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The Groundwater Project Foreword 

The United Nations theme for World Water Day on March 22, 2022, is 

“Groundwater: making the invisible visible.” This aligns with the essence of the 

Groundwater Project (GW-Project), which is aimed at raising groundwater consciousness 

and strengthening groundwater expertise worldwide, and is being accomplished by 

publishing books and supporting materials about “all-things-groundwater”. 

The GW-Project, a non-profit organization registered in Canada in 2019, is 

committed to contribute to advancement in education and brings a new approach to the 

creation and dissemination of knowledge for understanding and problem solving. The 

GW-Project operates the website https://gw-project.org as a global platform for the 

democratization of groundwater knowledge and is founded on the principle that:  

“Knowledge should be free and the best knowledge should be free knowledge.” Anonymous 

The mission of the GW-Project is to provide accessible, engaging, high-quality, 

educational materials, free-of-charge online in many languages, to all who want to learn 

about groundwater and understand how groundwater relates to and sustains ecological 

systems and humanity. This is a new type of global educational endeavor in that it is based 

on volunteerism of professionals from different disciplines and includes academics, 

consultants and retirees. The GW-Project involves many hundreds of volunteers associated 

with more than 200 organizations from over 14 countries and six continents, with growing 

participation. 

The GW-Project, which began publishing books in August 2020, is an ongoing 

endeavor and will continue with hundreds of books being published online over the 

coming years, first in English and then in other languages, for downloading wherever the 

Internet is available. The GW-Project publications also include supporting materials such 

as videos, lectures, laboratory demonstrations, and learning tools in addition to providing, 

or linking to, public domain software for various groundwater applications supporting the 

educational process. 

The GW-Project is a living entity, so subsequent editions of the books will be 

published from time to time. Users are invited to propose revisions. 

We thank you for being part of the GW-Project community. We hope to hear from 

you about your experience with using the books and related materials. We welcome ideas 

and volunteers! 

 

The GW-Project Steering Committee 

November 2021 

  

https://gw-project.org/
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Foreword 

Fluoride is a double-edged sword in its relationship to human well-being because 

it is a beneficial element when present in the right amount in drinking water. Beneficial 

levels of fluoride promote good health, but slightly more or less is harmful. Fluoride occurs 

naturally in minerals and rocks and chemical analysis of water samples drawn from wells 

reveal that it dissolves into groundwater in ionic form (F-). Fluoride concentrations at levels 

above those specified for safe drinking water (between 1 and 4 mg/L depending on the 

country) is a widely distributed problem but is most severe in arid and semi-arid countries, 

which is where nearly 40 percent of the global population resides. It is one of more than a 

dozen naturally occurring elements in nature that are essential or beneficial to human 

health when consumed in the appropriate amounts, but fluoride is unique because its 

benefit is largely related to dental health. Addition of fluoride to municipal drinking water 

to promote dental health is controversial because it can be harmful to human health when 

consumed in water at concentrations above the optimal concentration of 0.7 to 1 mg/L as it 

can cause fluorosis, which is a weakness of the bone and teeth and may result in 

calcification of ligaments. Most wells around the globe have not been tested for fluoride 

and it is likely that excessive geogenic fluoride occurs in millions of domestic water wells. 

It is estimated that more than 200 million people suffer from fluorosis and an equal or 

greater number suffer from increased dental caries due to a lack of fluoride. 

This book describes the occurrence, distribution, origins and impacts of fluoride in 

groundwater and summarizes methods for fluoride removal from drinking water. It 

includes the most comprehensive global listing of reported fluoride occurrences which 

includes more than 85 countries. This book presents the geochemical principles that govern 

fluoride in groundwater which provides a basis for expectations concerning fluoride 

problems when there is minimal direct knowledge. The two authors, Dr. Kirk Nordstrom 

of the United States and Dr. Pauline Smedley of the United Kingdom, are exceptionally 

experienced hydrogeochemists who have published extensively about the occurrence of 

geologically-derived constituents, including fluoride, in groundwater. Their work 

encompasses theory and practice with a global perspective. It is suspected that there are 

many millions of people in both high- and low-income nations unknowingly drinking 

groundwater with unsafe levels of fluoride. This book provides the scientific knowledge 

base for better recognition of fluoride in groundwater supplies and for action toward 

alleviating the problem. 

 

John Cherry, The Groundwater Project Leader 

Guelph, Ontario, Canada, November 2021 
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Preface 

This book was written as an introduction to the occurrence, geochemistry, and the 

treatment of high-fluoride groundwater. Dissolved fluoride is like several other elements 

which have been shown to be beneficial to human health but only at relatively low 

concentrations and detrimental to human health at higher concentrations. It is not essential 

to human health such as Se or Zn or Co or vitamin C, but it substantially decreases the 

occurrence of dental caries, particularly for the development of children’s teeth. 

Because groundwater is being extracted at ever increasing rates, there is an 

increasing burden on society to regularly monitor groundwater quality to avoid ingesting 

injurious amounts of dissolved constituents. Public supply wells in developed countries 

are usually monitored for compliance with regulatory standards. However, water quality 

of private wells is often not required to be tested and deleterious concentrations of 

inorganic or organic constituents can affect the health of livestock, crops and humans. This 

book was written partly to inform the public that even though groundwater is naturally 

occurring, it can contain concentrations of several chemical elements that should not be 

consumed or used for cooking or used for plants and animals without treatment. 

Furthermore, excessive pumping of an aquifer can change the groundwater composition 

from an acceptable to an unacceptable designation in short periods of time. How climate 

change affects groundwater quality is another potential danger that we are only just 

beginning to appreciate. 

The authors have studied many aspects of groundwater chemistry and have seen 

the results of communities that have been unknowingly exposed to high concentrations of 

fluoride and arsenic. They have joined with many others worldwide to sample and analyze 

groundwaters in different environments and interpret the processes that give rise to 

unhealthy concentrations of major, minor, and trace elements. From such studies, scientists 

can gradually reach conclusions of a general nature that make it easier to suggest whether 

a particular aquifer subject to a particular climate is likely to contain groundwater with 

natural contaminants that must be treated before using. It is only from the substantial work 

of so many scientists who came before us that we can contribute further to this body of 

accumulated knowledge we call hydrogeochemistry. 
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1 Introduction 

The growing global demand for groundwater faces two naturally occurring, or 

geogenic, constituents that may be present at concentrations injurious to human health. 

These are fluoride (F) and arsenic. For each element, more than 200 million people are 

estimated to be chronically exposed through drinking water (primarily groundwater) 

exceeding the respective drinking-water standards (Edmunds and Smedley, 2013). The 

global map developed by Amini and others (2008) estimated about 260 million people 

exposed to high-F drinking water, which is corroborated by Wang and others (2020). 

Many high-F groundwater provinces have been recognized worldwide, typically in 

arid and semi-arid regions. Prevalent regions have been documented from Argentina, 

China, India, Iran, Mexico, Pakistan, Sri Lanka, western USA and numerous countries in 

Africa. Occurrences are typically associated with large sedimentary basins, granites, and 

volcanic and geothermal terrains. 

Fluoride is not an essential trace element for human health, but it is long-established 

that the element has a beneficial effect in protecting against dental caries (tooth decay), a 

factor which has led to the widespread use of fluoride toothpastes and mouthwashes. By 

contrast, long-term exposure to high concentrations of fluoride in drinking water can lead 

to fluorosis, which can range in severity from mild dental mottling to a crippling skeletal 

form (Fawell et al., 2006). Fluorosis has been recognized as affecting ancient civilizations 

from 2000 years ago (Lukacs, 1985; Yoshimura et al., 2006). Fluorosis symptoms are related 

to dose, but young children, the elderly and people with inadequate diets and poor health 

are particularly vulnerable (Irigoyen-Camacho et al., 2016; Malde et al., 2004). Once 

developed, the effects of fluorosis are irreversible. Evidence supporting fluoride as a 

neurotoxin has also been presented by Grandjean (2019), the National Research Council 

(NRC) of the United States National Academies of Science (2006), and Ozsvath (2009). The 

evidence for reproductive, developmental, endocrine, digestive, genetic, and cancer injury 

has been summarized by NRC (2006). 

In countries with high concentrations of F in drinking water, defluoridation is 

included among the mitigation responses. By contrast, in some developed countries or 

regions with low concentrations, decisions have been made to treat public water supplies 

by fluoridation. As of 2011, nearly 370 million people across 25 countries were estimated to 

have been supplied with artificially fluoridated water, with another 18 million receiving 

naturally fluoridated water at near optimum concentrations (O'Mallone et al., 2016). Target 

doses for fluoridated water are typically around 1 mg/L. On grounds of health concerns, 

water fluoridation remains a highly controversial topic (Connett, 2007). 

Our primary purpose is to introduce current knowledge of the occurrence of F in 

groundwater and to describe the major processes controlling the solubility and mobility of 

F in groundwater systems. Groundwater concentrations of F depend on water-rock 
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interactions and therefore the aquifer and bedrock mineralogy and composition are of 

prime importance. Groundwater residence time, temperature, and the solution 

composition are equally important. The lithologic unit of the aquifer and its mineralogy are 

the source material while the solution composition, temperature, and residence time also 

determine its solubility or degree of reactivity. 
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2 History of Fluoride in Water and the Recognition 

of Fluorosis 

The chemical element fluorine was thought to be an element in compounds such as 

fluorspar, a common name for fluorite, from the beginning of the 19th century and had been 

detected in bones, teeth, and ivory (Emsley, 2001; Roholm, 1937). At the suggestion of 

André-Marie Ampere, Sir Humphrey Davy named it fluorine in 1813 before it was finally 

isolated in 1886 by Moissan.  

Elemental F exists as a diatomic gas, F2. When dissolved in water it has a strong 

affinity for one electron to attach to its outer valence shell and becomes a fluoride ion, F-. 

Methods for analytically determining F in water were available before 1886 but were not 

always reliable. Gooch and Whitfield (1888) attempted to determine F in Yellowstone’s 

thermal waters but could not detect it. Allen and Day (1935) also attempted to determine F 

in Yellowstone’s waters and discovered a flaw with Gooch and Whitfield’s procedure. 

Using an improved method, they found 15 to 20 ppm F in alkaline thermal waters. Indeed, 

quantitative methods for determining F in water continued to improve during the 20th 

century in parallel with the discovery of dental and skeletal fluorosis and their association 

with high-F groundwaters. 

In 1888, German dentist Kühns reported on the occurrence of discolored teeth 

(brown and black) among residents in Durango, Mexico, who had been drinking from a 

hot spring. He suspected iron and/or manganese staining, but it was most likely fluoride. 

In 1901, Dr. Frederick McKay arrived in Colorado Springs, Colorado, and opened a dental 

practice having just graduated from dental school. He discovered that many residents had 

seriously browned and mottled teeth (“Colorado brown stain”) yet negligible signs of tooth 

decay. Through his perseverance over 30 years, he discovered the cause was the ingestion 

of high-F drinking water. There are numerous fluoride minerals that occur in the Pikes Peak 

area around Colorado Springs including the relatively rare mineral cryolite, Na3AlF6, which 

is fairly soluble (Roberson and Hem, 1968). Undoubtedly, the abundance of these minerals 

contributed substantially to the F-rich drinking water supplies of Colorado Springs 

residents. Dr. McKay continued to seek the cause of mottled teeth enlisting the help of 

dental experts and published several papers on their research. They were convinced that it 

had to be something in the water supply but could not identify the substance until many 

years later. 

The first experimentally demonstrated relation between high-F dosages and dental 

defects in experimental rats was reported in 1925 (McCollum et al., 1925) and subsequently 

confirmed by other researchers. However, there was not thought to be the same effect for 

human teeth. It was not until 1931 when chemists working for ALCOA in Bauxite, 

Arkansas, discovered that the occurrence of mottled teeth in some residents was caused by 
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fluoride in the groundwater (derived from using cryolite as a flux in the electrolytic 

extraction of aluminum). Dr. Churchill, chief chemist for ALCOA, contacted Dr. McKay 

and suggested he send out water samples from Colorado Springs for F determinations. 

These results and others linking high-F drinking water in five states to mottled teeth were 

published in 1931 (Churchill, 1931). Further confirmation came the same year when 

researchers at the University of Arizona Agricultural Experiment Station showed that a 

high-F water fed to white rats produced defects nearly identical to those in the community 

of St. David, where residents were using well water with up to 7 ppm F (Smith et al., 1931). 

Independently and concurrently with the work of McKay and others, Henri Velu 

was investigating the cause of animal and human teeth disorders in North Africa during 

the early 1920s. He concluded that high phosphate zones in rocks and sediments were 

mobilizing fluoride and causing dental fluorosis (Roholm, 1937; Velu, 1931). 

The first major task for H. Trendley Dean when he was appointed head of the Dental 

Research Section of the newly formed (1931) National Institute of Health was to determine 

whether F was the sole cause of mottled teeth and secondly to determine if there is a 

threshold concentration below which mottling is not observed. Based on a considerable 

amount of data collected across the United States, he developed the clear relationship 

shown in Figure 1. The slim margin between healthy children’s teeth and mottled teeth was 

estimated to be a concentration of 1 mg/L (Dean, 1936). This concentration has found 

substantial support by numerous subsequent studies (e.g., as indicated by references in Ali 

et al., 2016; Jagtap et al., 2012; NRC, 2006). 

 
Figure 1 - Prevalence of mottled teeth in areas as it relates to the mean annual 
fluoride concentration in the water supply (modified from Dean, 1936). 

Dean made observations on 7,257 children aged 12 to 14 in 21 cities using a 5-point 

classification system. This work led to further long-term trials with fluoridation in several 

cities and in 1962 the United States Public Health Service provided a drinking water 

standard for F of 0.7 to 1.2 mg/L depending on mean annual temperature. Following the 

passing of the National Environmental Protection Act in 1970 and the formation of the 
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United States Environmental Protection Agency (EPA), a national interim drinking water 

standard of 1.4 to 2.4 mg/L was proposed in 1975. In 1986 the EPA established a maximum 

contaminant level goal (MCLG, non-enforceable) of 4 mg/L for the prevention of skeletal 

fluorosis and the maximum contaminant level (MCL, enforceable but interim standard) 

was and is the same. A secondary MCL (SMCL, non-enforceable) of 2 mg/L was also 

recommended for cosmetic reasons. The National Academy of Sciences reviewed these 

findings from 2002 to 2006 and recommended that the 4 mg/L MCLG is too high and that 

the EPA should establish a lower standard (NRC, 2006). In 2015 the United States Public 

Health Service recommended lowering the F concentration for fluoridation of municipal 

water supplies to 0.7 mg/L based on a study by Heller and others (2007). Details of the 

debates, the toxicological and epidemiological evidence, and known exposures in the USA 

are provided in NRC (2006), federal records, and Freeze and Lehr (2009). 

During the same time period that dental fluorosis was being identified and studied 

in the USA, notable worldwide examples were reported. Mottled teeth were reported in 

China by 1930 (Anderson and Stevenson, 1930); fluorosis was recognized in India by 1937 

(Day, 1940; Shortt et al., 1937a; Shortt et al., 1937b; Wilson, 1939b); in Japan by 1931 

(Williamson, 1953); in England by 1933 (Ainsworth, 1933; Murray, 1996a; Wilson, 1939); 

and in Africa mottled teeth in mammals were recognized by 1922 (Velu, 1922) and in people 

by 1931 (Ockerse, 1953; Tekle-Haimanot et al., 1987; Velu, 1931). In Morocco and Algeria, 

the condition observed in animals was referred to in French as “le Darmous” (Velu, 1931). 

In the United Kingdom, the earliest observations of mottled teeth were recorded 

among school children in Essex, where an association was established with fluoride in local 

Chalk groundwater at concentrations of 4.5 to 5.5 mg/L (Ainsworth, 1933; Ainsworth, 1934; 

Hoather, 1953). By contrast, during World War II, the dental health of children evacuated 

from the town of South Shields in north-east England was noted to be much better than 

that from the children of the host county in the north-west, a factor attributed to the South 

Shields water supply having a fluoride concentration of 1.4 mg/L (Mullen, 2005). 

The Danish toxicologist Kaj Roholm published a definitive book on F toxicity that 

became the standard for many years, as a result of his investigations into the symptoms of 

workers at a chemical plant in Copenhagen exposed to cryolite (Roholm, 1937). 
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3 Literature on Fluoride in Water 

Numerous scientific papers, books, and news articles have been published on 

fluoride in drinking water supplies and natural waters, and fluoridation of water supplies, 

exemplified by The Fluoride Wars (Freeze and Lehr, 2009) and The Case Against Fluoride 

(Connett et al., 2010). An example of the rapid growth in this literature is shown in Figure 2 

using a Scopus search for F in drinking water or F in groundwater or fluorosis or 

fluoridation. The bar graph shows the rapid increase in the number of articles since the first 

publications in the 1930s. There are well over 1000 reports from China and India combined. 

We compiled nearly 500 reports from a total of 85 countries worldwide as shown in the 

table presented in Box 1. 

 
Figure 2 - Increase in the number of articles on fluorosis and fluoride in groundwater 
per decade. 

A journal entitled Fluoride has been published by the International Society for 

Fluoride Research since 1968. Elsevier has a Progress in Fluorine Science book series 

oriented toward the properties and uses of fluorinated synthetic compounds and the 

Journal of Fluorine Chemistry that began in 1971. In 2006, the first two volumes of a 

planned series on Advances in Fluorine Science were published which included sections 

on F in water, air, and the environment. Further volumes have not appeared. 

Numerous reviews of F in water as a global issue have been published (Ali et al., 

2016; Ayoob and Gupta, 2006; Banerjee, 2015; Brindha and Elango, 2011; Chowdhury et al., 

2019; Dissanayake and Chandrajith, 2009; Edmunds and Smedley, 2013; Hug et al., 2020; 

Kabir et al., 2020; Kimambo et al., 2019; Lacson et al., 2020; Mumtaz et al., 2015; O'Mallone 

et al., 2016; Ozsvath, 2009; Srivastava and Flora, 2020). Kut and others (2016), Thole (2013) 
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and Malago and others (2017) reviewed F in African groundwater; Ali and others (2019a) 

and Yadav and others (2019) reviewed Asian groundwater; and McMahon and others 

(2020) is the latest compilation and review of F in US groundwater. Several other reviews 

on individual countries have also been reviewed and are cited under the country names in 

our compilation in Box 1, Table Box1-1. A bibliometric analysis of groundwater research 

for the period 1993-2012 has shown that the topic “fluoride” is either the second or third 

fastest rising topic after “arsenic” and “climate change” (Niu et al., 2014). Given the 

enormous literature, this book cannot cover all the reports available on the subject. We 

summarize the more important aspects from around the world. 

  



Fluoride in Groundwater D. Kirk Nordstrom and Pauline L. Smedley 

 

8 

The GROUNDWATER PROJECT ©The Author Free download from gw-project.org 

Anyone may use and share gw-project.org links. Direct distribution of the book is strictly prohibited. 

4 Regulations and Recommendations for Fluoride in 

Drinking Water 

Drinking water is, in most places, the primary source of F in the diet. Teeth and 

bones are particularly sensitive to aqueous F concentrations and 0.7 to 1 mg/L is estimated 

to be optimal to prevent dental caries in the developing teeth of children without causing 

dental fluorosis (Heller et al., 2007). 

