intrinsic random functions of order 1 (IRF-1) and of order 2 (IRF-2).
We treat orders 1 and 2 simultaneously and the estimation runs as follows.

(1) We define the weights A} such as
Zi=Y Mz (11.7.11)
i=1

(In fact, we are looking for the optimal weights 15). We define likewise
ig=—1
(2) We impose three conditions (first order):

i=0

X =0 (11.7.12)

i=0
n

2 Y

=0

0
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or six conditions (second order):
z BY=0 z

where x; = (X], Y;} are the two coordinates (in two dimensions) of the point x;.
(3) Then the error of estimation is given by

MAXE=0

O"‘

uM: lM:

Y7 =0 (11.7.13)

§-2,= .ZO Ao Z; (11.7.14)

The quantity ¥7_,14Z;, subject to the condition of Eq. (11.7.12) or Eq.
(11.7.13}, is called a generalized increment of order 1 {or order 2) because it
filters a polynomial expression of order 1 (or order 2). Assume that we define

Zi=Z+ay+aX;+b Y. i=0,...,n
Then

n

> hZi= Y AZ+ a0<z AB) + a1<z /IE)X,->
= i=0 i i=0

i=0

bl(i %Yi) Y
i=0 i=0

if the conditions of Eq. (11.7.12) are satisfied. The generalized increment of
Z+ any polynomial expression of the first order is unchanged. The same
would be true for the second order.

In one dimension, to first order, if the measurement points are equally
spaced one can take a set of three A’s as, for instance M=11 =-213=1
They satisfy the constramts }:1 A=0 and Zl Jx, =0 if x, =23, X, =2a,
%3 = 3a. Then Zl NZ,=Z, —2Z, + Z,. This is by definition a second-
order difference. Generalized increments of order k are therefore just a
generalization, in two or more dimensions, of this simple concept.

(4) Wemake the assumption that the generalized increments of the first or
the second order of Z are stationary (intrinsic hypothesis of order 1 or 2). It is
then possible to show, exactly as in the hypothesis of zero order, that the
variance of the estimation error may be expressed in the following form:

var(Zx — Z,) = Var< 3 A > 3 3 AKX —x))

i=0j=0
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where K is a new function, called the “generalized covariance” of the first or

second order of the IRF Z; K is stationary, i.e., K is only a function of
h=x,—x;
3 J°

(5) If we assume that K (k) is known, the equations in the kriging system

become (when we replace y by — K in the preceding expressions) for first order

_Zl MK (x; — X5) — py — o X; — p3Y; = K(x; — Xo) i=1,...,n
- (11.7.15)

1=

=1

1 i=1

s

if)Xi=Xo Z%Yizyb
i=1

I
]

14

[where x; = (X, ¥)] and for second order,

n 5
‘21 ApK(x; — X;) — kZO P (x;) = K(%; — Xo) i=1,...,n
i= =
" (11.7.16)
.;1 li)pk(xi) = pk(XO)a k= 0> EERE} 5

where p°(x),..., p°(x) designate the 6 polynomials in X;, ¥; from Eq. (11.7.13).
The estimation variance is given for first order by

var(Z§—Zo)=E[(Z§—Zo) 1=K(O0) + pty + p Xo + 13 Yo — Z:l Ao K (x;—Xo)

(11.7.17)

and for second order by
var(Z§ — Zo) = K(0) + ) up"(xo) — Y, AoK(x; — X,) (11.7.18)
k i=1

When these new equations are compared with those of universal kriging,
Egs. (11.7.4)-(11.7.6), they prove to be identical. This is not surprising if we
bear in mind the filtering properties of the generalized covariance. The IRF
hypothesis assumes that the drift is locally linear (or quadratic) and we can
krige as soon as we know the generalized covariance K (h).

Observe that here K(0) is usually zero unless we use integrated values, in
which case we have shown that this term is given by

K(0) =—S1—%f f K(x — y)dxdy

IRF k ofa higher order can also be defined, but practical experience shows that
it is enough to use IRF—1 and IRF-2 in most cases.

(c) Statistical inference of the generalized covariance. In order to identify
the variogram in the case of an IRF-0, it was only necessary to calculate
y(h) = $E{[Z(x + h) — Z(x)]*}, since the first increment (of zero order) was
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stationary. To do it, we only used the measurement points 2 by 2. Then an
analytical expression was fitted on the experimental variogram (cf. Section
11.5). For K(h) we actually proceed in a similar way but the fitting becomes
automatic. The statistical inference runs as follows.

(1) Choice of a point x, where, naturally, Z, = Z(x,) is known. We then
choose n points x; close to x, with Z; = Z(x;) known, i = 1,...,n. A moving
neighborhood is generally used, just as in kriging.

{2) A generalized increment of k order is built; i.e., we compute

G(xo) = ,goiazi (11.7.19)

where the weights 1} satisfy the conditions for being generalized increments of
order k, e.g., Eq. (11.7.13) at the second order. To calculate a set of weights 4
that fulfill the conditions of Eq.(11.7.13), several methods can be used. We can,
for instance, calculate the A that minimize

(Z ,li)Zi>2 (11.7.20)
<0

subject to the conditions of Eq. (11.7.13). Just as in kriging, these weights are
obtained by equating to zero the partial derivatives of Eq. (11.7.20) with
respect to A while taking Eq. (11.7.13) into account through the Lagrange
multipliers. We can also calculate the 4 terms as solutions to a problem of
universal kriging (see Section 11.7.2.c) by using any variogram y and taking
4§ = —1. Another solution is to take a small number of points and solve
Eq. (11.7.13) directly.

(3) We assume that the increments G(X,) are stationary, of zero average
(for all x,, and for all sets x; of neighboring points). Then the variance of these
increments G(X,) may be expressed as a function of the (still unknown)
generalized covariance K (k) by

var[G(x,)] = [G(x,)]> = Y. Y AGAK(x; — x;) (11.7.21)
i=0j=0
(4) We assume that K (k) can be expressed as a preselected function of h,
which only depends linearly on unknown coefficients 4;; a usual form is
K(h) = Ay[1 — 6(h)] + A, |h| + Ah*In|h| 45|k (11.7.22)

where 6 is the Kronecker symbol (see p. 304) and A4, is the nugget effect.
In order for K(h) to be a generalized covariance, the 4; must satisfy

Ao =20, A, <0, A3=0, A, >—./—244, A;/n?

in one dimension and
Ay =0, A, <0, A3 >0, A > —3/—A,4;
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in two dimensions. In practice, experience has shown that this limited class of
generalized covariance functions K (h) is quite sufficient for the study of most
problems. Sometimes it is not even necessary to use all the terms: 44, A, or 4,
A, A, or simply 4,, may suffice.

We can then write Eq. (11.7.21) as follows:

[G(xo))* = .Z];/lg {){Ao[l — o(x; — xj)] + Ay |x; — x4
+ Aglx; — x;?In|x; — x;| + Aslx; — x;°} (11.7.23)

The second, third, and fourth terms are called the linear, spline, and cubic
terms, respectively.

(5) The calculation of G(x,) by Eq. (11.7.19) is repeated a great number of
times (several hundreds or thousands) while varying the point x,, as well as the
neighboring points x;,i = 1,...,n of each point x,. Often the x; are chosen in
increasingly large circles surrounding the point x,, as in Fig. 11.13. The linear
combinations A must be correlated as little as possible (not have many points
in common between two of them).

(6) The coefficients A4; are determined by simple regression:

minZ{G(xo)2 — Y MM [Ao(1 — 6(h) + Ah + A,h% + A3h3]}
A; xo i,j=0

where h = |x; + x;|. The 4; are calculated by canceling the first derivative of
the preceding expression with respect to the A4; (linear system of four
equations with four unknowns). We can also, if we so desire, weight this sum in
order not to give too much weight to the large G(x,) values, which would
present too great a variance.

(7) Once K(h) is known, the whole kriging procedure is verified by
recalculating, one by one, all the measurement points as we have explained in
Section 11.6.3. Consequently, to krige with the LR.F. k, we must (1) choose the
k order (0, 1, or 2); (2) choose the form of K(h) [selected terms in Eq. (11.7.22)];
(3) calculate K (h) and verify its validity as for the variogram. It is possibie to

3rd neighborhood

2nd neighborhood

) ‘ 1st neighborhood

Fig. 11.13. Neighborhood for calculating the generalized covariance.
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make several test runs in order to choose the best k order or form of K(h), but
experience also allows us to select the most suitable values simply by studying
the data. A computer program, BLUEPACK 3-D (Renard et al., 1985) has
recently been developed to apply nonstationary geostatistics to two- or
three-dimensional problems using these principles (see also Delfiner, 1976;
Kitanidis, 1983).

11.8. Examples of Kriging

We shall describe two examples where kriging is used in hydrogeology:
transmissivities and heads.

11.8.1 Kriging Transmissivities (after Delhomme, 1974)

The aquifer of Fig. 11.14 consists of confined eocene sands in the Aquitaine
basin (France). Data were available in 86 wells; 29 came from pumping tests
and were considered exact and the 57 other data points were only the specific
capacity in the wells, which was also available in the 29 wells with pumping
tests. A linear regression was then made between the log of the specific
capacity (Q/s); and the log of the transmissivity T; at these 29 wells. The 57
other wells were given a transmissivity value by means of this regression as
well as an “uncertainty,” estimated to be the variance of the regression:

2
oF = g2 |1 + L 4 LIn(@/9; ~ In(@/9)] j=1,..,m (118.)

Y. [In(Q/s) ~ I Q/sT”

where

1
n——2,-

% =

Y. [InT; — aln(Q/s); — b]*
=1
with n as the number of pairs in the regression

m /s = 3. 1n(0/9)

and a and b as coefficients of the linear regression.

The variogram was then estimated with the 86 values of transmissivities.
This was done both on In T and on the natural values (Fig. 11.15). The former
have a much better “structure” than the latter. This is due to the fact that the
transmissivities are very often log-normally distributed, as can be seen on the
histogram (Fig. 11.16). A linear variogram with a small nugget effect was
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adjusted on the data, such that
p(l) = 0.15(1 — &) + 0.0625|h| (11.8.2)

was the variogram for In T, with T in 103 m?/s,hinkm, and § = 1if h = 0.

The variogram shows that the intrinsic hypothesis holds. Intrinsic kriging
was then done using the “exact” data (in 29 wells), the “uncertain” data,
and the variance of each [Eq. (11.8.1)]; the variogram of Eq. (11.8.2) was also
used. The estimation was done on a square grid of 2 x 2 km, using all the 86
data points without a moving neighborhood. Figure 11.17 gives the kriged
contour map of 7 and Fig. 11.18 gives the contour map drawn manually by
a hydrogeologist. As the kriging was done on In T, the 95% confidence interval

Fig. 11.18. Hand-drawn map of transmissivity.
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Fig. 11.19. Uncertainty of kriged map of transmissivity (e?).

is + 20, o being the standard deviation of the estimation error.
From In T = (In T)* 4+ 20, where the asterisk indicates estimation one gets

T*/e** < T< T*e*  with  T*=¢™T"

Note that T* is here the median estimator and that the correction for
obtaining an unbiased estimator was purposefully not applied, as explained in
Section 11.6.2.

Figure 11.19 gives the contour map of e°. For instance, if ¢ = 3.15, then
e2° = 10, i.e,, the uncertainty on T is of one order of magnitude.

Kriging was also done to estimate the average of In T directly on the meshes
of a digital model, which in this case used a nested square grid.
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11.8.2. Kriging Heads

The example concerns an unconfined aquifer in chalk, at Origny Sainte
Benoite (Aisne, France). The aquifer is drained by three rivers to the north,
west, and south. A piezometric survey was made on December 31, 1976, in 88
piezometers. An additional 64 measurement points were introduced into the
kriging by taking water levels in the rivers surrounding the aquifer at regular
intervals, since these rivers acted as prescribed head boundary conditions for
the aquifer.

Since heads are typically nonstationary, generalized covariances were used
at order 1 (locally linear drift). The generalized covariance was found to be in
k3: K(h) = alh|>. It was, however, necessary to use a different coefficient a for
different zones of the aquifer, as the spatial variability was greater under the
plateau than under the plains. The values of a were adjusted by fitting the
estimation error of kriging on the true estimation error when the validity of
the model was verified as shown in Section 11.6.3.

The map of g, the kriged map of the heads and the standard deviation of the
estimation error are given in Fig. 11.20.

11.9. Co-Kriging

Co-kriging is an estimation technique useful when two (or more) variables
which are correlated are measured in the field and can be estimated together.
For instance, if in an aquifer the concentration in the water of several metals is
correlated, then it is possible to estimate in one location the amount of metal
Z% based on the measurements not only of Z,, but also of metals Z, or Z;.
Another example is that of the estimation of transmissivity in an aquifer based
not only on the measurements of the transmissivity itself, obtained by
pumping tests, but also simultaneously on the measurements of the specific
capacity, which is correlated to the transmissivity. Co-kriging is then a more
elaborate and accurate method for using both types of data than the simple
regression and kriging with uncertain data, which was presented in Sections
11.8.1 and 11.4.8.

11.9.1. Co-Kriging Equations

Let Z,(x) and Z,(x) be two regionalized variables that are correlated. The
estimation of Z; (and if necessary Z,) by co-kriging is again given by a best
linear unbiased estimate in the form

Zi(xg) = -21 MZ(x;) + 121 2LZ,(x)) (11.9.1)
i= <
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Fig. 11.20. Kriging of heads: (4) coefficient of the generalized covariance, (b) kriged head, meters, and (c) standard deviation of kriged heads, meters
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Here, Z7(x,) is the estimate of Z; at location X, Z,(x;) are the measured
values of Z;,j=1,...,n, and Z,(x,) are the measured values of Z,,! = 1, m.
(Note that Z, and Z, need not be measured at the same location, and m and n
may be different); the A’s are the co-kriging weights. However, we have to
slightly change the notation here compared to the previous sections: A’ is the
kriging weight for variable Z; measured at location x;, and we omit the index 0
used earlier (1)) which meant that these weights were related to the estimation
of Z atlocation x,. It is clear however that these 1’s will change for each new
location x,, to be estimated. It would also be necessary to have another index to
show that they refer to the estimation of Z¥ since one could also wish to
estimate Z% from the same measurements. To keep the notation simple, we
will only consider here the estimation of one variable Z.
We will however generalize Eq. (11.9.1) for N variables by writing

a=1 j=

ZF(xo) = ) i MZ (x;) (11.9.2)

As in simple kriging, the A’s will be determined by writing the two usual
conditions: nonbias and optimality.

(a) Unbiased estimation. We will assume that E(Z,) =m,, a=1,..., N
(valid both for the stationary and intrinsic hypotheses). Then the condition
E(Z}) = m; can be written

m=ym,y A (11.9.3)
4 J

If all variables have a different expected value, then the estimation of Z¥
requires:

2 =1 (11.9.4)
P

Y A=0, a#i

ji=1
But if the variable Z, has the same expected value as Z;, a case which is very
common in practice, then Eq. (11.9.3) gives:

Y+ Y A=1 (11.9.5)
j=1 1=1
il{,zO, o #iandk
j=1
(b) Optimality. When the optimality condition was developed for simple

kriging in Sections 11.2.2 or 11.3.2 by imposing the condition that the variance
of the estimation error E{[Z(x,) — Z*(%,)]*} be minimum, the covariance or
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the variogram of the variable of interest was introduced by the need to
evaluate terms like E[Z(x;)Z(x;)]. In co-kriging, additional terms like
E[Z,(x;)Z4(x;)] will also have to be evaluated. We will therefore introduce a
new function to quantify the spatial correlation of the variable Z, with the
variable Z; as a function of the distance h between the points where Z, and Z;
are measured. In the stationary case, this will be called the cross-covariance
function C,4(h) and, in the intrinsic case, the cross-variogram y,s(h). These will
be precisely defined in section 11.9.2.

We will also need in the co-kriging equations the usual covariance or
variogram of each variable Z, which we will denote C,,(h) or y,,(h).

The co-kriging equations can very easily be developed given these new
functions. We will first write them for the estimation of Z3(x,) (Eq. 11.9.1)
from n measurements of Z; and m measurements of Z, (i.e., with the nonbias
condition 11.9.4). If Z, and Z, are both second-order stationary, the co-
kriging system can be written

'21 MCiy(x; — X)) + 121 A5C1(%; — X)) — oy = Cy1(Xo — X;)
f= =
for i=1,...,n (11.9.6a)

M=

M Coy (3 — X;) + zzi A5Co0(% — X)) — fiy = Ci5(Xo — X)) (11.9.6b)

for k=1,...,m

j=1

[
Il

with

M=

=1 and Y ib=0 (11.9.6¢)

=1 =1

The variance of the estimation error is:

var[Z§(xo) — Z1(%0)] = E{[Z}(xo) — Z1(x0)1*}

==Y MCilxo—x;) — 121 25C15(Xo — %)) + 1 (11.9.7)

j=1

If Z, and Z, are both intrinsic, then the kriging system will be obtained by
replacing C; by —4;; in Egs. (11.9.6) and (11.9.7). This can easily be
generalized for more than two variables: for instance, the kriging system
for the estimation in the intrinsic hypothesis of Z¥(x,) from Eq. (11.9.2) is
given by

. l-lz’yﬂa(xj — X)) + pg = V(X0 — X;)

N
2.
a=1

for j=1,...,n; and B=1,...,N (11.9.8a)

I=
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and
e 1ifa=1i
llz = .. 9. \
lzla {Oifoc¢i a=1,...,N (11.9.8b})

The variance of the estimation error is:

N e
var[ZF(xo) — Z(xo)] = Zl 121 li’)’iu(xo = X)) +

These expressions can also easily be generalized for kriging the average over
a mesh or with uncertain data. A matrix formulation of co-kriging was also
proposed by Myers (1982, 1983, 1984).

11.9.2. Cross-Covariances or Cross-Variograms

In the hypothesis where the variables Z, (x) and Z,(x) are both second-order
stationary, the cross-covariance C,,(h) of Z, and Z, is defined by

Cio() = E{[Z,(x) — m ][ Z,(x + h) — m, T} (11.9.9)

where m; = E(Z,) and m, = E(Z,).

One can show that, in general, C,,(k) # C,,(h), but that C,,(h) = C,,(—h)
(Journel and Huijbregts, 1978).

In the intrinsic hypothesis, the cross-variogram y,,(h) is defined by

712(0) = 2E{[Z,(x + b) — Z,(x)][Z,(x + h) — Z,(x)]}  (11.9.10)
In the stationary case, where both C;, and y,, exist,

712(8) = C;2(0) — 3[C, () + C3; ()]

Thus one sees that the variogram is always symmetric:

P12(B) = y21(0) = y1,(—h) = 9,,(—h)

Using the cross-covariance has therefore more possibilities than using the
cross-variogram in the stationary case. Experimental cross-covariance or
cross-variogram can be determined in a fashion similar to that used for
ordinary variograms as shown in Section 11.5.1.

The main difficulty in using co-kriging is that these functions have to satisfy
constraints in order to be acceptable, just as we indicated that covariance
functions need to be positive definite and that, minus the variograms, must
be conditionally positive definite.

Let G be a weighted sum of all the measurements such as the one used in
co-kriging

G= ZZ l{tza(xj)
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then
var(G) =Y ; ZZI: AApCog(x; — X))
x J

or
var(G) = — Z;z Zz: AARyp(X; — X))

with }; A} = 0 for the latter, as in Section 11.7.3.a.

Imposing that var(G) in both cases be positive for any A’s or points x gives
the constraints that must be met simultaneously by the covariances, cross-
covariances or variograms and cross-variograms used in a co-kriging system.
It is not at all simple to select functions which satisfy these constraints.

(a) Linear Model. A first method (Francois-Bongarson, 1981; Waker-
nagel, 1985) is to assume that the N variables Z, can be considered as linear
combinations of M hypothetical variables Z;, which would be uncorrelated:

M
Z(x)= ) a,Z{x), for a=1,.,N (11.9.11)
i=1

Evenif the variables Z; are independent (i.e., their cross-covariance or cross-
variogram is zero) the variables Z, would be correlated. Let Ci(h) or yi(h) be the
covariances or variograms of the variables Z;. Then one finds easily that the
covariances and cross-covariances (or variograms and cross-variograms) of
the variables Z, are

M -
Cup(h) = _Zl bap Ci(h)
or (11.9.12)
M .
Vap() = 3, bigill)

where bl; = a,a (thus bl = bj,).

Then the constraint on the covariances or variograms becomes simply that
the matrices [bl,] for i=1,...,M must be positive definite. This can be
achieved by imposing that the second-order minors of these matrices be
positive definite:
foreach i=1,....M

11.9.
>0 andfor a=1...N and p=1,.. N 13

bee bip
bha b
This bring about the condition

bu >0, b >0,  |bigl = |bp) < /bl.bps (11.9.14)

For example, suppose that we have two variables Z; and Z,, and the
variograms of Z,, Z,, and Z,Z, all have the same form, which we will
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call y. This means that M = 1, N = 2. Thus
711() = byy(h) with b, >0
y2. () = byy(l) with b, >0 (11.9.15)

Vi2(h) = 951(h) = by,y(h)

Then the only condition is by, < ./b;,b,.

If the variograms y4, 752, and y,, are each the sum of two components
(e.g., a nugget effect plus a variogram y, C[1 — §(h)] + by(h), then a similar
constraint would apply on the C’s.

In practice, experimental variograms and cross-variograms are determined
using all pairs of available measurement points, as in Section 11.5.1, using
Eq. (11.9.10). Then these experimental variograms are adjusted with a lincar
combination of the same basic variograms, and one makes sure that the
constraints (11.5.14) or (11.9,15) are satisfied.

(b} Nonlinear Model. Myers (1982) proposes an alternative to the
linear model. He shows that, if we define

Upplx) = Z,(x) + Zy(x)
then the variogram of U is

V0us®) = 3[vap(l) — 7,() — y,(0)] (11.9.15)

One can therefore calculate and fit separately the variograms of Z,, Z,, and
Uy, and calculate y,, from (11.9.16).
It is only necessary to verify that

Ve < /()7 ()

This approach can be extended to the generalized covariances (in the
nonstationary case, see Section 11.7; see also Matheron (1973)). Examples
of the use of co-kriging in soil science are given by Vauclin et al. (1983);
Abourifasso and Marino (1984) give examples of co-kriging used to calculate
transmissivities and specific capacities in an aquifer.

11.10. Stochastic Partial Differential Equations
Stochastic partial differential equations can be used to study groundwater
flow in three different cases:

(1) When the boundary conditions or initial conditions are prescribed as
stochastic processes.* This could, for instance, be the case when the water level

* A stochastic process is a phenomenon that can be described by one or several dependent or
independent random variables.
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in a river or the infiltration rate at an outcrop are considered as stochastic
processes.

(2) When a source/sink term is a stochastic process (e.g., recharge).

(3) when the coefficients of the equations are stochastic processes. This
can be the case for transmissivity, for example, when the uncertainty
associated with its estimation suggests that it should be considered as a
stochastic process.

In all cases some of the inputs of the flow equation are assumed to be
random, i.e., they will be defined by their probability distribution functions or
its first moments. The dependent variable of the flow equation, e.g., the head, is
then also a random function, and the solution of the stochastic flow equation
is then, by definition, the probability distribution function of the dependent
variable.

Let us give a few simple examples. Annual recharge in an unconfined aquifer
depends directly on the rainfall. If a given annual recharge is prescribed and
the flow conditions in the aquifer are known (i.e., boundary conditions,
parameters), one can deterministically define the head at any location in the
aquifer. For every different annual recharge there will be a different value of
the head. If this problem is treated stochastically, given the variability of
rainfall, the annual recharge will be considered as a random function and
defined by its mean and variance. Can one then directly calculate the mean and
variance of the head at each location? This could be very useful, for instance,
for predicting the probability of the water table rising above a certain
elevation (e.g., the bottom of an underground excavation).

We can take another example involving transmissivities. They are known to
be rather variable in an aquifer, generally log-normally distributed and with a
variance of In T on the order of one or more. Given a set of measurement
points of T in an aquifer, kriging gives an optimal estimation of T as well as the
variance of the estimation error. If one only uses the kriged T map to predict
the flow in the aquifer, one completely disregards the residual uncertainty of 7.
It would make much more sense to consider T as a stochastic process and to
try to determine the expected value and the variance of the head directly at
each point, thereby determining the uncertainty in the predicted flow.

