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The Groundwater Project Foreword 

The United Nations Water Members and Partners establish their annual theme a 

few years in advance. The theme for World Water Day on March 22, 2022, is 

“Groundwater: making the invisible visible.” This is most appropriate for the debut of the 

first Groundwater Project (GW-Project) books in 2020, which have the goal of making 

groundwater visible.  

The GW-Project, a non-profit organization registered in Canada in 2019, is 

committed to contribute to advancement in education and brings a new approach to the 

creation and dissemination of knowledge for understanding and problem solving. The 

GW-Project operates the website https://gw-project.org/ as a global platform for the 

democratization of groundwater knowledge and is founded on the principle that:  

“Knowledge should be free and the best knowledge should be free knowledge.” Anonymous 

The mission of the GW-Project is to provide accessible, engaging, high-quality, 

educational materials, free-of-charge online in many languages, to all who want to learn 

about groundwater and understand how groundwater relates to and sustains ecological 

systems and humanity. This is a new type of global educational endeavor in that it is 

based on volunteerism of professionals from different disciplines and includes academics, 

consultants and retirees. The GW-Project involves many hundreds of volunteers 

associated with more than 200 organizations from over 14 countries and six continents, 

with growing participation.  

The GW-Project is an ongoing endeavor and will continue with hundreds of books 

being published online over the coming years, first in English and then in other 

languages, for downloading wherever the Internet is available. The GW-Project 

publications also include supporting materials such as videos, lectures, laboratory 

demonstrations, and learning tools in addition to providing, or linking to, public domain 

software for various groundwater applications supporting the educational process. 

The GW-Project is a living entity, so subsequent editions of the books will be 

published from time to time. Users are invited to propose revisions.  

We thank you for being part of the GW-Project community. We hope to hear from 

you about your experience with using the books and related materials. We welcome ideas 

and volunteers! 

 

The GW-Project Steering Committee 

May 2021 

 

 

https://gw-project.org/
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Foreword  

This book: Flux Equations for Gas Diffusion in Porous Media concerns a topic 

that few groundwater scientists and engineers encounter in their education and 

day-to-day experience, and it fills that gap by addressing fundamental processes 

important to many aspects of groundwater science. Diffusion is most commonly 

associated with Fick’s “law”. Applications of Fick’s law in groundwater quality are 

analogous to use of Darcy’s “law” for groundwater flow but, in the context of subsurface 

processes, diffusion has more complexities than flow. Groundwater flow is founded on 

Darcy’s equation for the relationship between flow and the hydraulic gradient and it 

serves us well in nearly all cases of practical relevance. However, Darcy’s “law” is not 

universal as are the fundamental laws of physics and fluid mechanics because it is only 

valid for a limited range of flow conditions in porous media. Awareness of the 

fundamentals underlying relationships known as “laws” is essential for avoidance of 

confusion and errors in the solution of practical problems.  

Independent of Henry Darcy’s work in 1856-France, which showed that hydraulic 

gradient drove the flow of water in saturated porous sand, Adolf Fick’s work in 

1855-Germany demonstrated that concentration gradient drove the diffusive movement 

of chemical molecules and ions in liquids. This became known as Fick’s law and is a law 

of fundamental importance for chemical engineering, much as Darcy’s law is for 

groundwater science. Fick’s law applies to movement of dissolved constituents in water 

and in water saturated porous media and serves as a building block for the development 

of the equations that describe diffusive movement of gaseous constituents in partially 

saturated porous media (i.e., the vadose zone). In groundwater geochemistry and 

subsurface contamination, Fick’s equation is as important and, in many situations, is more 

important than Darcy’s equation. 