The World Health Organization (WHO) guideline value for fluoride in drinking 

water is 1.5 mg/L and this has been adopted as the national standard in most countries 

across the world, although higher limits are set in some countries with particular fluoride 

challenges (Table 1). As noted above, the US Environmental Protection Agency (EPA) has 

set the primary standard, the maximum contaminant level (MCL), for fluoride in US public 

drinking water at 4 mg/L, with the secondary standard at 2 mg/L. Tanzania adopted in the 

1970s a temporary standard for fluoride in drinking water of 8 mg/L, which was reduced 

to 4 mg/L four decades later in 2014 (EWURA, 2014). China has adopted a national standard 

of 1 mg/L (Wen et al., 2013) as shown in Table 1. 

Table 1 - Regulations and recommendations for fluoride in drinking water from a number of 
organizations or countries (after Edmunds and Smedley, 2013). 

Institution/ 

Nation 
Limit/Guideline 

Value 

(mg/L) 
Comment 

WHO Guideline value (GV) 1.5 Fourth edition (2011) guidelines, as previous 

US EPA 
Maximum contaminant 

level guideline (MCL) 
4 Enforceable regulation 

US EPA Secondary standard 2 
Guideline intended to protect against dental 

fluorosis; not enforceable 

US PHS Recommendation 0.7 Recommended upper limit for fluoridation 

EC 
Maximum admissible 

concentration (MAC) 
1.5 1998 regulations 

Canada National standard 1.5  

India National standard 1.5 ‘Acceptable’ limit 1.0 mg/L 

China National standard 1  

Tanzania National standard 4  
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5 Rock and Sediment Sources 

Groundwaters develop their composition by a complex array of geochemical 

processes that include mineral dissolution and precipitation, sorption, oxidation-reduction 

reactions, microbial interactions, and ingassing and degassing. It is helpful to have some 

knowledge of what types of rocks and sediments are likely to be elevated in F content and 

why. 

Chemical analyses of rocks, minerals, and waters are the cornerstone of the field of 

geochemistry and developed in parallel with the field of chemistry. Compilation and 

interpretation of numerous analyses led to an understanding of the distribution of chemical 

elements within the Earth. Early determinations of F in rocks were not reliable because of 

analytical difficulties until the 1930s and 1940s and only then was F recognized as a not 

insignificant element in the Earth’s crust (Research Items, 1940; Shepherd, 1940). 

Fluorine is most concentrated in three main types of rocks: silicic igneous rocks and 

volcanic ash; shales and similar shallow ocean sediments; and marine phosphorites 

(Fleischer et al., 1972). Trends in F geochemistry for rocks were early summarized by 

Fleischer and Robinson (1963) and Seraphim (1951) who showed that F was more enriched 

in silicic (or felsic) igneous rocks (granites and rhyolites). Further they found that alkalic 

rocks, high in Na and K, are the richest in F. Later compilations have been summarized by 

Cannon and others (1974) as well as Hayes and others (2017). An abbreviated summary 

from these references is shown in Table 2. For a more detailed breakout of rock types and 

their F content, see Table G1 in Hayes and others (2017). 
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Table 2 - Summary of F concentrations (mg/kg except where noted) in major rocks (Cannon et 

al., 1974
a
; Hayes et al., 2017

b
) and in Ethiopian obsidians (Nagash et al., 2020

c
) in order of 

highest to lowest F concentration. 

Rock type 
F range,  

mg/kg
a 

Average F,  

mg/kg
a 

F range,  

mg/kg
b
 

Average F,  

mg/kg
b
 

Phosphorites  2-4.15 (%) 3.1 (%) 3.05-4.10 (%) 3.3 (%) 

Alkali rhyolites, Kenya   1,700-6,800 3,870 

Obsidians, Ethiopia
c
   20-7,000 3,600 

Schists and gneisses, Colorado   50-81,000 1,180 

Granites, Colorado   60-260,000 1,100 

Phonolites   860-2,200 1,000 

Granites  20-2,700 870   

Shales and clays 10-7,600 800   

Pierre shale   560-880 682 

Andesites    630 

Gabbros   50-1,100 420 

Basalts 20-1,060 360   

Limestones  0-1,200 220   

Sandstones    280-400 

Sandstones 10-880 180   

Coals 40-480 80   

 

5.1 Fluorine in Igneous Rocks 

Many papers in the scientific literature have noted the association of higher F 

content in igneous rocks of high silica content, typically granites, granitoids, and rhyolites. 

Silicic igneous rocks are formed by one or more of three possible processes: assimilation, 

fractional melting, and/or fractional crystallization from a melt that is originally mafic. 

Assimilation is the incorporation of pre-existing silica-rich continental or near-shore rocks 

(sandstone, shales, greywackes, and their metamorphic equivalents) into magma as it rises 

from deep to shallower depths in the crust, making the magma more silicic. Fractional (or 

partial) melting is the melting of minerals with lower temperatures of fusion which would 

be the more silicic and sodic-rich minerals. Fractional crystallization (or differentiation) is 

the process by which a deep magma chamber which is usually strongly mafic in 

composition such as a basalt, begins to crystallize with the more mafic minerals 

crystallizing first, leaving the residual liquid magma less mafic and more silicic in 

composition.  
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Both assimilation and fractional crystallization seem to have occurred for the large 

rhyolitic strata at Yellowstone National Park (Christiansen, 2001; Hildreth, 1981; Hildreth 

et al., 1991). During early stages of magma cooling and fractional crystallization, F is 

“incompatible” in that it cannot enter the lattice structures of the first major minerals 

solidifying from the melt, so it becomes concentrated in the residual liquid. Regardless of 

the relative importance of these magmagenetic processes, there is a clear partitioning of 

incompatible trace elements and isotopes which favors the enrichment of F in the more 

silicic igneous rock and later hydrothermal fluids. A comparison of the average F content 

of the Earth’s mantle of 25 mg/kg (Palme and O'Neal, 2014) with the continental crust 

553 mg/kg (Rudnick and Gao, 2003), also reflects this partitioning. A striking example of 

the relation between the F and SiO2 content of silicic rocks during magma evolution is the 

occurrence of beryllium deposits at Spor Mountain, Utah. After consideration of chemical 

and isotopic data, Dailey and others (2018) concluded that the rhyolites at Spor Mountain 

formed from a basaltic magma that intruded into a previously mixed or hybridized crust and 

then experienced extensive fractional crystallization before eruption. Glass from the 

less-evolved rhyolitic magma contained 0.7 by weight percent F and glass from the 

more-evolved rhyolitic magma contained 1.6 by weight percent F. 

A complicating factor is that at least two processes can change the F content of an 

extrusive igneous rock after it crystallizes: devitrification and hydrothermal alteration. 

Christiansen (2001) published analyses of basalts and rhyolites from Yellowstone National 

Park that included F determinations. These values are plotted in Figure 3 and show the 

largest contents of F in rhyolites except for two samples of devitrified tuff. Devitrification 

allows easily soluble elements to be released more readily by weathering. All these samples 

have negligible hydrothermal alteration. Normally fluorite is found in rock that was 

mineralized from hydrothermal alteration, but it has been found also as phenocrysts in a 

peralkaline rhyolite from Kenya (Marshall et al., 1998). 

An investigation on artificial recharge of a fractured and hydrothermally altered 

breccia pipe in South Africa showed that fluorine-rich apophyllite would release 

unacceptable amounts of fluoride into the groundwater system (Cavé, 1999). 



Fluoride in Groundwater D. Kirk Nordstrom and Pauline L. Smedley 

 

12 

The GROUNDWATER PROJECT ©The Author Free download from gw-project.org 

Anyone may use and share gw-project.org links. Direct distribution of the book is strictly prohibited. 

 
Figure 3 - Fluorine content of basalts and rhyolites from Yellowstone National Park (data from 
Christiansen, 2001). 

5.2 Fluorine in Sedimentary Rocks 

Considerable amounts of F are fixed in marine phosphorite deposits, the primary 

ore of commercial phosphorus, because francolite, a carbonate-fluorapatite, is the dominant 

phosphorus ore mineral. Fluoride contents are typically 2 to 4 by weight percent in 

phosphorites. These deposits were formed in shallow seas of high biological productivity 

such as inland seas, continental shelves, and areas where upwelling of deep nutrient-rich 

ocean water circulates to shallow depths (Föllmi, 1996; Piper and Perkins, 2014). These 

deposits are of many different ages and are found in several places in the world, notably in 

North Africa from Western Sahara and Morocco east to Egypt and Jordan (“Mediterranean 

phosphorites”), eastern seaboard of the USA from North Carolina to Florida, western USA 

(Phosphoria Formation), and in Australia, Russia, China, and Mongolia. Groundwater in 

these areas could potentially be contaminated from F caused by mineral processing 

activities or from natural processes.  

A study on artificial recharge and storage of groundwater encountered release of 

excessive fluoride from the dissolution of carbonate-fluorapatite based on mineralogical 

characterization and dissolution measurements for a sandstone aquifer in Western 

Australia (Schafer et al., 2018). Phosphorites may be closely associated with limestones and 

may be interstratified with clays and shales.  

Microcrystalline fluorite has also been found to form in lake sediments at ambient 

temperatures (Sheppard and Gude, 1969; Sheppard and Gude, 1980; Sheppard and 

Mumpton, 1984). 
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Shales and claystones develop in similar environments to phosphorites and often 

contain some phosphorus mineralization as an important source of F. Sandstones and 

non-phosphatic limestones are among the lowest in F concentration and are usually good 

aquifers for drinking water supplies. 

5.3 Fluorine in Metamorphic Rocks 

Metamorphic rocks cover a broad spectrum of lithologies that include 

metamorphosed igneous rocks, metamorphosed sediments, and hydrothermally altered 

rocks. Rocks that have been hydrothermally altered are more likely to have higher 

concentrations of F but might also have large F gradients in different parts of the rock. Many 

metamorphic rocks contain micas and amphiboles with a hydroxide lattice site that often 

contains some substituted F. However, if the rock contains high concentrations of F in the 

hydroxide site, it is also likely to contain some fluorite and fluorapatite which is usually 

more soluble. Examples of high groundwater F in metamorphic aquifers are scarce, partly 

because these rock types often do not provide a reliable water supply because of low 

permeability unless highly fractured. Chae and others (2007) reported high F 

concentrations in aquifers in South Korea where metamorphic rocks seem to be a greater 

source rock than other types, with granitoids a close second. 
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6 Mineral Sources 

Fluorine is the lightest of the halogen elements and the most electronegative. 

Fluoride ions have the same charge and very similar ionic radius to OH– so that F– 

substitutes readily for hydroxyl positions in minerals (Munoz, 1984). Fluorine occurs as an 

essential component in around 300 minerals, including some halides, phosphates, oxides, 

carbonates, borates, sulphates and silicates. However, the most important fluorine-bearing 

minerals are fluorite, CaF2, and fluorapatite, Ca5(PO4)3F. Fluorite occurs in felsic igneous 

rocks, sediments and as a gangue mineral in hydrothermal deposits including epithermal 

deposits, porphyry Cu and Mo deposits and pegmatites. Fluorapatite is a principal mineral 

of sedimentary phosphorites. Other F-bearing minerals include topaz, Al2(SiO4)(F,OH)2; 

villiaumite, NaF; bastnaesite, (Ca, La, Nd)(CO3)(F); sellaite, MgF2; and cryolite, Na3AlF6 

(Table 3). Topaz occurs in pegmatites and hydrothermal deposits, sellaite in hydrothermal 

assemblages in association with Mg-rich rocks. Cryolite occurrence is usually restricted to 

pegmatite deposits. Bastnaesite, the REE-rich mineral, occurs in association with 

carbonatites and other alkaline igneous rocks. Villiaumite is found in association with trona 

in alkaline igneous provinces (Hayes et al., 2017). 

Phyllosilicate minerals, including biotite, K(Mg, Fe)3(AlSi3O10)(OH,F)2 (Table 2), 

other micas, amphiboles and 2:1 layer clay minerals such as smectites, chlorites and illites 

also contain variable amounts of F (Hayes et al., 2017). In the phyllosilicate minerals, F 

occurs by hydroxyl substitution. Presence of F in clay minerals is responsible for increased 

atmospheric emissions associated with the brick firing industry (Chipera and Bish, 2002; 

Fuge, 2019). 

Table 3 - Principal fluorine minerals. 

Mineral Formula Occurrence 

Fluorite CaF2 
Felsic igneous rocks, hydrothermal deposits, 
sedimentary rocks 

Fluorapatite Ca5(PO4)3F 
Igneous rocks, metamorphic rocks, high-temperature 
hydrothermal deposits, marine sediments 

Francolite (Ca,Mg,Sr,Na)10(PO4,SO4,CO3)6F2–3 
Diagenetic deposits in marine sedimentary rocks, 
skarns 

Topaz Al2(SiO4)(F,OH)2 Felsic igneous rocks, pegmatite 

Bastnaesite (Ca, La, Nd)(CO3)(F) 
Carbonatites, other alkaline ultramafic igneous rocks, 
hydrothermal deposits 

Sellaite MgF2 Hydrothermal deposits 

Cryolite Na3AlF6 Granite pegmatite (rare, main occurrence Greenland) 

Villiaumite NaF Alkaline igneous rocks 

Biotite K(Mg,Fe)3(AlSi3O10)(OH,F)2 Felsic igneous rocks, hydrothermal deposits 

Hornblende (Ca,Na)2(Mg,Fe,Al)5(Al,Si)8O22(OH,F)2 Igneous and metamorphic rocks 

 

Sedimentary phosphorite deposits contain F as fluorapatite and its carbonate 

variant, francolite (Ca, Mg, Sr, Na)10(PO4, SO4, CO3)6F2–3 (Benmore et al., 1983; Baghdady et 
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al., 2016). Francolite, sometimes called carbonate-fluorapatite, is the primary mineral in 

phosphate ore and in the Florida deposits it contains 4 to 5 by weight percent F (Van 

Kauwenbergh et al., 1990). With substitution of CO3
2– for PO4

3– in the crystal structure, F– 

associates with the CO3
2– to balance the charge and accounts for the higher F content of 

francolite compared to that dictated by the structural formula of fluorapatite (McClellan 

and Lehr, 1969). Francolite is also present in some limestones. In marine mudstones, F 

adsorbs to clays. Most sandstones have a relative paucity of F-bearing minerals. 

Substitution of F for hydroxyl ions is also important to the mineral structure of teeth 

and bones. Continuously variable solid solutions between calcium hydroxyapatite 

Ca5(PO4)3(OH) and fluorapatite can occur, the substitution of F resulting in reduced mineral 

solubility. This property and the increased resistance to acid attack is beneficial for 

protection against dental caries (Abou Neel et al., 2016; Chow and Markovic, 1998) and has 

been the rationale for increased use of F toothpastes, mouth washes and varnishes and for 

water fluoridation. Nonetheless, fluorapatite is mechanically weaker than hydroxyapatite 

and incorporation of F in the apatite structure increases tooth brittleness, a factor implicated 

in dental and skeletal fluorosis (Johnston and Strobel, 2020). 
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7 Factors Affecting Fluoride Mineral Solubilities 

There are not many common fluoride-bearing minerals that can provide a source of 

high concentrations of F in groundwater systems. The two most common are fluorite and 

fluorapatite. We demonstrate processes that affect these mineral solubilities through 

geochemical model simulations and then examine the evidence from groundwater data 

trends that support the importance of these processes. For a full appreciation of the 

calculations and graphic results that follow, the reader should have a basic knowledge of 

thermodynamics and electrolyte theory. There are many good textbooks on these subjects 

(e.g., Anderson, 1996; Butler, 1998; Langmuir, 1997; Nordstrom and Munoz, 1994). For the 

purposes of this book, this section provides a brief introduction to these topics. 

7.1 Thermodynamics and Mineral Saturation Indices 

Thermodynamics is the study of energy transformations and evolved from the need 

to understand and improve the efficiency of machines during the 19th century. Some 

important thermodynamic concepts such as specific heat originated in the 18 th century, but 

the observations and the theory that integrated the work of several famous scientists were 

made in the 19 th century. 

All substances were found to have a characteristic heat content, H, that could be 

measured in several different ways such as heat capacity, heat of oxidation, and heat of 

dissolution. However, when petroleum fuel is combusted in an engine, not all the known 

heat content is transformed into mechanical or electrical energy. A substantial amount of 

that energy is irreversibly lost and unavailable for useful work. For example, instead of 

completely turning the gasoline combustion into mechanical energy to power an 

automobile, the engine also heats up, the metal parts expand, vibrations occur throughout 

the vehicle, and that is lost energy. Some of the metal in the engine is irreversibly oxidized, 

that is lost energy involving a chemical reaction. That dissipation of energy is known as 

entropy, S, and when multiplied by the absolute temperature, T, has the same units as the 

heat content. Hence the useful or available work from some process is the difference 

between the total and the dissipated heat or H – TS which is a function called the Gibbs free 

energy function, G. Energy is also involved during any chemical reaction and when the free 

energy is considered per mole of reaction, ∂G/∂n, it is known as the chemical potential, µ. 

The chemical potential is the energy available for dissolution/precipitation of minerals, 

redox reactions, sorption reactions, ionic and molecular diffusion. It tells us whether a 

chemical reaction is possible or not. Knowing whether a mineral dissolution or 

precipitation reaction is possible for a given set of physico-chemical conditions is useful 

when interpreting mineral reactions in groundwaters. 
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Because of the relationships between the variables: pressure, P; temperature, T; 

volume, V; entropy, S; and free energy, G; the chemical potential can be expressed using 

Equation 1. 

 μ = μ0 + RTlnX (1) 

where: 

µo = chemical potential of the substance in a defined standard state usually 

referenced to 25 oC and 1 bar pressure for ideal conditions (joules mol-1) 

R = molal gas constant (8.3144 joules mol-1 K-1)  

X = mole fraction (dimensionless) 

Non-ideal conditions are accounted for by a coefficient called the activity 

coefficient, λ (dimensionless), and the product λX is the activity (dimensionless). For 

aqueous solutions we normally use the expression γm, where m is the molality and γ is the 

activity coefficient when molal concentrations are used. Hence, the activity is expressed as 

shown in Equation 2. 

 𝑎 =  𝛾𝑚 (2) 

The chemical potential is expressed as Equation 3. 

 μ = μ0 + RTlna (3) 

For practical applications, we just need to know the activity coefficient because the 

molality is measured, and the standard state is a matter of careful definition. There are 

several options for calculating the activity coefficient depending on the concentration range 

and available data. Because most groundwaters of interest are relatively dilute, speciation 

computations are not very sensitive to the theoretical model chosen for the activity 

coefficient. 

Consider the fluorite dissolution reaction shown in Equation 4. 

 𝐶𝑎𝐹2 →  𝐶𝑎2+ + 2𝐹−  (4) 

The solubility product constant is expressed by Equation 5. 

 𝐾𝑠𝑝 =  
𝑎𝐶𝑎2+  𝑎𝐹−

2

𝑎𝐶𝑎𝐹2

= 10−10.6 (5) 

This equilibrium is known as the law of mass action. If an acid mine water is 

saturated with respect to fluorite and some lime (CaO) is added to it, more fluorite will 

precipitate to return the solution to equilibrium. The reaction in Equation 4 is driven to the 

left to achieve equilibrium. For dilute solutions, the activity of water can be taken as unity. 
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When fluorite is pure and in its most crystalline state, it can also be taken as unity leading 

to Equation 6. 