Our last example 18 one of transport in porous media. Hydrodynamic
dispersion is known to be the result of the variability of the pore water velocity
in the medium at every scale. Rather than defining a single average velocity in
the aquifer and then describing the variability of velocity by an empirical
dispersion coeflicient, is it not more efficient to characterize the variability of
the velocity by its variance and covariance and to represent hydrodynamic
dispersion by solving a stochastic transport equation, where this velocity is a
stochastic process?
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All these approaches have been used recently.
Having defined a few properties of stochastic partial differential equations,
we shall give a brief outline of several methods for sclving them.

11.10.1 Properties of Stochastic Partial Differential Equations

For equations where the parameters are random functions one must first
define what the derivative of a stochastic process is. If K is a random function,
the quadratic mean derivative K’ is defined by

E[K(x + Ax) — K(x)

lim Ax —K (x)] =0

Ax—0

Also, K’ is a random function.

The complete solution of a stochastic partial differential equation consists
in obtaining all the probability distribution functions, at every location and at
all times, of the unknown random function, e.g., the head. This is almost
always impossible to achieve. Therefore one will generally look for (1) the
probability distribution function of the unknown at several particular
locations or (2) the moments of the unknown function: expected value,
variance, covariance. These moments can sometimes only be approximately
evaluated.

To obtain even such approximate and limited solutions, one must often
make some hypotheses on the stochastic processes in question.

(1) If these hypotheses concern the input parameters (e.g., boundary
conditions, source terms, coefficients), the corresponding solution is said to be
“honest.”

(2) If these hypotheses concern the unknown solution, whose form is a
priori unknown, the solution is said to be “dishonest.” This does not mean that
a dishonest solution is necessarily incorrect if these hypotheses (e.g.
stationarity, ..) are based on valid physical reasoning: dishonest solutions can,
on the contrary, sometimes be more precise than honest ones. It is only when
the assumptions are not physically based that they may be invalid {see Keller
(1964), Lumley and Panofsky (1964), and Schweppe (1973)].

We shall now briefly examine some methods of solution.

11.10.2. Spectral Method

This method is applicable to second-order stationary stochastic processes
for both inputs and outputs. If Y(x) is second-order stationary, the spectrum
(or spectral density) of Y is the Fourier transform of its autocovariance
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function:
+ o
o) = 5- j e cov[ Y (x + 9), V()] ds (11.10.1)
T

— o0
Using the inverse Fourier transform, one can also write

+ o

cov[Y(x + 5), Y(x)] = C(s) = J e (k) dk (11.10.2)

The following “representation theorem” will be used: if the second-order
stationary stochastic process Y(x) is of zero mean [E(Y)= 0] and of
covariance C(s), then one can define a complex associated process Z (ie,ZeC
if Y € R) that satisfies

Y(x) = J m e™* dZ(k) ©(11.10.3)

E[dZ(k,)dZ*(k,)] = 0 itk Ak,
E[dZ(k)dZ*(k,)] = o(ky)  ieif  k =k,

Equation (11.10.3) is a Fourier—Stieltjes integral and the asterisk in Eq.
(11.10.4) denotes the complex conjugate.

We shall give a simple example of the use of the spectral method, from
Gelhar (1976), Bakr et al. (1978), and Gutjahr et al. (1978). Let us consider a
one-dimensional steady-state flow in an infinite medium. The flow equation is
written as '

(11.10.4)

d dH
- [K(x)d_x] -0 | (11.10.5)

We assume that K (x) is a second-order stationary stochastic process, i.e., we
shall treat the class 3 type of stochastic partial differential equation. If we
integrate Eq. (11.10.5) once, it gives

dH
Kx)—=— .10.
(W= -4 10
where g is the constant flow rate in the flow tube. Dividing by K and defining

W = 1/K,

dH
= —aW (11.10.7)

Let us define the expected value of H and W and their fluctuation around
the average by

H = E(H) h
W=EW) w

H-H thus Eh) =0
W—W thus Ew)=0
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By substituting in Eq. (11.10.7) and taking its expected value, we get

dH dh _
. W
dx + dx 97 +w)
H 7 .
E aH) _ —gE(W)  thus i _ —qW (11.10.8)
dx dx
dh
o= 11.10.
= —aw (11.10.9)

Assuming h to be second-order stationary (“dishonest” hypothesis) and using
the “representation theorem,” we can define two complex stochastic processes

such as
+ oo

h(x) = fm e dzZ, (k)  wx) = J e*>dz, (k)

We then take the first derivative of h and introduce it into Eq. (11.10.9):
dh ©
= f e**ik dZ,(k)

F

ikdZy(k) = —qdZ, (k)  thus  dZ,(k) = i%dZw(k)
From Eq. (11.10.4) we can calculate the spectrum of h:
pu(k) = E[dZ,(k)dZ} (k)]

_ g _ 9 = q_z *
- E{[lkdzw(k)][ i kdzw(k)]} =2 ELZ, (k) dZ3 (k)] (11.10.10)

2
0ul) = 250, (8)

We have now solved our problem. Equation (11.10.8) gives us the first
moment of H, H= —gWx +constant, and Eq. (11.10.10) gives us the spectrum
of H given the spectrum of W. Using Eq. (11.10.2), one can also determine the
covariance and variance of h from the spectrum. For instance, if the following
covariance is used for W as suggested by Gutjahr et al. (1978),

cov[w(x + 5), w(x)] = a&(1 — |s|/1)e 1"

where o}, is the variance of w and the distance [ is called the correlation
length, one obtains
2k?*c3,13
n(l + k212)?
cov[h(x + s), h(x)] = g*a % 1(1 + |s|/1)e” "

o2 = C(0) = q*1%c},

@u(k) =
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In this simple example the covariance and variance of h are constant all over
the medium.

Gelhar et al. (1974, 1977, 1979a,b), Gelhar and Axness (1983), and Gelhar
(1986) have used this spectral method extensively, mainly for the transport
equation in their later articles.

11.10.3. The Method of Perturbations

We shall use the same example as before, i.e., Eq. (11.10.5). Let K be second-
order stationary with E(K) = K and the “fluctuation” k = K — K, E(k) = 0.
We shall also assume that the “fluctuation” & of the solution H is second-order
stationary (“dishonest” hypothesis) with E(H) = Hand h = H — H, E(h) = 0.
We develop K and H to the first order, ie., add to K and H a “small
perturbation,” i.e., a fraction of their fluctuation:

K=RK+pk H=H+ph (11.10.11)

Given k, we now look for . We can introduce Eq. (11.10.11) into Eq. (11.10.5)
and develop in f, disregarding the terms in B2 (assuming B to be small):

2§ 2 7 2
KdH ﬁ(ﬂdh dk dH dH>=O

2 ARGt e TR

If this is to hold for any small 8, each of these two terms must be equal to zero.
Thus:

_d*H dH _ _ _
K p 0 or e —q/K and H = —gx/K + const
and substituting this result in the second term,
Ch_ g dk
dx*  K?dx
or
dh ¢
— =k 11.10.12
kT ( )
where a is a constant. We take the expected value to be
dh d q
— |=—EMh)==5Ek +E
E(dx) E() =25 E() + E@

As E(h) = E(k) = 0, we can see that E(a) = 0. Then Eq. (11.10.12) gives directly

dh q°
cov (;1;) =%z cov(k)
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However, for a stationary random function with a differentiable covariance

one can write
dh a?
cov <E) = — Fcov(h)

Thus, if we can assume that

icov[h(x), h(x + s)]

I =0 and cov[h(x), h(x + s)] =0

s> —w s — a0

then with two integrations we find

covih(x + s), h(x)] = _I%_ir J ’ cov[k(x), k(x + u)]dudy

‘We have again found the expected value and covariance of the head, but this
time we must assume that ¢% is small, otherwise the first-order development in
Bisnot valid. To overcome this difficulty in the case of a permeability where 62
is generally rather large (see Section 4.4), Gelhar has suggested the use of the
logarithm of K. Equation (11.10.5) is written as

CH JKAH_  PH
dx* ' dx dx dx* = dx

If F =InK is second-order stationary, one again writes F = F + f and £ is
expressed as a function of the covariance of f; Gelhar has shown that in one
dimension the error involved in the method of perturbations is less than 109 if
0% < 1 (by comparing it to the exact spectral method).

Tang and Pinder (1977) have used the method of perturbations for the
transport equation. Sagar (1978) applied it to the flow equation. Gelhar and
Axness (1983) have used it for the same equations together with the spectral
method. Winter et al. (1984) applied it in the second order to the transport
equation.

{(in K)d%H =0
dx

11.10.4. Simulation Method (Monte Carlo)

This is probably the most powerful method, where fewer assumptions are
required. However, it is 2 numerical method, which may require much central
processing unit (CPU) time and a careful examination of the results. The
principle of the method is very simple. Let Z(x, ) be a stochastic process, x
being the coordinates in space and ¢ the state variable. Remember that Z(x, £,)
is called a realization of Z. One first generates “simulations” of Z in the
probabilistic sense, i, a large number of realizations of Z. To do so, we must
know the probability distribution function of Z and its covariance (or
variogram) if Z is spacially correlated.
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Note that the knowledge of the probability distribution function of Z was
not necessary in the two previous methods.

Then, for each of these realizations the parameter represented by Z(x, &;) is
completely determined and known (e.g., the permeability or the source term or
the boundary conditions). Thus, the flow equation can be solved numerically
for each realization, giving the value of the dependent variable, e.g., h(x, £;). It
is then possible to statistically analyze the ensemble of calculated solutions
hi(x, &) for i =1,..., N: expected value, variance, histogram, and distribution
function for each location x. It is no longer necessary to assume that k is
stationary; these statistics can be calculated at each point. The covariance or
variogram can also be determined if h is found to be stationary or intrinsic.

There are some difficulties associated with the simulation method. First, a
large number N of realizations is necessary in order to get meaningful
statistics: from 50 to several hundreds or thousands. Second, as N is
necessarily finite, one can always calculate an experimental variance or
covariance, even for a phenomenon where they do not exist. It is preferable to
check that when N increases, these statistics indeed become constant. Third,
the solution can be a function of the mesh size: because the numerical solution
requires us to estimate an average of Z(x,¢,) over a mesh, this estimate
becomes less variable as the mesh becomes larger simply because of the
integration. Thus, the variability of the solution h(x, &) will also be affected.
Furthermore, one must realize that if C (or y)is the correlation structure of Z
in space, then the correlation structure of the average of Z over a mesh will be
the integrated covariance or variogram (see Section 11.4.7). This has not
always been recognized in the past.

The main difficulty with the simulation method is how to generate the
realizations Z(x, £;). Freeze (1975) assumed that Z (in this case, the hydraulic
conductivity on a one-dimensional flow problem) was not spatially correlated.
When the probability distribution of Z was known, independent values were
drawn randomly in each mesh. In two dimensions, Smith and Freeze (1979)
and Smith and Schwartz (1980, 1981a,b) imposed a correlation structure on Z
(the hydraulic conductivity) using the method of the “nearest neighbor.” The
correlation is imposed by a kind of “moving average” of the value of Z, taken
in adjacent meshes. Binsariti (1980) generated the complete covariance matrix
of Z and took a vector of independent random numbers and solved for the
correlated Z(x, &;) by triangulation of the covariance matrix using Cholesky’s
method (Section 12.4.1.b). See also Neuman (1984). Meija and Rodriguez-
Tturbe (1974) used spectral methods.

Delhomme (1979) used the method of the turning bands, developed by
Matheron (1973), which is a very powerful tool in two dimensions (see also
Chiles (1977) and Mantoglou and Wilson (1982)). Delhomme also used
conditional simulations of Z instead of simple simulations. This is a great
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improvement on the Monte Carlo method for practical problems. Indeed, the
stochastic process Z is then said to be conditioned by the measurements Z(x ;)
in space: all the realizations Z(x, £;) must have the measured values Z(x;) at
each point x;, where a measurement has been made. The method used to
generate these conditional simulations is based on kriging.

Nonconditional simulations are suitable for studying the theoretical
variability of a process: the statistics of Z are assumed to be known, but no
measured values are available. On the contrary, conditional simulations take
the measured values into account and the considered variability is only that
stemming from the uncertainty in the estimation of Z between measurement
points. Conditional simulations are thus a logical follow-up to kriging.
Delhomme (1979) used them for transmissivities and mentioned that the
transmissivity could be further conditioned by the inverse problem (see
Section 12.6). Such conditioning is also discussed by Neuman and Yakowitz
(1979}, Neuman (1984) and Dagan (1982,a,b).

Note added in Proof

Here, h is by definition a vector in space. In general, the covariance C or
variogram vy are only functions of the length of this vector. In some cases,
however, they also depend on the direction of the vector h. To simplify, we
shall keep the notations C(h) or y(h) even if h only refers to a length. (See also
Section 11.5.4))
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12.1. Selectiom of a Numerical Technique and a Code

It may become necessary to use numerical solutions to the flow and/or
transport equations, rather than analytical solutions, for one or more of the
following reasons.

(1) The flow domain is bounded, with boundaries of complex shape that
play a role during the time for which a solution is sought. The available
analytical solutions deal with infinite or semiinfinite media; the method of
images cannot be used or is too complex to use to represent the role of the
boundaries.

(2) The problem is nonlinear (e.g., the transmissivity varies with the head
in an unconfined aquifer) and no analytical solutions are available.

(3) The properties of the medium vary in space, whereas analytical
solutions assume the medium to be homogeneous or the geometry of the
heterogeneities to be very simple.

(4) The geometry and magnitude of the source term are too intricate to be
represented by a point source, a line source, or an integral of these along a
simple path.

(5) An analytical solution can be found, but its expression is so complex
(e.g., sum of infinite series, integral of complex functions) that the analytical
calculation of its values requires far more effort (programming and CPU time)
than the direct use of a numerical solution of the original problem.

In some of these instances, it may be advantageous to use a semianalytical
method that consists in solving the problem first analytically in the Laplace
transform domain and then computing the inverse Laplace transform
numerically; this may be of interest for a transport equation involving first-
order kinetic reactions, for instance, for which the Laplace transform is very
suitable (see Talbot, 1979). Another semianalytical method involves the use of
Green’s functions (see for instance Roach (1982), and Herrera (1985)).

When numerical solutions are required, one must first decide (1) what
numerical method to use (essentially, finite differences, finite elements,
boundary elements) and (2) how to obtain a code (program it, or get access o
an existing one).

There is no universally agreed answer to the first question; for each of the
three methods quoted above, one can say the following.

(1) Finite differences are easy to understand and to program; they are very
well suited to solving regional aquifer flow problems, in one or two
dimensions, in multilayered systems, or in three dimensions. Although they
can in principle handle meshes of any shape and size, they are restricted in
practice to simple meshes: regular squares, nested squares, rectangles, or
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rectangular parallelepipeds in three dimensions. They can handle heterogene-
ities of the properties of the medium very well, provided that the shape of these
heterogeneities can be adequately described by the shape of the meshes;
anisotropy must be restricted, for all practical purposes, to directions parallel
to the sides of the meshes. They are not very well suited to solving the
transport equation, unless the methods of characteristic and particle tracking
are used (see Section 12.5.2).

(2) Finite elements are less easy to explain and far less easy to program. As
this method is more flexible than that of finite differences, a finite-element
program can be more complex to use (more input data, e.g., on the geometry of
the meshes, thus more possibilities for error) and may require more computer
time. However, the shape of the meshes is much less restricted: in practice,
triangles and quadrilaterals are used in two dimensions, and tetrahedra or
parallelepipeds of any angle in three dimensions. This makes it possible to
describe much more satisfactorily the shape of the boundaries of the medium
and that of the heterogeneities or the source functions. It also makes finite
elements ideally suited to solving problems with moving boundaries, e.g., with
a free surface, an abrupt interface between fresh water and sea water, or
between two immiscible fluids. Finite elements can handle any directions of
anisotropy, and these directions may even change from one element to the next
or with time. In practice, for flow problems, finite elements can be used for
regional studies but are best suited to local civil engineering problems like
dewatering of an excavation, mine drainage, and flow around a dam, where
the shape of the boundaries and heterogeneities must be represented with
precision. Note that when seepage forces must be calculated as input for
structural analysis, it is often necessary to compute them on the same network
that will be used for the structural calculations: virtually all of these use finite
elements. For solving the transport equation, finite elements are far superior to
finite differences, as they can handle the anisotropy of the dispersion tensor
and the mesh size can be adapted to the magnitude of the velocity; it is thus
possible to seek a compromise between stability and numerical dispersion.

(3) Boundary elements or boundary integral methods have been proposed
recently for solving the flow equation. Their main advantage is that the
precision of the calculations is not a function of the size of the elements used,
contrary to what happens with finite differences of finite elements. Thus, a few
very large (even infinite) elements can be used, so that the method is very
efficient in terms of computer time. In a first step the numerical solution is only
calculated along the boundaries of the elements; if the solution is also
explicitly required inside an element, its value is calculated in a second step by
numerical integration inside the element. The main restriction is that the
properties of the medium in a given clement are assumed constant: if the
heterogeneities of the medium are such that a large number of elements are
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required to describe them adequately, then the boundary integral method
loses its superiority, and finite differences or finite elements can just as well be
used. This method is therefore much less flexible and general than the previous
ones [see Brebbia (1978), Liu and Liggett (1979), Liggett and Liu (1979), Tal
and Dagan (1983), and Herrera (1984)].

The second question, how to obtain a code, is a matter of personal
Jjudgement, and only a few hints can be given here. Programming a simple
finite difference code, for a one- or two-dimensional problem with simple
meshes (squares or rectangles) and simple boundaries can be done from
scratch in a few days. However, the code will not be easy to use; to make it
“user-friendly” (i.e., give it, e.g., simple inputs, error checking, and messages,
graphical outputs) may require a couple of months. A more complex
multilayer or three-dimensional finite-difference code with several options
(e.g., nonlinearities) may require 6 months to a year, as does a user-friendly
two-dimensional finite-element code. A very complex three-dimensional
finite-element transport code may require 1 or 2 years, and a multicomponent,
multiphase, and three-dimensional oil-reservoir model may represent an effort
of 5-10 (or more) man-years. One must remember that any new code must be
carefully tested and validated against known analytical (or other numerical)
solutions before it can be used for any serious purpose. This testing can be
quite lengthy.

However, a very large number of codes are now available, either free of
charge or at the cost of the duplication of a card deck, a tape, or a floppy disk,
or even at a cost covering part of the expenditure for their development. In
order to make such codes easily available, a clearing-house has been put
together (Bachmat er al, 1980).7 A computer file of available codes in
groundwater modeling has been set up for flow, transport, management, data
processing, etc., where more than 500 codes are described. A search through
this file will reveal the available codes beést suited to solving a given problem
and adapted to a hand-held calculator, a microcomputer, or a main-frame
computer.

In the rest of this chapter we shall briefly describe the methods of finite
differences and finite elements, the resolution of large linear systems, and
finally, the use of numerical models for regional groundwater flow studies.
Even if one decides to use an existing code to solve a groundwater flow or
transport problem, it is essential to clearly understand the principle and
limitations of numerical models in order to be able to use them efficiently.

 The International Groundwater Modeling Center at Holcomb Research Institute, Butler
University, Indianapolis, Indiana 46208 or at TNO-DGYV, Institute of Applied Sciences, P.O.
Box 285, 2600 Delft, The Netherlands. Inquiries can be directed to either of these institutes.
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12.2. Finite Differences

Three different methods, at least, can be used to present finite differences.
We will illustrate the first two, the methods of differentials and mass balance,
by a simple example and proceed more rigorously with the third one, the
method of integrated finite differences. The results will be, for the same
equation, identical.

We shall first consider the simple flow equation in a confined aquifer, in two
dimensions [Eq. (5.3.10)], which is written as

0 oh 0 Oh oh

ox (Txax) % (Tyay) =S5t
where T is the transmissivity, which can vary in space, (length? time 1), his the
unknown, the head (length); S is the storage coefficient, which can vary in space
(dimensionless), and ¢ is the source/sink term, representing at each point the
algebraic sum of the density of recharge to or discharge from the aquifer,
which also varies in space. It is expressed in flow rate per unit area
(Iength time™1) and is positive for a sink and negative for a source.

We look for the solution of this equation on a finite bounded domain with
prescribed boundary conditions (see Section 6.3). We shall consider prescribed
head boundaries (i.¢., Dirichlet) or prescribed fluxes (i.e., Neumann). Any one
of these two boundary conditions can be prescribed on different segments of
the boundaries. The corresponding values of the prescribed head or fluxes are
assumed to be known, as well as the values of T, S, and @ in the entire domain.
For the first simple examples we shall assume that the equation is solved in
steady state (i.c, 0h/0t = 0) and that T is isotropic. On the domain where the
equation is to be integrated, a square grid is superimposed (Fig. 12.1) with its
size governed by the desired precision of the numerical approximation of the
true solution (the smaller the size of the squares, the better the approximation).
The coordinates x and y in the domain are taken along the sides of the grid.

The principle of finite differences is to look for the numerical value of the
heads in each of the centers of the squares, assumed to represent an “average”
value of the true head in each square. The squares are numbered from 1 to r;
H, to H, will be the heads at the nodes (the centers of the squares)and T to T,,
S, to §,, and Q, to 0, the transmissivity, storage coefficient, and source terms
in each square, assumed to be the average of T and S and the integral of g over
the square, respectively. If a node i falls on a prescribed head boundary, H; will
be known at this node; if the side of a square represents a prescribed flux
boundary, the flow entering into the square through that side will be known.
Let us look (Fig. 12.2)) at five adjacent nodes inside the grid, which we shall
number for the sake of convenience C, N, E, S, W (for center, north, east, south,
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Fig. 12.1. Finite-difference square grid on a bounded domain.
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Fig. 12.2. Five adjacent nodes of a finte-difference grid.

west), respectively, although in reality they will have numbers falling between 1
and r and depending on the numbering system used, which is generally from
west to east and north to south. We shall use three different methods to
establish the finite differences approximation of the continuous partial
differential equation for flow in a steady state, which is

0 oh 0 oh
p <Tax> + 3 (T 6y> =q (12.2.1)
We shall not address the problem of consistency of the finite difference
approximation, which consists in showing that when the mesh size tends
towards zero the approximate solution H tends towards the true solution A.
For finite differences and finite elements it can be shown that this is indeed so.
The method is well described by Varga (1962), Remson et al. (1971), Thomas

(1973), Prickett (1975), Narashiman and Witherspoon (1976), Trescott et al.
(1976), Mercer and Faust (1981), and Wang and Anderson (1982).
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12.2.1. Approximation of the Derivatives by Differences

The name “finite differences” has its origin in the fact that derivatives are
approximated by differences. If a is the size of a square, we can write

approximation of Z—z between nodes W and C = Hc_;f.Ii!
approximation of gf—z between nodes C and E = @

approximation of % between nodes S and C = H_";_IEI_S
approximation of % between nodes C and N = @

We now need to approximate the second-order derivatives or, more
precisely, the derivatives like (3/0x)(T oh/dx). Let T,., T.., ... be the value of
the transmissivity evaluated between N and C, E and C, etc. (see Section 12.2.5
for their evaluation from the transmissivity T,, T¢, ... in each square). We can
write, for node C,

L. 0 oh\ .
approximation of ™ (TEC-> inC

= Tle between Cand E — T% between Wand C |/ a
ox 0x

H —H H, —
2[11-;0 € C_—Twc C HW]/a
a a

= ’I::c(He - Hc)/az + Twc(Hw - Hc)/az

Similarly, we get

c

. 0 (. .0h\ . H, -~ H, H,—H
approximation of 7 <T6_y> nC=T, s + T, p

Adding these two terms, multiplied by a?, and given Eq. (12.2.1), we obtain
nc(Hn - Hc) + Téc(He - Hc) + T;c(Hs - Hc) + TWC(HW - Hc) = an= Qc
(12.2.2)

where § would be the average of the source term g over the square. However,
a*q is then equal to Q,, the integral of ¢ over the square.



12.2. Finite Differences 345

This is the finite-difference equation for node C of the original partial
differential equation. Note that it is a linear equation in H;; if there are p nodes
in the grid where the head is not prescribed (i.c., thatinr — pnodes lying on the
boundaries the head is prescribed), then our problem has p unknowns, and we
can write p linear equations similar to Eq. (12.2.2) for these p nodes. The
solution in each node is thus obtained by solving a linear system of p equations
with p unknowns, which is mathematically trivial. (Section 12.4.). Note that
the ordering number of the p unknowns will not, in general, be from 1 to p:
depending on the numbering system used and the position of the prescribed
head boundaries, these numbers will fall between 1 and r, the total number of
squares.