This book is an introduction to the fundamental processes governing the 

movement of gases in the vadose zone. These processes are key to understanding 

important topics such as the fate of petroleum products that leak into the subsurface and 

how harmful vapors from toxic chemicals move through the vadose zone to cause 

deterioration of indoor air. Moreover, this book examines how the movement of gases in 

the vadose zone came to be correctly understood in the context of both Fick’s law of 

diffusion and Graham’s law of gas diffusion. Although the behavior of gases in porous 

media has been the subject of scientific scrutiny and engineering applications for more 

than a century, it was not until the middle part of the twentieth century that clarity of 

understanding emerged in the fields of physical chemistry and chemical engineering, yet 

confusion persists about how the fundamental processes apply to problems concerning 

subsurface contamination. This book is an examination of the intellectual journey from 

confusion to clarity, which began nearly two centuries ago with the work of Thomas 

Graham in 1833. This journey is akin to a scientific detective story. 
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David McWhorter is an emeritus professor of Colorado State University who, 

early in his career, authored a textbook on groundwater hydraulics. His career then 

focused on research into the fundamental processes of movement and fate of oily liquids 

and solutes in the subsurface and the application of his finding to groundwater 

contamination problems.  

 

John Cherry, Groundwater Project Leader 

Guelph, Ontario, Canada, May 2021 
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Preface 

The author’s interest in gas diffusion in porous media was triggered by Dr. John Farr 

when, as an advisee, he questioned how Fick’s first law of diffusion and Graham’s law of 

diffusion could be reconciled. A significant relevant literature was found to exist in 

physics, chemical physics and chemical engineering, but few of the findings in these fields 

have so far widely penetrated the earth sciences. A goal of this book is to improve the 

awareness on the part of earth scientists and engineers of the depth of knowledge that 

exists on this subject and to foster a better understanding of one of the fundamental 

transport processes that operates beneath the Earth’s surface.  
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1 Introduction 

Subsurface fluids are a mixture of multiple constituents. Vadose zone gas often 

contains nitrogen, oxygen, carbon dioxide, argon, water vapor, and, perhaps, vapors from 

volatile liquids (e.g., gasoline, solvents). Other GW-Project books are concerned with fluid 

motion as described by Darcy’s law, which calculates the motion of a mixture without 

regard to composition. But individual species in fluids of non-uniform composition 

experience motion that is in addition to that imparted by viscous flow and is subject to 

different driving and resisting forces. This additional increment of motion is called 

diffusion and is the subject of this book.  

Diffusion in the gas phase is an important phenomenon in a variety of problems 

important to earth scientists and engineers. For example, the supply and elimination of 

gases to and from the root zones of plants is affected by diffusion in soil gas and is 

studied by soil and plant scientists. Hydrogeologists, engineers, and environmental 

scientists are interested in the migration of vapors from volatile sources of contamination 

lodged in the vadose zone. Among the concerns is the creation of a migrating vapor 

plume in the vadose zone that might act as a source of groundwater contamination via 

partitioning of chemicals from the gas phase to contiguous groundwater. Diffusion in the 

gas phase is partially responsible for the so-called vapor intrusion problem, where 

contaminated air in basements and crawl spaces of buildings can be linked to subsurface 

sources as indicated in the cover figure of this book. Diffusion of contaminants from low 

permeability strata may influence the performance and efficacy of soil-vapor extraction 

systems. Natural degradation of liquid petroleum present in the vadose zone often 

generates diffusive fluxes of gases such as oxygen, carbon dioxide, and methane. Analysis 

and measurement of such diffusive fluxes sometimes assists in the estimation of the rates 

of natural degradation and the projection of source longevity. Emanation of gases from 

landfills is yet another circumstance in which diffusion in the gas phase plays an 

important role.  

1.1 What is Diffusion?  

The molecules in a gas are in constant, chaotic thermal motion. Because the 

molecules are free to move about, they continually intermingle and collide with one 

another. While the kinetic energy of individual molecules is variable, the average kinetic 

energy of molecules in a gas at uniform temperature is constant, even if the gas is made 

up of multiple species with different molecular masses. Massive molecules move more 

slowly than do lighter molecules by just the amount necessary to make the kinetic 

energies equal on average. 

Because the average kinetic energies of all constituent species are the same in a gas 

at constant temperature, a non-uniform distribution of constituent species as indicated by 

variable concentration does not result in a variable distribution of kinetic energies for the 
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gas as a whole. On the other hand, variable constituent concentration (i.e., variable 

number of molecules per unit volume) means that the average kinetic energy of 

individual components is correspondingly non-uniform. Molecules of individual 

constituents migrate from positions where the local average constituent kinetic energy is 

high to positions where it is low. This migration is diffusion. 