 𝐾𝑠𝑝 =  𝑎𝐶𝑎2+  𝑎𝐹−
2  (6) 

Equation 6 is known as the ion-activity product regardless of whether the solution 

is at equilibrium or not. At equilibrium solubility and 25 oC and 1 bar pressure, the 

ion-activity product is a constant value and equal to the solubility product constant 

regardless of the concentrations of Ca2+ and F–. Given a water analysis with concentrations 

of all the major dissolved constituents, the activities of the ions can be calculated, then the 

ion-activity product can be calculated for any chosen mineral formula for which there is a 

solubility product constant. Several computer programs exist that perform this calculation. 

Solubility product constants (or their equivalent free energies) are thermodynamic 

properties compiled in databases of computer codes and in books and scientific papers. By 

comparing the mineral ion-activity product of a water composition to the solubility product 

constant, the extent to which a water has reached solubility equilibrium can be tested. For 

the fluorite example, the degree of saturation or saturation ratio, Ω, is calculated using 

Equation 7. 

 Ω =  
(𝑎𝐶𝑎2+  𝑎𝐹−

2 )𝑠𝑎𝑚𝑝𝑙𝑒

 (𝑎𝐶𝑎2+  𝑎𝐹−
2 )𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚

=  
(𝑎𝐶𝑎2+𝑎𝐹−

2 )𝑠𝑎𝑚𝑝𝑙𝑒

𝐾𝑠𝑝
 (7) 

When the ratio is unity, the water is at solubility equilibrium. If the ratio is less than 

one, the water is undersaturated and the mineral, if present, should dissolve. Because of 

the large range of values encountered in natural waters, the log Ω or saturation index (SI) is 

used for practical applications. Hence, 

• SI < 0, indicates undersaturation, so the mineral should dissolve if present; and, 

• SI > 0, indicates supersaturation, so the mineral should precipitate. 

Note that these are thermodynamic calculations, and they state what is possible, not 

necessarily what occurs. Given a negative SI, the mineral should dissolve. However, a 

mineral may be so slow to dissolve, such as quartz, that it might not be an important source 

of dissolved silica in a natural water. Similarly, given a positive SI, a mineral may not 

precipitate because of inhibitory factors such as calcite in the presence of dissolved 

magnesium. Seawater is supersaturated with respect to calcite, but pure calcite does not 

precipitate because of the inhibitory effect of high Mg concentrations. Aragonite, a mineral 

less stable than calcite, and some high-Mg calcite precipitate instead. Additional 

information on the rates of mineral dissolution and precipitation, the subject of kinetics, is 

necessary to determine how fast (and how likely) a given mineral is to dissolve or 

precipitate in a natural water. 

The concept of SI is used routinely to interpret water-rock interactions and it is a 

key to the interpretation of how groundwaters gain high concentrations of F. 
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7.2 Ionic Strength Effects 

The ionic strength is a convenient mathematical expression for the concentration of 

ionic charges in solution and is used in any theory for activity coefficients. The ionic 

strength, I, is calculated as shown in Equation 8 where zi is the charge on an ion, i, of 

molality, mi. 

 𝐼 =  ½∑𝑧𝑖
2𝑚𝑖 (8) 

The presence of other charged species in solution affects both equilibrium solubility 

and the kinetics of reaction. Most minerals, indeed, most compounds, exhibit an increase 

in solubility when dissolved in a solution with increased amounts of some other 

non-reacting solute such as NaCl. If there is no other reaction taking place, this increase is 

ascribed to the ionic strength effect. If the mineral remains at equilibrium solubility and the 

ionic strength increases, the ion-activity product is constant, but the activity coefficients 

decrease (Butler, 1998) so the concentrations of the ions must increase. 

Fluorite solubility in pure water at 25 oC is about 7.4 mg F/L. As the concentration 

of NaCl increases, the F concentration in solution increases, as shown in Figure 4a. These 

simulations were computed with the PhreeqcI code (Parkhurst and Appelo, 2013) and are 

presented for purposes of showing factors that affect F solubility. One of the obvious 

consequences for groundwaters is that they can increase in salt content through seawater 

intrusion in coastal areas (Chen et al., 2020a; Gao et al., 2007), through mixing with other 

saline waters, or through dissolution of an evaporite bed. If a soluble fluoride-bearing 

mineral is present, more F will dissolve from this mixing. However, if the saline fluid is 

enriched in calcium (Ca), then mixing will decrease the F concentration because of the 

common-ion effect. The same is true for fluorapatite dissolution in NaCl, but because of its 

lower solubility, the effect is much less (Figure 4b). 

 
Figure 4 - Solubilities of a) fluorite (in terms of F- concentration) and b) fluorapatite (in terms of F- 

concentration) in NaCl solutions at 25 °C simulated using the PhreeqcI code and the wateq4f.dat 
database. 
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7.3 The Effect of Dissolved Inorganic Carbon (DIC) and Calcite 

Precipitation 

If we take another 1:1 soluble electrolyte like NaHCO3 and increase its concentration 

to the fluorite solubility limit, we find that F concentration increases like it did when adding 

NaCl to the solution, except that the F concentrations are higher (Figure 5). If another 

component such as CO2 is added, then F concentration is higher still. When the 

concentration of NaHCO3 is at the same concentration as NaCl, the F concentrations is 

higher because a CaHCO3
+ complex is formed and with more dissolved carbon from CO2, 

more of this complex is formed. Any complex formation requires more of the mineral to 

dissolve to reach equilibrium because the activity and concentration of the free ion has been 

decreased. 

 
Figure 5 - Fluorite solubility (in terms of F- concentration) with increasing 

concentrations of NaHCO3 (blue line) and with a constant partial pressure of 
CO2(g) (yellow line) compared to NaCl (black line). 

If we consider fluorite and fluorapatite solubility in solutions with dissolved 

inorganic carbon (DIC), the solubility increases much the same as in NaCl solutions. 

However, with increasing HCO3 concentration, the solution becomes saturated with 

respect to calcite and the F concentration increases substantially, depending on the partial 

pressure of CO2 (PCO2). Precipitation of calcite decreases the Ca ion concentration and 

activity, thereby increasing F concentration because of fluorite solubility equilibrium and 

the law of mass action as illustrated in Equation 9. 

 𝐶𝑎𝐹2  ↔ 𝐶𝑎2+ + 2𝐹−      𝑙𝑜𝑔 𝐾𝑠𝑝 =  −10.6 (9) 
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If calcite and fluorite are both at equilibrium solubility, then the reaction is as shown 

in Equation 10. 

 𝐶𝑎𝐹2 + 𝐻𝐶𝑂3
−  →  𝐶𝑎𝐶𝑂3 + 2𝐹− + 𝐻+ (10) 

However, if HCO3
– is being contributed from an additional source such as organic 

carbon oxidation, then more calcite will precipitate (depending on pH), and the F 

concentration will continue to increase accordingly. Calcite saturation and precipitation is 

then a requirement for elevating F concentrations and sources of additional bicarbonate 

alkalinity can promote calcite precipitation. Fluorapatite solubility is similarly affected by 

bicarbonate ion and accompanied by calcite precipitation which decreases with increasing 

PCO2, but the F concentrations are substantially lower, and dissolution is often incongruent. 

Groundwater in many aquifers increases in alkalinity with increasing age and interaction 

with: organic matter decomposition in the soil zone, organic matter decomposition in 

buried sediments, and CO2 gas rising from thermal sources. 

7.4 The Effect of Temperature on Fluoride Concentrations 

Geothermal waters are known for having the highest geogenic F concentrations of 

any natural water, e.g., 1,980 mg/kg in Rincón de la Vieja crater lake, Costa Rica (Kempter 

and Rowe, 2000) and 1,926 mg/kg in Kawah Ijen crater lake, Indonesia (Delmelle et al., 

2000). Outside of acid crater lakes, hot springs and geysers more commonly have F 

concentrations of 5 to 50 mg/L (Deng et al., 2011). The subject of geothermal F is large 

enough to merit a separate paper which is being prepared. It should be noted, however, 

that the subject is of great importance to drinking water because when groundwater F is 

too high for drinking purposes, it is often caused by geothermal water leaking into an 

aquifer without an obvious increase in temperature (Armienta and Segovia, 2008; 

Carrillo-Rivera et al., 2002; Chae et al., 2007; Forrest et al., 2013; Murray, 1996b; Navarro et 

al., 2011; Parrone et al., 2020). A distinctive chemical feature of geothermal water is the 

associated elevation of Li, B, and As concentrations in addition to F (White, 1957). When 

ratioed to Cl, these elements differ little in water samples from deep drill holes compared 

to those in neutral-pH NaCl-type hot springs (Ellis and Mahon, 1964, 1977). 
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8 Worldwide Occurrences of Fluoride in 

Groundwater 

Aquifers with high concentrations of fluoride in groundwater have been 

documented in many regions worldwide, a majority occurring in arid and semi-arid areas 

in developing countries. Over 220 million people are estimated to rely on groundwater 

with concentrations above the WHO guideline value and their equivalent national 

standards for their potable water supply. Parts of China, India, Iran, Pakistan, Sri Lanka, 

West Africa (Ghana, Ivory Coast, Senegal), North Africa (Algeria, Morocco, Libya, Sudan, 

Tunisia, West Sahara), South Africa, the East African Rift Valley (Eritrea, Ethiopia, Kenya, 

Uganda, Rwanda, Tanzania, Uganda, Zimbabwe), Yemen, Mexico, Brazil, and central 

Argentina are affected. In India alone, endemic fluorosis is a problem in 17 out of the 

country’s 28 states, and some 67 million people are estimated to be exposed to drinking 

water at concentrations above the WHO guideline value (Saxena and Sewak, 2015). 

Similarly, Chakraborti and others (2011) and Chakraborti and others (2016) have reported 

201 fluoride endemic districts in India with a total population of 411 million and more than 

66 million suffering from fluorosis. In China, 29 provinces or autonomous regions have 

reported fluorosis (He et al., 2020). Li and others (2020b) have estimated 20 million patients 

with dental fluorosis and 10 million patients with skeletal fluorosis. Many studies of high-F 

groundwater provinces have been documented, and nearly 500 are compiled in Box 1. 

Only maximum F concentrations close to or above 1.5 mg/L were included. 

The geochemical associations of high-F groundwaters outlined above, including 

Na-HCO3 conditions, low Ca concentrations, and alkaline pH (around 7-9) are not 

uncommonly found in geologic-basement aquifers, especially granitic and rhyolitic rocks 

with F-rich minerals; active volcanic terrains in association with F in lavas, ashes and 

hydrothermal fluids; and some sedimentary rocks with groundwaters affected by silicate 

hydrolysis, evapotranspiration and ion exchange, especially where fluorine-rich minerals 

are present. Fluoride can also occur in acidic waters and notably in some geothermal 

terrains. 

In crystalline basement rocks, particularly those of granitic and rhyolitic 

composition, groundwater fluoride problems are associated with the relative abundance of 

fluorine-rich minerals such as micas, apatite/fluorapatite, amphiboles and fluorite. 

Basement aquifers cover a large part of peninsular India, and states most affected by 

groundwater fluoride problems are Rajasthan, Andhra Pradesh, Telangana, Uttar Pradesh, 

Tamil Nadu and Karnataka (Handa, 1975; Maithani et al., 1998; Rao, 2002; Reddy et al., 

2010b; Suma Latha et al., 1999b). One of the highest concentrations ever recorded (90 mg/L) 

was from non-thermal groundwater in a now-closed well in Rajasthan (Choubisa, 2018a) 

(Box 1). Fluorosis has also been reported in Assam (Chakraborti et al., 2000; Kotoky et al., 

2008). In Pakistan, high fluoride concentrations are a feature of aquifers of Sindh Province 
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(Rafique et al., 2009). The Dry Zone of Sri Lanka has groundwater fluoride concentrations 

up to around 10 mg/L (Dissanayake, 1991). Several countries in Africa also have high 

groundwater fluoride concentrations in areas of geologic-basement rocks, including parts 

of Cameroon, Ghana, Ethiopia, Malawi, Senegal, Tanzania and South Africa (e.g., Fantong 

et al., 2010; McCaffrey, 1998; Tekle-Haimanot et al., 2006; Travi, 1993). Much of the high-F 

groundwater in Africa is associated with hydrothermal fluids and the East Africa Rift 

(EAR) Zone. In Muteh area, Isfahan, Iran, high concentrations (up to 9.2 mg/L) are 

associated with granitic and metamorphic rocks (Keshavarzi et al., 2010). 

High F concentrations in groundwater and geothermal fluids from active volcanic 

terrains are well-documented in the western USA (Deng et al., 2011; Nordstrom and Jenne, 

1977), Mexico (Morales-Arredondo et al., 2016), Iceland, New Zealand, Russia (Ellis and 

Mahon, 1977), France, Turkey, Algeria, Tunisia (Travi, 1993), Taiwan, Tibet (Guo et al., 

2007a) and East Africa (Ayenew, 2008). The two branches of the East Africa Rift Valley form 

collectively one of the largest, fluoride-affected provinces in the world. Fluoride problems 

in Yemen, with concentrations in groundwater up to 35 mg/L, are associated with Cenozoic 

volcanic aquifers that represent a northward extension of the main rift (Al-Mikhlafi, 2010; 

Baker et al., 1997). Volcanic rocks of basaltic and rhyolitic composition are present in the 

region, but as observed in Ethiopia (Rango et al., 2009), the high F concentrations are 

associated with the rhyolitic rocks (Al-Mikhlafi, 2010). 

Concentrations in groundwater in volcanic aquifers are typically up to around 

15 mg/L but extremes in geothermal fluids can reach up to 1000 mg/L (Ellis, 1973). 

Fluoride-rich geothermal fluids are typically alkaline (up to pH 10) but acidic geothermal 

fluids (e.g., observed in Yellowstone, USA) can also have high F concentrations, stabilized 

as HF0, AlF2
+, AlF2+, and AlF3

0 complexes (Deng et al., 2011). High concentrations of F have 

also been found in basaltic aquifers of Iran (Moghaddam and Fijani, 2009; Naderi et al., 

2020). 

In eastern Turkey, concentrations up to 12.5 mg/L were found in high-pH 

groundwater associated with the Tendurek Volcano. Skeletal fluorosis has been recorded 

in the area around the volcano (Oruc, 2008). Concentrations of F up to 4 mg/L have also 

been found in Isparta Province, south-west Anatolia (Turkey). Both dental and skeletal 

fluorosis have been recorded. 

Sedimentary aquifers with high groundwater F concentrations include areas of 

North Africa (Algeria, Tunisia, Morocco, Libya, Sudan), West Africa (Senegal), China, 

Argentina, Mexico and the western USA. These areas are arid to semi-arid and the 

groundwaters overwhelmingly alkaline and Na-HCO3-rich; many have increased salinity 

(Guo et al., 2007c). Controlling processes for these aquifers have been variably ascribed to 

combinations of ion exchange, evapotranspiration, silicate mineral hydrolysis, calcite 

precipitation and sorption/desorption reactions. Groundwater of Na-SO4 (and Na-Cl) 



Fluoride in Groundwater D. Kirk Nordstrom and Pauline L. Smedley 

 

24 

The GROUNDWATER PROJECT ©The Author Free download from gw-project.org 

Anyone may use and share gw-project.org links. Direct distribution of the book is strictly prohibited. 

composition from an unconfined alluvial aquifer in arid central Iran has been associated 

with dissolution of evaporites, evaporation and ion exchange (Dehbandi et al., 2018). 

Ion exchange has also been highlighted as an important influence on groundwater 

chemistry and downgradient evolution of F concentrations in several sedimentary aquifers 

in non-arid environments (as discussed in Section 9 of this book), for example in the United 

Kingdom (Edmunds and Walton, 1983) and Maryland, USA (Chapelle and Knobel, 1983). 

Several sedimentary aquifers have had their high groundwater F concentrations 

attributed to the presence of fluorine-rich minerals. Travi (1993) reported F concentrations 

up to 13 mg/L in Cretaceous to Palaeocene aquifers from western Senegal and up to 

2.3 mg/L in groundwater from the Cretaceous Complex Terminal aquifer of western 

Tunisia. In each case, the origin of the F was taken to be phosphorite deposits in the 

sediments. Concentrations in the range 1 to 3 mg/L were found in the Cenozoic Complex 

Terminal aquifer of Algeria (Kechiched et al., 2020; Nezli et al., 2009). Here, the 

groundwaters are of Na-HCO3 and Na-Cl compositions and elevated F concentrations 

believed influenced by evaporation. Concentrations in groundwater from sections of the 

underlying Lower Cretaceous Continental Intercalaire of Algeria and Tunisia were noted 

in the range 0.4 to 6.0 mg/L in waters of dominantly Na-SO4 and Na-Cl composition and 

with temperatures up to 72 oC (Besser et al., 2019; Edmunds et al., 2003), although 

concentrations of F were mostly < 1 mg/L. Travi (1993) also found mostly low F 

concentrations in groundwater from the Tunisian Continental Intercalaire. 

Some F-affected sedimentary aquifers contain components of volcanic ash or 

volcanogenic sediment which provide a source of F. Occurrence of dissolved F in these 

groundwaters is often found in association with elevated concentrations of other anions 

and oxyanions (As, B, Mo, U, V) under the prevailing alkaline conditions (Ortega-Guerrero, 

2009; Reyes-Gomez et al., 2015; Smedley et al., 2002; Alarcon-Herrera et al., 2013). In 

Argentina, alkaline Na-HCO3 groundwater from Quaternary sedimentary aquifers with 

intermixed rhyolitic volcanic ash have F concentrations up to 29 mg/L (Smedley et al., 2002). 

The F in these terrains is typically inferred to be derived dominantly from the ash deposits. 

In Mexico, high concentrations of F are reported in alkaline groundwater with increased 

salinity in some closed basins where sedimentary aquifers have volcanic components 

(Armienta and Segovia, 2008; Mahlknecht et al., 2008; Reyes-Gomez et al., 2015). High-F 

groundwaters in Quaternary sedimentary aquifers in China have similar characteristics 

with alkaline conditions and elevated salinity (Fuhong and Shuquin, 1988). 
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9 Natural Geochemical Processes Causing 

High-Fluoride Groundwater 

High-F groundwaters originate overwhelmingly from natural geogenic processes 

having specific physical and chemical conditions. Assuming an F-bearing mineral occurs 

in the aquifer, F concentrations may increase by: 

• development of a Na-HCO3 type groundwater; 

• interaction with a F-rich aquifer such as felsic (silicic) and alkaline igneous 

rocks, or phosphoritic sediments; 

• development of a saline type groundwater or low-Ca brine (ionic strength 

effect); 

• calcite precipitation or precipitation of other relatively insoluble Ca minerals; 

• dissolved inorganic carbon (DIC) increase and/or PCO2 decrease; 

• increasing temperature (associated with precipitation of a Ca-bearing mineral 

and DIC); and, 

• extremes of pH (high or low). 

Many of these features are prevalent in arid and semi-arid environments, and 

high-F groundwater is commonly found in aquifers under such conditions. Other processes 

may well play a role, but the listed processes are likely the most important for aquifers not 

contaminated by industrial waste sources. As shown by the geochemical modeling 

examples, development of Na-HCO3 type waters, calcite precipitation, and PCO2 are all 

interrelated. From the examples that follow, a pattern emerges that aquifers with elevated 

F are saturated to supersaturated with respect to calcite and fluorite. 