The finite difference equations for the nodes adjacent to a prescribed flux
boundary are slightly different, but we shall examine them later.

12.2.2. Mass-Balance Equation

Instead of starting from the partial differential equation (12.2.1), we can
establish the finite-difference equation (12.2.2) directly using only Darcy’s law
and the principle of mass balance. Consider square C in Fig. 12.2. In a steady
state the principle of mass balance imposes that the algebraic sum of the mass
fluxes crossing each of the four sides of square C be equal to the mass entering
or leaving C by recharge or discharge, i.e., the integral of the source/sink term
pq over square C, where p is the mass per unit volume of the fluid. Using
Darcy’s law, we can evaluate these fluxes directly. We will keep the same
notation as in Eq. (12.2.1) and assume that these fluxes are positive when they
leave C, while g is positive when it is a sink (discharge), so that the mass balance
equation becomes

sum of the fluxes of mass + integral of pg =0
and
flux of mass leaving C through one side

= (area of side) x (velocity) x (mass per unit volume of fluid)
Oh
= ae< —K 515) p

where e is the thickness of the aquifer, K the hydraulic conductivity, n the
normal to the side directed outwards, a the size of a square, and T = Ke. The
mass flux leaving C through one side is then given by apT oh/0n.
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For each side, we then get

H,—H
flux leaving the side between W and C = —ap Twc——wa—

H,—H
flux leaving the side between N and C = —ap Tnc“—a—ﬁ
. . H e H c
flux leaving the side between E and C = —apT,,
H,— H

c

flux leaving the side between S and C = —ap Tsc——s—a——-

and the integral of pq over square C is pQ, if p is constant.

Then, if we write the mass-balance equation and simplify by p, assumed
constant, we finally obtain exactly the same equation as Eq. (12.2.2). This will
help us to establish the form of the finite-difference equation for the nodes
adjacent to a prescribed flux boundary. Indeed, each of the terms like
+ T, .(H, — H,) represents a volumetric flux entering the side of square C
between N and C. Therefore, if a side of a square is a prescribed flux boundary,
it is sufficient to substitute the prescribed value of this flux, calculated along
the given side, for the difference expression that one would normally have. For
instance (Fig. 12.3), if the side north of C is a prescribed flux boundary, ie.,
there is no node north of C, then the finite-difference equation becomes

T;c(He - Hc) + 7;c(}Is - Hc) + Twc(Hw - Hc) - Fn = Qc
or
Téc(He - Hc) -+ ];C(HS - Hc) + Twc(Hw - Hc) = Qc + Fn

where F, is the prescribed flowrate (length? time ') crossing the side north of C,
i.e., the integral of the prescribed flux over the side, and F is counted as positive
when leaving the domain. Such an equation is still a linear equation in H;, but
with one unknown less than the usual equation. Similarly, if one of the heads,
e.g., H,, in a finite-difference equation is a prescribed value (representing a
prescribed head boundary condition), then the term T, H, is known and is
transferred to the right-hand side of the equation, leaving only the unknowns

W e [E l

Fig. 12.3. Prescribed flux boundary.

X
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on the left-hand side. This is, in general, of no consequence for solving the
complete linear system of p equations with p unknowns. It can be shown,
indeed, that the matrix of this linear system is always regular (i.e., can be
inverted and has a unique solution), provided that for a steady state, there is at
least one mesh in the domain where a prescribed head boundary condition is
imposed.

12.2.3. Integrated Finite Differences

This is a more rigorous method of establishing finite, difference equations.
To be more general, we shall now assume the transmissivity of the medium to
be anisotropic with x and y as the principal directions of anisotropy and the
mesh to be formed of polygons of any shape or number of sides. Let D; be one
of these polygons with I its center (or node) and J and K the nodes of two
adjacent polygons (Fig. 12.4). The exact definition of the “center” of a polygon
(e.g., its center of gravity) is of no importance at this time; we shall give
examples later.

In the entire domain, and therefore also in D;, the partial differential flow

equation
0 oh 0 oh
=V i) =
dx <7;0x) + 6y< y@y) 1

should be satisfied at every point (x,y). The principle of integrated finite
differences is that only the integral of this equation over each of the polygons
D, must be satisfied. We write

0 oh I3} Jh .
Jf[a(];a)+5;<Ra—y>]dxdy—qudxdy i=1,...,p
D;

K’

Fig. 12.4. A polygon for an integrated finite-difference approximation.
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where p is the number of polygons where the head is unknown (ie., not
prescribed). In other words, the partial differential equation no longer has to
be satisfied at every location but only in the average over each polygon of the
grid. Using very simple mathematics, like Taylor’s series expansions, we shall
now establish rigorously the general form of a finite difference equation. With
Green’s first identity, the spatial integral over D; is first transformed into a
contour integral over the perimeter I; of D;; if A is any vector, we can write

”divAdx dy = J (A, n)ds
T
D;

where n is the outer normal to I'; and (A, m) the scalar product. Here, we obtain

oh oh
J‘ri[T;-a—;nx + T;,a—yny] ds = ffq dxdy (12.2.3)

D;

where n, and n, are the direction cosines of n, and ds is an element of T;.

Let us evaluate this integral over one side, AB, of D, (Fig. 12.4). Note that it
represents, by definition, the flowrate exchanged between polygons D; and D;
across AB. To evaluate the derivatives 0h/0x, 6h/dy along AB, we shall need
three adjacent nodes, I, J, and K, in general. Only in simple cases will the two
nodes I and J be sufficient, as we shall see later. We shall also show how to
select node K, when necessary. It is only important now to realize that the
same node K must be selected when the flowrate along AB is evaluated for the
benefit of the equation of polygons D, or D;. Otherwise, mass balance would
not be conserved in the entire domain.

Let h;, h;, and by be the actual heads at nodes I, J, and K, and M be any point
of AB. Using Taylor’s first-order series expansion, we can write

oh h
hi = hm -+ (X,' - xm)<_> + (yi - ym)<a_)
0x m ay m
oh oh
hj = h, + (xj - XM)<E)". + (,Vj - ym)(@>m

oh oh
hk = hm + (xk - xm)('&) + (yk - y'")<6_y>

Assuming h;, h;, by, to be known, this is a linear system with three unknowns,
h,., (Oh/0x),, and (6h/dy),,, which can easily be solved.

If we further assume that the actual heads h;, h;, and h, can be approximated
by the finite difference values H;, H;, and H, which will be evaluated at the
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nodes I, J, and K, we get
(5_’1) _ (H] — H)(y, — y) — (H — Hi)()’j — V)

0x Jm (¢ — X)W — ¥) — (e — x5 — ) (12.2.4)
<@> _ (H; — H)(x, — x;) — (H, — H)(x; — x;)

0V )m B (xj = x) (v — ¥i) — (o — xi)(yj — )

Note that these expressions are not functions of the coordinates of M and thus
are constant along AB. As the direction cosines are also constant along AB, we
can write

oh oh oh oh
y R T — = = — T
LB < 3 n, + T, 3 ny> ds <6x>,,, M, JAB T.ds + <8y>,,, n, JAB L ds

Let T, and T,,, be the integrals of the directional transmissivities 7, and T,
along AB. Then we obtain

Oh oh
JAB <’I;a—x— n, + Tyé; ny> ds = Cy(H; — Hy) + Cy(H, — H))

where C; and C, are functions only of the geometry and transmissivities:

C. = Teann(Vx — ¥i) — Tyabny(xk — X;)
T = X)) — v — (6 — x) ;= v (12.2.5)
— Teapn(y j ¥+ T;abny(xj - X;)

(xj — X))V — i) — (X% — xi)(yj —¥)

ik =

Similar expressions would be obtained for the other sides of polygon D;. If
we finally define the integral source/sink term over the polygon by

0;= Hq dxdy

then the finite difference equation, for each polygon, would have the form
CylH, — H) + Co(H, — H) + CalHy — H) + = Qi (12.26)
which is of the same nature as Eq. (12.2.2).

Boundary conditions. If a node of the grid falls on a prescribed head
boundary, then the corresponding H; is known. A finite difference equation is
not written for this node, and each time H; appears in another equation, the
term C;;H; is transferred to the right-hand side. If the side of a polygon falls on
a prescribed flux boundary, then this prescribed flux is substituted for the
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corresponding term of the contour integral and then transferred to the right-
hand side of the equation. More precisely, if oh/ on is prescribed along AB,
then

oh oh oh
T,— T,— = | (T2 + Tn2)—d
J‘AB< xax nx + yayn)’> dS JVAB( xnx + )’ny)an S

which can be evaluated. Note that, when a grid is designed over a domain in
finite differences, its nodes should fall on the prescribed head boundaries and
its sides on the prescribed flux boundaries.

12.2.4. Integrated Finite Differences: Special Cases

(a) Rectangles or squares. 1f the principle directions of anisotropy of the
transmissivity x and y are parallel to the sides of the grid, then the contour
integral in Eq. (12.2.3) can be written (see Fig. 12.5) as

oh oh oh oh
T.— T—n,lds = T.—d T —d
Jr,-( xaxnx+ yayny> ’ jAB *ox y+JBB’ Y dy *

oh oh
+ T,—dy + T,—dx
L'A' ox Y .[A’A Y0y

Then, if the nodes are the centers of the rectangles (intersection of the

diagonals), Taylor’s first-order series expansion can be written with only two

adjacent nodes and gives, for instance, for M € AB:
(oh\ _H.— H,
NOX )y Xe — X

1
’I;cec = TAnl T.;cds
|AB| .fAB

the average directional transmissivity along AB, where |AB| is the length of
segment AB, then

If we denote by

oh —
J‘ Tx_'_dy = T;cecyb ya(He - Hc)
AB 0x Xe — X
B’ N- B y
W. c. M .EJ
A’ 5. A *

Fig. 12.5. Rectangular grid.
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and similarly, we obtain in the end

Xp — Xpr Yo — Va Xa — Xar
T H,—H T, H.—H T, —
yac yn _ yc ( n C) + xec xe - xc( € c) + ysc - yc (HS HC)
+ T X —2(H, — H) = @, (1227)
w [

If all these rectangles have the same size (a along x, b along y), Eq. (12.2.7)
reduces to

a b b
7;’ncw(IIn - Hc)+ ’I;ceca(He - Hc)+ T;vscE(Hs - Hc)+ ’I;cwca(Hw - Hc)=Qc

If the medium is isotropic (T, = T, = T) and the grid is made up of squares
(b = a), this expression reduces to Eq. (12.2.2), which we have established
earlier with the two simpler methods. In the case of rectangles it is important
to note the ratio of the coefficients of two unknowns in different directions,
e.g., H, and H,_ in the linear system. It is

T;nc a 2
Teec \b

If the anisotropy ratio is close to 1 and a/b is close to 10, the ratio of two
coefficients of the matrix of the linear system will be close to 100. Depending
on the method used to invert the matrix, its size, and the accuracy of the
computer (16-, 32-, or 60-bit words), it is often found that such a large ratio
creates a numerical difficulty by round-off errors. The calculated solution may
then be unreliable. With 32-bit words a ratio a/b of 5 is often a maximum.

(b) Nested squares. 1t is often necessary to have more precision in one
area of the domain than in others, which means that one should be able to vary
the mesh size in the grid. One way to do it is to use rectangles of variable size
(Fig. 12.6a), but this procedure increases the total number of meshes
unnecessarily and is limited by the a/b ratio quoted above. Another way is to
use nested square meshes (Fig. 12.6b). Provided that two adjacent squares
have at most a factor of 2 of difference in size, there is no limitation to the
relative size of the smallest and largest squares. When two adjacent squares
are of the same size, the general expression [e.g., T,,..(H, — H )] is used. When
adjacent squares are of different size (Fig. 12.7), the three-node Taylor’s series
expansion of Eq. (12.2.4) must be used to evaluate the contour integral. If a is
the size of the large square in Fig. 12.7, we find from Eq. (12.2.4) that

<a—”> 2 [(H, — H) + (H, — H)]

Ox m=_3_a




352 12. Numerical Solutions of the Flow and Transport Equations

(a)

Fig. 12.6. Refined grid by (a) rectangles of variable size and (b) nested squares.

My J YT
o -I

-K

X

J

A
Fig. 12.7. Adjacent nested squares.

and as, along AB,n, = land n, =0,

oh oh 2T
= = = — H) + (H,— H,
LB(Tx —n+ T, ayny)ds 20 () — Hy) + (He — H)]

where
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Fig. 12.8. Thiessen (or Voronoi) polygons.

is the average directional transmissivity along AB. As the fluxes crossing AB
must be identical when evaluated in meshes I, J or K, the above expression is
decomposed into (2T,;;/3)(H; — H;) for exchanges between I and J, and into
(2T5/3)(H, — H;) for exchanges between I and K.

Note that the ratio of two coefficients of the matrix of the linear system in an
isotropic medium is at most £ and independent of the size of the squares: there
is indeed no limitation in the mesh size for nested squares.

(c) Thiessen polygons. One of the first finite-difference models built
(Tyson and Weber, 1964) used as a grid Voronoi polygons, also known as
Thiessen polygons (Fig. 12.8). Given a set of nodes, which can be selected
arbitrarily, Voronoi polygons are built as the union of the mediators of each
segment successively joining all adjacent nodes. For such polygons, and only if
the medium is isotropic (T, = T, = T), the contour integral can be evaluated
with a Taylor series expansion limited to two adjacent nodes:

oh oh oh
— T— = T—d
JAB <T p n, + 3 ny> ds LB o s

if n is the outer normal to AB. But

% =Hf—~Hi M e AB
onj,, |13

and, if we use

1
= T ds,
T |AB|LB s
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the average transmissivity along AB, then

oh oh |AB|
T— T— = T.——(H. — H.
JAB < ax nx + 6y ny> ds ’I:J IIJl (HI Hl)

where |AB| and |1J]| refer to distances (positive).
Similar expressions are obtained for all other sides of the polygons.

12.2.5. Estimation of Average Transmissivities

Finite-difference equations require knowledge of the value of the average
transmissivity (isotropic or directional) along the sides of each mesh. In some
models these are given directly as input, but most of the time the input data are
the average transmissivities (isotropic or directional) over the area of each
mesh. These can, for example, be obtained by kriging (Section 11.4.7) from the
local measurements obtained by pumping tests. We shall also see in Section
12.6 that these transmissivities are often adjusted by calibration of the model.

To calculate the required comtour transmissivities, we shall limit the
discussion to the special cases (rectangles or squares in anisotropic media as
well as Thiessen polygons in isotropic media), but it could be extended to the
general case.

(@) Rectangles or squares (Fig. 12.5). 'We had to evaluate integrals such as
{an T, 0h/0x ds when we used Taylor’s expansion between C and E to write

oh\ H.—H,

0X ) Xe— X
This derivative was assumed uniform between C and E, but if there is a
constant transmissivity T, in C, and T, in E, the gradient can no longer be

uniform between these two blocks that are in series. By virtue of mass balance,
we can write along the interface AB (see Section 6.3.b)

Oh\° oh\® oh\° Oh\*
=) =7 (== ) ==
a0 GL-G)
where the upper indices ¢ and ¢ mean that the derivatives are evaluated in

the medium respectively to the left or to the right of AB. By also writing a
Taylor expansion separately in each medium, we obtain

oh\¢ oh\°
‘hczhm+(xc_xm)<5;> +(yc_ym)<5>

oh\® oh\®
hezhm_*_(xe_xm)(a_x) +(ye_ym)<a_y)
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(=10 = 5o~ () — =502

oh\°
=<a—x) x [0 = )22 — (5, — )]

xe

Thus

where x, = x,, is the coordinate along x of AB.
Assuming again that b, = H, and h, = H_, we get

oh\° T,
Y = xe H,—H
<ax>m T;cc(xe - xk) + T;ce(xk - xc) ( ¢ C)

Let us evaluate the contour integral along AB in the homogeneous medium
in C (the same result would be obtained if we evaluated itin E); then T, = T,

and
ah 6h

T..T, -
—_ xc xe(yb ya) (He - Hc)
’I;cc(xe - xk) + T;'ce(xk - xc)

If we compare this expression with that given in Eq. (12.2.7), we see that the
“average” transmissivity defined earlier is the harmonic mean:
T TuelXe — X0

T . =
e T;cc(xe - xk) + xe(xk - xc)

The same expression could be established for all directions.
For squares or rectangles, all of the same size, K is the middle of CE and

_ 2L T
xee T T;C + ’1—;13
2T, T,

e = ete.
T+ T,

For isotropic media these expressions hold when we substitute 7 for T, or
T, for example
2LT,
L+ T

L. =

(b) Nested squares (Fig. 12.7). A similar calculation between squares I
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and J and I and K gives:

oh AT, T..T,
T —ldy = xitxjtxk H. _ H. H, —Hi
f( "6x> VST F T + AT T 0 e e )

A slightly simpler approximate expression, where the fluxes between each of
the squares are decomposed, is

Oh 2T, T.; 2T, T,
T*——* d —_ xi 4 xj H-—H xi £ xk H __H
Jul "6x) Yo, BT o, e

(c) Theissen polygons (Fig. 12.8). Similarly, with an isotropic medium,

one finds
on  oh \AB|T.T,
(P P Vas =220 g g
LB <ax""+ay"y) S =TT, + v, G )

where |AB}, [IM|, and |MJ] are distances.

12.2.6. Finite Differences in a Transient State

So far we have only used the steady-state flow equation, (12.2.1). If we want
to solve the transient-flow equation, this only adds one term to the right-hand
side of the equation:

0 oh 0 oh Oh
— | T—)+—T,—}=8—
6x<x6x>+8y<yﬁy> Sat+q
where S is the storage coefficient in a confined aquifer or the specific yield in an
unconfined aquifer. If we use the integrated finite-difference approach (Section

12.2.3), this will add the term
oh
—d
JJS el dy

D;

to the right-hand side of the finite-difference equation.

If H;is the finite-difference head at node I, we will assume that 0h/6t over D,
can be approximated by 0H;/ot.

Then we define the average storage coefficient as

1
i: ded
mﬂ Y

D;

S

where |D;| is the area of D;.
The new term to add to the finite difference equation is simply | D;| S,(6H,/0t).
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The general equation, Eq. (12.2.6), would then become
CU(H] - Hi) + Cik(Hk - Hi) +-=0;+ |DiISi7 (12-28}

For the sake of simplicity we shall now use a matrix notation and write

Eq.(12.2.8) as
MH = Saa—lj +0 or %g =S'MH-S1Q (12.2.9)

If there are p nodes in the grid, where a finite difference equation similar to
Eq. (12.2.8) is written, M is a p X p matrix, the coefficients of which are the C;
or their sum on the diagonal; S is a diagonal p x p matrix with |D,|S; as
coefficients on the diagonal; @ is a column vector with @; as coefficients;
H is a column vector of the p unknowns H;; and 0H/dt is the derivative of H,
i.., a column vector of the p derivatives of the unknowns 0H,/ot.

There are two basic methods for solving the differential system of
Eq. (12.2.9): the integral and the differential method.

(a) Integral method. Direct integration of the differential system leads to
the solution

H' = (H® — M~1Q)exp(S'Mt)+ M™Q (12.2.10)

where the exponential of a matrix is defined as

eA=I+A+1A2+---+A—+-~
2 n!
and where I is the identity matrix and H° is the vector of the initial conditions,
ie., vector H' for ¢t = 0; Q is assumed independent of time.

It is then possible to approximate the matrix exponential operator by a
matrix polynomial operator and, in principle, to solve Eq. (12.2.10) for any
time t. In practice, large time steps are used, because of the error involved in
the polynomial approximation and also because Q generally varies with time
and can only be considered constant for a given time step.

This method was successfully used by Emsellem and Ledoux (1971), but it is
not widely used.

(b) Differential method. This is commonly used and consists in approx-
imating the time derivative by a finite difference 0H/dt = (H'*4' — H")/At,
where the upper indices represent the time at which vector H is considered and
At is the time step of the approximation. This is, in fact, a first-order Taylor
series expansion and can be written formally in three different ways.
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(1) Explicit approximation. Taylor’s expansion is written

OH' Ar? 0°H!
t+At t
H =H +At_6t +——2 e + (12.2.11)

To the first order, and taking into account Eq. (12.2.9),

Ht+At — Ht _ aHt

— ~1MH1___S—1 t
At ot 5 Q

Note that we have written Eq. (12.2.9) at time ¢ for both sides of the equation.
Rearranging, we have

H*8 = H 4 Af(S"'MH' — S710Y) (12.2.12)

Given H', H'*4' is thus obtained explicitly, i.e., simply by multiplying vector
H' by a matrix and adding a few terms. When we look at the implicit
approximation, the simplicity of Eq. (12.2.12) will become clear. Note that S7%,
the inverse of a diagonal matrix, is simply a diagonal matrix having 1/|D;|S;
as coefficient on the diagonal. The solution of Eq. (12.2.9) is thus obtained
time step by time step. Given the initial conditions H®, H' is calculated, then
H? etc. The length of the time steps At may vary, as well as the source/sink
term @', during the simulation.

In general, small time steps are used at the beginning of a simulation or each
time Q° changes significantly (see Section 12.6).

There is, however, a limitation on the magnitude of the time step. If At >
At_, which is called the critical time step, the explicit approximation becomes
unstable. This can easily be understood from Eq. (12.2.12). If, at time ¢, a small
approximation error &' was made in the evaluation of H', then at time ¢t + At
this error is multiplied by (AtS™*M). If the norm of this matrix is larger
than 1, the errors are amplified from one time step to the next and very soon
the results are meaningless. Let us write explicitly one equation of the linear
system Eq. (12.2.12):

At
HEP = Hi e [Cy(HS — HY) + Cu(HL — H) + -+~ 0f]
As the C;; are positive, it is clear that the largest coefficient of the matrix
(AtS™*M)is
|Di]S;

where the summation over j is extended to all the neighboring nodes of node i.
As this coefficient must be smaller than 1 for all equations of the linear
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system, the critical time step At, is

At, = min IDS:
i %Gy
When the explicit approximation is used, it is first necessary to evaluate Az,
and then to keep At < At,. Note that, in general, At depends on the area of the
smallest mesh of the grid.
(2) Implicit approximation. Taylor’s expansion is written

6Ht+At At2 aZHt+At
+— +

t _ pprtAr _
H'=H At ot 2 ot?

(12.2.13)

In the same way as before, to the first order and taking Eq. (12.2.9) into
account,
Ht+At _ Ht aHt-)-At
At at

Here Eq. (12.2.9) has been written at time ¢ + At on both sides of the equation.
Rearranging,

— S—lMHt+At . S—th+At

1 t+AL 1 t t+At
(AIS — M)H =% SH'—Q (12.2.14)

Now the solution of this linear system is no longer straightforward: the
matrix [(1/A1)S — M ] needs to be inverted (see Section 12.4). Given the initial
conditions H®, H* can be computed by solving Eq. (12.2.14), then H?, etc. But
at each time step a linear system must be solved, which takes a considerable
amount of computer time compared to the explicit approximation. The
advantage of the implicit approximation is that there is no stability criterion:
the method is stable for any length of the time step. But, of course, as for any
first-order approximation, the shorter the time step, the better the precision
(see Section 12.6).

(3) Crank—Nicholson’s approximation. Let us subtract Taylor’s implicit
expansion [Eq. (12.2.13)] from the explicit one [Eq. (12.2.11}]. We find

aHr aHt+At)

+

Ht+At __Ht — Ht _ Ht+At + At<

ot or
Al’2 aZHt 62H1+At
Fl <‘at— - T) T

We see that the second-order terms almost cancel out, so that the first-order
approximation is almost correct to the third order; it becomes

Ht+At — H! 1 /8H? aHt+At

A& =§<w+—at )



360 12. Numerical Solutions of the Flow and Transport Equations

Using Eq. (12.2.9), we could replace H/dt by $™* (MVH — @) ateach time. In
order to gain generality, let us do this substraction again, but this time,
multiplying Eq. (12.2.13) by « and Eq. (12.2.11) by (1 — «). We obtain

Ht+At —H! _ (1 B a)a—l;lt N aaHt+At
At ot ot

The parameter o can vary between 0 and 1. For « = 0, the approximation is
fully explicit. For o = 1, the approximation is fully implicit. For « = %, the
approximation is called “Crank—Nicholson,” but other values of « between 0
and 1 can be used. Using Eq. (12.2.9) and rearranging,

1 t+AL _ _L _ t_ (1 _ t t+Ar
(Z—IS—ocM>H A~|:AtS+(1 oz)MilH Yo s

(12.2.15)

As for the implicit approximation, a linear system needs to be solved at each
time step if o # 0. But it can also be shown that for « <%, the method is
unstable for time steps larger than the critical one defined for the explicit
approximation. In practice one always uses an « a little larger than 0.5, e.g,,
0.55 or 0.6.

Narasimhan and Neuman (1977) have also proposed an explicit—-implicit
scheme where a varies from one mesh to the next in the domain. If a local
stability criterion is met for a given length of the time step, « is set to zero
and the equation of that mesh is solved explicitly. Then, for all the meshes
where the stability criterion is not met o is set to 1 and the system of equations
is solved implicitly.

(4) Gir’s approximation. So far, the interpolation used for H between ¢
and t + At has always been linear. Gir's approximation consists in using a
parabolic approximation in time:

H,=at*+bt+c

At each time step, the three coefficients a, b, and ¢, for each mesh are adjusted
by imposing three conditions on the parabola: it passes through the two
previous time steps, H: 4" and H', and its derivative at time ¢ + At is equal to
that given by Eq. (12.2.9) written at ¢t + At. For instance, if At is the same for
the two consecutive time steps, one finds

HH—A: — _%Ht—At + %Ht + %At(S—IMHt+At _ S—IQ)

Rearranging, one would have to solve a linear system at each time step. Gir’s
approximation is stable for all time steps as well as second-order correct. As
one needs to know H for two consecutive time steps, another method (e.g.,
implicit) must be used for the first time step.
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12.2.7. Nonlinear Problem

A very common nonlinear problem in groundwater modeling is that of
unconfined aquifers. We have seen, in Section 5.1.d, that in the flow equations
[Egs.(5.1.1},(5.1.2), or (5.1.3)] the transmissivity is a function of the saturated
thickness of the aquifer, i.e., of the hydraulic head A.

This can be handled in numerical models by changing iteratively the value
of the coefficients of matrix M in Eq. (12.2.9). This method is explained in
Section 12.4.2.3 both for steady and transient states.

One must also check that the elevation of the hydraulic head in an
unconfined aquifer model does not fall below the substratum or rise above the
ground surface. In the first case the aquifer actually becomes dry and the
corresponding mesh in the domain should be taken out, which introduces a
no-flow boundary condition. In practice, it is simpler to accept that the model
includes a calculated head, which can fall below the substratum, and to give
the mesh a positive transmissivity, which is very small, e.g., 102 or 102 times
the normal value of the transmissivity in the domain. For all practical
purposes, this mesh becomes a no-flow boundary, but if infiltration takes
place or if the head rises again (in transient conditions), the mesh can again act
as a portion of the aquifer. In the second case, when the head rises above the
ground surface, this means that an outlet is created (spring, flow in a river, etc.).
The corresponding mesh in the model becomes a prescribed head boundary,
where the prescribed head is the elevation of the ground (elevation of the
spring, the river bed in the mesh, etc.). Then it becomes necessary to check that
the flow in this mesh remains an outflow. When this is no longer the case in a
transient state, the head falls below the ground surface and the mesh should no
longer be a prescribed head boundary. It can only remain a prescribed head
boundary if there is enough surface water available in that mesh to ensure an
inflow of water into the model (e.g., water coming from upstream in a river).
See Section 12.2.10 for a discussion of how a prescribed head boundary is in
practice applied to a river.

Another nonlinear problem is that of dewatering in a confined aquifer. As
soon as the hydraulic head in a confined aquifer falls below the elevation of the
confining bed, (1) the storage coefficient S in the mesh must be changed into the
specific yield w; and (2) the transmissivity may become a function of the
saturated thickness of the aquifer, i.c., of the head.

Note that the transmissivity in an unconfined aquifer is, by definition,

A
T=J Kdz

-3

where o is the substratum and % the head. The variation of T with & can
sometimes be disregarded if the distribution of K(z) is such that highly
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permeable material lies at the bottom of the aquifer and only low-permeability
material lies at the top.

The flow equations in multiphase flow (Section 9.1.¢) and in the unsaturated
zone (Section 9.2.1) are also highly nonlinear. The method for solving them is
described in Section 12.4.2.3.

12.2.8. Multilayered Systems

In large sedimentary basins one frequently finds a succession of pervious
and impervious (or semipervious) layers which form, respectively, aquifers
and aquitards or aquicludes. Aquitards are layers where water cannot be
withdrawn through wells but which are pervious enough for significant
leakage to occur toward the adjacent aquifers. Aquicludes are less pervious
layers, for which leakage is insignificant during a pumping test in an adjacent
aquifer but through which leakage can be significant over a large regional
area [see Javandel and Witherspoon (1969), Neuman and Witherspoon
(1969a,b)]. Such systems are called multilayered systems.

Modeling multilayered systems is easy. One makes the assumptions (1) that
flow is essentially parallel to the layering in the aquifers, (2) essentially
orthogonal to it in the aquitards or aquicludes, and (3) that the leakage flux
can be introduced as a source term in the flow equation of the aquifers. This
last assumption has actually been demonstrated in Section 5.3.9.

The model will represent each aquifer in the system by a two-dimensional
layer of meshes. In order to make the problem tractable, the mesh size is made
identical in the two aquifers covering each other. Only for nested square
meshes is it feasible to have overlying meshes with a difference in size of one
rank (Fig. 12.9).

There are two methods for evaluating the leakage flux between two
superimposed meshes through an aquitard.

Fig. 12.9. Multilayered systems.
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Apply Darcy’s law directly and write the leakage flux as

K/
F = ——(H, —H) (12.2.16)

where H, and H, are the heads in the top and bottom meshes, respectively. This
flux F is then integrated over the mesh size. In finite differences this means
multiplying F by the area of the mesh. In finite elements (see Section 12.3},
since Hy and H, vary over the domain of integration D,, thisintegration is done
either after substituting the expression of H in Eq. (12.2.16) as for the
“consistent” transient formulation in Eq. (12.3.10) or by using the nodal value
of H;in D; as for the “lumped” formulation. With Galerkin’s formulation, this
integration is also weighted by a basis function N; as in Eq. (12.3.17).

The resulting source term is added to the right-hand side of Eq. (12.2.6) in
finite differences, or Eq. (12.3.7) in finite elements, for the system of equations
of layer t and subtracted from that of layer b (remember that the source term
of the flow equation is negative for a source, positive for a sink).

The resulting source term is then transferred to the left-hand side of the
equation, which adds a new unknown to the linear system, for instance,

CU(HI ~ H;) + Cik(Hk - Hi) + 4+ CylH, — H)=Q;

where H, is the head in the mesh at the top of mesh L.

This only increases the size of the linear system that must be solved and
makes each layer dependent on the behavior of the others (which is what
happens in reality). One can have two such terms simultaneously, one for an
underlying and one for an overlying aquifer.

This formulation is strictly valid for a steady state; in a transient state it
assumes that the steady-state flux through the aquitard is reached instantly
and disregards all storage of water in the aquitards.

To extend its validity, one adds half of the storage coefficient of the aquitard
to each of the storage coefficients of the underlying and the overlying aquifers:
in this manner, the storage of water in the aquitard is accounted for. But the
validity of the assumption of steady-state flow through the aquitard can only
be checked by

2K' At
exp< —fﬁ-> «05 (12.2.17)

where K’ is the hydraulic conductivity, S; the specific storage coefficient [sec
Eq. (5.3.8)], ¢’ the thickness, and At = length of the time step of the transient
calculation of the aquitard.

If the assumption of steady-state flow inthe aquitard is not valid, then it is
possible to use an analytical solution of the one-dimensional flow equation in
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the aquitard and to evaluate analytically the leakage flux F at the limit of the
adjacent aquifers. But this analytical expression involves a convolution and
the calculations are rather lengthy:

'0H, '0H :
t — b rbry tortee
F'(t) = L—_at fo(t r)dt+L o it —)de
with
K’ = n?n?K't
=—|1+2 " —_—
f( ) e( |: + ,.Zl (a) exp( S;eIZ >:|

with a = —1 for f® and +1 for f*. F'is the leakage flux in the top layer.

However, the convolution integrals can be calculated by recurrence without
the need to store the value of H as a function of time [see Marsily et al. (1978),
Trescott et al. (1976), Herrera and Yates (1977) and Hennart et al. (1981).
Equation (12.2.17) comes from this analytical solution.

12.2.9. Three-Dimensional Systems

In cases where a two-dimensional or multilayered approximation is not
valid—i.e., when the true components of the flux in three dimensions have to
be evaluated—then a three-dimensional network must be built. In finite
differences, cubes or parallepipeds will be used. In finite elements, tetrahedra
(linear elements) or hexahedra (bilinear elements) will be used. Just as for
multilayered systems, this involves additional terms in the discretized form of
the flow equation, representing the fluxes in, e.g,, six directions for a cube
(north, south, east, west, top and bottom around the central cube). The
differences are now that (1) the hydraulic conductivity K and the specific
storage coefficient S, must be used instead of T and S in two-dimensions;
(2) the contour integrals of T along the border line of a mesh now become a
surface integral of K over the side of the cube; (3) the surface integral of S
now becomes a volume integral of S,; and (4) the source term must be de-
fined per unit volume and then integrated inside the volume of each element.

The resulting linear equation, however, is identical to Eg. (12.2.6) or
Eq. (12.3.7), but the C; are given by these surface integrals.

Note that if the medium is anisotropic, the ratio of the horizontal-vertical
mesh size must be adjusted so that the resulting C; are of the same order of
magnitude in the three directions. Otherwise the linear system cannot be
solved accurately because of round-off errors (see Section 12.2.4).

Using a three-dimensional model is extremely costly since the number of
meshes rapidly becomes extremely large. Freeze (1971) has calculated the flow
in three-dimensions on a watershed, including both the saturated and
unsaturated zone. In practice, three-dimensional modelling is only applied to
local problems (e.g., dams, dewatering of an excavation).
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It is often much better to study the flow on several two-dimensional cross-
sections of the medium rather than on a three-dimensional model. For such
modeling one considers a unit thickness of the medium, orthogonal to the
plane of the cross-section. Consequently one uses K and S, instead of T and
S, which we generally use in the two-dimensional equations.

On such cross-sections it is often necessary to locate the position of the free

surface. In a steady state this can be done iteratively by first imposing the
condition h =z on a surface chosen a priori (see Section 6.3.d) and then
checking that the second condition (K 0h/dn prescribed) is also fulfilled. If not,
the position of the surface is modified. The finite-clements method can handle
such problems with a moving surface more accurately than the finite-
differences method (see Neuman and Witherspoon (1970, 1971)).
- In a transient state it is also possible to move a free surface in the same
fashion, but this does not accurately represent the physical processes of
drainage/imbibition of an unsaturated medium. It is therefore much better to
solve a complete saturated—unsaturated flow problem, using Richard’s
equation expressed with the head as the unknown (see Section 9.2.1), and then
determine the position of the free surface in the domain as the place where
p = 0 (or h = z) [see Freeze (1971)].

12.2.10. Representation of Rivers

For unconfined aquifers in temperate climates, rivers act as sinks or sources
for the aquifer. They can be represented by prescribing the head in each node
of the model where a river flows. This head is then the elevation of the water in
the river.

In practice, river beds are very often covered by a silt layer, and the flux
exchanged between the river and the aquifer creates a difference of head
between the two. In Section 6.3.c, we have shown that this may be represented
by a Fourier boundary condition. When modeling an aquifer, one therefore
prefers to prescribe the head in the river for a mesh overlying the aquifer and
linked to it by an exchange coefficient similar to the one used to represent
leakage in a steady state through an aquitard,

. t 12
c K'a

ir — 1

e

where K’ is the hydraulic conductivity of the silt layer on the river bed, ¢’ the
thlckness of this low conductivity layer between the river and the acquifer, and
? the area of the river bed in contact with the aquifer in the mesh.

The term C;(H, — H;), where H, is the prescribed head in the river, is then
added to the left-hand s1de of the flow equation, e.g., Bq. (12.2; 6) Generally,
neither K’ nor e’ nor a'? is measured. The coefficient C,, is adjusted so that the
differencein head H, — H; observed in reality is reproduced by the model when
the flow balance is respected (e.g., total flow drained by the river).
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Even if there is no significant head difference between river and aquifer, such
a representation is still used with a large C,. This makes it very easy to
calculate the flow exchanged between the river and the aquifer and (if
necessary) to limit this flow to a prescribed figure. This may be necessary when
the river recharges the aquifer. If the head in the aquifer is drawn down
substantially in the vicinity of a river, it may in reality reach a point where the
river and the aquifer are disconnected: either the medium becomes unsatu-
rated or a recharge mound with a vertical gradient of 1 is created beneath the
river. In either case the recharge rate is no longer a function of the head in the
aquifer and becomes a constant prescribed figure. In groundwater modeling,
such a representation of rivers by an overlying mesh with a prescribed head, an
exchange coeflicient, and a prescribed limiting recharge rate is called a drain
with a limiting flux.

In arid zones, where rivers are generally dry and carry water only during
floods, the recharge through the river bed is a prescribed flux, which is a
function of the total volume of each flood. This recharge may take a very long
time to reach the aquifer if the unsaturated zone is thick. Methods for
estimating both this flux and the transient time have been suggested by Besbes
et al. (1978).

12.2.11. Estimation of Regional Recharge

For an unconfined aquifer the distributed term g essentially represents
recharge to the aquifer. In Section 1.3, we showed how infiltration (recharge)
can be roughly estimated from rainfall and potential evapotranspiration data,
using a simple reservoir model to represent the storage of water in the root
zone. Although this type of model is very rough, it it the only one that can be
applied in practice to regional groundwater modeling. In more sophisticated
reservoir models, the rate at which evapotranspiration withdraws water from
the reservoir is made a function of its saturation, and so are infiltration and
runoff. In areas where runoff becomes significant it is therefore interesting to
be able to calculate simultaneously all the components of the water balance at
the ground surface (runoff, infiltration, and evapotranspiration) and then to
check these calculations by modeling surface-water flow and comparing the
calculated and measured flow at the river gauges. These models are called
coupled surface-water—groundwater models. The coupling also takes account
of the infiltration into or drainage from the aquifers by the rivers. Such a model
has been made by Girard et al. (1981) and Ledoux et al. (1984) using a nested
square mesh both for the aquifer and for the runoff in the surface layer. Such
meshes are very appropriate for representing the river network with small
elements.

If the unsaturated zone between the ground surface and the aquifer is not
too thick (e.g, a few meters), the infiltration beneath the root zone is
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transferred very rapidly to the aquifer: recharge is equal to infiltration.
However, if this unsaturated zome is very thick (e.g., tens of meters)
considerable delay and damping are introduced, and recharge at the aquifer
surface is, in fact, a “convolution” of the infiltration at the ground surface by a
“transfer function” representing the vertical flow through the unsaturated
zone. One could, in principle, try to solve the unsaturated flow equation in
order to represent this transfer, but this would prove much too complex,
costly, and difficult (because of the lack of data on the properties of the
unsaturated zone) to be applicable to regional groundwater modeling.

Besbes and Marsily (1984) have shown how a simple linear convolution
can be estimated from rainfall and piezometric data. Morel-Seytoux (1984) has
alsoc shown how this linear convolution is related to the actual nonlinear
unsaturated flow equation.

12.2.12. Representation of Wells

In regional groundwater modeling, the dimension of a well is generally
much too small to be accurately described by the grid of the model (e.g., the
diameter of the well may be 0.5 m when the mesh size is 200 x 200 m). In a
given mesh there may often be several wells.

In the partial differential equation representing the flow in the aquifer the
sink term ¢ for such a well would be

q = Qo 6(x9,Yo)

where Q, is the flow rate of the well, x, and y, are coordinates of the well, and
¢ is the Dirac function at location (x, y,), i.€.,

ox,y)=oc0 if (>, y) = (x0, Yo)
o(x,y) =0 if (x, ) # (X0, o)
”(dedy =1 VD < (xg,¥0)
D
In the corresponding discretized form of the flow equation the integrated
source/sink term is

0= J]“I dxdy = Q, if g=00d(xq,¥0)
D;

Thus, Q; will be the algebraic sum of the integral of the distributed source term
(representing recharge) and of the actual flow rates in the various wells in the
mesh.
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If there is only one well, e.g., in a square mesh, it is still possible to estimate
the order of magnitude of the hydraulic head in the well, given the value of the
calculated head at the node of the mesh. This calculation is based on Dupuit’s
steady state expression (Section 7.3.a).

The flow equation for mesh I in a steady state would be written, as in
Eq. (12.2.6);

Z Cij(Hj - Hl) =0,

The summation over j may extend both horizontally and vertically in
multilayered systems; @, is the integrated source term, including the flow rate
g; in the well. If no withdrawal had occured in this well, the computed head H,
would have been given by:

Zcij(Hj - E) =0:i— ¢

This assumes that the head in the adjacent meshes H;is not modified by the
term g;. In other words, H; — H; is the additional drawdown created by the
well, which can be calculated by the numerical model, between the center of
mesh I and the adjacent meshes J, i.e,, at a distance of a if a is the size of the
square mesh. What we want, in fact, is the actual drawdown for a well of radius
ro between this well and the adjacent meshes at a distance a. This is estimated
by Dupuit’s formula as

4d; lna
2rT, 1y

where T, is the transmissivity in mesh L
From these two expressions one can derive the head h; in the well:

1 a 1
hy=H, — g, In— —
L L ql (2%’1—; nro Z] Cij>

where J; is the head in the well bore and H; the head calculated by the model.
This expression is approximate and does not account for quadratic head
losses, which must be subtracted if they are significant.

In a transient state the same expression is used, assuming that the
logarithmic profile of Dupuit’s formula is valid at the scale of the mesh. This is
true as soon as Jacob’s logarithmic expression can be used at distance a.

12.3. Finite Elements

The method of finite elements constitutes a very flexible and powerful
technique for integrating a partial differential equation over space. It involves
three major steps.
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(1) The domain is decomposed into a set of “elements,” which in two
dimensions generally are triangles or quadrilaterals but can be more complex.

(2) On each element the unknown function k(x, y) is decomposed on a set
of known basis functions b,(x, y) as

h(x,y) = ;'"akbk(x, »

The unknowns are then the q, coefficients in each element.

(3) Some kind of integral equation is written to ensure that h(x,y)
approximately satisfies the partial differential equation in question or mass
balance.

We shall limit this presentation to two examples: linear interpolation on
triangles and linear isoparametric elements with the method of Galerkin. A
good description of the method can be found in Remson et al. (1971), Strang
and Fix (1973}, Zienkiewicz (1977), Pinder and Gray (1977), Mitchell and Wait
(1977), Dhatt and Touzot (1981), and Wang and Anderson (1982).

12.3.1. Linear Finite Elements on Triangles

We shall start with the steady-state equation, Eq. (12.2.1). The domain is
decomposed into a set of triangular elements. Let IJK (Fig. 12.10) be one of
them. On each triangle the unknown function h(x, y) is supposed to be linear:

h(x,y) = ag + a;x + a5y (12.3.1)

The unknowns are g,, a,;, and a,. When writing a balance equation, the
first idea would be to use the integrated form [Eq. (12.2.3)] of the flow equa-
tion (see Section 12.2.3) on the area of triangle ITK. But this would lead us
nowhere, since a linear expression for h such as Eq. (12.3.1) would satisfy
div(T grad h) = O if the tensor T is constant over the triangle. Thus, the
balance equation can never be satisfied over a linear element unless the source
term g = 0.

Instead we shall use a polygon surrounding each node I of the grid. These
polygons must constitute a partitioning of the domain, i.e., the union of the
polygons is equal to the domain itself and their intersection is ¢. One usually
considers the union of the medians of each triangle (Fig. 12.11). Let D, be this

L

X

1 Fig. 12.10. Triangle for linear finite elements.
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L.

N X

K

Fig. 12.11. Polygon of integration for a
M J finite-element mesh.

polygon and I; its perimeter. The integrated flow equation writes, as in Eq.

(12.2.3),
oh oh
L(T wa et Bgyn >ds= quxdy (12.3.2)

We shall assume initially that x and y are the principal directions of the
tensor T in the triangle IJK. Let MO and ON be the two sides of T; inside ITK.

We need to calculate the contour integral along MON. This could be done
directly, but as h inside IJK is a linear function of the coordinates, we know
that div(T grad h) = 0, i.e.,

oh oh oh Jh
T, - ds =
JMON< axn +T8 )ds+jw(naxnx+ 6 > s =

Given Eq. (12.3.1) and the coordinates of I, J, and K, it is simpler to calculate
the second integral. Very simple algebra gives

oh oh
JM(T ox e+ T, '3y )dS =3T.a,(y;: — ») —%Tyaz(xi — X)

oh oh
J;M<7;&‘"x + T, e >ds = 2Ta1(y1 Vi) — %’I;vaz(xj —x;)
Therefore

Oh 6h
T——n, + T,—n, Jds = 3T.a,(y; — yi) — 3 Taa2(x; — x;)  (12.3.3)
Mon \ 0% 6
Instead of using the unknowns g, a,, and g, in Eq. (12.3.1), one usually
prefers to introduce the values of the head at nodes, I, J, and K. They verify:
H; = ao + a;%; + a,y;
H; = ay + a;x; + a,y; (12.3.4)

Hk = (g + a4 Xy + Ay ¥V
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The head at a node I must, of course, be the same for all triangles having
I as their apex.

Solving Eq. (12.3.4), we obtain
_ i — y)H; — H]) — (i — y)(H; — Hy)
(x; — xj)(yi — ¥ — (¢ — x )i — J’j)
, = (x; — xj)(Hi — Hy) — (x; — x,)(H; — H))
(x; — xj)(yi = Vi) — (% — %)y — )’j)
and introducing these values in Eq. (12.3.3),

oh oh
i —n, |d
JMON<T;ax n, + Tyay ny> s

1/2
N (¢ — %) — y) — (6 — x )0 — )
X LT — y); — ¥ + T — x)(x; — x,)1(H; — Hy)
— [T — y)0; — v + T(x: — x)(x; — x)1(H; — Hy)} (12.3.6)

a

(12.3.5)

or

Oh oh
fMON <Txa n, + Tya—yny> ds = Cy(H; — H)) + Cy(H; — H,)

We return to the balance equation, Eq. (12.3.2) and build the total contour
integral over I by adding similar terms calculated in each of the triangles with
I as its apex. We finally obtain

Cy(H; — H) + Cy(H; — H) + Cy(H, — H) + - =Q;  (123.7)

where @, is the integral of the source term over D;.

Equations like Eq. (12.3.7) can be written for each node I where the head is
not prescribed.

Note that this expression is very similar to Eq. (12.2.6), which we obtained in
integrated finite differences over a polygon of any shape. The main differences
are

(1) The domain of integration D; is not the elementary mesh of the
approximation. As we have used triangular elements here, D, is constituted by
portions of all the triangles having I as apex. If the parameter values (e.g., T')
are given on the elementary triangles, then T varies inside D;, contrary to finite
differences.

(2) Finite differences compute “average” heads over a polygon affected to
a central node without making any assumption on the form of the variation of
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Fig. 12.12. Boundary conditions for a finite-element mesh.

this head from one node to the next. On the contrary, finite elements precisely
define the variation of the head within one element, linearly in this case. Values
at the nodes are only calculated for convenience, but H is defined everywhere.
From one triangular element to the next the head varies continuously.

(3) However, the fluxes along the side 1J of a triangle are discontinuous:
they are different when evaluated in the two triangles having IJ in common.
Linear finite elements do not conserve mass on an elementary triangle; this
only happens on a polygon surrounding a node.

Boundary conditions. If the head is prescribed along a boundary, the nodes
of the triangles falling on this boundary will be prescribed. Equations such as
Eq. (12.3.7) will not be written for these nodes.

If a flux is prescribed along a side of a triangle, e.g., IK (Fig. 12.12), then the
polygons D; and D, will have IN and NK as sides. For polygon D, the flux along
NI will be evaluated using the prescribed boundary condition and introduced
as a known term into the total contour integral of D;,in Eq. (12.3.7). Note that
the flux along MON will still be evaluated inside IJK by Eq. (12.3.6) without
any change.

Contrary to finite differences, the boundary must follow the sides of the
elements both for prescribed heads and prescribed flux conditions.

Anisotropy. In Eq.(12.3.6) we have assumed that x and y are the principal
directions of the anisotropy tensor of the transmissivity inside triangle IJK. If
this were not the case, Eq. (12.3.6) would still apply if x and y now form a
local coordinate system inside IJK, parallel to the principal directions of
anisotropy.