9.1 Na-HCO3 Groundwaters and the Aquia Aquifer, Maryland, USA 

The recognition of groundwaters evolving from a Ca-HCO3 type water in recharge 

areas to a Na-HCO3 water downgradient has been documented since at least the 1930s 

(Cederstrom, 1946; Foster, 1937; Foster, 1942; Foster, 1950) for the Virginia Atlantic coastal 

plain and is standard material in groundwater geochemistry textbooks (Appelo and 

Postma, 2005; Drever, 1988). Fluorosis was also widespread among children in parts of the 

southern Virginia coastal plain since the 1930s (Cederstrom, 1939). This chemical evolution 

of groundwater is found worldwide in many different aquifers and hydrologic conditions 

such as Ethiopia (Bretzler et al., 2011), Mexico (Moran-Ramirez et al., 2016), Brazil 

(Gastmans et al., 2016), Mississippi delta (Borrok et al., 2018), Australia (Herzeg et al., 1991), 

and France (Huneau and Travi, 2008).  

Geochemical modeling of groundwater-rock interactions frequently considers 

cation exchange to be a major process during the evolution of groundwaters where 

exchangeable clays are present (Postma et al., 2008). The basic concept is that recharge 
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waters pick up Ca, CO2 and HCO3 from the soil zone and shallow aquifers to produce dilute 

Ca-HCO3 type waters in recharge areas and evolve to Na-HCO3 type waters from cation 

exchange with marine, Na-saturated clays that are downgradient. This process is often 

accompanied by sulfate reduction and organic matter decomposition which adds DIC to 

the water and promotes calcite precipitation (Back, 1966; Foster, 1950). Geochemical 

modeling of the Aquia aquifer in the eastern USA demonstrated this process utilizing a 

version of the PHREEQC code to explain the major changes in water composition with 

distance (Appelo, 1994) as shown in Figure 6. Similar modeling has demonstrated this same 

overall process for the Triassic East Midlands aquifer, United Kingdom, the Miocene 

Valréas aquifer, France, and the Cretaceous Aveiro aquifer, Portugal (Postma et al., 2008). 

 

Figure 6 - Changes in a) Na, alkalinity, b) K, Mg, and c) Ca concentrations and pH 
with downstream distance (in miles, 60 miles is about 97 kilometers) in the Aquia 
aquifer, Maryland, USA. Data points are from Chapelle and Knobel (1983) and 
lines are simulations (from Appelo, 1994) based on 1-dimensional reactive 
transport with ion exchange acting chromatographically. 
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Previous studies have shown that the primary exchangeable clay in the Aquia 

aquifer was glauconite (Chapelle and Knobel, 1983) and the association of phosphorite with 

glauconite has long been recognized (Collet, 1908; Nathan, 1984; Notholt, 1980). Hence, 

areas where shallow marine sediments include glauconite and phosphorite, which later 

undergo freshening, will experience this transition from Ca-HCO3 type water to Na-HCO3 

type water with a consequential rise in F concentrations (Cederstrom, 1946). In Cederstrom 

(1946), the highest concentration reported was 7.7 mg/L. Back (1966) compiled 

water-quality data for the Atlantic coastal plain and found F concentrations ranging from 

< 0.1 to 6.4 mg/L. McFarland (2010) has updated information on the hydrogeology and 

groundwater quality of this area and reported F concentrations as high as 18 mg/L with 

pore waters extracted from sediments as high as 30 mg/L. He also points to a phosphatic 

sedimentary source material combined with desorption of F from Fe oxyhydroxides. The 

basic pattern of cation exchange with calcite dissolution/precipitation was modeled as a 

chromatographic column with 1-dimensional reactive transport by Appelo (1994) and the 

comparison with field data was remarkably consistent (Figure 6). Calcite dissolved in the 

recharge zone and precipitated downgradient. Where sufficient data exist, this same 

pattern of increased F concentrations with the development of a Na-HCO3 water is often 

observed. 

9.2 Aquifer Lithology and Mineralogy 

Although quite common, not all aquifers undergo a transition to Na-HCO3 type 

water. Detailed water chemistry of groundwater at several different depths within the 

Stripa granite, central Sweden, indicated an evolution from a dilute Ca-HCO3 type water 

to a deeper Na-Cl type water with elevated Ca and SO4. The F concentrations ranged from 

0.22 mg/L in the shallow groundwater to 5.6 mg/L in the deep (> 900 m) groundwaters. The 

pH was typically 9 to 10 from 300 to 1000 m depth and the HCO3 alkalinity decreased to 

unusually low concentrations with depth (< 10 mg/L). Fluorite and apatite are the only 

F-bearing minerals that were identified and they occur primarily in fracture-fillings where 

water flow paths are important (i.e., carry significant volumes of flow). Fluoride 

concentrations do not correlate well with alkalinity or Cl (Figure 7). The dominant control 

of the higher F concentrations at depth seems to be the elevated pH concentration. 
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Figure 7 - a) Fluoride concentrations plotted against HCO3 concentrations for groundwaters in the Stripa granite 

over depths of 80-1000 m. b) Fluoride concentrations plotted against Cl concentrations for the same samples 
as in (a). 

The F concentrations can be simulated by assuming calcite and fluorite solubilities 

have reached saturation but only if saturation index values (SIs) are set at oversaturation of 

about 0.8 for each mineral. The resultant pH from the simulation is also within 0.1 of the 

measured value. This amount of supersaturation is consistent with calculated values for 

the numerous other deep samples in the data set. Figure 8 shows the SI values for calcite 

and fluorite plotted against Cl concentrations. 

 
Figure 8 - a) Calcite saturation indices with Cl concentration which roughly corresponds with depth for Stripa 
granite groundwaters (Nordstrom et al., 1989). b) Fluorite saturation indices for the same samples shown in (a). 

Similar water compositions were encountered in the Toki granite at depths of 200 m 

to 1000 m at the Mizunami underground research laboratory. In the 

Miocene/Pliocene/Pleistocene sediments, groundwaters were generally Ca-HCO3 to 

Na-HCO3 grading into Na-(Ca)-Cl type waters with depth, especially in the granite 

(Iwatsuki et al., 2005). Concentrations of F varied from 0.1 mg/L in the shallow dilute waters 

to 15 mg/L in the deeper, higher Cl waters. 

The F concentrations are limited by fluorite solubility equilibrium at higher pH 

values, higher F concentrations and generally occur at depths greater than 75 m as reflected 

in the saturation indices which are at or above saturation (Figure 9). 
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Figure 9 - a) Calcite, and b) Fluorite saturation indices with F concentration and varying depth. F concentration 
and depth based on data from the Mizunami Underground Research Laboratory (Iwatsuki et al., 2005). 

Reactions and processes that lead to a decrease in Ca concentrations, usually by 

calcite precipitation, will cause F concentrations to increase if a fluorinated calcium mineral 

is present in the aquifer. 

9.3 Extremes of pH 

Waters of low pH are highly reactive and have the capacity to dissolve minerals 

rapidly. If fluorite is present, the reaction produces high F concentrations. Mineralized 

areas may contain both pyrite and fluorite. Pyrite oxidizes to produce sulfuric acid which 

will dissolve fluorite readily. An example of such a condition occurs in the Red River 

Valley, New Mexico, where naturally acidic groundwaters from pyrite oxidation dissolve 

fluorite and produce elevated F concentrations. In one well, groundwaters in a debris fan 

were monitored for more than a year and had F concentrations of 8 to 11 mg/L with Ca 

concentrations of 300 to 400 mg/L. The pH varied between 3.5 and 3.7. Acidic waters such 

as these are accompanied by high Al concentrations because Al dissolves readily from 

aluminosilicate minerals and forms strong Al-F complexes. This complexing is reflected in 

Figure 10 in the trend line of increasing F with increasing Al concentrations for acidic 

samples. The lower the pH, the higher the Al and F concentrations in the acidic group with 

pH values less than 4.5. Even in much more dilute waters of moderate acidity (pH 5.5 to 

6.5) the strong association of Al and F complexing is quite evident (Berger et al., 2015). 
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Figure 10 - Naturally acidic groundwaters (pH < 4.5) reflecting a strong 
association of Al with F as a result of Al-F complexing (data from Naus et 
al., 2005; Nordstrom et al., 2005). 

The well-known Berkeley Pit next to Butte, Montana, has a pit lake with pH values 

from 2.17 to 4.15 and F concentrations ranging from 1.38 to 47.9 mg/L (Figure 11), based on 

data provided by the Montana Bureau of Mines and Geology. Although pit lakes could be 

classified as surface waters, they are often fed by groundwater and at the Berkeley Pit there 

are extensive underground mines connected to the base of the pit so that much of the acidity 

came from the flooded mines in addition to weathering of pit walls. The high F 

concentrations originated from subsurface fluorite in the mineralized zones. The waters 

with pH values above 3 were produced by lime neutralization of a portion of pit water 

which was returned to the pit after sludge removal. These data demonstrate that negligible 

fluoride is being removed even with lime addition. 

 
Figure 11 - Dissolved F concentrations plotted against pH for samples 
from the Berkeley Pit Lake, Butte, Montana, USA, during 1984-2019 (data 
provided by Montana Bureau of Mines and Geology). 
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There is not much that can limit fluoride concentrations at low pH. The solubility 

of fluorite is so high at pH values below 3 that it can fully dissolve in strong acid and 

produce toxic HF gas as shown in Equation 11 and Figure 12a. Fluorapatites are also highly 

soluble at low pH (Figure 12b). 

 𝐶𝑎𝐹2 + 2𝐻+  →  𝐶𝑎2+ + 2𝐻𝐹(𝑔) (11) 

 
Figure 12 - a) Solubility of fluorite (in terms of F- concentration) as a function of pH (calculated and plotted from 

PhreeqcI using the phreeqc.dat database). At low pH, fluorite can completely dissolve. b) Solubility of fluorapatite 

(in terms of F- concentration) as a function of pH showing that it is even more soluble than fluorite at low pH but 

less soluble at pH values above 5. 

In one of the mines in the Kola peninsula of northwestern Russia, Kraynov and 

others (1969) found 15,000 mg/L F in deep waters of the Lovozero massif. The pH of this 

water was about 12 with extremely high silica concentrations of up to 13,000 mg/L. The 

cause of the extraordinary F concentrations was the occurrence of the very soluble mineral 

villiaumite, NaF, along with fluorosilicate complexing. 
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10 Anthropogenic Sources of High-Fluoride 

Groundwater 

Anthropogenic sources of F can be produced by wastewater discharges and by 

atmospheric emissions. Such emissions are the largest of the industrial F releases, 

originating from coal-fired power plants, brick-making plants, ceramic industries, and 

aluminum smelters (Fuge, 2019). Coal combustion accounts for the largest source of 

anthropogenic emissions of F and has contaminated soils and crops. No cases of 

groundwater contamination from this source are known. Shallow groundwater 

contamination by F immediately below the Tiwai Point aluminum smelter in New Zealand 

has been reported but observation wells are not sufficient to delineate a plume of F in the 

groundwater. The smelter is situated on a spit surrounded by seawater at the southern tip 

of South Island, quite remote from any major residential or agricultural areas. The Kaiser 

Aluminum-Mead Works Potliner superfund site in the state of Washington, USA, has a 

documented 2-mile fluoride and cyanide groundwater plume which was discovered in 

1978. Recent analyses indicate the main part of the plume to range from 10 to 75 mg F/L 

(Hydrometrics, 2013). 

Most soils have a strong ability to sorb air-borne F and the attenuation of F in soils 

may be strong enough in many places to prevent much groundwater contamination. Both 

air and water discharges can contribute F to groundwater although wastewater discharges 

are likely to be the larger contributor of F. The phosphate industry and the aluminum 

industry produce wastewater discharges that can have high F concentrations. Cases of 

fluorosis were found among residents who lived close to the phosphorite mining area of 

Hahotoe-Kpogame, Togo (Tanouayi et al., 2016). The highest concentrations were found in 

wastewater discharged to the sea (12-20 mg/L) and in local market produce (up to 2 

percent). There is often abundant limestone where phosphorite deposits occur and this rock 

has a strong capacity to sorb F, inhibiting its transport in groundwater. Several other 

industries can also produce F in their wastes such as the steel industry, glass-making 

industries, dye industries, and plastics industries. The effects on groundwater composition 

are generally of localized concern, whereas geogenic F contamination is much more 

widespread both in spatial coverage and global occurrences. 
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11 Case Studies 

11.1 Ion Exchange in The Lincolnshire Limestone Aquifer, Eastern 

England 

Concentrations of F in groundwater increase progressively down the groundwater 

flow gradient in the Middle Jurassic Lincolnshire Limestone (Inferior Oolite Group) aquifer 

of eastern England (Figure 13). The limestone dips gently eastwards at an angle of less than 

one degree and is covered eastwards by low permeability marls, clays, shales, and 

limestones of Jurassic age. The aquifer is some 30 m thick at outcrop and reduces to around 

20 m thick in the confined section (Edmunds, 1973). The aquifer has been well-studied over 

the years (Bishop and Lloyd, 1990; Edmunds, 1973; Lamont, 1959; Moncaster et al., 2000) 

and significant downgradient changes in water chemistry have been documented, arising 

through a combination of carbonate reactions, pollutant inputs, redox changes, cation 

exchange and mixing with brackish formation water. 
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Figure 13 - Downgradient variations in concentrations of major ions, fluoride, pH and 
saturation indices for calcite and fluorite in groundwater from the Jurassic Lincolnshire 
Limestone aquifer, eastern England (after Edmunds and Smedley, 2013) © UKRI, 2021. 
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The concentrations of F increase in response to cation exchange as groundwater 

composition changes from Ca-HCO3 composition at outcrop and subcrop to Na-HCO3 

composition further into the confined aquifer, ahead of the zone where groundwater 

encounters old brackish Na-Cl groundwater in the deepest parts of the aquifer. 

Downgradient decreases in Ca concentration are coincident with increases in Na 

concentration, and in the southern part of the aquifer, occur some 12 km downgradient of 

the aquifer outcrop (Figure 13). The downgradient changes also coincide with the increase 

in pH up to 8.4 (Edmunds and Walton, 1983). Throughout most of the aquifer, groundwater 

is saturated with respect to calcite, but becomes undersaturated in the downgradient 

section in response to loss of Ca by ion exchange. Saturation indices for fluorite indicate 

undersaturation throughout (Figure 13). This trend suggests that a carbonate-fluorapatite 

mineral may be responsible for controlling the F concentrations. 

11.2 The Datong Alluvial Aquifer, Shanxi, China 

Northern China has several areas affected by high F concentrations in groundwater 

and one of the best studied is the Datong basin. Endemic arsenicosis and fluorosis in this 

area have been known for more than 22 years (Wang, 1998). The groundwater geochemistry 

for the shallow system (< 80 m) evolves from a Ca-HCO3 type recharge water around the 

margins of the basin through an intermediate mixed zone with increased Cl and HCO3 

concentrations to a zone closer to discharge (near the center of the basin) with the highest 

concentrations of F averaging 7.2 mg/L for 27 wells and with a maximum reported value of 

80.9 mg/L (Guo and Wang, 2005). This zone also has the highest pH values and the highest 

concentrations of Cl and HCO3. In the center of the basin the discharge water is also of a 

Na-HCO3 type with high F but lower concentrations than the intermediate zones. Further 

work by Wang and others (2009) reinforced the relation between Na-HCO3 type waters. 

High F concentrations showed that calcite and fluorite were saturated to supersaturated for 

many of the wells thus limited the Ca and F concentrations. The F concentrations varied 

from 0.14 to 39 mg/L and pH values ranged from 7.37 to 9.13. A study by Li and others 

(2012) found similar trends for 486 groundwater samples from the basin with a maximum 

F concentration of 22 mg/L, as well as a correlation with elevated pH (as high as 9), 

Na-HCO3 type waters and evaporation. Another 70 wells were sampled in a follow-up 

study (Su et al., 2013) and indicated that shallow to intermediate wells contained higher F 

concentrations than the deeper ones and that calcite and fluorite solubilities were reached 

and exceeded in groundwaters from several wells. Saturation indices for calcite and fluorite 

are shown in Figure 14. 
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Figure 14 - a) Calcite saturation indices as a function of HCO3 concentrations for Datong Basin recalculated 

from data of Su and others (2013). b) Fluorite saturation indices as a function of HCO3 concentrations for 

Datong Basin recalculated from data of Su and others. (2013). 

The study by Pi and others (2015) showed further evidence for the importance of 

evaporation using water isotopes and the correspondence of high F concentrations with 

waters that had reached calcite saturation and should precipitate calcite to keep the Ca 

concentrations low and F concentrations high. Several of these studies showed a positive 

correlation of F concentrations with HCO3 or alkalinity and sometimes with Cl 

concentration. In Figure 15a, a plot of F concentration against HCO3 shows the positive 

qualitative trend and Figure 15b shows that PCO2 also influences the F concentration. This 

plot points out the importance of PCO2 as an independent variable. 

 
Figure 15 - a) Fluoride concentration increasing with increasing HCO3 concentrations for Datong Basin using 
data of Su and others (2013). b) Fluoride concentrations also increasing with increasing PCO2. 

11.3 The East African Rift Valley 

The highest concentrations of F in groundwater worldwide are known to occur in 

the East African Rift Valley. The Rift Valley extends through Eritrea, Djibouti, Ethiopia, 

Kenya, Tanzania, Uganda, Rwanda, Burundi, Malawi, with a western branch that extends 

through Zambia and is thought to terminate in Botswana or Namibia (McCarthy, 2013; 

McFarlane and Eckardt, 2007). Fluoride occurs in association with alkaline, hyper-alkaline 

and silicic volcanic rocks and with associated hydrothermal fluids. High concentrations are 
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found in groundwater used for drinking, as well as some river waters, but can be extremely 

high in hot springs and alkaline lakes. Cases of both dental and skeletal fluorosis from 

chronic exposure via drinking water, cooking water and food are well-documented across 

the region (Ayenew, 2008; Bugaisa, 1971; Gaciri and Davies, 1993; Mabelya et al., 1997; 

Nanyaro et al., 1984; Rango et al., 2014; Tekle-Haimanot, 2005; Tekle-Haimanot et al., 1995). 

Alkaline volcanic rocks including nephelinites and carbonatites, silicic rocks 

including rhyolites and ignimbrites, associated ashes and reworked lacustrine sediments 

derived from them, are all capable of bearing large F contents. Volcanic ashes and reworked 

ash-bearing sediments are particularly reactive. Weathering of the silicate minerals in the 

lavas, ashes and volcanogenic sediments produces Ca-poor, Na-HCO3
--enriched 

groundwater compositions (Ayenew, 2008; Jones et al., 1977). These are commonly 

undersaturated with respect to fluorite (Rango et al., 2009) and in such conditions, F 

concentrations are not constrained by fluorite precipitation. 

Water sources close to active and dormant volcanoes have especially high F 

concentrations. In Tanzania, concentrations in the range 12 to 76 mg/L were recorded for 

rivers and 15 to 63 mg/L for springs draining Mount Meru (Nanyaro et al., 1984). The 

extremes were attributed to weathering of fluorine-rich alkaline igneous rocks, 

hydrothermal inputs from fumaroles and cycling of F-rich trona 

(Na2CO3 · NaHCO3 · 2H2O), a seasonal evaporitic encrustation. Around the Oldoinyo 

Lengai volcano, high F concentrations can be attributed to nephelinitic tephra deposits 

containing the highly soluble mineral villiaumite (NaF) (Bosshard-Stadlin et al., 2017). 