Let X, Y be the general coordinate system and 0 the angle between the two.
The rotation 8 of the axis (Fig. 12.13) gives

x=Xcosf + Ysinf
) (12.3.8)
y=—Xsinf + Ycosf
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8 Fig. 12.13. Rotation of axis for taking into
>X  account the anisotropy.

which can be introduced into Eq. (12.3.5). For instance, C;; becomes
C; = T[(X, — Xj)sin 6 + (Y; — V) cos 0]
x [(X, — X;)sin 0 + (Y; — Y;)cos 0]
+ T,[(X; — X;)cos 6 + (Y; — Y,)sin 0]
x [(X; — Xi)cos 0 + (Y; — ¥)sin 6]

where T, and T, are still the local transmissivities in the local axis of
anisotropy. Such corrections can be introduced into each triangle and, if
necessary, with a different angle 6.

Transient state. In transient state, the following term must be added to the

right-hand side of Eq. (12.3.2) or Eq. (12.3.7):

JfS dxdy (12.3.9)

There are two methods for evaluating this term: the lumped and the consis-
tent formulations.

Lumped approximation. One assumes that 0h/dt within D, can be approxi-
mated by 0H;/0t. If §; is the integral of S over D,

S; = JTS dxdy
D;

then the term S{0H;/dt) is added to the right-hand side of Eq. (12.3.7). The
discretization of this term can be made exactly as for finite differences, i.c.,
explicit, implicit, etc. (see Section 12.2.6.d}.

Consistent Formulation. In reality, the linear expression of the head over
each triangle [Eq. (12.3.1)] makes it possible to evaluate Eq. (12.3.9) more
rigorously. Let MONI (Fig. 12.11) be the portion of D, inside the triangle IJK.
We can write

Jf S—dxdy = jj Sijk—j—t(ao + a;x + a,y)dxdy (12.3.10)
MONI MONI

where Sy is the storage coefficient of element IJK. But in Eq. (12.3.5) we have
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evaluated a, and a, as functions of H;, H;, and H,. Then a, can be taken from
Eq.(12.3.4) as

ay = H; — a;x; — a,y; (12.3.11)
Thus Eq. (12.3.10) becomes

oh 0H,
Jf S"é‘t—dXdy‘—Sijk['g Jf fx,yydxdy

MONI MONI
0H; 0H,
ot H fGoy)dxdy + 2 f f £753)dx dy]
MONI MONI

where f, ', and f" are linear functions of x and y, with coefficients depend-
ing on the coordinates of IJK. These functions and their integrals over MONI
can be evaluated analytically using Egs. (12.3.5) and (12.3.11). This term and
the equivalent ones for all triangles having I as apex will be added to the
right-hand side of Eq. (12.3.7).

In principle, the explicit, implicit, Crank—Nicholson’s, and Gir’s approxi-
mations can also be used to solve the resulting consistent equation. However,
using the explicit approximation would be of no interest, because it is no
longer possible to solve explicitly for H:*4* on the left-hand side as in Eq.
(12.2.12). Bach equation will now involve several unknowns at time t + At:
HiYA HUP AL HLYA etc., and the solution thus requires the inversion of the
matrix of the system at each time step, as in the implicit approximation.

As the implicit or Crank-Nicholson’s approximations (with « > 0.5) are
unconditionally stable and do not require more computational effort in this
case, they are systematically preferred to the explicit approximation in
consistent finite elements.

12.3.2. Linear Isoparametric Finite Elements using
Galerkin’s Approximation

(a) Basic element. In two dimensions the basic element is a quadrilateral
IJKL (Fig. 12.14). For nonlinear elements the sides of this element could
represent polynomials of higher degree, e.g., parabolas, but we shall restrict
this presentation to linear elements for which the sides are straight lines.

One usually defines a linear transformation of the coordinate system (x, y)
for each element so that IJKL becomes a square ijkl in the new system (&, #)
(Fig. 12.14).

This transformation is defined by

x = N{&m)x; + N{(&mxy + N&, mxe + N(& m)xe

(12.3.12)
y = NLEMyr + NEmyy + Nl&myx + N miye
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Fig. 12.14. Quadrilateral element and linear transformation in a square.

In the system (&, n) the functions N; are bilinear functions, called the chapeau
functions:

N; = (1 + &&)(1 + 1) (12.3.13)
For instance, for apex i(§; = — 1, , = +1);
Ny=4(1-&(1 +n)

This function N;is equal to 1 in i and to O in j, k, and [. It varies linearly with 5
and ¢ along the sides of the square and bilinearly inside the square. In Fig.
12.15, we have drawn the contour line of a chapeau function around a node i in
the (£, #) plane, assuming the value of N to be on an axis orthogonal to the
plane (£, 7). The name “chapeau” (meaning hat) comes from the shape of this
function.

When (&,n) describes the square ijkl, it is easy to see that (x,y) from
Eq. (12.3.12) describes ITKL.

(b) Basis functions. On the element IJKL the unknown A(x, y) (the head

Fig. 12.15. Contour line of a chapeau function.
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here) will be approximated by the sum of four bilinear basis functions:
h(x,y) = HiNy(x, y) + HiNy(x,y) + HxNg(x,y) + H N (x,y) (12.3.14)

where Hy,...,Hy will be the values of the head at the nodes I,...,L (the
unknowns of the problem) and the bilinear basis functions Ny,..., Ny will
again be the chapeau functions defined above, ie, Ny} =1, N(J)=
Ni(K) = N{L) = 0, and Nj varies bilinearly in x and y. More precisely,

Ny(x,y) = N{(¢,n) (12.3.15)
with (x, y) given by Eq. (12.3.12) from (&, #) and N, defined in Eq. (12.3.13).

(c) Integral equation. Instead of integrating the flow equation exactly
over a given domain D; around each node I, as we did for integrated finite
differences or linear triangular finite elements, the Galerkin formulation
requires the integration of this equation with a weighting factor. In a steady
state and assuming x and y to be the principal directions of anisotropy, we

write
i, oh 3} oh
5 (25) + 5 (55) =0

o ( o\ @[ oh
Hm(x’y)['a}' <T5§> 3 (7;5;> - q:l dxdy=0 (123.16)

D;

and then

where W, is a weighting function. In other words, the flow equation will be
satisfied “on the average” over D, but as a weighted average. Several types of
weighting functions could be used, but in Galerkin’s formulation the weighting
functions W, are again the same chapeau functions as the ones used as basis
functions, and the domain of integration D, is made up of the four
quadrilaterals surrounding each node. Equations like (12.3.16) can be written
for each node of the mesh where the head 4 is not prescribed.

Note that with Galerkin’s formulation D, is no longer a polygon over which
mass balance is satisfied. But it can be shown that (1) mass balance is satisfied
globally for the entire domain, and (2) around each node one can find a domain
included in D; for which mass balance is satisfied. These domains form a
partitioning of the entire domain, but their actual shape is a function of the
nodal value of the head (Goblet, 1981) and cannot be defined a priori.

(d) Calculation of the integral. We can integrate Eq. (12.3.16) by parts.
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Substituting N; for Wy, we get

oh aNI 6N, oh
jriNI(x,y)< o — M, + T ) Jf( "ax % Tya—y)dxdy

= J f gNdx dy (12.3.17)
D.

where 1, and n, are the direction cosines of the outer normal of I';. However,
by definition of the chapeau function, Ny = 0 over [, so that the contour
integral cancels out for all nodes inside the domain. We shall see later how to
deal with the boundary conditions. We now calculate the integrals over D,
separately for each quadrilateral having I as a node. We then use Eq. (12.3.14)
for the head in each quadrilateral. For instance, for ITK L, the left-hand side of
Eq. (12.3.17) would become

oN: 1 aN, L 0N 0N,
- (|| ey e

IJKL
aNI aN, %T% iy (12.3.18)
L ox oy Yy
IJKL
— Hy(similar term) — H; (similar term)
Finally, Eq. (12.3.17) will take the form
—CH; — C;H; — -+ (9 terms, in general) = 0, (12.3.19)

where Q is the weighted integral of the source term over D;. Note that C; is the
sum of the integrals given in Eq. (12.3.18) for all four quadrilaterals like ITK L.
To calculate these integrals, which are only functions of the coordinates and
directional transmissivities, several methods can be used.

Analytical integration. It is then useful to integrate in the (&, ) coordinate
system. We shall assume that T, and T, are constant over each quadrilateral.
We must then evaluate integrals such as

Haad %

IJKL
"GN, 0 0N, on\ (ON; 0%
f j (65 ax on 5?)(55 ax+ a >d t(J)d¢dy
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where det(J) is the determinant of the Jacobian of the change of coordinates
from (x, y) to (&, »):

O0x dy
_|e¢ o¢
det(J) = o P
on on
These derivatives,
N e
o¢ o0¢ 0x

can be explicitly calculated from Egs. (12.3.12) and (12.3.13) and by inversion
of the Jacobian matrix. ‘
Numerical integration. We use a Gaussian integration of the form

[[eendein= § 5,00

ijkl

The points M, and the weights 4, are the Gaussian points and weight of ijkl,
and are known. The number of points to use is a function of the degree of the
polynomial expression G: with m points, the integration is exact for a
polynomial expression of degree 2m — 1. Four points are used in general
(Zienkiewicz, 1977; Dhatt and Touzot 1981).

One can take for four points

4 Em =1L £ 1//3, £1/./3)

or for seven points
(4,&m =1%00] and [23,0,+vH] and T[22 +.3, +/3]

Anisotropy. If the principal directions of anisotropy (x, y) of the transmis- -
sivity tensor T inside IJKL are not the true coordinate system (X, Y) of the
entire domain, one must first change the (X, Y) system locally into {x,y) by
a rotation, exactly as for triangular elements; see Eq. (12.3.8).

Mixed elements. 1Tt is also possible to use linear triangular elements and
bilinear quadrilaterals simultaneously in Galerkin’s approximation, making
the mesh more flexible. The chapeau functions to use for a triangle are then
(1 —&—mn), (&), and (), if the three apexes of the triangle are located in
(0,0), (0, 1), and (1, 0) in the (¢, 1) diagram (Fig. 12.16).

If a numerical integration is performed over the triangle, the Gaussian
points and weights are, for (4, £, ),
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Fig. 12.16. Triangle in the (£, ) system. K

Threé points:
[} 4 31, 5, 0. 31 [6, 3, 0]
Four points:

[ 96’ 39 3] [967 5 5] [96’ 5 5] [96) 5 5

Boundary conditions. We have seen that for a prescnbed head boundary
the head on the nodes falling on this boundary will be known, and no equation
will be written for them. For a prescribed flux boundary the contour integral in
Eq. (12.3.17) is not zero but can easily be calculated knowing the flux on the
boundary and the chapeau function N;. This term is then known and can be
transferred to the right-hand side of Eq. (12.3.19).

Transient state. In transient state the term S0h/dt is added inside the
brackets in Eq. (12.3.16). We then have to evaluate in Eq. (12.3.17) or
Eq. (12.3.19) terms such as

0
jJNlS-a—%dx dy (12.3.20)

D;

This can be done in two ways, as for the triangular elements. One can either
use the consistent formulation, ie., substitute ¥, H;N; [Eq. (12.3.14)] for & in
Eq.(12.3.20), and then evaluate the integrals of N;S over each quadrilateral, or
use the lumped formulation, i.e., assume that 0H,;/dt can be used to represent
0h/ 0t inside the integral (see Neuman, 1975b).

This lumped approx1mat10n has the advantage of making it possible to use
the explicit formulation. It is, however, less accurate than the consistent
formulation.

Matrix assembly. Instead of calculating successively for each node I, the
coefficients Cj, Cj, ... of each line of the system’s global matrix (Eqgs. (12.3.11)
or (12.3.19)), it is more efficient to first determine all of these coefficients for
each element of the mesh, by calculating for each element successively the
integrals given in Eq. (12.3.18). Once this is done, the coefficients for each
node I (each line of the matrix) are calculated by adding the relevant term of
each element which has I as its apex. This is called the system’s matrix
assembly.
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12.3.3. Higher-Order Elements

Instead of using linear or bilinear basis functions, it is possible to use higher-
order functions in finite elements to increase the precision and /or decrease the
mesh size. There are at least two possibilities.

(1) One can use higher-order polynomials as basis functions on the
elements (e.g., quadratic or cubic) that will increase the number of unknowns
on each element. One will therefore use more nodes on each element (e.g., nine
nodes on a quadrilateral—the four corners, four nodes in the middle of each
side, and one in the center for quadratic functions—or 16 nodes for a cubic
function). But with such elements the interpolation function still does not have
a continuous derivative from one element to the next.

(2) One can use hermitian elements. The number of nodes per element is
not increased, but instead h and its derivatives at the nodes are taken as
unknowns. If cubic hermitian polynomials are used,  is continuous, oh/dn is
still discontinuous, but 0h/dx and dh/dy are identical in each quadrilateral at a
node: if the elements are rectangles, oh/0x and dh/dy are continuous. Higher-
order hermitian polynomials can ensure continuity of the first- and second-
order derivatives. This has proved very efficient for solving the transport
equation (Section 12.5.3); see Van Genuchten (1977).

All these techniques are described by Pinder and Gray (1977).

12.4. Solving Large Linear Systems

Except for the explicit formulation in a transient state in finite differences, all
numerical techniques that have been presented end up with a large linear
system of equations to be solved.

The matrices of these systems are generally sparse, i.e., they have only a few
nonzero coeflicients per line (five in finite differences on rectangles or squares,
nine in finite elements on quadrilaterals, etc.). These matrices are also
symmetrical. This is imposed by mass balance in finite differences (see Section
12.2.3) and can easily be checked on Eq. (12.3.18) for finite elements,

The simplest method of solving the linear system would be to compute its
inverse matrix; however, this matrix would no longer be sparse and would
require the storage of p x p coefficients if there are p unknowns. This becomes
unfeasible for p larger than 100, approximately. The time also becomes pro-
hibitive and the accuracy of direct matrix inversion insufficient for larger p.
Therefore, other methods must be used. Here we will briefly introduce a few
of the most common ones.
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12.4.1. Direct Methods

Direct methods are all more or less based on Gaussian elimination, which
means that the linear system is solved without ever computing the inverse
matrix. The simplest method of elimination is triangularization, but several
decomposition methods are also used.

(a) Triangularization. If MH = @ is the linear system to solve, we will
write it
myymyp | by q1
: ) =] (12.4.1)
m h

PP i4 qP

In the first equation, we write h, as a function of h,--- and ¢,. This
expression of h; is then introduced into the second and the following
equations. The second equation is then no longer a function of h,. This
equation is again written to give h, as a function of h;--- h; and g;, and this
expression is introduced into the third and following lines. This third equation
is then no longer a function of h, and h,, and so on until the last equation,
which can then be solved, thus giving the value of h,. By back-substitution,
hy_1,...,hy, hy are then calculated. This method is called triangularization
because at each step M is transformed into a triangular matrix by linear
combinations of its lines.

My,

{(b) Decomposition. We shall only give Choleski’s algorithm, which is
applicable to symmetrical positive definite matrices such as the matrices
presented earlier. For Choleski’s algorithm the coefficients m;; must be
positive.

This may require the solving of the system —MH = —@ if the m;; are
negative. We shall assume below that the m;; are positive in MH = Q.

One looks for a lower triangular matrix R such that M = RR™ (T indicates
transposition). The coefficients r; of matrix R are calculated by recurrence
with

Fir =/ M1y

i =mj /Ty, j=2...,p

=1
— 2
Fy= _[My — Z T
K=1

1 i—1
ri=—{my— Pl i > i<j
¥ E=1

p13

Once R is calculated, the solution of RRTH = Q is straightforward. If
V = RTH, then RV = @, where V is a vector. We then solve the triangular
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system RV = Q directly, whence V, and then we again solve the triangular
system RTH = V, whence H.

A very large number of other direct methods is available. Furthermore, with
the development of array processors, new and better direct methods are being
developed at present. One should know, however, that due to round-off errors,
direct methods are sometimes less accurate than the indirect methods, which
we shall now introduce.

12.4.2. Iterative Methods

Initially, iterative methods were widely used for solving linear systems in
groundwater modeling. Their advantage is that they require much less core
storage than the direct methods, since the matrix M is never stored in the
computer, but its coefficients are recalculated at each line. They may be less
efficient in terms of CPU time if a large core is available, but they are less
sensitive to round-off errors, especially for computers with 16-bit words. They
are therefore still very much in use, especially with micro- or minicomputers.
We shall briefly present two iterative algorithms, known as point successive
over-relaxation (PSOR) and alternate directions implicit (ADI), but we shall
first define an iterative algorithm using Jacobi’s decomposition.

Let us decompose matrix M as the sum of three matrices:

M= L + D + U
lower . upper
_— diagonal _
triangular triangular

where L and U are, respectively, the lower and the upper triangular matrices,
strictly below and above the diagonal, and D is the diagonal of M.If M = (m;;),
then

L = (my) j<i
U=(my;) j>1i
D = (my;)
To solve the system MH = Q we can write identically
(L+D+U)H=Q or DH=Q—(L+U)H or H=D"'[Q—(L+U)H]

As D is diagonal, D! = (1/m;). From this expression, an iterative algorithm
is built by recurrence by

OH = arbitrary initial value given to H

1242
n+1H=D—1[Q_(L+U-)nH] ( )
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The indices 0, n,and n + 1 refer here to the iteration number of the calculation.
If the iterative algorithm converges, then"H — H as n — oo V °H, H being the
solution of the system. For strictly diagonally dominant matrices (ie.,
Imyl = ¥, .;Imyl Vi, with a strict inequality at least for ome i), Jacobi’s
algorithm converges and the only problem is to stop the iterations at some
point. One generally computes the difference between two successive
estimates,

E=n+‘1H__nH

and stops the iterations when || E|| < &, where ¢isa prescribed figure and || ||isa
norm (e.g., ¥, 7, or ¥',|e;], or max; e;). Note that E is not the difference between
»+ 111 and the true solution H, but only the difference between two successive
estimates of H. Therefore ¢ must be much smaller than the required precision
for H.

Here we have used a matrix notation of Jacobi’s iterative algorithm. One
must realize that, in practice, in programming; matrices D™, L, and U are
never actually stored. Each line of Eq. (12.4.2) is indeed written using the
notations of Eq. (12.4.1):

1 .
"l = o <qi - Z mijnhj)a i=1,...,p (12.4.3)

ii Jj#i

Generally, there are-only a few nonzero terms in the summation over j (four in
rectangles in finite differences, eight in. quadrilaterals in finite elements), so that
only the nonzero my; are stored or calculated. The FORTRAN codes for
iterative algorithms are thus extremely simple to: write.

However, Jacobi’s method is very inefficient. The two: following methods,
PSOR and ADI, are much better.

(a) Frankel-Young’s method or point successive over-relaxation (PSOR).
We start from the same decomposition of matrix M as Jacobi’s, but we write
the identity

(D+L)H=0Q—UH

The corresponding iterative algorithm, known as the Gauss—Seidel, algorithm
is written :

%H = arbitrary value
(12.4.4)
ntigr (D +L)-1(Q — U"H)

Note that (D + L) is a lower triangular matrix, so that solving Eq. (12.4.4)
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does not involve any matrix inversion and is done by recurrence:

1
n+1h1 _ <q1 . z mlj"hj>
Myy i>1
1
"lhy = — (‘12 —my "y~ ) mzj'"h,)
DY) i>2

1
"y = ,,T <‘1i — ) my" i — Z.mij"hj>
ii j<i J>i
Frankel-Young’s method, or over-relaxation, consists in accelerating the
rate at which this algorithm converges. One first writes, as before,

1

*h; = (Qi - J_Z:imi,-"“hj - Z_mij"hj)

mﬁ J>i

and then d; = *h; — "h;; d; is the magnitude of the variation of h; during this
iteration. The over-relaxation consists in amplifying this variation by a
coeflicient p and writing

n+1hi — nhi + pdi
This can be written
n 71 p n n
= (1 — p)'h; + oy |:‘1i - Z_mij “hy— Zmu hi:|
ii Jj<i ji>i

or in matrix form,

°H = arbitrary, "tH =(D + pL)y Y{[(1 — p)D — pUI"H + pQ}
(12.4.5)

where p is the over-relaxation coefficient. It can be shown that the algorithm
converges if p < 2. But p must be larger than 1 to accelerate the convergence.
In order to stop the iterations, a test similar to the one given for Jacobi’s
algorithm must be used. The over-relaxation coeflicient p is a complex
function of the geometry of the mesh and properties of the medium. Itis better
to underestimate p than to overestimate it. In practice, the optimal value of p
can be obtained by trial and error (value for which the minimum number of
iterations is required to obtain a given precision) or by the following
expression:

2
1+ /1 —pu?
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where u is the largest eigenvalue of matrix D™ YL + U). For finite-difference
equations written with squares in a homogeneous medium and for a
rectangular domain of n lines and m columns, p is given by

_1 T Y/
u= 2<cosn 1 + cos_ T 1)
If the domain is not rectangular, n and m are taken as the average number of
lines and colummns.
If the medium is not homogeneous, u can be estimated iteratively by the
Rayleigh ratio of the following iterative Jacobi’s algorithm:

%4 = arbitrary vector
"4 = DL + UYA

— lim ("+1A,"A)
S I
where (A, B) = }; a;b; is the scalar product.

However, this procedure of estimating p and p is quite lengthy, and the
value of p is generally fixed empirically.

Note that these iterative algorithms converge for any °H, but the closer °H
is to the solution, the faster the convergence. One tries to select °H as close as
possible to the expected solution. In particular, in a transient state (implicit or
Crank—Nicholson), one always takes °H**4* = H', i.e., the solution calculated
at the previous time step.

When the iterations are stopped, it is always preferable to compute
(MH — Q) and see if the residual errors, which are given in terms of flow
rate per mesh, are acceptable given the precision on the source term Q.

(b} Alternate directions or alternate directions implicit (ADI) in transient
state. Alternate directions are a decomposition method of matrix M that can
only be used for rectangular meshes in finite differences, where there are only
five nonzero coefficients per line in matrix M. This matrix is decomposed into
the sum of two matrices.

For the sake of simplicity, we shall present the method on the example of a
square grid as given in Eq. (12.2.2):

Tx"lc(Hn - Hc) + T::c(He - Hc) + 7;c(I{s - Hc) + Twc(Hw - Hc) = Qc
where n and s correspond to the direction of the columns and e and w
correspond to the direction of the lines.

We can write Eq. (12.2.2) as the sum of columns and lines equations:
Column equation:

’I:'IC(HH - Hc) + T;c(Hs - Hc) = AIH
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Line equation:
’I:ac(He - Hc) + *Twc(Hw - Hc) =A,H

In matrix form, this is (4, + 4,)H = Q. The alternate directions algorithm is
then

°H = arbitrary
"HPH = (4 + p ) M(pyd — AL)H + Q] (12.4.6)
"PH = (Ay + po D) pod — 4" THPH + Q]

where p, and p, are acceleration factors and can vary from one iteration to the
next (they only need to be positive), n + 1 is an intermediate step in the
iteration, and I is the identity matrix. In other words, the linear system is first
solved column by column, then line by line. The only problem is to solve a
linear system like (4, + p(I) or (4, + p,I). These systems only have three
nonzero coefficients per line. They are solved by Gaussian elimination, which
is very simple for such matrices. If we want to solve the tridiagonal system
AX = B, where each line of matrix 4 has three coefficients, we denote them
a;_1, Gy, A+, and then the two-step elimination algorithm, known as
Thomas’ algorithm, becomes for the forward step

W=2ay, W=a;—ay_ 1fi-y
fi=a,/w and then fi=a; /W i=2,...,p
g1 =by/w gi=(b; — az_19:-1)/w

Only f and g need to be stored; w is only a dummy variable. If p is the
dimension of matrix 4, then, the backward step is,

Xp =9p
X =i — fiXira i=p—1,...,1

The alternate directions method is often used with rectangular grids and in
transient state in the implicit approximation. Sometimes the number of
iterations is limited to one per time step [i.e., one resolution per column, one
per line. See Pinder and Bredehoeft (1968)]. But this does not ensure
convergence of the solution and can only be used if the time steps are very
small: otherwise it is necessary to check the convergence with an error criterion
|E|| < €, as for the Jacobi or PSOR method.

The difficulty with the ADI method is to select the optimal p for each
iteration. It is also less flexible and less easy to program than PSOR, especially
if internal boundary conditions exist inside the domain (e.g., rivers). As they
are only more efficient than PSOR for the set of optimal p terms (compared to
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an optimal p for PSOR), very often PSOR is the preferred algorithm for
iterative solution of linear systems in groundwater modeling.