Rift Valley alkaline and crater lakes have some of the highest F concentrations; 

many are also brackish. In Ethiopia, Tekle-Haimanot and others (2006) observed F maxima 

of 264 mg/L and 202 mg/L in Lakes Shala and Abijata respectively. Nanyaro and others 

(1984) found concentrations up to 690 mg/L in the alkaline Momella Lakes Group of Mount 

Meru, Tanzania. In Kenyan Lake Magadi, Jones and others (1977) reported F concentrations 

up to 1,980 mg/L in surface brine. High F concentrations are achieved by extreme 

evaporation, associated calcite precipitation (loss of Ca) and hydrothermal inputs (Jones et 

al., 1977; Kilham and Hecky, 1973). Lake Magadi waters appear to be largely saturated with 

respect to fluorite and the mineral is an abundant accessory authigenic phase in many of 

the Magadi lake sediments (Jones et al., 1977). Jones and others (1977) reported extremely 

high fluoride concentrations (up to 2,170 mg/L) in saline groundwaters from boreholes in 

Magadi lake sediments. 

In a study of groundwater and surface water from the main Rift Valley of Ethiopia 

(Reimann et al., 2003; Reimann et al., 2002), 31 percent of analyzed groundwater samples 

from deep boreholes and 38 percent from shallow boreholes had F concentrations greater 

than the WHO guideline value of 1.5 mg/L (Figure 16). Hot springs also had relatively high 

concentrations, but the highest (up to 175 mg/L) were observed in samples from alkaline 

lakes. High F concentrations are associated with low Ca and high alkalinity values, 
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reflecting the F mobilization processes outlined in Section 9. Most groundwaters in the 

study were undersaturated with respect to fluorite (Figure 16). 

Mitigation of fluoride problems in the Rift Valley has long been difficult because of 

factors including the widespread scale of the problem, occurrence in rural areas, limited 

testing, availability and cost of many raw materials for water treatment, practicality of 

water treatment, and above all, scarce supplies of water. 

 
Figure 16 - Variation of a) fluoride with calcium; b) fluoride with alkalinity; and, saturation indices for c) calcite 
and d) fluorite in water samples from the Ethiopian Rift Valley (n=148) (data from Reimann et al., 2003; Reimann 
et al., 2002); WHO GV: Guideline value from World Health Organization. 

11.4 The North China Plain Alluvial Aquifer 

The North China Plain (NCP) is the largest alluvial plain in China, covering about 

409,000 km2 and supporting a population of more than 300 million people in the larger 

definition and 136,000 km2 supporting 111 million people in the narrower definition (Liu 

et al., 2011). Two major cities are located there, Beijing and Tianjin. The second longest river 

in China, Huang He (Yellow River), flows across the plain to meet the sea at the Bohai Gulf. 

The plain has several million wells because surface water resources are insufficient to meet 

the needs of agriculture, industry, and the resident population. Indeed, it is estimated that 

70 percent of water resources are from groundwater (Zheng et al., 2010). Consequently, the 

groundwater has been overexploited, rivers are drying up, land subsidence occurs, 

seawater is intruding, and the groundwater quality is deteriorating. The NCP groundwater 
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system has become the most depleted aquifer in the world (Liu et al., 2011). The 1300 km 

South-to-North Diversion Canal transfers water to northern China to alleviate this problem. 

One of the biggest water quality concerns is the widespread occurrence of elevated F 

concentrations (Feng et al., 2020; Li et al., 2017; Liu et al., 2015). 

A belt of Mesozoic to Cenozoic felsic rocks, which includes a substantial amount of 

granitoids and rhyolites, trends north-south from Heilongjiang to the South China Sea. A 

branch of these rocks trends west from Shenyang and comprises part of the Yanshan 

Mountains which border Beijing and the NCP on the north. They also contain granitoids, 

rhyolites, and andesites. The Taihang Mountains that border the west side of the plain also 

contain similar felsic rocks, granitic intrusive and extrusive forms of andesitic to rhyolitic 

composition (Chen et al., 2003). These rocks may well have provided the high-F sources 

that eroded into the NCP along with clays that would promote freshening of the 

groundwater to a Na-HCO3 type water and F mobilization. Sediments from the plain were 

found to contain F contents of 140 to 1,690 mg/kg (Li et al., 2017). 

Two transects of groundwater sampling from the Western Hills to the Bohai Sea 

were made and showed an increase in F concentrations consistent with the development of 

Na-HCO3 waters (Xing et al., 2013). The changes in F, pH, Na, Ca, Cl, and HCO3 

concentrations are shown in Figure 17. Note the same pattern of increasing pH, F, Na, and 

HCO3 as the groundwater moves downgradient toward the coast, as shown previously 

with the Aquia and the Lincolnshire aquifers. For the North China Plain groundwaters, 

there has been no discrimination between waters from deep wells and those from shallow 

wells. More details as well as differences between deep and shallow groundwaters have 

been examined by Xing and others (2013). 
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Figure 17 - Solute trends along a west to east profile in the North China 
Plain from the base of the Taihang Mountains (0 km) to the Bohai Sea 
(~180 km) based on data from Xing and others. (2013). a) Increase in F 
concentrations. b) Increase in pH values. c) Concentrations of Na variable 
but mostly elevated and Ca concentrations decreasing substantially. 
d) Concentrations of Cl moderately low and steady whereas HCO3 

concentrations increase towards the middle of the basin and then 
decrease, but consistently greater than Cl concentrations. 
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11.5 The Black Creek Sandstone Aquifer, South Carolina, USA 

Dental fluorosis was known to occur in Georgetown and Horry Counties, South 

Carolina, USA, and an investigation by Zack (1980) revealed the source of the high F 

concentrations in several groundwater supply wells. These counties border the Atlantic 

Ocean, and some seawater mixing affects some of the wells, although it is not clear what is 

recent seawater intrusion and what is ancient, trapped seawater. The Black Creek aquifer 

is a Late Cretaceous formation with thin continuous layers of calcite-cemented quartz sand 

interlayered with unconsolidated quartz sand and Na-rich clays. Carbonaceous material 

and lignite are commonly found in the formation. Fossil shark teeth, containing 

fluorapatite, are also common in the cemented sand. This formation lies in the belt of 

phosphorite deposits that occurs in coastal states from North Carolina to Florida; 

phosphate nodules have also been found. The mineralized material in shark teeth can be 

nearly pure fluorapatite (Enax et al., 2012) and francolite is also likely present in the 

phosphate nodules. Wells occur at depths from about 70 to 600 m with groundwater pH 

values approaching 9 inland and decreasing to about 8 on the coast with increasing NaCl 

content. Fluoride concentrations range from 0.5 to 5.5 mg/L and bicarbonate concentrations 

range from 350 to 1300 mg/L, making a strong positive correlation (Figure 18). Bicarbonate 

concentrations in Zack (1980) were computed from the WATEQ code (Plummer et al., 1976) 

before the revised data of Plummer and Busenberg (1982) on calcite solubility and CO2-H2O 

equilibria were published. Hence, the analytical data were revised with the phreeqc.dat 

database in PhreeqcI to obtain revised DIC concentrations and plotted as HCO3 

concentrations in Figure 18. 

 
Figure 18 - Fluoride concentrations plotted against HCO3 

concentrations for the Black Creek aquifer, South Carolina. Data 
from Zack (1980). 
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Saturation indices for calcite and fluorite were recalculated and plotted from data 

in Zack (1980) in Figure 19a and b, respectively. An interesting trend for the fluorite 

saturation indices is the consistent undersaturation. This result would argue in favor of 

Zack’s hypothesis that shark’s teeth or a fluorapatite mineral is the source of aqueous 

fluoride. 

 
Figure 19 - a) Calcite saturation indices for Black Creek aquifer groundwaters showing both undersaturation 
and oversaturation (data from Zack, 1980). b) Fluorite saturation indices showing consistent undersaturation 
with respect to fluorite. 

Using the wateqf.dat database which contains thermodynamic data for fluorapatite 

and the few analyses that contain P determinations (Zack, 1980), Figure 20 shows that the 

SI values for fluorapatite are close to saturation. The SI values have been divided by 9, the 

total formula stoichiometry, as a normalization procedure (Nordstrom, 1999). 

 
Figure 20 - Saturation indices (SI) for fluorapatite using data from Zack (1980). 
The SI values have been normalized to the total stoichiometry of the mineral 
formula. 
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12 Mitigation of Excess Fluoride in Groundwater 

In water-scarce and remote areas, treatment techniques to remove fluoride from 

groundwater may be the only mitigation option available. An enormous number of 

materials have been investigated for their aqueous fluoride removal capabilities. Some 

common groundwater fluoride mitigation approaches are listed in Table 4 at the end of this 

section. They have been reviewed extensively elsewhere (Bhatnagar et al., 2011; 

Habuda-Stanic et al., 2014; Heidweiller, 1990; Jagtap et al., 2012; Mohapatra et al., 2009; 

Sandoval et al., 2021; Yadav et al., 2019). Some of the longest-established methods involve 

low-technology coagulation/precipitation or adsorption/ion exchange. The Nalgonda 

coagulation technique, named after the Nalgonda District, Telangana, India, where it was 

developed in the 1970s, has been one of the most frequently applied (Jagtap et al., 2012; 

Nawlakhe and Bulusu, 1989). The method uses a combination of alum (or aluminum 

chloride), lime (or sodium aluminate) and bleaching powder. These materials are combined 

with fluoride-rich water, stirred, and the aluminum hydroxide flocs with co-precipitating 

fluoride are then left to settle before removal by filtration. The method has been applied at 

domestic scale (bucket) and community scales (fill-and-draw plant) (Nawlakhe and 

Bulusu, 1989). Costs are moderate and raw materials usually readily available. Use of alum 

results in increased concentrations of SO4 and suspended particles in the treated water and 

so aluminum polychloride sulphate has been used as an alternative (Lagaude et al., 1992). 

Major drawbacks of the Nalgonda technique, besides the high sulphate concentration in 

treated water, are production of sludge, presence of residual aluminum and reports that 

fluoride removal efficiency is only around 18 to 33 percent (Yadav et al., 2019). Other 

coagulation methods include addition of calcium-bearing materials such as gypsum, 

dolomite, calcite or calcium chloride (Nath and Dutta, 2015). 

Electrocoagulation has also been developed more recently and has been reviewed 

by Sandoval and others (2021). Metal electrodes connected to an external power supply 

inserted into an electrolyte solution (groundwater) produce metallic cations by oxidation 

at the anode (usually aluminium, Graça et al., 2019) while reduction at the cathode 

produces hydrogen gas and hydroxide ions. Coagulating metal flocs produced by the 

electrochemical reaction remove fluoride (as e.g., aluminium fluoride hydroxide) from 

solution and are then removed by flotation, settling and filtration (Emamjomeh et al., 2011; 

Sandoval et al., 2021; Yadav et al., 2019; Zhao et al., 2011). The method shows promise (Luna 

et al., 2018) but to date, has not been applied at a scale large enough for fluoride removal 

in developing-country settings. 

Numerous sorbents and ion-exchange media have been tested for the removal of 

fluoride from water. These include activated carbon, activated alumina (Barbier and 

Mazounie, 1984; Bhatnagar et al., 2011), manganese-oxide-coated alumina (Tripathy and 

Raichur, 2008), fluorapatite (Wei et al., 2014), chitosan (Hu et al., 2018), titanium oxides, 
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ion-exchange resins (e.g., Defluoron 1, Defluoron 2), and several types of local materials 

including plant carbon (Venkata Mohan et al., 2007), clay minerals (Chaturvedi et al., 1988; 

Du et al., 2011; Nabbou et al., 2019a), aluminium oxides (Farrah et al., 1987), iron oxides 

(Tang et al., 2010b), mixed Fe-Al oxides (Sujana and Anand, 2010), zeolites, calcite (Turner 

et al., 2005), clay pots (Moges et al., 1996), fly ash (Chaturvedi et al., 1990), local soils (Wang 

and Reardon, 2001; Zevenbergen et al., 1996), rice husks, crushed bone, and bone char 

(Brunson and Sabatini, 2009). 

The pH dependence of many fluoride sorbents is well-established. Sorption to the 

metal oxides (e.g. amorphous Al(OH)3, gibbsite, Al2O3, activated alumina, iron oxides) is 

strongly pH-controlled, with specific sorption to the aluminium oxides reported to be most 

effective typically around pH 4 to 8 (Farrah et al., 1987; Shimelis et al., 2006; Sujana and 

Anand, 2011), slightly acidic dependence of activated alumina (Mohapatra et al., 2009; 

Yadav et al., 2019) and neutral to mildly acidic range for ferric oxide and hydroxide (around 

pH 3-7, Tang et al., 2009; Tang et al., 2010b). Fluoride sorption is favored electrostatically 

by net positive surface charges on the variably charged oxides at acidic pH. Sorption to 

clays is also pH-dependent (Kau et al., 1997; Mudzielwana et al., 2016). Due to the 

permanent negative surface charge on clays, many approaches to fluoride removal have 

involved modifications of clay materials to improve the anion sorption capacity (Ma et al., 

2012). Desorption from clays at high pH is commonly attributed to OH exchange on 

octahedral layers (Wang and Reardon, 2001). 

Sorption efficiency is further affected by factors such as sorbent composition, 

texture and aging, initial water fluoride concentration and overall chemical composition, 

notably presence of competing anions. Sorption to many surfaces is also reported to be 

endothermic (Biswas et al., 2007; Hu et al., 2018; Mejia et al., 2017; Nabbou et al., 2019a). 

Given high initial fluoride loadings, many of the adsorption techniques struggle to achieve 

fluoride concentrations below around 1 to 1.5 mg/L (Mohapatra et al., 2009), although this 

meets the requirements of the WHO guideline value. One of the main drawbacks of the 

adsorption/ion-exchange methods is the production and disposal of waste materials 

(Yadav et al., 2019). Activated alumina and bone materials are among the more frequently 

used and effective fluoride sorbents (with highest removal capacity). However, activated 

alumina is relatively expensive and may not be universally available, and bone products 

are unacceptable in some cultures. 

Other removal methods include solar distillation (Antwi et al., 2011) and the 

membrane technologies such as electrodialysis (Gmar et al., 2015), reverse osmosis 

(Schneiter and Middlebrooks, 1983) and nanofiltration (Yadav et al., 2019). Electrodialysis 

effects passage of fluoride ions through a semi-permeable membrane via use of an electric 

field. Nanofiltration and reverse osmosis use a semi-permeable membrane to prevent 

passage of fluoride ions (and other dissolved solids) by application of pressure sufficient 

to reverse the natural osmotic pressure (Yadav et al., 2019). Nanofiltration involves use of 
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slightly larger membrane pore sizes, with less resistance to the passage of solutes, lower 

pressure and hence lower energy needs. Much research has also gone into targeting 

membranes for removal of specific solutes including fluoride (Mohapatra et al., 2009). 

Membrane technology offers many advantages in terms of removal performance, lack of 

interferences and removal of solutes besides fluoride, but requires greater technical 

knowledge and is relatively high-cost. Membrane fouling from organic solutes, colloids, 

scales and biofouling accumulations can be an additional problem (Van der Bruggen et al., 

2008). 

Most methods designed for village-scale fluoride removal in developing-country 

settings have drawbacks in terms of removal efficiency, cost, local availability of materials, 

residual chemicals or taste in treated water, lack of monitoring of treated water and 

disposal of treatment chemicals. Many have not been tested beyond pilot or laboratory 

scale. Methods that have been tested have experienced problems with long-term 

sustainability. Success rates depend on factors such as fluoride removal efficiency, 

treatment capacity, ease of use, ease and cost of maintenance, availability of raw materials 

and degree of community participation and acceptance. 

As examples, various pilot defluoridation schemes have been in operation in the 

East African Rift Valley since the 1960s. Methods have included bone char, coagulation and 

activated alumina (Kloos and Tekle-Haimanot, 1999). Frustrations with the efficacy and 

operation of the Nalgonda coagulation technique centered on inadequate removal of 

fluoride and production of sludge, which led to a shift towards use of bone char which has 

greater removal efficacy and is readily available (Dahi, 2016). In India, despite Nalgonda 

having been developed there, it does not appear to be in widespread use and little evidence 

exists for long-term use of other appropriate methods (Ganvir and Das, 2011). In Sri Lanka, 

reverse osmosis has been applied in some affected areas, though problems with inadequate 

disinfection and maintenance, scarcity of water, lack of technical capacity and brine 

removal have all been highlighted (Imbulana et al., 2020). In affected areas of China, 

applied methods have included activated alumina and electrodialysis, though piped water 

supplies have also been installed where feasible (Wang et al., 2012). 

Given the common operational and sustainability problems of groundwater 

fluoride removal, potentially beneficial alternative approaches to water quality 

improvement include judicious borehole siting and groundwater management. Factors in 

borehole siting include local geology and spatial variations in groundwater fluoride 

concentration (e.g., with depth). Groundwater management includes consideration of 

optimum pumping rates, especially where there exists the possibility of mixing of 

groundwater with deep fluoride-rich groundwater (e.g., old groundwater or hydrothermal 

fluids), which could be increasingly drawn upward at high pumping rates (Carrillo-Rivera 

et al., 2002). 
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Groundwater management options potentially include application of managed 

aquifer recharge (MAR) schemes. MAR has long been suggested to improve groundwater 

quality, as well as to augment groundwater resources. MAR schemes have been 

particularly popular in India and have included constructed check dams (Bhagavan and 

Raghu, 2005; Brindha and Elango, 2011; Brindha et al., 2016), dug recharge wells (Brindha 

et al., 2016), percolation ponds/tanks and infiltration galleries. Some positive benefits in 

terms of fluoride reduction have been observed, although documentation on MAR 

implementation has appeared to suggest mixed outcomes for fluoride mitigation (Brindha 

et al., 2016) as well as for water budgets (Boisson et al., 2015). Some supply wells have 

shown limited changes or even increased fluoride concentrations (Bhagavan and Raghu, 

2005). Raising the groundwater level can bring previously unsaturated aquifer horizons 

into the zone of water-level fluctuation and can result in mobilization of solutes (e.g., 

Hallett et al., 2015). It could also increase concentrations of fluoride and dissolved salts 

through evaporation. The potential exists for MAR schemes in fluoride mitigation, but the 

methodology requires careful monitoring and is likely to be site-specific. Direct rainwater 

harvesting through installation of surface or subsurface containers also offers prospects for 

collection of low-fluoride water supplies, at least seasonally during and shortly after 

periods of active rainfall. 
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Table 4 - Commonly applied methods for removal of fluoride from drinking water (after Heidweiller, 1990; Jagtap et al., 2012; Mohapatra et al., 2009; Sandoval et al., 2021; Van 
der Bruggen et al., 2008). 