(c) Other iterative methods. There are many other iterative methods
than PSOR and ADI. See, for instance, Varga (1962). A very efficient method,
called the incomplete Choleski conjugate gradient algorithm, can be found in
Gambolati and Perdon (1984).

(d) Nonlinear problems. Iterative methods are well suited to solving
nonlinear problems, i.e., when the coefficients of matrix M are functions of the
solution H.

In a steady state the first simple thing that comes to mind is to change the
values of the coefficients of the matrix M at each iteration of the solution as
vector H changes. But this method, which sometimes works, is very dangerous:
there is absolutely no proof that a nonlinear iterative algorithm converges, and
very often it does not. The correct method is to solve the iterative system for a
fixed value of the parameter M,, assuming a given initial value for the
unknown H,. One then obtains a first approximation H, of H. The coefficients
are changed and matrix M, is determined and, by solving the system
iteratively, H, is calculated, etc. If H, — H as n — o0, the nonlinear system has
been solved. But for each solution one knows that the iterative system will
converge. In practice, the number of iterations is kept small for the first H,
terms and then increased as H, converges.

In a transient state, nonlinearities can be solved assuming that the
parameters of matrix M between ¢t and ¢t + At are those estimated at time ¢, no
matter if one solves an implicit equation. If this is not precise enough, the
predictor—corrector method consists in predicting H'*** by an approximate
method (e.g., the explicit, using matrix M at time ¢, even if the time step is larger
than the critical time step). This approximate H**' is used to determine the
coefficients of matrix M at time ¢ + At. Then the correct H**4* is calculated
(e.g., by the implicit scheme) using this updated matrix. If this is still not precise
enough, it is also possible to iterate on the value of the coefficients, as
explained above for a steady state.

This can also be done if direct methods of solution are used.

12.5. Solving the Transport Equation

The transport equation (for solute or heat) was established in Chapter 10. It
has the form

oC

div(Dgrad C — UC) = Wear

(12.5.1)
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The numerical solution of this equation raises two problems. (1) The
principal directions of the dispersion tensor D are in principle parallel and
orthogonal to the direction of the Darcy velocity in the medium. As the
direction of this velocity may change with time and space, the numerical
method must be able to incorporate this variation. (2) The derivatives on the
left-hand side of Eq. (12.5.1) are of order 1 and 2: if a second-order correct
approximation of the first derivative is used, the associated error may be of the
same order of magnitude as the true second-order derivative. This is called
“numerical dispersion;” the numerical solution adds a purely numerical
dispersion to the real phenomenon of hydrodynamic dispersion and this
increases the total dispersion of the solute in the medium erroneously. Now, if
third-order correct approximations are used, the numerical solution may
become unstable: the numerical solution is often a compromise between
stability and numerical dispersion.

A large number of numerical methods have been proposed in the literature
and are still being developed. Here we shall briefly present three methods most
commonly used at present: finite differences, method of characteristics, and
finite elements.

12.5.1. Finite Differences

Simple finite differences can be used in one or in two dimensions with square
or rectangular meshes if the direction of the velocity always remains parallel
to one of the axes of the mesh.

(a) Inonedimension. Let usfirst assume that the dispersion coefficient D,
the Darcy velocity U, and the kinematic porosity o, are constant. The
transport equation is

o*C oC oC

D _pg&_ .,
ox? ax

(12.52)

The convective term U(0C/0x) can be taken as a centered or backward
difference.
Centered difference:

f?g _ C(x + Ax) — C(x — Ax)
ox 2 Ax

Backward difference:

?E _ C(x) - C(x - Ax)
ax Ax

where Ax is the size of the spatial discretization.



12.5. Solving the Transport Equation 389

The centered differences are correct to the third order (thus without
numerical dispersion), but they can be unstable if the numerical Peclet number
P, = U Ax/D = Ax/a is too large (« is the dispersivity assuming that D = «U).
Price et al. (1966) have shown that the stability is ensured if P, < 2.

The backward differences are unconditionally stable if the velocity is
directed from x — Ax to x. However, they introduce a numerical dispersion,
which can be corrected as suggested by Lantz (1971). We will treat it together
with the time difference, which can also introduce numerical dispersion. Using
Taylor’s series expansion, one can write:

Backward differences:

ac C,—C *C
(E) =—"—-Z\x"—“’£ +LAx ( ax2> + 0(Ax?) (12.5.3)

Sum of backward and forward differences:

aZC _ Cx+Ax + Cx—Ax - 2Cx
oxt ), Ax?

Explicit time difference

a_C — Ct+At - Cz _
ot J, At

Implicit time difference

oC Coon — C, <azc> )
) T S Y + O(At 12.5.6
<6t >,+A, At TANGT ), TOA) 1239)

where At is the size of the time step.
The second-order time derivative can be evaluated by differentiating

Eq. (12.5.2):
2C 1 0/(_8*C _oC
52 o, ot <D x? Uax>

With a permutation of the order of derivation, disregarding third-order
derivatives and using Eq. (12.5.2) again, we obtain

ﬁC___LJ_i(&_C) U ¢ <D62C U@C)
o2 w, 0x \ ot T wZox \oxr T T ax
U2 0*C
2 Ox

+ O(A) (12.5.4)

(N1

At <‘ZS> + 0(At?) (12.5.5)

——5 + third-order derivatives (12.5.7)

Equation (12.5.7) is then introduced into Eq. (12.5.6) or in Eq. (12.5.5). These
are taken into Eq. (12.5.2) together with Eq. (12.5.3); all terms in 6°C/8x? are
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grouped and (12.5.4) is then used. One gets, in explicit,

2
(D . %UAX + %U At) (Cx+Ax + Cx—Ax - 2Cx> _ U<Cx - Cx—Ax)
t t

. Ax? Ax
Cita _ ¢t
¢ At

and in implicit,

U?Ae\ [C —Copx—2C C,—C,_
D "‘lUA 1 x+Ax x - Ax X _ U x x—Ax
( v W > ( Ax? t+Ar Ax t+ At

C;+At — C;
C M
Lantz’s correction for numerical dispersion is to use an apparent dispersion
coefficient given by, in explicit,

2 At
D* =D 3UAx +3Y

[+
and in implicit,

2
p*—D—3uax—3 LA

(4

and to solve,

C C,_ax— 2C C,—C,._ ctta ¢t
x+Ax+ x—Ax x_Ux xszw

p*
Ax? Ax ¢ At

Alternatively, in explicit, one can choose the time step At or the mesh size
Ax so that

At =0, ie., UAt = w, Ax

which means that during each time step the convective flux of water entering
into a mesh, U At, is strictly equal to the volume of mobile water in that mesh
o, Ax.

If U, D, or Ax vary in the model, the correction can be made mesh by mesh,
but this is rather complex.

If the centered Crank—Nicholson’s approximation is used in the time
domain, there is no numerical dispersion for that term.

Note that this one-dimensional discretization can also be used in radial
coordinates [see for instance Sauty (1977, 1978a)].
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(b) In two dimensions. Backward differences are also used for the two
components of the velocity. Note that if the velocity is not parallel to one of
the axes, a five-point finite difference scheme cannot handle the anisotropy of
the dispersion tensor. One must therefore assume that D is isotropic, which is
far from correct, or use a nine-point finite-difference scheme. However, these
methods are not very efficient and finite elements should be preferred.

In any case, with backward differences (in the direction of the velocity) and
the time derivative, a correction for numerical dispersion can be introduced.
One finds that the apparent dispersion coefficient becomes, e.g., using the
explicit method (Goblet, 1981),

UAx U2At
Df =D, ——— 2=
_Uby , U3

Dj, =D, 2 2w
U U At
Dg =D =D,y + 20"

[
where D,,, D,,, and D, are components of the dispersion tensor and Ax, Ay,
and At the discretization step in space and time.

But these corrections do not solve all the difficulties and for large Ax, Ay, or
At the higher order terms start to play a role. Van Genuchten (1977) has
suggested more elaborate schemes using centered differences both in space and
time.

In general, finite differences are not very well suited to solving the transport
equation apart from very simple one-dimensional problems.

Note that the “mixing-cell” approach proposed, e.g., by Simpson and
Duckstein (1975) can be seen in one dimension as a transport equation that
only has the convective term and that is discretized with a backward
difference. The hydrodynamic dispersion is introduced by the numerical
dispersion: if Ax and At are chosen so that the order of magnitude of this
dispersion is correct, the mixing-cell model provides a good description of
transport in one dimension.

12.5.2. Method of Characteristics

This method has been widely used and can be applied to finite differences or
finite elements, in two or three dimensions. The basic idea is to decouple the
convective part and the dispersive part in the transport equation and to solve
them successively. Two different ways of treating the dispersion term have
been proposed: the particle in cells (PIC) and the discrete parcel random walk
(DPRW).
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(@) Particle in cells (PIC). This method was introduced by Garder et al.
(1964) and has been presented with application, e.g., by Pinder and Cooper
(1970) Bredehoeft and Pinder (1973) and Konikow and Bredehoeft (1974,
1978). The flow equation is first solved with a numerical model, and the
velocity in each mesh is determined. Then at each location in the aquifer where
there is a source term of solute a large number of “particles” is introduced at
each time step (e.g., hundreds). These “particles” are assumed to represent the
solute transported with the flow. If the solute is initially distributed over an
area of the aquifer, a regular number of particles (e.g., 4 or 5) is introduced in
each mesh of this particular area at the beginning of the simulation.

To represent the convective transport, one keeps track of the coordinates of
each particle and moves them in the aquifer with the velocity of the flow. If x}
are the coordinates (in two or three dimensions) of particle i at time ¢, which
falls inside mesh j, then its coordinates at time ¢ + At will be

x{T¥ =xi+ V5AL

where V% is the pore velocity vector in mesh j (i.e., U/w,, the Darcy velocity
divided by the kinematic porosity) at time ¢ if V is not constant. The time step
At is in general adjusted so that the maximum traveled distance of a particle
during a time step is smaller than one half of the mesh size.

In the PIC method each “particle” represents a concentration of solute.
Initially this concentration is given by the dilution of the flux of solute in the
mesh where this solute is injected. For instance, if the volume of water in this
mesh (area x thickness x porosity) is 10* m? and if 10° kg of elements are
injected per time step At, the concentration in the mesh will be 0.1 kg/m?>.
Alternatively, the initial concentration in the mesh may be known. Then each
particle present in a mesh is given the value of the concentration of that mesh.

The particles are then moved with the convective velocity V. A new
concentration in each mesh is then calculated by taking the average of the
concentration of each particle present in each mesh. This value is given to the
node in the center of the mesh for that time step.

To represent the dispersive part of the transport equation, the concen-
trations calculated in each mesh, as above, are now modified at each time step
by solving a purely dispersive equation:

divBgradC = coc—a£
ot
This equation (which is identical to the simple flow equation) is solved
numerically using finite differences for the time step At. Then the new
concentration of each particle in a given mesh is the sum of its previous value
(at the end of the convective step) and the change in concentration calculated
in that mesh during the dispersive step; this new figure is “labeled” on each of
these particles.
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Note that the coordinates of the particles are kept constant during this
dispersive part of the transport.

Then this whole procedure is repeated for a new time step: the particles are
moved convectively, new concentrations are determined in each mesh, these
are modified by dispersion, etc.

Although this technique is rather simple, it poses quite a few problems:

(1) Accurate bookkeeping of a large number of particles (several
hundreds) is necessary, giving their coordinates and concentration. As new
particles are added at the sources while others may leave the model at the
boundaries, this is not a very easy job.

(2) The method introduces some numerical dispersion when the concen-
trations are calculated from the number of particles.

(3) There may be a net loss of solute at the front of the system in a mesh
where dispersion introduces solute but where there are no particles. This can
be corrected by introducing new particles, but this makes the method even
more complex.

{4) Finally, the method does not converge systematically when the number
of particles is increased. For instance, if 2, 5, or 10 times as many particles are
used to solve an identical problem, the concentration may oscillate from one
solution to the next. As the number of particles always becomes small toward
the front of the solute plume, the method is not very accurate.

The second method of characteristics (DPRW) is preferable, although it
does not solve all these problems.

(b) The discrete parcel random walk (DPRW). This method was de-
scribed by Ahlstrom et al. (1977) and Prickett et gl. (1981). It differs from the
PIC method in two ways:

(1) -Each particle represents a mass of solute, not a concentration. To
determine the concentration in a mesh, one divides the sum of the mass of the
particles by the volume of water in the mesh. This is more satisfactory as
masses are additive quantities, whereas concentrations are not. As long as
particles are not “lost,” mass balance is always conserved.

(2} The dispersive part of transport is not represented by solving the
dispersion equation but only by giving an additional displacement to each
particle at the end of each convective displacement, without modifying the
mass of the particle. This dispersive displacement is random: in each direction
(longitudinal and transversal) it is determined for each particle by randomly
sampling a Gaussian distribution with zero mean and a variance equal to
2D; At, D, being the dispersion coefficient in the longitudinal or transversal
directions. This random walk can be seen intuitively as a Brownian motion,
which is known to be responsible for molecular diffusion. If the number of
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particles is large enough, these random walks will indeed correctly represent
Fickian dispersion.

Another approach that has been used is to represent dispersion by
randomly sampling in a distribution of velocity for the convective transport
instead of using a unique “average” convective velocity. This can be done
either by defining this distribution of velocity at each point or by generating
different “realizations” of convective velocity fields and then averaging the
purely convective displacement of each particle in these realizations.

The advantages of DRPW are that it does not involve numerical dispersion
since concentrations are never calculated (except to plot the results). It also
conserves mass and, moreover, it is possible to take into account reactions
during transport, e.g., radioactive decay: the mass of each particle is simply
decreased as a function of time. The difficulties are due to the large number of
particles, their bookkeeping when they enter or leave the model, and the
determination of their displacement. In particular, when the velocity varies a
great deal in the medium, it must be changed during a time step each time a
particle enters into a different medium. Otherwise a particle entering, for
instance, mesh 2 with the velocity calculated in mesh 1, which was much
greater than that of mesh 2, can be “stuck” in mesh 2 if its distance of
displacement is calculated using ¥V, At. With V, it would never have moved so
far in the mesh and would not have become “stuck.”

The DPRW is, however, unstable when the number of particles is increased:
the solution oscillates and must be smoothed. Therefore it is not very accurate.

12.5.3. Finite Elements

Solving the transport equation using isoparametric elements and Galerkin’s
procedure is straightforward. The calculations presented in Section 12.3.2 to
integrate div(T grad h) are used to integrate div(D grad C — UC). The integrals
givenin Eq. (12.3.18) will now also involve the chapeau functions N, instead of
only their derivative, but this does not create any major difficulties.

It can be shown that Galerkin’s procedure is equivalent to a centered
approximation for a regular mesh, so that numerical dispersion from the first-
order space derivative is minimum. The stability criterion given by Price et al.
(1966) also applies, ie., P, = U Ax/D = Ax/a < 2, Ax being the size of the
mesh in the direction of the velocity. Otherwise oscillations of the solution will
be observed at the front of the plume of solute.

To increase the stability, Huyakorn (1976) has suggested the use of a sort of
“pbackward difference” scheme in finite elements, which he has called an
upstream weighting function. This was extended to two dimensions and to the
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Iumped transient approximation. However, it increases the numerical disper-
sion, it is difficult to extend to anisotropic dispersion (the numerical Peclet
numbers are different in the longitudinal and transverse directions), and it is
lengthy to use (Goblet, 1981). It is more appropriate to use smaller meshes or
higher-order elements. For quadratic elements, the stability criterion becomes
P, < 4 (Christie et al., 1976) and for second-order hermitian elements, P. <
4.64 (Jenson and Finlayson, 1978).

If Crank—Nicholson’s (or Gir’s) scheme is used in the time domain, it is also
a centered approximation that limits numerical dispersion.

Stability also requires that the current number C, = (U/w )(At/Ax) be on
the order of 1, but in practice it should stay smaller than $ (Neuman, 1980).
This relates to the displacement distance of the convective front with respect to
the mesh size and is a constraint on the time step.

The choice of a mesh appropriate to the flow system greatly increases the
stability and precision of the finite-element method. In practice, one tries to
use a mesh that more or less follows the flow lines of the system. Away from the
zone of displacement of a sharp front, the criterion P, < 2 can be relaxed;
values up to 20 have been used without major instabilities: as time increases in
the simulation and fronts become less sharp, the criteria on both the Peclet and
current numbers can be progressively relaxed.

It is also possible to use apparent dispersion coefficients smaller than the
actual ones, to correct the numerical dispersion approximately, but these
corrections are difficult to evaluate if the mesh is irregular and the medium
properties vary in space.

Note that in finite elements the anisotropy of the dispersion tensor can
easily be accounted for as shown in Section 12.3.1.

Recently, procedures incorporating some features of the method of
characteristics into the finite element formulation, i.e., moving or deformable
meshes, have been suggested by Varoglu and Finn (1978), Neuman (1980),
Cady and Neuman (1986), and Farmer (1986).

12.5.4. Determination of the Velocity

If the velocity is not prescribed (e.g., uniform velocity field), it must be
calculated with an ordinary flow model, generally in a steady state. In finite
differences, the components of the velocity are calculated between each node
by applying Darcy’s law. In linear finite elements the components of the
velocity will be given by differentiating the bilinear basis functions to get the
derivatives of the head and multiplying them by the hydraulic conductivity.

However, if the solute transport can modify the mass per unit volume of the
fluid, the flow and transport equations are coupled and must be solved
successively at each time step (see Section 10.1.1.d).
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12.6. Use of a Model

In the preceding sections, we have shown how to set up the equations of a
groundwater flow or transport problem, how to represent the boundary
conditions, the source/sink terms and some special featues (e.g., leakage, wells)
and finally, how to solve the equations. In this section we shall look at the
data collecting, the choice of the parameters, the fitting of the model, and,
finally, how to use the model for prediction. We shall essentially discuss the
problem of regional groundwater flow modeling, which must, in any case,
precede any transport modeling.

12.6.1. Data Collecting

The geometry of the aquifer(s) must first be described. Besides mapping the
outrcrops, this entails making a synthesis of all the well logs, especially in
sedimentary basins with multilayered systems. The continuity and thickness
of each layer (aquifer and aquitard) have to be estimated. For unconfined
aquifers the elevation of the bedrock (or underlying aquitard) must be known.
All these data can be estimated in space with kriging from the borehole
measurements. Surface geophysical measurements (seismic or electric) can
also be used.

Then the transmissivities must be estimated. Data may come from pumping
tests, specific capacity, slug tests, borehole flow meter, hydraulic conductivity
measurements on cores, or only from the thickness of layers and description of
material, which makes it possible to correlate areas where pumping tests have
been made with areas where they are lacking. Again, kriging can be used to
interpolate this information. In general, log T will be used and averages will be
estimated directly in each of the meshes of the model. If there is a systematic
drift in the transmissivity of the aquifer (thickness or conductivity or both),
and if this drift is approximately known from the borehole geological data, it
can be imposed in the universal kriging approach by writing m(x) = ap(x),
where p(x) is this prescribed drift. In universal kriging, the local optimal value
of a will be determined automatically.

Whether it is kriging or not, an automatic procedure capable of estimating
the value of a parameter in the mesh of a model from local measurements
helps to save time in setting up a model.

Storage coefficients, or specific yield, generally come from long-term
pumping tests. Short-term pumping tests (less than a month) generally
underestimate the specific yield, but there is, in general, less variability of these
coefficients than of transmissivity. Storage coefficients can be roughly
estimated simply from thickness and compressibility of layers as a function of
the geologic description.



12.6. Use of a Model 397

Interpretation of natural fluctuations of water levels in wells will generally
give a good estimation of the diffusivity T/S( or T/w,). In an unconfined
aquifer one will select one or several flow lines with several piezometers and try
to interpret the decay of the piezometric level over several months in one
dimension, following the rise of the wet season. Analytic solutions given in
Section 8.5.a will be used. Alternatively, in the vicinity of a river, the
fluctuations of the piezometric level, caused by the fluctuations of the water
level in the river, can be used.

For confined aquifers natural piezometric ﬂuctuatlons are linked to
barometric variations, carth tide, and sometimes seismic events. The first two
can be interpreted in terms of diffusivity (see Ardity, 1978). Diffusivity can help
to assess both transmissivity and storativity, depending on which one is best
known.

Leakage factors of aquitards, as well as their storativity, will come from long
pumping tests with several observation holes inside the aquitards above and
below them (see Neuman and Witherspoon, 1972). Estimations can alsoc come
from thicknesses of layers, geologic descriptions, and tests on cores. Environ-
mental tracers (e.g., 1*C, 3°Cl) can provide information concerning the veloc-
ity of transfer through an aquitard or an aquifer, but there are still large
uncertainties about these tracers, especially for very-long-term transfers (in
situ radiogenic sources, interactions with the medium, etc.).

Extraction from the aquifers through the wells has to be determined, which
may prove rather difficult. Nevertheless, this may be as important for the
calibration of the model as estimating transmissivities. Apart from exhaustive
surveys and inquiries, indirect estimations can be based on agricultural or
industrial production given the water requirements for each product, areas of
irrigation surfaces (e.g., from satellite images), energy comsumption for
pumping (electricity or oil), and population and livestock density (domestic
water supply). A monthly extraction rate must often be estimated from the
annual consumption. Frequently, these data must be known over several
years.

Natural discharge at springs or into rivers must be measured, e.g., by
gauging the river in different sections, at low flow, when most of the water
comes from groundwater.

Direct evapotranspiration in low lands where the water level in the aquifer is
close to the surface will be evaluated from empirical formulas (see Section 1.3
and Appendix 1).

Recharge is also of paramount importance (see Sections 1.3 and 12.2.11). In
semiarid or arid zones it may sometimes be more important to assess the
variability of the recharge than the actual recharge in a given year: one often
finds that in such climates 809, or more of the average recharge over a long
period may come from one “catastrophic” event, occurring every 20 or 30
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years. Recharge from rivers to an aquifer is often difficult to evaluate. In some
cases differential gauging can be used, or, if the river is “polluted” by a good
tracer, the dilution of this tracer can help estimate the recharge.

Piezometric heads will be required for calibration of the model. Piezometric
maps in a steady state (if there is one) or at several dates in transient state are
necessary and can be built by kriging. There is often a problem of precision in
these maps if the piezometers or wells are not precisely topographically
leveled. Some maps may be used as initial conditions. Piezometric records,
over several years if there are significant variations, are necessary at several
locations.

The nature and position of the boundary conditions must be determined
often by looking at the piezometric maps (see Section 6.3). For long-term
planning of aquifer development, it is essential that natural boundaries of the
aquifers be used. Taking artificial limits at some distance in an aquifer and
imposing an arbitrary condition (prescribed head or prescribed flux) will, in
general, lead to significant errors in the long term.

12.6.2. Choice of Parameters

This essentially concerns the size of the mesh and of the time step. It must be
realized that these parameters are completely independent of the quality and
availability of the data described in Section 12.6.1: they are only related to the
required precision in the solution of a discretized partial differential equation.
As all numerical models globally ensure mass balance, if the choice of the mesh
or of the time steps is poor, the global water balance in the system will still be
correct (input, output, storage); only the heads or velocities will be
approximated.

In order to define the mesh, one starts from the “center(s)” of the model, ie.,
the areas where the head and velocities have to be known with precision. These
areas generally coincide with areas of development (wells, drainage, etc.)
where hydraulic gradients are variable. Given the type of problem, the
smallest mesh may represent a complete well field or, on the contrary, each
well will be included in a different mesh. Having then defined the position of
the actual boundaries of the aquifer, one must choose the rest of the mesh in
order (1) to fill the gap between the boundaries and the “center(s)”; (2) grad-
vally increase the meash size, starting from these centers; (3) keep small
meshes in areas where the head gradient varies significantly (e.g., around rivers
acting as drains or sources), whereas large meshes can be used in areas of
uniform head gradient; and (4) keep the total number of meshes below a limit
fixed by the computer resources available {core storage and amount of CPU
time). An average number is a few thousands (from 500 to 10,000).
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In finite differences, nested squares, as shown in Section 12.2.4 or Section
11.8.2, are ideally suited to this purpose both in the plane and, in the case of
multilayered systems, in the vertical direction (see Section 12.2.8). They
eliminate the need for submodels, which are used to increase the precision on
the “centers.” A “regional” model with coarse meshes would give the global
behavior of the aquifer. A local submodel would then represent each “center”
using prescribed head boundary conditions on its outer artificial limits. These
prescribed heads would come from the “regional” model. This technique is
feasible but very cumbersome.

If the natural limits of the aquifer are really impossible to reach because
they are extremely far away, one must sometimes use artificial limits and
boundary conditions, e.g., prescribed heads along a contour line of the
piezometric map or no-flow along a flow line. In such cases it is recommended
that one check the influence of the boundary conditions on the long-term
predictions of the model: change prescribed head to prescribed flux, and vice
versa. If the resulting changes are insignificant, the model is valid.

Note that one can sometimes use different meshes for the calibration and the
prediction phase of a model. There is, for instance, no point in having a finely
discretized “center” in the calibration phase if this center represents a well field
that does not yet exist. One must be able to change the discretization inside the
model easily without changing the numbering and other characteristics of all
the other meshes.

Finally, in case of uncertainty concerning the choice of the mesh, tests can
always be made with a finer mesh to check that the results are not greatly
modified.

The choice of the time step in a transient state follows roughly the same
rules. Small time steps must be used (if precision is required) each time there is
a change in the slope of dh/ot. In particular, each time a well (or well field) is
started, stopped, or its flow rate modified, small time steps must be used. They
can start at an hour, a day, a week, etc. depending on the mesh size, the
parameters, and the period of interest. A good order of magnitude for the
suitable time step is given by the “critical time step” Ar, of the explicit
formulation (see Section 12.2.6), even if an implicit or Crank—Nicholson
formulation is used. Each time a source term, boundary condition, etc. is
changed the time step to use is a fraction (¥5,%) or a multiple (2, 10) of the
critical time step. In general, the time steps are then increased as a geometric
progression of ratio 1.2 to 1.5 (/2 is often a good choice) until the next change
in the system requires one to start with small time steps again. Very often, the
geometric progression is stopped at a given length (e.g., a week, a month, a
year) in order to obtain outputs at regular intervals and use constant time
steps.
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Omne can compromise and use constant time steps all through the simulation
that are larger than the critical time step but short compared to the length of
the simulation. In this case a rule of thumb is that five time steps without
significant changes in the source/sink functions or boundary conditions are
required before the calculated head can be considered accurate.

Note that an explicit formulation should be used each time the time step is
shorter than Ar, and an implicit or Crank—Nicholson one in other cases. If
iterative methods of solution are used, a constant time step is helpful because
omne can try to optimize the relaxation factor. A compromise can also be found
between the length of the time step and the number of iterations: in general,
the larger the former, the larger the latter.

It is always possible to check the suitability of the time steps by running the
simulation again with twice as many time steps of haif the length to see if the
results are identical.

12.6.3. Calibration

This is the most important phase in the construction of the model. Most of
the time, the procedure used is called “trial and error.” All the data and
parameters are introduced as described above. Then, one tries to calculate the
head for a period with available observed heads. Finally, one compares the
two. The model is said to be calibrated when the comparison is favorable, i..,
the differences between the two are considered negligible.

If this is not achieved, the parameters are modified in the appropriate
direction in order to improve the fitting, i.e., decrease this difference. Most of
the time the transmissivities are the least known parameters and thus are
considerably modified during these trials. If kriging has been used for
estimating T, the standard deviation of the estimation error provides a useful
guide to keep the modifications of T within the confidence interval, although
this is not an absolute rule. Often the initial estimations of leakage factors,
storativity, recharge and discharge, and boundary conditions must also be
modified: the model helps to find a compromise between the various
estimations of not-so-well-known independent parameters. The final maps of
parameters, after calibration, are therefore much more reliable than before.
However, calibration does not, in general, have a unique solution: different
sets of parameters may fit the model. Only the hydrogeologist’s own
experience will tell which set has the most likelihood.

Concerning the observed heads, two types of calibration are possible:
steady or transient state. If a real steady state can be found in an aquifer, it
should certainly be simulated because then one of the unknown parameters
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drops out, the storativity. In this case one compares the observed and the
computed head maps. If kriging has been used for estimating the observed
head, the associated estimation error can also be used: it is only necessary that
the calculated heads fall inside the confidence interval of the observed heads. If
no true steady state can be found, it is always useful to select an approximate
steady state (e.g., “average” head or low-water head) and to use it for
calibration before continuing with transient fitting. An artificial source/sink
term can always be estimated and added to the recharge/discharge term to
represent S 0h/ot.

If possible, transient fitting should always be made after the initial steady-
state trials. The comparison can be made on several head maps at different
times or only on the piezometric records at selected observation wells. It
requires an evaluation of the variation with time of recharge and discharge
but, in general, it produces a much better calibration with much less
uncertainty than steady-state fitting.

In many cases the comparison can also be made on the calculated discharge
from the aquifer, e.g., in a river, a spring, or an underground excavation. This
greatly improves how representative the model is, because if no flow rates are
available the linearity of the flow equation makes it possible to compensate for
an error on T by an error on @ in a steady state without modifying the head.

Even if the fitting of the model is good, one must remember that the
parameters estimated by fitting in an area with little data will always be
questionable and that additional measurements must be made prior to any
development in such an area.

Automatic fitting of a model has been called “the inverse problem.” There is
a great deal of literature on this topic, although very few models have actually
been fitted with automatic methods so far.

Animportant aspect of automatic fitting is how to define the gradient of the
objective function in the parameter space. When this objective function is the
integral (in time and/or space) of the squares of the differences between
observed and computed heads, Chavent et al. (1975) have shown that these
gradients can easily be calculated with the help of an adjoint state equation.
Neuman (1980) has also applied this technique. Solving the inverse problem is
nowadays seen as a multicriterion problem. One must fit the model (ie,
minimize the objective function) while maximizing the likelihood or plausi-
bility of the parameters, especially the transmissivities. Many, but not all, of
the recently developed techniques rely omn kriging to incorporate this
likelihood [see, for instance Emsellem and Marsily (1971), Cooley (1977, 1979,
1982), Neuman (1973a, 1980), Neuman and Yakowitz (1979), Neuman et al.
(1980), Yeh et al. (1983), Marsily et al. (1984), Carrera (1984), and Townley and
Wilson (1985).]
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12.6.4. Predicting with a Model

Once a model is calibrated, it can be used for predictions. These may range
from extrapolations of existing conditions to the determination of the
influence of new developments or works. Very often these predictions will
require forecasts of the natural recharge of the aquifer. One may use an
“average” annual recharge or simulate passed climatic series (e.g., the last 20
years or selected episodes of floods or droughts).

Another possibility, if the model is linear, is to apply the principle of
superposition and to determine the drawdown due to a development in the
aquifer directly (see Section 7.1.b). This drawdown will then be subtracted
from the piezometric map of the record of any of the passed 20 years, for
instance, in order to give a range for the possible influence of the development.

Another very helpful consequence of the linearity of the flow equation is the
possibility of using linear programming in conjunction with a model in order
to optimize both the location and the flowrate of wells in an aquifer to meet a
given goal. In general, the objective function will depend on the total flowrate
extracted from the aquifer (c.g., maximize the extraction, maximize the
economic return from the extraction, minimize the pumping costs). The
drawdown and flowrates per well will be limited by physical reasons (e.g.,
maximum flow per well, maximum economical drawdown) and the relations
between extraction in one well and drawdown anywhere else in the aquifer will
be linear and additive. This is, by definition, a linear programming problem.

The drawdown at any location for a unit extraction rate in a well is usually
called an influence coefficient. It can be calculated easily with a model, either in
a steady state or as a function of time in a transient state. A whole matrix of
these coefficients is calculated: (1) locations where wells could be drilled and
(2) locations where the drawdown should be limited [which can be the
same location as (1)]. The result of the linear programming optimization is
(1) the location of the “optimal” wells within the possible locations and
(2) the “optimal” extraction rate in these wells.

This method is well described by Illangasekare and Morel-Seytoux (1982),
Marsily et al. (1978), and Maddock (1972). Additional developments can be
found in Morel-Seytoux et al. (1981) and Hubert (1984).



Appendix 1

Formulas for Estimating the
Potential Evapotranspiration

1. Thornthwaite’s Formula

The potential evapotranspiration (ET,) per month or ten days is given by:
ET, = 16(106/1)* x F(4)
Here, ET,, is given in millimeters per month.

0 mean temperature of the period in question (°C) measured under
shelter,
a 6.75 x 107713 — 7.71 x 107312 + 1.79 x 10721 + 0.49239
I annual thermal index, sum of twelve monthly thermal indexes i,
i (9 /5)1.5 14
F(A) correction coefficient, function of the latitude and the month, given
by Table A.1.1.

2. Turc’s Formula

Turc prefers different formulas according to whether the mean relative
humidity is above or below 50%;. If U, > 509 (usual in temperate zones)

8
If U, < 50%

0 " 50 -1
E 10d) =0.13 —— - Zm
T, (mm/10d) 0130+ 15(Rg+50)[1 + 7 :I
0 mean temperature of the period in question (°C) measured under

shelter,
R, overall solar radiation ~ I, (0.18 + 0.62h/H)
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Table A.1.1.
Correction Coefficient F(4) Depending on the Latitude and the Month?

Lat N. J F M A M J J A S O N D
0 104 094 104 101 104 101 104 104 101 104 101 104
5 102 093 103 102 106 103 106 105 101 103 099 102

10 100 091 103 103 108 106 108 107 102 102 098 099
15 097 091 103 104 111 108 112 108 1.02 101 095 097
20 095 090 103 105 113 111 114 111 102 100 093 094
25 093 089 103 106 115 114 117 112 102 099 091 091
26 092 088 103 106 115 115 117 112 102 099 091 091
27 092 088 103 107 116 115 118 113 102 0989 090 090
28 091 088 103 107 116 116 118 1.13 1.02 098 0390 090
29 091t 087 103 107 117 116 119 113 103 098 090 089
30 090 087 103 108 118 117 120 114 103 098 089 088
31 090 087 103 108 118 118 120 1.14 103 098 089 088
32 089 086 103 108 119 119 121 115 103 098 088 087
33 088 08 103 109 119 120 122 115 103 097 088 086
34 088 085 103 109 120 120 122 116 103 097 087 086
35 087 085 103 109 121 121 123 116 1.03 097 086 085
36 087 085 103 110 121 122 124 116 103 097 086 084
37 086 084 103 110 122 123 125 117 103 097 085 0.83
38 085 084 103 110 123 124 125 117 104 096 084 033
39 085 084 103 111 123 124 126 118 104 096 084 082
40 084 083 103 111 124 125 127 118 104 096 083 081
41 083 083 103 111 125 126 127 119 104 096 082 080
42 082 083 103 112 126 127 128 1.19 104 095 082 079
43 081 082 102 112 126 128 129 120 104 095 081 077
44 081 082 102 113 127 129 130 120 104 095 080 076
45 080 081 102 113 128 129 131 121 104 094 079 0.75
46 079 081 1.02 113 129 131 132 122 104 094 079 074
47 077 080 102 114 130 132 133 122 104 093 078 073
48 076 080 1.02 114 131 133 134 123 105 093 077 072
49 075 079 102 114 132 134 135 124 105 093 076 071
50 074 078 102 115 133 136 137 125 106 092 076 070
Lat. S.

5 106 095 104 100 1.02 099 102 103 100 105 103 1.06
10 108 097 105 099 101 09 100 1.01 100 106 105 110
15 112 098 1.05 098 098 094 097 100 100 107 107 112
20 1.14 100 105 097 096 091 095 099 100 108 109 115
25 117 101 105 0% 094 088 093 098 100 110 111 1.18
30 120 103 106 095 092 085 090 09 100 112 114 121
35 123 104 106 094 089 082 087 094 100 113 117 125
40 127 106 107 093 086 0.78 084 092 100 115 120 1.29
42 128 107 107 092 085 076 082 092 100 116 122 131
44 130 108 107 092 083 074 081 091 099 117 123 133
46 132 110 1.07 091 082 072 079 09 099 117 125 135
48 134 111 108 090 080 070 076 0.89 099 118 127 137
50 137 112 108 089 077 067 074 088 099 119 129 141

4 Thornthwaite’s formula, from Brochet and Gerbier (1974).
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h actual amount of sunshine in hours per day,
H maximum possible amount of sunshine (astronomical length of the
day),

I direct solar radiation at the top of the atmosphere,

ga

I, and H are tabulated according to the latitude and the date on Tables
A.l2and A.13.

Table A. 1.2.
Monthly I, Values in Small Calories per cm?” of Horizontal
Surface Area and per Day”®

Latitude North 30° 40° 50° 60°
January 508 364 222 87.5
February 624 495 360 215
March 764 673 562 432
April 880 833 764 676
May 950 944 920 880
June 972 985 983 970
July 955 958 938 908
August 891 858 800 728
September 788 710 607 487
October 658 536 404 262
November 528 390 246 111
December 469 323 180 55.5

¢ From Brochet and Gerbier (1974)

Table A.1.3.

Length of the Astronomical Day H (mean monthly values in hours

per day)*

Latitude North 30° 40° 50° 60°
January 1045 9.711 8.58 6.78
February 11.09 10.64 10.07 9.11
March 12.00 11.96 11.90 11.81
April 12.90 13.26 13.77 14.61
May 13.71 14.39 15.46 17.18
June 14.07 14.96 16.33 18.73
July 13.85 14.68 15.86 17.97
August 13.21 13.72 14.49 15.58
September 12.36 12.46 12.63 12.89
October 11.45 11.15 10.77 10.14
November 10.67 10.00 9.08 7.58
December 10.23 9.39 8.15 6.30

“ From Brochet and Gerbier (1974)
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3. Penman’s Formula
_ 1 R(FO)y) 1
T L14+(F'0/y) 14+ (F'8/y)
L latent heat of water evaporation (59 cal/cm? for 1 mm of equivalent

water),
R, net radiation, evaluated from the formula

R, = I,(1 — a)(0.18 + 0.62h/H) — 66*(0.56 — 0.08,/2)(0.10
+ 0.9h/H)

E, evaporating power of the air = (e,, — €)0.26(1 + 0.4V),
¥y psychometric constant (y ~ 0.65),
a albedo of the evaporating surface (generally a = 0.25),
I, direct solar radiation at the top of the atmosphere,
h actual amount of sunshine,
H astronomical length of the day,
0 air temperature under shelter (K),
o 1.19 x 107 cal/em? x d x K,
e tension of the water vapor measured under shelter, in mbar
ey maximum tension of the water vapor in mbar for the temperature 0,
|4 mean wind velocity measured at 10 m above the evaporating

surface (m/s),
F'6 slope of the curve of maximum water vapor tension



Appendix 2

Commonly Used Physical Quantities

1. Measurement Units of the International System (SI)
1.1. Basic Units

There are seven basic units in the SI system given in Table A.2.1 with their
dimensions and abbreviations. In front of each unit, a prefix, given in Table

A.2.2, can be added to scale the unit. These prefixes are attached to the basic
symbols. For example, 1000 A = 1 kA,

1.2. Geometric Units

The following lists give the various units, their abbreviations, and conver-
sion factors. See also, table A.2.3 for conversion factors.

Length. The basic unit is the meter (m).

Metric units Micrometer (mm)  107®m,
Angstrém (A) 10710 m,
English units
inch 0.0254 m,
foot 0.3048 m,
yard 09143 m,
mile 1.609 x 103 m,
nautical mile 1.8532 x 10° m.

Surface area. The basic unit is the meter squared (m?).

Metric units

hectare (ha) 10,000 m?,
are (a) 100 m?,
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Table A.2.1
Basic SI Units
Unit Dimension Abbreviation
meter length m
kilogram mass g
second time s
ampere electric current intensity A
kelvin temperature K
candela luminous intensity cd
mole quantity of matter mol.
Table A.2.2
SI Prefixes
Factor by which the unit
Prefix Symbol is multiplied
exa E 1000 000 000 000 000 000 = 1018
peta P 1 0600 000 000 000 000 =103
tera T 1 000 000 000 000 = 10'2
giga G 1 000 000 000 = 10°
mega M 1 000 000 = 106
kilo k 1000 = 103
hecto h 100 =102
deca da 10 =10
deci d 0.1 =107t
centi c 0.01 =102
milli m 0.001 = 1073
micron u 0.000 001 =10"¢
nano n 0.000 000 001 =10"°
pico P 0.000 000 000 001 = 10712
femto f 0.000 0060 000 000 001 =107%%
atto a 0.000 000 000 000 000 001 = 10718

English units

square foot (ft>)  9.29 x 107% m?,
acre 4.047 x 103 m?2.

Volume. The basic unit is the meter cubed (m?).
Metric units

The liter (0.001 m?) must not be used instead of the dm> when extremely
precise results are desired.
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English units
liquid ounce 295412 x 107° m?3,

ft3 2.832 x 1072 m3,
US gal 3.785 x 1073 m3,
UK gal 4.546 x 1073 m?3,

barrel of oil 0.156 m>3.

Plane angle. The basic unit is the radian (rad). The degree is equal to /180
rad, and the grad is equal to n/200 rad.

Solid angle. The basic unit is the steradian (sr). It is the solid angle with its
apex in the center of a sphere and subtending an area on the surface of the
sphere equal to that of a square with side the length of the radius of the sphere.

1.3. Units of Mass and Matter

Mass

Metric units. The basic unit is the kg.
metric ton (t) 1,000 kg (also written Mg)

quintal (q) 100 kg,
English units
ounce {0z) 2,835 x 1072 kg,
pound (Ib) 0.4536 kg,

ton (short) (tn.s)  0.907 x 10° kg,
ton (long) (in.1) 1.016 x 10° kg.

Mass per unit volume. The basic unit is the kilogram per cubic meter
(kg/m?).

Quantity of matter. The basic unit is the mole (mol}. This is the quantity of
matter in a system containing the same amount of elementary entities as there
are atoms in 0.012 kg of carbon 12 (the nature of the entities must be specified).

Concentration. The basic unit is the mol per cubic meter (mol/m?).
Volumetric concentrations in kg/m?® and massic concentrations in kg/kg are
also used. (See also the introduction of Chapter 10 for other concentration
units.)

1.4. Mechanical Units

Velocity. The basic unit is the meter per second (m/s). In navigation,
1 knot = 0.514444 m/s.
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Table A.2.3

SI-English, English—SI Conversion Table

Units English — SI SI — English
Length 1 inch =254 cm 1cm = 0.3937 inch
1ft =0.3048 m Im = 3.281 ft
1 mi = 1.609 km 1 km = 0.6215 mi
Area 1 inch? = 64516 cm? 1 cm? = 0.155 inch?
1 ft? = 0.0929 m? 1m? =10.76 ft2
1 acre = 0.4047 ha 1ha = 2471 acres
= 0.4047 x 10* m? 1 km? = 0.3861 mi?
1 mi? = 2590 km?
Volume 1USfloz = 29,54 cm® 1cm? =3.385 x 1072 Floz
113 =2.832 x 1072 m3 11 =3.531 x 1072 f¢?
= 28.32 liter 11 = 0.2642 US gal
1 US gal =3.785 x 107 m? 11 = 0.2200 UK gal
= 3.785 liter 1m? = 264.2 US gal
1 UK gal =4,546 x 1073 m? 1m3 =220.0 UK gal
= 4.546 liter 1 m?3 = 28.38 US bushel
1 US bushel =3,524 x 1072 m? 1m? = 6.41 oil barrel
= 35.24 liter
1 oil barrel =0.156 m?
= 156 liter
Flow rate 1 cubic ft/s =2.832 x 1072 m3/s 1m3/s = 35311 ft3/s
= 28.32 liter/s 11/s = 0.0353 ft¥/s
1US gal/min = 6.309 x 1075 m3/s 11/s =10"3m%s
= 6.309 x 1072 liter/s 11/s = 15.85 US gal/min
1 UK gal/min = 7.576 x 10" m?%s 1l/s = 13.20 UK gal/min

=7.576 x 1072 liter/s
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Table A.2.3 (Continued)

Units English — SI SI — English
Mass loz =2835g 1g =3.257 x 1072 oz
11b,, = 0.4536 kg 1kg = 2.2051b,,
1s. ton =907 kg 1 metric ton = 1,000 kg
11 ton = 1,016 kg 1 metric ton = 1.103 s. ton
1 metric ton = 0.984 1. ton
Mass per unit volume 11b,/ft3 = 16.02 kg/m? 1kg/m®  =6.242 x 1072 1b,/ft?
= 16.02 g/liter =1 g/liter
Force 11b, =4.448 N 1IN =0.22481b,
Stress and pressure 1 1b,/foot? = 47,88 Pa 1Pa =2.089 x 1072 Ib/ft?
1 psi = 6.895 x 10% Pa 1Pa = 1450 x 107* psi
1 atm = 1.013 x 10° Pa 1Pa = 1075 bars
1 bar =10° Pa 1 MPa = 10 bars
=0.1 MPa
Work or energy 1ftlb, = 13567 1J =0.73741t1b,
1 calorie =4.185J 17J = (.2389 calorie
1 BTU =1.055 x 103 J 17J = 9479 x 107* BTU
Temperature x°F =3(x — 32)°C x°C =%x + 32°F
—459.69°F = 0K —273.15°C=0K
Hydraulic conductivity 11ft/s = 0.3048 m/s 1m/s = 3.281ft/s
1 US gal/day ft* = 4.720 x 10" " m/s 1m/s = 2.119 x 108 US gal/day ft2
Transmissivity 1ft2/s =9.290 x 107* m?/s I m?/s = 10.76 ft%/s
1 US gal/day ft = 1.438 x 10" m?/s 1m?/s = 6.954 x 10° US gal/day ft
Intrinsic permeability 11ft? = 9290 x 1072 m? 1m? = 10.76 ft?
= 9412 x 10'° darcy 1 m? = 1.013 x 10%2 darcy

1 darcy = 0987 x 10712 m?
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Acceleration. The basic unit is the meter per second squared (m/s®). The
acceleration due to gravity is g = 9.80665 m/s?.
Angular velocity. The basic unit is the radian per second (rad/s).
Frequency. The basic unit, the hertz (Hz), is equal to 1 cycle/s.

Force. The basic unit is the newton (N). It is the force which gives a body
with a mass of 1 kg an acceleration of 1 m/s2, dimension [MLT~*1." The dyne
is equal to 1075 N. Gravity produces a force of 9.80665 N on a mass of 1kg.

Moment of a force. The basic unit is newton meter (N m).

Stress and pressure. The basic unit is the pascal (Pa) produced by a force of
1 N applied over an area of 1 m2, dimension [ML™'T~*]. The megapascal
(MPa), i.c., 10° Pa, is used more frequently. The bar (10° Pa) and the millibar
(102 Pa) are also used.

Do not use
standard atmosphere 1.0133 bar = 1.0133 x 10° Pa,
mm of mercury 1.33322 x 10% Pa,
m of water at 4°C 9.80638 x 103 Pa,
dyne/cm? 0.1 Pa,
psi (pound per square inch) 6.895 x 103 Pa,
kg/cm? 0.981 x 10° Pa.

Dynamic viscosity (). The basic unit is the pascal second (Pa s) dimension
[ML™'T~!]. The poise is equal to 0.1 Pa s.

Kinematic viscosity (v = ﬁ/p). The basic unit is the meter squared f)er
second (m?/s). The stokes is equal to 10™* m?/s.

1.5. Energy Units

Work or quantity of heat. The basic unit is the joule (J). It is the work done
by a force of 1 N moving its point of application through 1 m (dimension
[ML2T"2]). The erg is equal to 1077 J, the kWh to 3.6 x 10° J, the calorie
(small) to 4.185 J. The calorie is the energy required to increase the -
temperature of 1 g of water by 1°C. The kilocalorie (or large calorie) is
4.185 x 103 J, the therm (10? kilocalories) is 4.185 x 10° J, and the BTU
(British Thermal Unit) is 1.055 x 10 J.

t Dimensions are given in brackets with capital letters. M = mass, L = length, T = time,
K = temperature.
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Power '
watt (W) 1J/s, dimension [ML2T 3],
1 kW 103W;1MW=106W;1GW=109W,
horsepower 736 W,
erg/s 1077 W,
BTU/s 1.055 x 10° W.

Thermodynamic temperature. The kelvin (K) is the basic unit. The celsius
degree (°C) is the same unit of temperature, but the Celsius scale has its zero at
273.15K.

Heat conductivity A. The basic unit is W/m K [MLT *K~!]. The
kcal/s m °C = 4.18 x 10°* W/m K is also used.

Massic heat capacity c¢. The basic unit is J/kg K [L*T 2K~!]. The
kcal/kg °C = 4.18 x 10* J/kg K is also used.

Volumetric heat capacity pc. The basic unit is J/m® K [ML™!T 2K 1],
The kcal/m? °C = 4.18 x 103 J/m? K is also used.