Treatment method Capacity/dose Working pH Interferences            Advantages Disadvantages 
Relative 
cost 

Coagulation 

Alum (aluminium 
sulphate) 

150 mg/mg F Non-specific - Established process 
Sludge produced, treated water is acidic, residual Al 
present, may have adverse taste 

Medium-high 

Lime 30 mg/mg F Non-specific - Established process 
Sludge produced, treated water is alkaline, may have 
adverse taste 

Medium-high 

Alum + lime (Nalgonda) 
150 mg alum + 
7mg lime/mg F 

Non-specific, 
optimum 6.5 

- Low-tech, established 
Sludge produced, high chemical dose, residual Al 
present, may have adverse taste 

Medium-high 

Gypsum + fluorite 
5 mg gypsum + 

< 2 mg SO4 /mg F 
Non-specific - Simple 

Needs trained operators, low efficiency, high residual 
Ca, SO4 

Low-medium 

Calcium chloride 3 mg CaCl2/mg F 6.5-8.0 - Simple Needs additional flocculent (e.g., FeCl3) Medium-high 

Electrochemical 

Electrocoagulation High 6.0-8.0 
Sulphate, 

phosphate, 
bicarbonate 

Few chemicals 
Needs electrode replacements, power; passivated film 
formation, potential residual Al in treated water 

Medium-high 

Adsorption/ion exchange 

Activated carbon Variable < 3 Many - Large pH changes before and after treatment High 

Plant carbon 300 mg F/kg 7 - Locally available Requires soaking in potassium hydroxide Low-medium 

Zeolites 100 mg F/kg Non-specific - - Poor capacity High 

Defluoron 2 360 g F/m
3
 Non-specific Alkalinity - 

Disposal of chemicals used in resin generation, Cl in 
treated water 

Medium 

Clay pots 80 mg F/kg Non-specific - Locally available Low capacity, slow Medium 

Activated alumina 1200 g F/m
3
 5.5 Alkalinity Effective, well-established 

Needs trained operators, chemicals not always 
available 

Medium 

Bone 900 g F/m
3
 > 7 Arsenic Locally available May give taste, degenerates, not universally accepted Low 

Bone char 1000 g F/m
3
 > 7 Arsenic Locally available, high capacity Not universally accepted, may give adverse color, taste Low 

Membrane techniques 

Electrodialysis High Non-specific - 
Can remove other ions, used for 

high salinity, no chemicals 
Skilled operators, high cost, membrane fouling Very high 

Reverse osmosis High Non-specific - 
Can remove other ions, used for 

high salinity, no chemicals 
Skilled operators, high cost, membrane fouling, can 
remove beneficial solutes, residual saline wastewater 

Very high 

Nanofiltration High Non-specific - 
Can remove other ions, no 

chemicals 
Skilled operators, high cost, membrane fouling, can 
remove beneficial solutes, residual saline wastewater 

Very high 
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13 Concluding Remarks 

This review describes the occurrence, distribution and impacts of fluoride 

mobilization in groundwater. Although most groundwater has low concentrations of F, 

certain natural hydrogeological and geochemical conditions can render concentrations 

high and potentially detrimental to human health through long-term exposure via drinking 

water. The literature has documented these in at least 85 countries and on most continents. 

High-F groundwaters are especially prevalent in arid and semi-arid areas of the world. 

Generation of high-F groundwater is a function of regional geology (interaction 

with F-rich host rocks such as felsic or alkaline igneous rocks or phosphorites) and 

water-rock interaction processes including:  

• development of Na-HCO3 water;  

• development of saline, low-Ca, groundwater or brine;  

• development of extreme pH;  

• changes in carbonate equilibria including precipitation of calcite; and,  

• changes in temperature.  

Fluoride has also been observed to derive from anthropogenic sources through 

activities such as combustion of F-bearing fossil fuels, brick manufacture and disposal of 

industrial and domestic wastewater. However, these are local occurrences and not 

widespread as are the high-F groundwaters of geogenic origin. 

This review outlines the dominant controls on F mobilization in groundwater 

through several case studies from published works and describes approaches to F 

mitigation that have been tried or adopted. It also catalogues world occurrences in tabular 

form from the vast literature available on the topic. 

Much knowledge has been acquired on the occurrences and causes of high-F 

groundwater. Rather more challenging is providing sustainable solutions to the problems 

in F-vulnerable aquifers, especially in parts of the world with already scarce groundwater 

resources and limited economic resources. 
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14 Exercises 

 

Exercise 1 

Is fluoride an essential element for mammalian or human health? 

Click for solution to Exercise 1 

Exercise 2 

Is natural or geogenic fluoride a contamination problem for groundwater supplies? 

Click for solution to Exercise 2 

Exercise 3 

What rock type has the highest concentration of fluoride? If a rock is composed of 

20 percent calcite, 65 percent fluorapatite, and 5 percent fluorite, what would be the content 

of total fluorine in the rock? 

Click for solution to Exercise 3 

Exercise 4 

Write the dissolution reaction for fluorapatite and the mass action expression for 

the ion-activity product. If the activities of free Ca2+ = 3.895 × 10–5, free  

PO4
3– = 3.065 × 10–10, and free F– = 2.009 × 10–4, calculate the saturation index and state 

whether the solution is undersaturated or oversaturated with respect to fluorapatite. Use 

log Kfluorapatite = –55.1 

Click for solution to Exercise 4 

Exercise 5 

If a water is oversaturated with respect to calcite such that SIcalcite = 0.36 and the 

activity of CO3
2– = 2.44 × 10–5, what is the degree of fluorite saturation if the activity of 

F– = 2.69 × 10–4? Use log Kcalcite = –8.48 and log Kfluorite = –10.6. 

Click for solution to Exercise 5 

Exercise 6 

A groundwater sample from the Ethiopian Rift Valley has a Ca concentration of 

14.1 mg/L, F of 2.62 mg/L at a temperature of 25 oC. Calculate the fluorite saturation index 

(SI). Use log Kfluorite = –10.6. Use any geochemical code available to you (if you do not have 

a code available, use the value –0.66 that we obtained using PHREEQC). Is the answer any 

different comparing the SI with the activity products compared to the concentration 

products? Why or why not? 

Click for solution to Exercise 6

 
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16 Boxes 

Box 1 Fluoride Concentrations in Groundwaters by Continent-Size 

Regions and Countries 

Table Box1-1 presents fluoride concentrations in groundwaters by continent-size 

regions and countries. This list is available in a spreadsheet on the Ground Water Project 

web site. The spreadsheet is occasionally updated as documentation of additional fluoride 

concentrations are identified. 

Return to where text links to Box 1, Section 3 

Return to where text links to Box 1, Section 8 

Table Box1-1 - Fluoride concentrations in groundwaters by continent-size regions and countries. 

Country Location 
Concentration, 

mg/L 
Reference 

Asia 

China Country-wide 0.1-22 Wang et al. (2018) 

China Country-wide 
2.2-25.1 

(max values) 
He et al. (2020); Wen et al. (2013) 

China North China 0.3-10.4 Feng et al. (2020) 

China North China < 0.01-10.30 Liu and Zhu (1991) 

China North China Plain 0.37-3.28 Liu et al. (2015) 

China North China Plain 0.05-5.52 Xing et al. (2013) 

China North China Plain 0.18-5.59 Li et al. (2017) 

China North China Plain 0.38-7.35 Li et al. (2020a) 

China North China Plain 0.57-2.59 Hao et al. (2020) 

China North China Plain 1.3-9.7 Kwong et al. (2015) 

China Tianjin 0.01-6.3 Zhang et al. (2020) 

China Inner Mongolia up to 8.0 Wang et al. (1999) 

China Inner Mongolia 2.3-9.8 Zheng et al. (2006) 

China Datong basin < 0.01-80.89 Guo and Wang (2005) 

China Datong basin 0.14-39 Wang et al. (2009) 

China Datong basin 0.1-8.3 Su et al. (2013) 

China Datong basin 0.4-3.32 Pi et al. (2015) 

China Datong basin < 0.01-22 Li et al. (2012) 

China Datong basin 0.11-9.65 Shvartsev and Wang (2006) 

China Datong basin and Hetao plain 0.3-5.6 Hu et al. (2013) 

China Shahai, Hetao plain 0.3-2.57 Guo et al. (2012) 

China Hetao Plain up to 2.79 Xu et al. (2013) 

China Hangjinhouqi, Hetao Plain 0.3-6.01 He et al. (2013b) 

China Hangjinhouqi, Hetao plain 0.4-3.36 Deng et al. (2009) 

China Ordos basin, northwestern China 0.12 -13.3 Su et al. (2019) 
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Country Location 
Concentration, 

mg/L 
Reference 

China Huhhot basin < 0.1-6.8 Smedley et al. (2003) 

China Jilin  0.16-12.8 Jianmin et al. (2015) 

China Songnen  0.25-14 Tang et al. (2010a) 

China W Songnen plain, Jilin 0.3-10 Zhang et al. (2003) 

China 
Chinese loess plateau/Guanzhong 

basin 
0.38-3.80 Jia et al. (2019) 

China Middle loess plateau, Shanxi 0.2-3.1 Xiao et al. (2015) 

China Loess Plateau, Shanxi 0.03-9.42 Yuan et al. (2020) 

China Taiyuan basin, Shanxi 0.5-3.3 Li et al. (2011) 

China Taiyuan basin, Shanxi up to 6.2 Guo et al. (2007b) 

China Taiyuan basin, Shanxi up to 2.40 Ma et al. (2011) 

China Yungcheng basin, Shanxi 1.5-6.6 Currell et al. (2011) 

China Yungcheng basin, Shanxi 0.1-14.1 Li et al. (2015) 

China Yungcheng basin, Shanxi 0.53-12.65 Luo et al. (2018) 

China Yungcheng basin, Shanxi 1.75-6.40 Gao et al. (2007) 

China Yungcheng basin, Shanxi 0.31-14.2 Khair et al. (2014) 

China 
Shanxi Province, average 

pre-project (post) 
2.79 (1.03) Zhu et al. (2006) 

China 
Yuncheng basin, Qiji and Yanhu 

areas 
0.7-12.6 Li et al. (2018a) 

China 
Yungcheng basin, Qiji County and 

Yuncheng 
3.05-8.89 Zhang et al. (2019) 

China 
Jinhuiqu irrigation district, Wei River 

basin 
0.34-2.55 Xu et al. (2019) 

China Southeast  0.19-3.04 Lü et al. (2016) 

China Zhongxiang city, Hubei up to 3.67 Guo et al. (2010) 

China Guangdong 
up to 45 (hot 

springs) 
Ren and Jiao (1988) 

China Tongchuan 0.54-1.95 Li et al. (2019b) 

China Handan, Wuqiao cities up to 7 mg/L Wen et al. (2013) 

China Yunnan & Guizhou 0.027-0.47 Luo et al. (2012) 

China Central Guizhou 0.01-7.93 Li et al. (2016) 

China Hunchun (Tumen River) basin, NE  0.68-7.84 Woo et al. (2000) 

China Zhangye basin, 0.21-3.06 He et al. (2013a) 

China Yanchi, NW China 0.45-9.73 Wu et al. (2018) 

China Xiji County 0.2-3.01 Wei et al. (2016) 

China 
Yuanmou County, Yunnan: 2007-9 

(1984) 

0.22-1.46 

(1.0-7.2) 
Chen et al. (2012) 

China Shandong Province, southwest plain 0.01-4.68 Liu et al. (2021) 

China Lower Liaohe River plain 0.11-4.9 Zuo et al. (2019) 

China Gaomi city 0.09-10.99 Chen et al. (2020a) 
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Country Location 
Concentration, 

mg/L 
Reference 

China Buzhuang town 0.65-9.87 Chen et al. (2020b) 

China Yuncheng basin -9.2 Li et al. (2019a) 

China Huaibei plain 0.2-3.75 Hu et al. (2017) 

China Northwest < 0.5-26 Wang and Cheng (2001) 

China 
Changbai Mountain, Longgang 

region 
0.13-7.17 Yan et al. (2019) 

China Kuye River basin, Shaanxi 0.05-7.8 Fu et al. (2018) 

Mongolia South Gobi 0.37-5.46 Nakazawa et al. (2016) 

India Country-wide 0.1-7 Handa (1975) 

India Country-wide 1.7-6.1 Saxena and Ahmed (2003) 

India Country-wide 0.01-27.0 Mukherjee and Singh (2018) 

India Country-wide 0.001-37.1 Ali et al. (2019a) 

India Medak district 0.2-7.4 Adimalla and Venkatayogi (2017) 

India Nalgonda County 0.84-4.3 Adimalla et al. (2020) 

India Alleppey 0.68-2.88 Raj and Shaji (2017) 

India Palar River Basin 1-3.24 Dar et al. (2011) 

India 
Wailapally, Nalgonda, Andhra 

Pradesh 
0.5-7.6 Reddy et al. (2010b) 

India 
Wailapally, Nalgonda, Andhra 

Pradesh 
0.97-5.83 Reddy et al. (2010a) 

India 
Nagarjuna Sagar, Nalgonda, 

Telangana 
0.07-8.8 Brindha and Elango (2013) 

India Chittur block, Palakkad, Kerala 0.05-6.3 Shaji et al. (2018) 

India Indi taluk of Karnataka (2000) 
0.26-3.57 

(0.0 -3.87) 
Ugran et al. (2017) 

India Karnataka, Uttar Pradesh 0.11-12.8 Gupta et al. (1999) 

India SE Rajasthan < 0.1-16.2 Gupta et al. (1993) 

India Medchal block, Andhra Pradesh 0.3-6.9 Kumar et al. (1991) 

India 
Ranga Reddy district, Andhra 

Pradesh 
0.7-4.8 Sujatha (2003) 

India Andhra Pradesh < 0.3-1.81 Subba Rao (2011) 

India E & SE Karnataka, Uttar Pradesh 0.8-7.4 Suma Latha et al. (1999a) 

India Rajnandgaon district, Chhattisgarh 0.6-18.5 Yadav et al. (2020) 

India Vamsadhara River Basin up to 3.4 Rao (1997) 

India NW Rajasthan 0.5-8.5 Chaudhary et al. (2008) 

India Birbhum district, W. Bengal 0.006-1.95 Gupta et al. (2006) 

India Rajasthan 0.2-90 Choubisa (2018a,b) 

India Siroti district, Rajasthan 0.5-16 Maithani et al. (1998) 

India Tirupattur 0.26-2.75 Kumar et al. (2015) 

India Bhavani basin 0.18-1.56 Kumar et al. (2016) 

India Patan, Gujarat 0.4-4.80 Kumar et al. (2017) 
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Country Location 
Concentration, 

mg/L 
Reference 

India N. 24-Paraganas district, W. Bengal 0.01-1.2 Kundu and Mandal (2010) 

India Ganga Plain 0.2-1.8 Misra and Mishra (2007) 

India Mathura district, Ganga Plain 0.1-2.5 Misra et al. (2006) 

India Palamau district, Jharkhand 0.1-12.3 Srikanth et al. (2008) 

India Dindigul district 0.18-3.24 Viswanathan et al. (2009) 

India Birbhum district, West Bengal 0.11-20.9 Hossain and Patra (2020) 

India Birbhum district, West Bengal 0.33-12.97 Mondal et al. (2017) 

India Guntar district, Andhra Pradesh 0.3-2.3 Rao (2003) 

India Birbhum district, West Bengal 0.01-19 Batabyal and Gupta (2017) 

India Balod district, Chhattisgarh 1.5-14 Yadav et al. (2016) 

India Dharmapuri, Tamil Nadu 0.14-6.48 
Jagadeshan and Elango (2015); 

Jagadeshan et al. (2015) 

India Brahmaputra valley, Assam up to 9.0 Gogoi et al. (2021) 

India Mulugu-Venkatapur Mandals 0.28-5.48 Satyanarayana et al. (2017) 

India Fatehpur Sikri 1.1-3.80 Mishra (2013) 

India Prakasam 0.50-9.84 Reddy et al. (2016) 

India Agra city 0.9-4.12 Yadav et al. (2018) 

India Nalbari 0.02-1.56 Sharma et al. (2012) 

India Dausa district, Rajasthan 0.48-3.64 Tiwari et al. (2020) 

India Dharmanagar region, North Tripura < 0.005-4.8 Bhattacharya et al. (2020) 

India Madurai 0.29-1.8 Thivya et al. (2017) 

India Ranchi city 0.0-2.19 Tirkey et al. (2017) 

India Central India 1.3-3.80 Naaz and Anshumali (2015) 

India Brahmaputra floodplains 0.0-14.4 Das et al. (2016b) 

India Simlapal block 0.0-4.90 Das et al. (2016a) 

India Thoothukudi district up to 3.30 
Singaraja et al. (2013); Singaraja et al. 

(2014) 

India Ramganga sub-basin 0.01-85 Rajmohan and Amarasinghe (2016) 

India Siddipet area 0.4-2.20 Narsimha and Sudarshan (2017) 

India Tuticorin district, Tamil Nadu < 0.1-3.30 Singaraja et al. (2018) 

India West Bengal 0.15-1.75 Datta et al. (2014) 

India 
North Gujarat-Cambay region, 

western India 
up to 10 Gupta et al. (2005) 

India Rajasthan 0.11-12.2 Coyte et al., 2019) 

India Eastern 0.3-11 Raju (2017) 

India Delhi area 0.10-16.5 Datta et al. (1996) 

India Palghat district 0.2-5.75 Shaji et al. (2007) 

India Northeastern Rajasthan 0.04-8.2 Keesari et al. (2021) 

India Virudhunagar district, Tamil Nadu 0.05-8 Raja and Neelakantan (2021) 

India Anantapur district, south  1.2-5.9 Reddy and Sunitha (2020) 
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Country Location 
Concentration, 

mg/L 
Reference 

India Ambadongar South Gujarat 0.43-4.25 Shirke et al. (2020) 

India Odisha 0.0-4.0 Sahu et al. (2020) 

India Kunda, Pratapgarh, Uttar Pradesh 0.2-21.1 Maurya et al. (2020) 

India Tiruppur region, south 0.1-2.7 Karunanidhi et al. (2020) 

India Odisha 0.01-3.56 Maitra et al. (2020) 

India Wardha sub-basin, central 0.25-3.57 Nawale et al. (2021) 

India Indo-Gangetic plain, north 0.13-8.28 Shukla and Saxena (2021) 

India Kolar & Tumkur districts 0.36-5.35 Mamatha and Rao (2010) 

India Mehsana district (1980) 0.38-3.6 (0.2-6.0) Dhiman and Keshari (2006) 

India Anantapur district 2.59-6.53 Padhi and Muralidharan (2012) 

India Pokhran area, Rajasthan 0.76-4.74 Singh et al. (2011) 

India Nalgonda district, Andhra Pradesh 0.07-8.8 Brindha and Elango (2013) 

India 
Maheshwaram basin, Andhra 

Pradesh 
0.4-3.8 Sreedvi et al. (2006) 

India 
Nalgonda, Pambar R. basin, Vaniyar 

R. basin 
0.1-8.8 Brindha et al. (2016) 

India Markapur region, Andhra Pradesh 0.4-5.8 Adimalla et al. (2019) 

India Chhattisgarh state 3.3-11.3 Sahu et al. (2017) 

India 
Upper Panda R. basin, Sonbhadra 

district 
0.4-5.6 Raju et al. (2012) 

India Malwa region, Punjab 0.60 -5.07 Ahada and Suthar (2019) 

India Punjab, southwest 0.32-4.05 Kumar and Singh (2015) 

India Siddipet, Telanga 0.4-2.2 Narsimha and Sudarshan (2017) 

India Palamau district, Jharkhand 0.1-12.3 Srikanth et al. (2008) 

India 
Marks Nagar, Unnao district, Uttar 

Pradesh 
0.8-13.9 Jha et al. (2010) 

India Pungar sub-basin, Tamilnadu 0.02-3.22 Srinivasamoorthy et al.(2014) 

India Nagaur Tehsil, Nagaur, Rajasthan 0.4-6.6 Arif et al. (2012) 

India Boden block, Orissa 0.0-6.4 Dey et al. (2012) 

India Bijapur district, Chhatisgarhar 0.1-7.1 Kashyap et al. (2020) 

India 
Maheshwarm mandal, RR district, 

Telangana 
0.28-3.03 Laxmankumar et al. (2019) 

India Siwani Block, Western Hayana 0.3-16.6 Ali et al. (2018) 

India Sidhi district, central 1.4-3.5 Naaz et al. (2015) 

India Dwarka River basin, West Bengal 0.0-10.6 Thapa et al. (2018) 

Bangladesh Country-wide 0.02-2.32 Hoque et al. (2003) 

Nepal Kathmandu basin 0.07-1.92 Pant (2011) 

Sri Lanka North central < 0.02-10 Dissanayake (1991, 1996) 

Sri Lanka North central 0.02-5.3 Chandrajith et al. (2011) 

Sri Lanka North central 0.22-3.16 Perera et al. (2020) 
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Country Location 
Concentration, 

mg/L 
Reference 

Sri Lanka North central & northwestern 0.01-4.34 Young et al. (2011) 

Sri Lanka Country-wide < 0.02-8.00 Chandrajith et al., (2020) 

Sri Lanka 
Country-wide, cold springs (hot 

springs) 

0.15-5.34 

(0.12-5.95) 
Chandrajith et al., (2013) 

Pakistan Nagar Parkar, Thar Desert, Sindh 1.13-7.85 Rafique et al. (2009) 

Pakistan Sibi district, Balochistan 2.4-6.2 Chandio et al., (2021) 

Pakistan Diplo subdistrict, Thar Desert, Sindh 0.29-7.9 Rafique et al. (2013) 

Pakistan 
Umarkot subdistrict, Thar Desert, 

Sindh 
0.06-44.4 Rafique et al. (2015) 

Pakistan Badin district, Sindh 0.23-6.8 Talpur et al. (2020) 

Pakistan Punjab 0.54-17.5 Younas et al., (2019) 

Pakistan Lahore and Kasur districts, Punjab 0.16-21.1 Farooqi et al. (2007) 

Pakistan Sindh and Punjab 0.1-3.9 Ali et al. (2019b) 

Pakistan Balochistan 1-14 Chandio et al. (2015) 

Pakistan 
Mardan district, Khyber 

Pakhtunkhwa  
0.05-10.8 Rahman et al. (2017) 

Pakistan Swat Valley, Adenzai region 0.7-6.4 Rashid et al. (2018) 

Pakistan Punjab 0.6-8.6 Arshad and Imran (2017) 

Pakistan Tehsil Mailsi, Punjab 5.5-29.6 Rasool et al. (2015) 

South 

Korea 
Poncheon spa area < 0.1-19.7 Chae et al. (2006) 

South 

Korea 
Country-wide  < 0.1-40.8 Chae et al. (2007) 

South 

Korea 
Southeast  0.1-> 13 Kim and Jeong (2005) 

South 

Korea 
Gimcheon 0.04-2.15 Kim et al. (2011) 

South 

Korea 
Taejon 0.00-5.99 Jeong (2001) 

South 

Korea 
Jungwon area 0.2-14.1 Koh et al. (2008) 

Vietnam Ninh Hoa up to 28.1 Tu (2008); Yadav et al. (2019) 

Taiwan Chianan alluvial plain aquifer up to 3.16 Liao et al. (2016) 

Taiwan 
Southern Taiwan Science Park 

groundwater 
0.4-3.6 Wu et al. (2010) 

Japan 
Mizunami Underground Research 

Lab 
0.1-15.4 

Abdelgawad et al. (2009); Iwatsuki et 

al. (2005) 

Japan Kumamoto 0.1-1.58 Hossain et al. (2016) 

Japan Tono U mine, Gifu Prefecture 1.99-10.9 Iwatsuki and Yoshida (1999) 

Thailand Chiang Mai, northern area 0.01-9.6 Chuah et al. (2016) 

Myanmar Myingyan township < 0.3-3.6 Bacquart et al. (2015) 

Myanmar Southern up to 12.2 Pincetti-Zúniga et al. (2020) 
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Indonesia Asembagus coastal plain, East Java < 0.1-4.2 Heikens et al. (2005) 

Timor-Leste Dili city 0.0-3.5 Ximenes et al. (2018) 

Russia 

Russia Kola Peninsula north 0.21-1.55 Mazukhina et al. (2012) 

Russia Baikal Rift zone thermal waters 3.0-46.8 Shvartsev et al. (2015) 

Russia Moscow artesian basin < 0.1-5 Voroshilov (1972) 

Russia Moscow artesian basin 
Fluorite 

oversaturated 
Limantseva et al. (2007) 

Russia 
Tuva basin and surrounding 

mountains 
0.1-6.9 Guseva (2020) 

Middle East 

Afghanistan Country-wide  < 0.01-79.2 Hayat and Baba (2017) 

Bahrain Country-wide  0.5-1.46 Akhter (1998) 

Gaza strip Khan Younis City 0.3-6.45 Abu Jabal et al. (2014) 

Gaza strip Country-wide 0.2-4.4 Shomar et al. (2004) 

Iran West coast of Urmia Lake 0.16-5.7 Amiri and Berndtsson (2020) 

Iran Sistan and Baluchistan, southeast 0.1-1.8 Abbasnia et al. (2019) 

Iran Bazman, southeast 0.5-3.75 Naderi et al. (2020) 

Iran Bahabad, central  0.22-2.35 Dehbandi et al. (2018) 

Iran Zarand basin, central 0.20-1.99 Dehbandi et al., 2017) 

Iran Kerman Province 0.33-3.51 Derakhshani et al. (2014) 

Iran West Azerbaijan, NW 0.68-10.3 Mohammadi et al. (2017b) 

Iran Muteh area, Isfahan 0.2-9.2 Keshavarzi et al. (2010) 

Iran Dashtestan 0.4-3 Battaleb-Looie et al. (2012) 

Iran Sistan and Baluchistan 0.125-1.71 Biglari et al. (2016) 

Iran Poldasht city 0.28-10.23 Mohammadi et al. (2017a) 

Iran Showt, Azerbaijan  0.0-5.5 Yousefi et al. (2019) 

Iran Isfahan 0.02-2.8 Aghapour et al. (2018) 

Iran Lar area, south 0.64-3.92 Rezaei et al. (2017) 

Iran 
Laristan and Gerash regions, 

2003-2010 
0.71-3.83 Amini et al. (2016) 

Iran Groundwater wells in urban areas < 0.02-5.0 Mesdaghinia et al. (2010) 

Iran Maku area, northwest 0.3-5.96 Moghaddam and Fijani (2008) 

Iran Shush aquifer, Khuzestan County 0.12-2.17 Nouri et al. (2006) 

Iran Fars Province 0.06-4.95 Enalou et al. (2018) 

Iran Khaf County 0.17-1.82 Bazeli et al. (2020) 

Iran Yazd Province 0.02-1.96 Fallahzadeh et al. (2018) 

Iran Khorasan Razavi Province 0.09-1.7 Ghaderpoori et al. (2018) 

Iran West Azerbaijan 0-11.12 Aslani et al. (2019) 

Iran West Azerbaijan 0.22-10.33 Mohammadi et al. (2017b) 
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Iran Ardakan, Yazd Province 0.2-6 Mirzabeygi et al. (2018) 

Iran Larestan region, Fars Province 0.64-3.46 Dehghani et al. (2018) 

Iran Dashestan area, Bushehr Province 0.99-2.5 Dobaradaran et al. (2009) 

Iran Bazman volcanic area, southeast 0.6-3.75 Naderi et al. (2020) 

Israel Country-wide 0.05-5.5 Kafri et al. (1989) 

Oman Al Musanaah coastal plain 1-13 Askri (2015) 

Saudi 

Arabia 
Midyan basin 0.98-2.10 Ghrefat et al. (2014) 

Saudi 

Arabia 
Riyadh 0.42-1.80 Alabdula'aly (1997) 

Saudi 

Arabia 
Al Asyah 1.21-1.97 Loni et al. (2015) 

Saudi 

Arabia 
Wadi Al Hamad, Madinah 1.19-1.92 Alharbi et al. (2017) 

Saudi 

Arabia 
Almadinah Almunawarah 0.01-2.16 Shraim et al. (2013) 

Yemen 
Dhamar Volcanic Province 

(Quaternary) 
0.15-5.7 Minissale et al. (2013) 

Yemen Taiz city 1.08-10 Al-Amry (2009) 

Yemen Al-Howban basin, Taiz 0.98-3.6 Aqeel et al. (2017) 

Yemen Highlands 0.06-35 Al-Mikhlafi (2010) 

Yemen Al-Dhala basin 0.31-18.3 Al-Amry et al. (2020) 

Africa 

Algeria 
Complex Terminal aquifer, Ouargla 

Basin 
1-2 Nezli et al. (2009) 

Algeria 
Complex Terminal aquifer, Hassi 

Messaoud 
1.6-2.9 Kechiched et al. (2020) 

Algeria Tindouf, South Algeria 0.16-3.31 Nabbou et al. (2019b) 

Algeria South Algeria 0.38-2.30 Messaïtfa (2008) 

Algeria, 

Tunisia 
Continental Intercalaire aquifer 0.4-6.0 Edmunds et al. (2003) 

Benin Central 0.0-7.19 Tossou et al. (2017) 

Botswana Gantsi district 0.5-> 5 Smith and Sabone (1994) 

Cameroon Mayo Tsanaga River basin 0.19-15.2 Fantong et al. (2010) 

Cameroon 
Soda springs along Cameroon 

Volcanic Line  
< 0.1-3.8 Tanyileke et al. (1996) 

Congo Southeastern Brazzaville 0.11-2.90 Laurent and Marie (2010) 

Egypt South of Ismailia canal 0.9-3.7 Khalil et al. (2015) 

Eritrea River Anseba area 0.68-3.73 Srikanth et al. (2002) 

Eritrea Country-wide < 0.1-17 Zerai 1996) 

Ethiopia EAR 1.2-36.0 Tekle-Haimanot et al. (1987) 

Ethiopia EAR < 1.0-> 13.0 Tekle-Haimanot et al. (2006) 
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Ethiopia EAR 0.048-11.6 Reimann et al. (2003) 

Ethiopia Central EAR < 0.1-75.0 Ayenew (2008) 

Ethiopia Central EAR 1.1-18 Rango et al. (2012) 

Ethiopia Central EAR 1.06-61.6 Rango et al. (2013) 

Ethiopia lower Ketar basin 0.8-12.24 Tolera et al. (2020) 

Ethiopia Awash Valley 0.9-26 Ashley and Burley (1995) 

Ethiopia EAR 0.1-75 Demelash et al. (2019) 

Ethiopia EAR 0.1-72.5 Furi et al. (2011) 

Ethiopia EAR 0.48-5.61 Haji et al. (2018) 

Ghana Bongo and environs 0.07-3.12 Anku et al. (2009) 

Ghana Bolgatanga & Bongo districts 0.11-4.60 Apambire et al. (1997) 

Ghana 
11 districts in east section of 

northern region 
< 0.02-11.6 Salifu et al. (2012) 

Ghana 
Kassana Nankana West & Bongo 

districts 
0.11-4.27 Ganyaglo et al. (2019) 

Ghana Bolgatanga area, northern Ghana 0.05-3.20 Smedley (1996) 

Ghana Northeast Ghana 0.01-8.40 Sunkari et al. (2020) 

Ghana Northeast Ghana 0.35-3.95 Zango et al. (2021) 

Ivory Coast Southern Abidjan 0.06-16.78 Osemwegie et al. (2013) 

Kenya Country-wide 0.1-180 Gaciri and Davies (1993) 

Kenya Central  0.1-43.6 Olaka et al. (2016) 

Kenya Turkana County 0.22-18.74 Tanui et al. (2020) 

Kenya Gilgil, Nakuru County 0.026-21.5 Wambu and Muthakia (2011) 

Kenya Country-wide up to 57.0 Nair et al. (1984) 

Libya Upper Sirte Basin 0.63-3.6 Edmunds (1994) 

Libya Alagilat city 0.8-3.2 Elmabrok (2015) 

Malawi Country-wide 0.2-10.3 Mapoma and Xie (2014) 

Malawi Southern region < 0.1-47 Bath (1980) 

Malawi Southern region review of literature 
up to 20 (some 

hot springs) 
Addison et al., 2020) 

Malawi Lower Shire Valley 0.1-4.8 Grimason et al. (2013) 

Malawi Nathenje, Lilongwe < 0.5-7.02 Msonda et al., (2007) 

Morocco Nationwide 0.21-2.97 El Jaoudi et al. (2012) 

Morocco Central  0.12-3.21 Karroum et al., 2017) 

Namibia Northwest region 0.1-3.9 Li et al. (2018b) 

Namibia Southwestern Kalahari up to 10 Simon et al. (2014) 

Namibia Northwest region 0.1-15 Wanke et al. (2014) 

Niger Tillabéri region 0.1-1.49 Salihou Djari et al. (2018) 

Nigeria Ogun State, southwest 0.48-1.84 Emenike et al. (2018) 
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Nigeria 
Zango, Katsina State, northwest 

Nigeria 
0.10-3.16 Tukur and Amadi (2014) 

Nigeria Langtang, north cental 0.12-10.3 Dibal et al. (2012) 

Nigeria southwestern 0.1-3.2 Gbadebo (2012) 

Senegal Western 0.10-3.5 Travi (1993) 

Senegal Country-wide < 0.1-7.4 Brouwer et al. (1988) 

South Africa Waterberg and Namaqualand up to 31.8 Abiye et al. (2018) 

South Africa Namakwaland up to 5.9 Makubalo and Diamond, (2020) 

South Africa Country-wide up to 42.5 
Ncube (2002); Ncube and Schutte 

(2005) 

South Africa Siloam Village up to 6.4 Odiyo and Makungo (2012) 

South Africa Siloam Village up to 6.74 
Makungo and Odiyo (2012); Odiyo 

and Makungo (2018) 

South Africa Mokopane area, Limpopo 0.24-3.39 Molekoa et al. (2019) 

South Africa Kwazulu-Natal 0.1-12 Elumalai et al. (2019) 

South Africa Western Karoo 0.2-6.8 Adams et al. (2001) 

Sudan Northern 0.08-3.55 Ibrahim et al. (1999) 

Sudan Butana area 1.1-4.0 Smith et al. (1953) 

Sudan Nubian Sandstone, Butana area 0.29-6.2 Edmunds (1994) 

Tanzania NE Mt. Meru slope, northern region 0.05-3.11 Ghiglieri et al. (2011) 

Tanzania 
Arumeru district, northern region, 

springs 
1.3-60.0 Ghiglieri et al. (2010) 

Tanzania Northern region 0.01-74.0 Ijumulana et al. (2020) 

Tanzania Northern region 4.0-9.6 Kaseva (2006) 

Tanzania Arumeru district, northern region 1.5-100 Malago et al. (2020) 

Togo 
Hahotoe-Kpogame phosphorite 

mining area 
0.15-1.39 Tanouayi et al. (2016) 

Tunisia 
Djeffara aquifer, northern Gabes, SE 

Tunisia 
0.55-2.8 Alaya et al. (2014) 

Tunisia Continental Intercalaire aquifer, SW 0.36-20.3 Besser et al. (2019) 

Tunisia 
Continental Intercalaire and 

Complex Terminal aquifers 
0.1-2.3 Travi (1993) 

Tunisia Tozeur oases, southern 1.8-14.3 Tarki et al. (2020) 

Uganda Kigezi, Toro, Acholi, Bugisu 0.17-3.00 Møller et al. (1970) 

West Africa 
Burkina Faso, Ghana, Togo: White 

Volta River  
0.3-3.9 Bam and Banshah (2020) 

Zimbabwe Gokwe, northwest  0.6-11.0 Mamuse and Watkins (2016) 

Zimbabwe Mid-Zambezi basin < 0.1-5.3 Larsen et al. (2002) 

Europe 

Europe 
712 determinations, 25 aquifers, 11 

countries 
<0.05-5.60 Shand and Edmunds (2008) 
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Czech 

Republic 
Bohemian Massif 0.07-6.2 Pǎces (1987) 

Estonia Western up to 6.1 Karro and Rosentau (2005) 

Estonia Country-wide 0.01-6.95 Indermitte et al. (2007) 

Estonia Western 0.01-6.95 Karro et al. (2006) 

Finland Country-wide < 0.1-5.0 Lahermo et al. (1991) 

Finland Olkiluoto 0.21-5.45 Pitkanen et al. (1996) 

Finland Finnish Lapland 0.01-2.09 Lahermo (1970) 

France Aquitaine basin 1.1-22.9 Gal et al. (2021) 

Germany Münsterland, northwest  < 0.1-9.64 Wisotzky et al. (2017) 

Germany Münsterland, northwest < 0.01-8.80 Queste et al. (2001) 

Greece Country-wide < 0.05-3.1 Karavoltsos et al. (2008) 

Greece Aigion 0.2-8.2 Katsanou et al., 2013) 

Greece Thriassion plain 0.1-9.94 Hermides and Stamatis, 2017) 

Hungary Country-wide 0.3-6.2 Fordyce et al. (2007) 

Italy Latium, central Italy 0.1-6.1 Parrone et al. (2020) 

Italy Central Italy 0.01-16.5 Cinti et al. (2019) 

Italy Campania up to 8.1 Mastrocicco et al. (2019) 

Italy Campania 0.15-20.8 Corniello and Ducci (2014) 

Italy Campania 3.7-22 Ducci and Sellerino (2012) 

Italy Lugiane spa, Calabria 0.68-4.34 Vespasiano et al. (2014) 

Italy Bagni di Lucca, Tuscany 0.04-4.1 Boschetti et al. (2005) 

Moldova Country-wide 0.1-16.2 Fordyce et al. (2007) 

Norway Central < 0.05-3.64 Sæther et al. (1995) 

Norway Western 0.51-8.0 Bårdsen et al. (1999) 

Norway 
Country-wide, crystalline rock 

aquifers 
up to 8.26 Banks et al. (1998) 

Norway Hordaland County < 0.02-9.48 Bårdsen et al. (1996) 

Portugal São Miguel Island, Azores 0.2-2.0 Cordeiro et al. (2021) 

Sardinia Northern area 0.1-3.6 Cuccuru et al. (2020) 

Sardinia Island-wide < 0.01-13 Biddau et al. (2017) 

Scandinavia Bottled groundwater  0.018-2.59 Frengstad et al. (2010) 

Scandinavia Tap water 0.0015-1.35 Frengstad et al. (2010) 

Serbia Bujanovac Valley 1.2-6.6 Krunić et al. (2013) 

Serbia Ritopek 0.11-4.14 Antonijevic et al. (2016) 

Slovakia Country-wide 0.01-4.0 Fordyce et al. (2007) 

Spain Salamanca Province 0.12-15.1 Garcia-Prieto et al. (2012) 

Spain Selva basin 0.1-15.4 Folch et al., 2011) 

Spain Tenerife 0.97-9.40 Hardisson et al., 2001) 
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Sweden 
Stripa mine underground research 

laboratory 
0.22-5.8 

Davis and Nordstrom ( 1992); 

Nordstrom et al. (1989) 

Sweden 
Äspo underground research 

laboratory 
1.5-4.0 Smellie et al. (1995) 

Sweden Laxemar, southeast 0.3-7.4 Berger et al. (2016) 

Sweden Southeast < 0.2-3.4 Berger et al. (2012) 

Switzerland Gotthard rail tunnel 1.58-28.9 
Bucher et al. (2012); Seelig and 

Bucher (2010) 

Switzerland 
NAGRA deep boreholes (74.9 to 

2267 m depth) 
0.34-15.4 Pearson (1989) 

Turkey Country-wide 0.7-12.5 Oruc (2008) 

Turkey Kaman region, central Anatolia 0.17-4.86 Ӧzmen et al. (2011) 

Turkey Kirsehir region 0.63-5.70 Uras et al. (2011) 

Ukraine Country-wide 0.00-8.8 Fordyce et al. (2007) 