Heat diffusivity A/pc. The basic unit is m?/s [L2T"1].

1.6. Electric Units
Intensity of electric current. The basic unit is the ampere (A).

Electric charge. The basic unit is the coulomb (C). It is the quantity of
electricity transported in one second by a current of 1 ampere.

Electrical potential. The basic unit is the volt (V). It is the difference in
potential that dissipates a power of 1 W for a constant current of 1 A.

Electric resistance. The basic unit is the ohm (Q). It is the resistance of a
conductor where 1 A circulates under a difference of potential of 1 V. The
siemens (S) is the conductance (the inverse of the resistance) of a conductor
with a resistance of 1 Q.

Electric capacitance. The basic unit is the farad (F). It is the capacitance
of a condensor that becomes charged with 1 C under a difference of potential
of 1V.

Electric inductance. The basic unit is the henry (H). It is the electric
inductance of a closed circuit in which a potential difference of 1 V is produced
when the current going through the circuit varies uniformly at a rate of 1A/s.

Magnetic flux. The basic unit is the weber (Wb). It produces a potential
difference of 1 V through a circuit of one single coil, if it is reduced to zero in 1 s
by uniform decrease.
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Magnetic flux density. The basic unit is the tesla (T). It is the uniform
magnetic flux density that produces a total magnetic flux of 1 Wb across a
normal plane surface of 1 m? over which it is uniformly distributed.

Magnetic motive force. The basic unit is the ampere (A). It is the magnetic
motive force that corresponds to a current of 1 A in a single coil.

Intensity of the magnetic field. The basic unit is the ampere per meter
(A/m). It is the intensity of the magnetic field created at the center of a circuit
with a diameter of 1 m by the passing of a current of I A through the circuit,
which is constituted by a conducting wire of negligible cross-section area.

1.7. Radiological Units

Radionuclear activity. The basic unit is the becquerel (Bq). It corresponds
to one disintegration per second of a radioactive body; the curie (Ci)isequal to
37 GBq (gigabecquerel).

Half-life. This is the length of time needed for one-half of the initial mass
of the radioactive element to disappear by radioactive decay.

Quantity of x or y radiation. 'The basic unit is the coulomb per kilogram
(C/kg). It is the quantity of x or y radiation that is such that the corpuscular

Table A.2.4
Specific Weight Mass per Dynamic Kinematic Latent heat of
Temperature (kN/m?), unit volume, p  viscosity, u  viscosity, v(= u/p) vaporization
C y=p8 (kg/m?) (10%/Pas) (107 m?/s) J/)

0 9.805 999.8 1.781 1.785 2500.3
5 9.807 1000.0 1.518 1.519 2488.6
10 9.804 999.7 1.307 1.306 2476.9
15 9.798 999.1 1.139 1.139 2465.1
20 9.789 998.2 1.002 1.003 2453.0
25 9.777 997.0 0.890 0.893 2441.3
30 9.764 995.7 0.798 0.800 2429.6
40 9.730 992.2 0.653 0.658 2405.7
50 9.689 988.0 0.547 0.553 2381.8
60 9.642 . 9832 0.466 0.474 2357.6
70 9.589 9718 0.404 0.413 23333
80 9.530 971.8 0.354 0.364 2308.2
90 9.466 965.3 0.315 0.326 2282.6

100 9.399 9584 0.282 0.294 2256.7
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emission associated with it in 1 kg of air produces ions in the air that transport
a quantity of electricity (of either sign) equal to 1 C; the roentgen is equal to
2.58 x 107* C/kg.

Absorbed dose of ionizing radiation. The basic unit is the gray (Gy). It
corresponds to an absorbed energy equal to 1 J/kg; the rad is equal to 0.01 Gy.

Effective biological dose. The basic unit is the sievert {Sv). It is the dose
caused by an ionizing radiation that has an effect equal to that of x or vy
radiation of 200 to 250 kV; the rem is equal to 0.01 Sv. The International
Commission for Radiological Protection (ICRP) recommended dose limits
are

0.05 Sv/yr for workers in the nuclear industry
0.005 Sv/yr for members of the public, from all possible sources
0.001 Sv/yr for members of the public, for long term exposure.

1.8. Optical Units

Luminous intensity. The basic unit is the candela (cd). It is the luminous
intensity in a given direction from a source that emits monochromaticrays of a
frequency of 540 THz and has an energy intensity in this direction of 1/683
watt per steradian.

Properties of Pure Water

Coefficient of

Absolute volume trial Specific Heat
vapor Young’s heat expansion, mass Heat diffusivity,
pressure Compressibility modulus o = d(In p)/dT heat, C conductivity, A AMpc
(kPa) (107° Pa~Y) (10¢ kPa) (1075 K) (J/kg K) (W/m K) (1078 m?%/s)
0.61 5.098 2.02 —68 42174 0.564 13.4
0.87 4928 2.06 16 — — —
1.23 4.789 2.10 88 41919 0.578 13.8
170 4.678 2.15 151 — — —
2.34 4.591 2.18 207 4181.6 0.598 14.2
3.17 4.524 222 257 — —
4.24 4475 2.25 303 4178.2 0.607 14.6
7.38 4.422 2.28 385 4178.3 0.628 15.2
12.33 4.417 2.29 458 4180.4 — -
19.92 4.450 228 523 4184.1 0.652 15.8
31.16 4.515 225 584 4189.3 —
47.34 4.610 2.20 641 4196.1 0.669 16.4
70.10 4734 2.14 696 4204.8 — —

101.33 4.890 207 750 4215.7 0.671 16.6
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Luminance. The basic unitis the candela per square meter (cd/m?). It is the
luminance of a source with an area of 1 m? emitting with a luminous intensity
of 1 ¢d. The stilb (sb) is equal to 10* cd/m?.

Luminous flux. The basic unit is the lumen (Im). It is the luminous flux
emitted in the solid angle of 1 sr by a uniform point source placed at the apex
of the solid angle and having a luminous intensity of 1 cd.

Hlumination. The basic unit is the lux (Ix). It is the illumination of an area
which receives with normal incidence the flux of 1 Im/m? uniformly
distributed. The phot (ph) is equal to 10* lux.

Vergence of optical systems. The basic unit is the diopter (). It is the
refractive power of an optical system with a focal distance of 1 m in a medium
with a refractive index of 1.

2. Values of Common Hydrogeological Quantities
2.1. Properties of pure water
These are given in Table A.2.4.

2.2. Properties of Ice at —5°C
Mass per unit volume, p 917 kg/m?

Latent heat of fusion 334 x 103 J/kg
Specific heat, ¢ 20753 /kg K
Heat conductivity, 4 23W/mK

2.3. Properties of Saltwater (NaCl):

Table A.2.5

Properties of Seawater at 34 kg/m?

Mass per unit Kinematic
Temperature volume, p Specific heat, ¢ viscosity, v
°C (kg/m?) (J/kgK) (10° m?/s)

0 1027.32 3989 1.8

5 1026.91 3992 1.6

10 1026.19 3995 14

15 1025.22 3997 12

20 1024.02 4000 11

25 1022.61 4002 0.94
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Table A.2.6

Properties of Saltwater at Various Concentrations

Mass of Nacl Mass per unit

per mass of volume of
Concentration solution at the solution Specific heat
of Nacl 20°C at 15°C The same at at 20°C
(kg/m®) (%) (kg/m?) 20°C (J/kg K)
0 0 999.13 998.23 4182
10 0.995 1006.30 1005.30 4127
20 1.976 1013.39 1012.29 4075
30 2.943 1020.41 1019.22 4024
40 3.898 1027.35 1026.07 3975
50 4.841 1034.25 1032.88 3929
60 5772 1041.05 1039.60 3884
70 6.690 1047.83 1046.32. 3841

2.4. Properties of Soils and Rocks

See the foliowing page references for definitions of these properties.

Porosity, see p. 36; specific surface, p. 22; grain size, p. 21; suction potential,
see p. 30; layer of adhesive water, see p. 23; hydraulic conductivity, see p. 78;
hydraulic conductivity of a fracture, see p. 68; electro-osmotic permeability,
see p. 83; compressibility, see p. 98, 102; compressibility of the solid grains, sec
p. 108; storage coefficient, see p. 111; tortuosity, see p. 233; dispersivity, see
p. 239, 244-245, 247; heat conductivity, see p. 281; heat capacity, see p. 281;
partition coefficient for sorption of organics, see p. 262-264.
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A

Adsorption, 23, 220, 253, 260, 265, 272
Adsorption isotherm, 256, 258, 264
Adsorption kinetics, 257, 258, 276
Advection, see Convection

Air bubbles, 26, 31, 212

Air entry pressure, 31, 218

Air pressure, 29, 213, 215

Alr viscosity, and mass per unit volume, 61,

210
Alternate directions, 385
Anisotropy (of permeability), 62, 69, 87,
109, 145, 178, 194, 224, 236, 372
Aquiclude, 131
Aquifer, 115
alluvial, 121, 153, 170, 198
arid zones, 120
artesian, 125, 128, 191
coastal, 221
confined, 100, 109, 128, 132
geothermal, 129, 277
glacial, 124
multilayered, 129, 362
perched, 122
phreatic, 118
reserves, 132
unconfined (or water table), 1, 86, 116,
132, 149, 194, 361
valley, 116, 198
volcanic, 127, 244
Aquitard, 131, 180, 187, 362, 397
Archie’s formula, 34
Arid zones, 120
Arithmetic mean, 81, 82, 334

B

Bactena, 122, 226, 252, 253, 265
Base level (karstic systems), 126
Bedrock, 86, 89, 116, 138, 160, 164
Boulton’s leakage solution, 186
Boundary between two media, 16, 138
Boundary conditions
flow equation, 135, 151, 152, 166, 169,
199, 241, 349, 372, 379
transport equation, 241
Boundary elements, 340
Bretjinski’s formula, 62
Brownian motion, 232, 272, 393
Buoyancy, 91

C

Calibration of a model, 400

Capillary fringe, 31, 32

Capillary pressure, 28, 210, 215, 218

Capillary retention, 26, 32, 35, 276

Capillary rise, 29, 31

Capillary tubes, 55, 236

Cation exchange capacity, 254

Chapeau functions, 375

Characteristic curve, of a well, 155

Choleski’s algorithm, 381

Chott, 120

Clay, 21, 23, 30, 73, 78, 233, 252, 255

Coeflicient of molecular diffusion, see
Diffusion

Co-kriging, 324

Colloids, 253, 270, 274

Compaction, see Consolidation
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Compressibility coefficient
gas, 210
water, 40, 102

Compressibility of a porous medium, 45,
96, 98, 103, 112, 210

Concentration, 228

Condensation, 12

Conditional simulation, 287, 336

Conductivity, thermal, 277, 281

Confidence interval, 297, 322

Consolidation, 90, 94, 97, 112

Consolidation stress, 98

Continuity equation, 40, 41, 50, 87, 97,
100, 101, 208, 214, 215, 345

Convection, 230, 244, 281

Convective cells, 282

Conversion factors, 407, 410

Coupled processes, 83

Covariance, 18, 288, 292, 297, 315, 327, 331

Crank-Nicholson’s approximation (finite
differences), 359

Critical time step, explicit approximation,
358, 399

Crystalline rocks, 78, 127

Current number, 395

D
Dams, 120
Darcy’s law, 52, 56, 58, 73, 74, 83, 101,
208,213

Data collection, 396

Dead-end pores, 24, 32

Denitrification, 122

Desorption, 256, see also Adsorption

Development of a well, 126, 156

Diffusion, 232, 272, 279

Diffusion equation, 85, 89, 97, 107, 109,
112, 141, 146, 161, 211, 214, 332

Diffusivity (of aquifer), 112, 162, 198, 199,
220, 397

Dirichlet’s condition, 135

Dispersion, 234

numerical, 241, 389

Dispersion coefficients (longitudinal and
transversal), 236, 238, 242

Dispersion tensor, 236, 249, 276

Dispersion variance, 291

Dispersivities, 238, 244, 247, 278

Distribution coefficient, 256, 260, 267

Index

Ditch, 155

Double ring infiltration test, 219
Doublet (of wells), 151, 160
Drainage, 31, 35, 211

Drawdown, 144, 156, 168, 226
Dufour’s effect, 83
Dupuit-Forscheimer’s formula, 150
Dupuit’s hypothesis, 87, 118, 164
Dupuit’s solution, 147, 159

E

Effective grain size d,y, 20, 62, 220, 237
Effective stress, 90

unsaturated medium, 99
Electro-osmosis, 83
Electrophoresis, 83
Ensemble average, 17, 80, 82, 287
Equation of state, 40, 96, 102, 209
Equipotential line (or surface), 116
Equivalent per liter, 229
Ergodicity (of a random function), 19, 300
Error function, 199
Error of estimation, 296
Error of measurement, 299, 304
Eskers, 124
Estimation of a variable, see Kriging
ETg, ETg, 6, 403
Eulerian coordinates, 40, 102
Evaporation, 3, 8
Evaporites, 126
Evapotranspiration, 4, 6, 403
Exchange capacity, see Cation exchange

capacity
Explicit approximation (finite differences),
358
F
Fault, 136

Fick’s law, 83, 232

Field capacity, 27

Filter coefficient, 273, 275
Filtration, 251, 252, 270
Fingering, 212

Finite differences, 339, 342, 388
Finite elements, 340, 368, 394
Fixation, see Adsorption

Flow lines, 116



Index

Flow path, see Streamline
Formation factor, 34, 233
Fourier’s condition, 135, 138, 365
Fourier’s law, 83, 227
Fractures
associated matrix, 71, 245
flow, 14, 53, 65, 68, 79, 125, 127, 197,
202, 243, 266, 271
orientation, 70
Free surface, see Water table

G

Galerkin’s approximation, 374

Gamma logging, 34

Geochemical interaction, in porous media,
252, 255, 260

Geometric mean, of permeability, 82, 308

Geothermal energy, 129, 277

Ghyben - Herzberg principle, 223

Gir’s approximation (finite differences), 360

Glacial till, 78, 124

Grain size distribution, 19, 20, 21, 36, 220,
237

Gravel, 21, 78, 277

Gravel pack, 156

Gravity (forces of’), 56, 59

Green and Ampt’s infiltration equation, 217

Groundwater divide, 118

H

Hantush’s leakage factor, 181, 397
Harmonic mean of permeability, 81, 82, 332
Hazen’s formula, 62
Head, 50, 52, 60, 160, 213, 324, 332
Heat capacity, see Specific heat
Heat transfer, in porous media, 277
Homogeneity (of a random process), 19, 288
Horner’s diagram, 167, 177
Houpeurt-Pouchan’s method, 167, 177
Hydraulic conductivity, 58, 60, 203, 213,
219,220

values, 78
Hydraulic diameter, 66
Hydraulic gradient, 58, 635, 73, 74
Hydrocarbons, 207, 225, 230, 262
Hydrodynamic chromatography, 271
Hydrologic cycle, 8, 9, 10

437

Hydrophobic theory, 260
Hysteresis (of capillary pressure), 31,211,214

I

Ice, see Snow and ice
Images, method, 151, 169
Imbibition, 31, 211
Implicit approximation (finite differences),
359
Infiltration, 2, 7, 10, 118, 120, 198, 216,
219, 366, 397
Initial conditions, 142
Intercepted rain, 10
Interface,
air—water, 29, 213
fluid-solid, 22, 47, 101, 259
salt water—fresh water, 221, 415
two fluids, 207, 220
Interfacial tension, 28, 30, 210
Interpolation, see Kriging
Intrinsic hypothesis, 291, 312
Intrinsic random functions, 312
Inverse problem, see Calibration of a model
Ton, 229, 253, 255, 264
Ton exchange, 253
Irreducible saturation, 28, 32, 209
Iterative methods, for solving linear systems,
382

J

Jacob and Lohman’s artesian solution, 191
Jacob’s logarithmic function, 163, 168
Jacobian function, 147, 378

K

Kaolinite, 21, 254

Karstic systems, 79, 125
Kinematic dispersion, 234
Koseny-Carman’s formula, 62
Kriging, 286, 310, 318, 324, 396

L

Lagrangian coordinate system, 102, 108,
112,248
Laminar flow, 65
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Laplace’s solution, 162

Leakage flux, 110, 115, 123, 131, 179, 186,
187, 363, 397

Lefranc’s test, 201

Leibnitz’ rule, 46

Limestone, 78, 116, 125

Line source, 157

Lugeon’s test, 202

M

Mass per unit volume
buoyant soil, 92
dry soil, 91
saturated soil, 91, 100
solid grains, of a porous medium, 91, 253
water, 39, 40, 44, 223, 239, 240, 281, 416
Material derivative, 102, 108
Measurement errors, see Error of
measurement
Meniscus, 29, 211, 212
Method of characteristics, 391
Mobility, 209
Moisture capacity, specific, 214
Moisture content, 1, 5, 26, 32, 132, 213,
216, 219, 276
Molality, 229
Molarity, 228
Molecular diffusion, see Diffusion
Monte-Carlo method, see Simulation
Montmorillonite, 21, 22, 233, 254, 255
Moving neighborhood, 306, 317
Multiphase flow, 207, 223

N

Natural convection, 281

Navier-Stokes equations, 40, 52, 55, 56,
57,59, 63,75

Nested meshes, 351, 399

Network optimization, 308

Neuman’s anisotropic unconfined solution,
194

Neumann’s condition, 135

Neutron logging, 34, 219

Newtonian fluid, 39

Nonlinear problems (finite differences or
elements), 361, 387

Nugget effect, 304, 316

Numerical dispersion, 389

Index

Octanol, 261

Ohm’s law, 83

0il, 207, 225, 230

Onsager’s matrix, 83

Organic carbon, 264

Organics, 260

Osmosis (chemical or thermal), 83
Ostrogradski’s formula, 41
Outcrop, 136, 137

P

Papadopoulos and Cooper’s well capacity
solution, 190
Parlange’s infiitration equation, 216
Particles in cell, 392
Partition coefficient, see Distribution
coefficient
Peclet number, 237, 279, 389, 394, 395
Peltier’s effect, 83
Penetration of a well, 157, 164, 188, 197
Percolation theory, 71
Permafrost, 9, 125
Permeability
coefficient of, 58
composition (average), 81, 308, 332, 354
directional, 65, 67, 69
electro-osmotic, 83
intrinsic, 60, 208
measurements, 75
relative, 208
tensor, 62, 69, see also Anisotropy
variance, 80, 82
Perturbation method, 334
Petroleum products, 207, 225, 230
Phenols, 225, 264
Philip’s infiltration equation, 216
Piezometer, 37, 51, 117
Piezometric map, 118, 119, 323
Piezometric surface, 128
Pingo, 125
Plaster blocks, 38
Pocket test, see Lefranc’s test
Poiseuille’s formula, 55, 234, 271
Poisson’s ratio, 103
Pollution, 122, 225, 228, 267
Porosity
drainage, see Specific yield



Index

kinematic, 24, 25, 32, 50, 101, 230, 240,
259,273
measurements, 33
packing of spheres, 19
surface, 20, 50
total, 14, 32, 62, 101, 133, 210, 233, 239,
259,273,278, 281
values, 36
variation, 96
Potential, of flow, 71, 145, 157, 224
Pressure gauge, 37
Principal directions of anisotropy, 64, 69,
146, see also Anisotropy
Properties of soils and rocks, 417
PSOR (or Frankel-Young’s method), 383
Pumping test, 156, 168, 178, 186, 187, 190,
191, 194, 197, 201, 203

Q

Quadratic loss in a well, 155
Quicksands, 93

R

Radial coordinate system, 147, 162, 203

Radioactivity, 265, 414

Radius of action of a well, 150, 165, 181

Rainfall, 2, 8, 9, 118, 121, 286

Random function (RF), 17, 49, 80, 285,
287, 312

Random process, 17, 285

Random walk method, 393

Rayleigh number, 283

Realization, of a random function, 17, 287,
335

Recharge, see Infiltration

Recovery curve, of a well test, 167, 177

Regionalized variables, 285

Relative roughness, of a fracture, 66

Representative elementary volume (REV),
15, 42

Resistivity, electric, 34

Retardation factor, 256, 260, 267

Retention, see Adsorption

Reynold’s number, 65, 74

Richard’s equation (unsaturated flow), 214

Rotation in cartesian coordinates, 63, 70, 372

Roughness of a fracture, 66
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Rouss’ effect, 83
Runoff, 3, 120

Salt flat, 120

Saltwater, properties, 415, 417

Saltwater encroachment, 221

Sand, 21, 30, 78, 118, 233, 275

Saturation, 26, 207, 215, 276

Scaling (of soil properties), 220

Seawater, see Saltwater

Sebkha, 120

Sedimentation current, 83

Seepage face, 141, 150

Seepage force, 92

SI system, 407

Sichardt’s formula, 74

Silt, 21, 78

Simulation, 287, 335

Sinkhole, 125

Skin effect, 156

Slattery’s formula, 47

Slug test, 203

Snow and ice, 8, 9, 125, 415

Soils and rocks, properties, 417

Soret’s effect, 83

Sorption, see Adsorption

Source/sink term, 49, 88, 111, 139, 144,
157, 162, 342, 367

Spatial integration, of a property, of a
porous medium, 16, 41, 59, 298,
308, 354

Specific capacity, 156, 318

Specific heat, 278, 281

Specific storage coefficient, 107, 363, 364

Specific surface, 22, 62

Specific weight, 91

Specific yield, 27, 32, 88, 132, 164, 195,
361, 396

Spectral method, 331

Spherical coordinate system, 157, 206

Spring, 123, 125, 126

State variable, 17, 287, 335

Stationarity, of a random function, 18, 288,
309, 331

Statistical inference, 287, 300, 315

Steady state, 144, 343, 370, 376

Storage coefficient, 111, 113, 133, 164, 169,
177, 195, 356, 361, 396
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Stream function, 158

Streambed, sealing, 120, 122, 139, 270, 274,
365

Streamline, 116, 158, 224, 248

Streltsova’s leakage solution, 187

Sublimation, 8§, 10

Subsidence, 99, see also Consolidation

Substantial derivative, 102

Suction, 32, 213, 218, 219

Suction potential, 30, 214

Superposition, principle, 143, 166

T

Temperature, 12, 39, 40, 61, 277, 286, 403,
413

Tensiometer, 37, 206, 219

Tensor, second order, 63

Terzaghi’s theory, 90

Theis’ solution, 162, 171, 176, 181, 187,
192, 195"

Thermal conductivity, 277, 281

Thermal expansion, of water, 283

Thermal filtration, 83

Thiem’s formula, see Dupuit’s solution

Thiessen polygons, 353

Thomas’ algorithm, 386

Thornthwaite’s formula, 403

Tide, 221

Tortuosity, 233

Total stress, 90

Tracers, 25, 77, 240, 248, 278, 398

Transient state, 161, 356, 373, 379

Transmissivity, 72, 89, 110, 131, 145, 147,
164, 308, 318, 330, 337, 354, 396

Transpiration of plants, see
Evapotranspiration

Transport equation, 230-240, 267, 272,
335, 387

Trapped air, 31, 211, 212

Triangularization of a matrix, 381

Tunnels (for water drainage), 127

Turbulent flow, 65

Ultrafiltration, 83
Units, 407
Unsteady state, see Transient state

Index

v

Variogram, 292, 300, 309, 321, 327
Velocity potential, 157
Velocity
Darcy’s, see Velocity, filtration
filtration, 41, 49, 58, 230, 239, 273
mean microscopic, 50, 77, 239, 240,
256,271,278
solid, 47, 100, 112
total (in two-phase flow), 215
Viscosity
dynamic, 40, 59, 61, 240, 281
kinematic, 40
volume, 40
Void ratio, 14
Voronoi polygons, 353

W

Wadi, 120
Water
adhesive, 22, 28, 32, 234, 259, 276
connate, 12
fossil, 12
free, 23, 24
funicular or gravitational, 26
hygroscopic (see also water, adhesive), 28
juvenile, 12
molecules, 22
pendular, 27
pressure, 29, 90, 108, 214, 220
properties, 416
thermal, 12, 129, 277
vapor, 9
volume of reserves, 9
Water table, 1, 5, 32, 52, 86, 116, 120, 123,
132, 139, 225
Watershed (underground), 118
Wedge, salt water - fresh water, 222, 415
Well, 126, 147, 150, 151, 153, 155, 163, 367
Well capacity effect, 190 i
Well line, 153
Well screen, 156
Well test, see Pumping test
Wetting, 31, 211
Wetting fluid, 29
Wetting front, 5, 216
Wilting point, 30

Y
Young’s modulus, 103
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