Latin America 

All 

Countries 

Arid, semi-arid, geothermal, and 

mining areas 
0.1-90 Alarcón-Herrera et al. (2013) 

South America 

Argentina 
Claromecó basin, south Pampean 

plain 
0.64-5.0 Sosa et al. (2019) 

Argentina Los Pereyas < 0.05-8.3 Warren et al. (2005) 

Argentina Chaco-Pampean plain 0.03-29 Smedley et al. (2002) 

Argentina Quequen River basin 0-5.7 Martinez et al. (2012) 

Argentina 
Chaco-Pampean plain, Robles 

County 
0.1-4.7 Bundschuh et al. (2004) 

Argentina 
Del Azul Creek basin, Pampean 

plain 
0.10-2.76 Zabala et al. (2021) 

Argentina Santiago del Estero Province 0.01-2.80 Rondano Gómez et al. (2020) 

Argentina La Pampa Province, northeast 0.5-14.2 Alcaine et al. (2020) 

Argentina Península Valdés, Patagonia 0.31-4.9 Alvarez and Carol (2019) 

Argentina Chaco plain, northern 0.05-4.6 Rocha et al. (2017) 

Argentina 
Napostá Grande Brook, Buenos 

Aires Province 
0.70-15 Puccia et al. (2018) 

Argentina 
Springs at San Antonio de los 

Cobres 
up to 8.04 Hudson-Edwards and Archer (2012) 

Argentina 
Langueyú Creek basin, Pampean 

plain 
0.44-1.68 Barranquero et al. (2017) 

Argentina 
La Ballenera catchment, SE of 

Buenos Aires 
1.1-2.5 Calvi et al. (2016) 

Argentina NE of Buenos Aires Province 0.40-1.95 Borzi et al. (2015) 

Argentina Chaco-Pampean plain 0.051-7.34 Nicolli et al. (2012) 

Argentina Chaco plain, central west 0.1-4.2 Blanes et al. (2011) 
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Argentina Cordoba Province 0.42-5.34 Francisca and Perez (2009) 

Argentina 
Coronel Moldes, Chaco-Pampean 

plain 
0.50-12.0 Gomez et al. (2009) 

Argentina 
Coronel Moldes, Chajan, Buenos 

Aires 
0.3-18.0 Gomez and Londoño (2011) 

Argentina Los Pereyras, Tucumán Province < 0.05-8.3 Warren et al. (2005) 

Argentina 
Coronel Dorrego, Buenos Aires 

Province 
up to 18.2 Paoloni et al. (2003) 

Argentina 
Sauce Grande River basin, Buenos 

Aires 
0.2-5.0 Kruse and Ainchil (2003) 

Argentina Sierras Pampeanas de Cordoba 1.99-2.87 García et al. (2012) 

Brazil Country-wide 0.02-4.8 Lima et al. (2019) 

Brazil Country-wide 0.0-17.5 Cangussu et al. (2002) 

Brazil Country-wide (1990 database) 0.14-10.2 Bonotto and Roveratti (2017) 

Brazil Tubarão aquifer, São Paulo state 0.02-64.2 Bonotto and Roveratti (2017) 

Brazil Guarani aquifer, southern  0.2-11 Marimon et al. (2013) 

Brazil Guarani aquifer, southern  2.3-5.5 Luiz et al. (2019) 

Brazil Southern < 0.01-5.30 Marimon et al. (2007) 

Brazil Serro do Ramalho, western Bahia 0.11-2.15 Goncalves et al. (2018) 

Brazil São Paulo 0.01-10.0 Martins et al. (2018) 

Brazil Paraná basin, south eastern Brazil up to 8.75 Ezaki et al. (2016) 

Brazil 
São João do Rio do Peixe. 

northeast 
0.11-9.33 Souza et al. (2013) 

Brazil 7 rural communities in Minas Gerais 
1.4-4.8 

(averages) 
Ferreira et al. (2010) 

Brazil Salto-Indaiatuba region, São Paulo 0.0-6.95 Hypolito et al. (2010) 

Brazil Serra Geral aquifer, southern up to 3.03 Nanni et al. (2009) 

Brazil Porto Alegre, southern < 0.2-5.5 Viero et al. (2009) 

Brazil Minas Gerais, northern 0.0-11.0 Martínez et al. (2010) 

Brazil Botucatu aquifer, Paraná basin 0.11-2.04 Kimmelmann e Silva et al. (1989) 

Chile Atacama Desert 0.343-4.32 Rissmann et al. (2015) 

Uruguay Guarani aquifer 0.024-1.528 Machado et al. (2019) 

North America 

Mexico Country-wide up to 29.6 Alarcón-Herrera et al. (2020) 

Mexico Country-wide 0.01-> 6.0 Aguilar-Díaz et al. (2017) 

Mexico Country-wide 0.2-8.0 Diaz-Barriga et al. (1997) 

Mexico 
Country-wide (and Tenextepango, 

Morelos) 

0.001-25 

(0.5-1.9) 
Álvarez et al. (2016) 

Mexico Tenextepango, Morelas 0.2-1.9 Huizar-Álvarez et al. (2014) 

Mexico Mexico City 0.06-0.64 Edmunds et al. (2002) 

Mexico Hermosillo City, Sonora 0.49-7.59 Valenzuela-Vásquez et al. (2006) 
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Mexico Durango 2.7-9.3 Martínez-Cruz et al. (2020) 

Mexico Durango city, Durango 2.22-7.23 Frechero et al. (2013) 

Mexico San Luis Potosí 0.20-3.50 Fernández-Macias et al. (2020) 

Mexico San Luis Potosí 0.32-3.65 Cardona et al. (2018) 

Mexico San Luis Potosí 0.38-4.56 Ramos-Leal et al. (2007) 

Mexico San Luis Potosí 0.20-3.65 Carrillo-Rivera et al. (1996) 

Mexico Celaya Valley, central 0.51-7.1 Morales-Arredondo et al. (2020) 

Mexico Four cities of Los Altos de Jalisco < 0.10-18.58 
Hurtado and Gardea-Torresdey 

(2004) 

Mexico Independence basin, Guanajuato 0.1-16.0 
Knappett et al., 2018; LaFayette et al. 

(2020) 

Mexico Guadalajar aquifer 0.0-4.9 Moran-Ramirez et al. (2016) 

Mexico Chihuahua 0.05-11.8 González-Horta et al. (2015) 

Mexico 
Tabalaopa, Aldama, Dolores 

valleys, Chihuahua 
1.06-4.55 Reyes-Gomez et al. (2013) 

Mexico Mezquital valley, central 0.11-4.81 Lesser-Carrillo et al. (2011) 

Mexico Ensenada County, Baja California 0.2-2.5 Daesslé et al. (2009) 

Mexico Central 1.5-16 Ortega-Guerrero (2009) 

Mexico Chihuahua < 0.0455-9.71 Mahlknecht et al. (2008) 

USA Country-wide < 0.1-70.3 McMahon et al. (2020) 

USA Country-wide (NAWQA data) 1-7.89 Gross et al. (2012) 

USA South eastern coastal plain aquifer < 0.01-5.2 Lee (1993) 

USA Rio Grande basin, New Mexico 0.1-7.5 Frenzel et al. (1992) 

USA 
Santa Fe group aquifers, middle Rio 

Grande 
0.11-6.40 Plummer et al. (2004) 

USA 
South Carolina coastal plain 

aquifers 
up to 5.8 Johnson and Rhett (1981) 

USA San Luis Valley, Colorado 0.1-24 Powell (1958) 

USA San Luis Valley, shallow aquifer only 0.1-1.7 Anderholm (1996) 

USA San Luis Valley, Colorado 0.1-6.4 Edelman and Buckles (1984) 

USA Virginia coastal plain < 0.1-30.0 McFarland (2010) 

USA 
Northern Atlantic coastal plain 

aquifers 
< 0.01-6.4 Back (1966) 

USA Fall zone, Virginia coastal aquifers < 0.1-7.7 Cederstrom (1946) 

USA New England groundwaters < 0.2-17.9 Flanagan et al. (2018) 

USA Virginia coastal plain < 0.1-6.3 Focazio et al. (1992) 

USA Atlantic and Gulf coastal aquifers 0.01-5.82 Degnan et al. (2020) 

USA Southwest 0.5-10 Robertson (1991) 

USA 
Madison limestone aquifer, north 

central 
< 0.1-5.4 Busby et al. (1991) 

USA Owens Lake groundwaters 1.1-45 Levy et al. (1999) 
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Country Location 
Concentration, 

mg/L 
Reference 

USA 
Red River Valley, New Mexico 

(debris fans) 
0.60-20.1 

Naus et al. (2005); Nordstrom et al. 

(2005) 

USA Marathon County, Wisconsin < 0.01-7.60 Ozsvath (2006) 

USA 
Sangre de Cristo mountains, New 

Mexico 
< 0.01-6.5 Linhoff et al. (2016) 

USA 
Mojave and Sonoran Deserts, 

California 
0.17-12.6 Mathany et al. (2012) 

USA California, state-wide 0.09-8.22 Kent (2015) 

USA Western Nevada 0.3-4.1 Lico and Seiler (1994) 

USA Northern New Mexico < 0.01-6.5 Linhoff et al. (2016) 

USA Carson & Eagle Valleys, CA, NV < 0.1-7.5 Welch (1994) 

Canada Southern Quebec < 0.1-12.0 Bondu et al. (2020) 

Canada Southern Quebec < 0.1-1.4 Saby et al. (2016) 

Canada Southern Quebec 0.05-3.6 Montcoudiol et al. (2015) 

Canada Gaspé peninsula up to 28 mg/L Boyle and Chagnon (1995) 

Canada 
Lake Saint-Martin, Manitoba (impact 

crater) 
up to 15.2 Leybourne et al. (2008) 

Canada 
Lake Saint-Martin, Manitoba (impact 

crater) 
up to 15.1 Desbarats (2009) 

Canada Alberta basin formation waters 0.01-22.0 Hitchon (1995) 

Canada 
Southeastern Manitoba, granite 

batholith 
0.37-8.10 Gascoyne (2004) 

Canada 
Langley township, lower Fraser 

Valley, B.C. 
< 0.01-2.08 de Albuquerque and Kirste (2012) 

Canada Canadian Shield deep groundwaters 0.07-26.9 Frape and Fritz (1987) 

Canada Canadian Shield deep groundwaters < 0.2-4.5 Gascoyne et al. (1987) 

Canada East coast Vancouver Island, B.C. up to 13.4 Kohut and Hodge (1985) 

Australia 

Australia Great Artesian Basin 0.06-3.8 Herczeg et al. (1991) 

  

Return to where text links to Box 1, Section 3 

Return to where text links to Box 1, Section 8 
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17 Exercise Solutions 

Solution Exercise 1 

Fluoride is not an essential element in the sense that mammals and humans cannot 

live without it, but it provides substantial benefit for healthy teeth and bones. 

Return to Exercise 1 

Solution Exercise 2 

Geogenic fluoride is one of the greatest natural contaminants in many groundwater 

aquifers used for drinking water supplies. It is estimated to affect more than 200-million 

people worldwide. 

Return to Exercise 2 

Solution Exercise 3 

65 percent of the rock is fluorapatite and the mole proportion of F in fluorapatite is 

the ratio of the atomic weight of F to the molecular weight of fluorapatite, which is 19/504. 

So, the percent of F in the rock from fluorapatite would be: 

0.65 (
19

504
)  100% = 2.45% 

5 percent of the rock is fluorite and the mole proportion of F in fluorite is 38/78, the 

ratio of the atomic weight of F to the molecular weight of fluorite. So, the percent of F in the 

rock from fluorite would be: 

0.05 (
38

78
)  100% = 2.44% 

And the sum from these two minerals would be 4.89 percent. However, these two 

minerals comprise only 80 percent of the rock so that the total F in the rock would be: 

(0.8) 4.89% = 3.9% F 

Return to Exercise 3 

Solution Exercise 4 

Dissolution reaction for fluorapatite: 

𝐶𝑎5(𝑃𝑂4)3𝐹 =   5𝐶𝑎2+ + 3𝑃𝑂4
3− + 𝐹− 

the ion-activity product is:  

𝑎𝐶𝑎2+
5 𝑎𝑃𝑂4

3−
3 𝑎𝐹−  =   (3.895 𝑥 10−5)5(3.065 𝑥 10−10)3(2.009 𝑥 10−4) =   10−54.28 

log 𝐾𝑠𝑝 =  −55.1 

𝑆𝐼 = 𝑙𝑜𝑔
10−54.28

10−55.1
 =  0.82 

The solution is oversaturated with respect to fluorapatite. 

Return to Exercise 4 
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Solution Exercise 5 

If SIcalcite = 0.36 = log IAP − log 𝐾𝑠𝑝       and       log IAP = 𝑆𝐼 +  log 𝐾𝑠𝑝 

then,         0.36 − 8.48 = log(𝑎𝐶𝑎2+𝑎𝐶𝑂3
2−) = −8.12 

and log(𝑎𝐶𝑎2+) =  −8.12 −  log(𝑎𝐶𝑂3
2−) =  −8.12 + 4.61 =  −3.51 

hence, log(𝑎𝐶𝑎2+) (𝑎𝐹−)2 = –3.51 + 2(-3.57) = –10.65 

and SI = -0.05 thus fluorite is essentially at solubility equilibrium 

Return to Exercise 5 

Solution Exercise 6 

For the Ethiopian Rift Valley sample, the molal concentration product, that is, the 

product of the molality of Ca2+ times the molality of F- squared is as follows (note: calcium 

has 40 atomic mass units and fluorite has 19): 

 

(𝑎𝐶𝑎2+    𝑎𝐹−
2 )𝑠𝑎𝑚𝑝𝑙𝑒 = (14.1

𝑚𝑔

𝐿

1𝐿

1000𝑚𝑔
 

1𝑎𝑡𝑜𝑚

40 𝑎𝑚𝑢
) (2.62

𝑚𝑔

𝐿

1𝐿

1000𝑚𝑔

1𝑎𝑡𝑜𝑚

19 𝑎𝑚𝑢
)

2

= 6.7𝑥10−12 

 

Taking the logarithm results in log molal product = –1.17 

 

SI = log molal product – log Ksp = –11.17 – (–10.6) = –0.57 

 

This suggests undersaturated conditions. Using the PHREEQC code, SI = -0.66 

which is slightly more undersaturated. The difference is caused by the use of 

activity coefficients in the code calculation. 

Return to Exercise 6 
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18 Notations 

 

a activity for aqueous solutions using molal concentrations (dimensionless) 

CaF2
 fluorite 

γ activity coefficient when molality is used (dimensionless) 

I ionic strength 

Ksp solubility product constant (dimensionless) 

λ activity coefficient when mole fraction is used (dimensionless) 

m molal concentration 

mi molality of solute or ion, i 

µo chemical potential of the substance in a defined standard state usually  

referenced to 25 oC and 1 bar pressure for ideal conditions (joules mol-1) 

Ω degree of saturation or saturation ratio 

R molal gas constant (8.3144 joules mol-1 K-1) 

SI saturation index = log(Ω) 

T temperature (T), degrees K 

X mole fraction (dimensionless) 

zi charge on an ion 
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mine drainage, radioactive waste disposal, geothermal 

chemistry, geomicrobiology, arsenic geochemistry, 
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Colorado, and a Doctor of Philosophy in Applied Earth Sciences 
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his measurement of negative pH in mine waters, his interpretation of mine water 
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He has received the Birdsall-Dreiss Distinguished Lectureship Award from the 
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of America and the Mineralogical Society of America. He has consulted for numerous state, 
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impacts in developing countries; inorganic chemistry of bottled 

water; and corrosion and encrustation in groundwater installations and aquifers. Her 
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current projects and collaborations involve establishing the baseline and investigating 

change in groundwater chemistry in shale-gas development areas (Lancashire, Yorkshire); 

chemistry of palaeowater in deep aquifers; groundwater-quality monitoring design; and 

fluoride and other water-quality problems in Ethiopian groundwater. She has a Doctor of 

Philosophy degree in Geochemistry from the University of Edinburgh and a Bachelor of 

Science in Environmental Sciences/Geological Sciences from the University of East Anglia. 

Dr. Smedley is a member of the International Association of Hydrologists and is a 

co-chair for the Groundwater Quality Commission in the same institution. She is a member 

of the Natural Environment Research Council Peer-review college and has guest lectured 

in Groundwater Quality at the Centre of Environment, University of Oxford since 2016. 
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Modifications 

Changes from the Original Version to Version 2 
 

General changes:  

 

Formatting changes were made such as removal of blank spaces and lines, correction of 

bold and italic type, addition of hyphens where needed. 

 

Formatting was updated to the most recent Groundwater Project formats including: 

addition of title, author, and copyright pages to the navigation bar; each section starts on a 

new page, the list of figures was removed, and the list of tables was removed. The Table of 

Contents was updated after all other changes were made. 

 

Specific changes: 

 

Page numbers refer to the original pdf 

 

page i, added title page 

 

page iii, updated number of pages  

 

page iii, updated copyright language, added doi, changed citation to APA (7th ed.) format 

 

page iii, corrected spelling of Lincolnshire  

 

page viii, last paragraph, corrected 60 countries to 85 countries 

 

page xi, Everton de Oliveira affiliation identified as "member of the Board of Director of 

The Groundwater Project" rather than “Director of the Groundwater Project” 

 

page 3, increased the size of figure 1  

 

page 5, increased the size of figure 2  

 

page 5, last paragraph, “Table 1” was changed to “Box 1, Table Box1-1” 

 

page 7, end of first full paragraph, removed the line break between "as shown in" and "Table 

2" and removed bold type from "Table 2" 

 

page 7, Table 2, removed the "-" in the row for "Andesites" 

 

page 13, line 4, variable S (for entropy) changed to italic font 

 

page 13, equations (1) and (3), variables changed to italic font 
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page 14, equation 7, added “(“ to numerator of first fraction on right-hand-side 

 

page 15, Figure 4 caption, added “(in terms of F- concentration)” after both “Fluoride” and 

“Fluorapatite” 

 

page 16, Figure 5 caption, added “(in terms of F- concentration)” after both “Fluoride” and 

“Fluorapatite” 

 

page 16, caption of figure 5 “(g)” after CO2 was raised to normal position (i.e., not 

subscripted) 

 

page 18, corrected spelling of autonomous  

 

page 26, equation (11), (g) was raised to normal position (i.e., not subscripted) 

 

page 26, Figure 12 caption, added “(in terms of F- concentration)” after both “Fluoride” and 

“Fluorapatite” 

 

page 28, increased size of Figure 13 

 

page 32, increased font size in Figure 16 

 

page 40, added space between “The potential” 

 

page 41, Table 4, placed "-" in the 4th column (Interference)s of the last 3 rows 

 

page 44, removed one of the ":" after doi in Abdelgawad reference 

  

page 126, first two equations of solution exercise 3, added () around stacked fractions, 

added % after 100 

 

page 126, third equation of solution exercise 3, removed x, added (), added % after 4.89 

 

page 127, second equation of solution exercise 6, Ksp changed to italic with sp subscripted 

 

page 128, added Notations section 

 

page 131, added a section describing modifications from the first release 

 

Changes from Version 2 to Version 3 
 

Version 3: March 16, 2023, Version 4: January 19, 2024 

 

Page numbers refer to the Version 2 PDF. 
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page ii, added page requesting support of the Groundwater Project  

 

page ii, now page iii, updated version number and date  

 

page iii, now page iv, added “Any use of trade, firm, or product names is for descriptive 

purposes only and does not imply endorsement by the U.S. Government.”  
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