The intermingling of two gases in a diffusion chamber located between supply 

headers at the same pressure is depicted in Figure 1a. Because there is no pressure 

difference across the chamber between headers A and B, only diffusion is responsible for 

any transport that occurs. As gases A and B intermingle (diffuse into one another) they 

form a single gas with two components. The mixture is referred to as a binary gas. The 

constituents of the binary gas diffuse from their respective sources in the direction of 

decreasing concentration. The diffusive motion is the translation of an aggregate of 

molecules and may be expressed as a rate of flow measured in moles, volume, or mass 

per unit time. 

Suppose we were to conduct an experiment in which steady diffusion of a binary 

gas at uniform temperature and pressure occurs in this chamber that connects headers at 

identical pressures (Figure 1a). First, consider the case in which the diffusion chamber is 

devoid of solid particles. In this case, the only impediment to diffusion of each constituent 

is that which arises from the collision with molecules of the other constituent (collisions 

with the walls of the large diameter chamber are neglected). It is diffusion of this kind 

that is most commonly treated in text books (e.g., Bird et al., 2002; Cussler, 1997) and for 

which Fick’s law (Fick, 1855) applies (see Section 2.4 for a presentation of Fick’s law). Both 

experimental observation and Fick’s law show that the two components of the binary gas 

diffuse into one another at equal rates and in opposite directions, even though the 

molecular weights may be different. Thus, the diffusive fluxes of the constituents 

mutually cancel and the binary gas, as a whole, experiences no net motion. This kind of 

diffusion is often referred to as ordinary diffusion. 
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Figure 1a - A thought experiment for steady binary diffusion between headers at 
identical pressures. Gas A is introduced in the left-hand header, diffuses through 
the chamber toward the right, and is exhausted in the mixture at the top of the 
right-hand header. Gas B, introduced in the right-hand header, diffuses toward 
the left, and is exhausted as part of the mixture at the top of the left-hand header. 
The concentrations of gas A in the exhaust from the right header and of gas B 
from the left header are minimized by large flow rates in the headers. Gases A 
and B diffuse at the same rates and in opposite directions. 

Now consider a second experiment in which diffusion occurs in the chamber after 

it was filled with sand (Figure 1b). An obvious effect of filling the diffusion chamber with 

sand is that the cross-sectional area available for gas-phase diffusion is reduced. Also, the 

sand causes the diffusion path to be tortuous and, therefore, longer than in the first 

experiment. These obstructions equally effect diffusion of both components and do not 

account for the surprising fact that the diffusion rates of the two constituents are generally 

observed to be of unequal magnitude and no longer mutually cancel. One manifestation 

of the unequal diffusion rates is a bulk flow of the binary gas in the direction of diffusion 

of the component with the lower molecular weight. This diffusion-generated bulk flow 

occurs even though there is no pressure gradient. The commonly held notion that viscous 

flow and flow of the fluid as a whole are synonymous is not true for binary gases in a 

porous medium. 
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Figure 1b - Steady binary diffusion in a particle-filled chamber. Gas A has a 
lower molecular weight and diffuses more rapidly to the right than does gas B to 
the left, as indicated by the arrows. 

Yet another unexpected feature of gas diffusion in porous media is the coupling 

that exists between diffusion and viscous flow. Should all the valves in the apparatus 

shown in Figure 1b be simultaneously closed at some point during the second 

experiment, a pressure gradient develops that drives bulk gas flow in the direction 

opposing the diffusion-generated bulk flow. This feature of diffusion does not occur if the 

diffusion chamber is free of solid particles and wall effects are negligible. This is another 

manifestation of how the presence of solid particles affects diffusion in profound and 

fundamental ways.  

1.2 A Brief History of Diffusion Science 

The tortuous history of the development of today’s understanding of the above 

phenomena and other aspects of the theory of diffusion of gases in porous solids is 

described in detail by Cunningham and Williams (1980). It is a fascinating story that 

chronicles the major developments in the science of diffusion and analyzes in some depth 

the many mistakes and misconceptions that occurred along the way. The story begins 

with Thomas Graham (1833), who observed and reported with little explanation all of the 

phenomena described in the above discussion. Graham also conducted experiments on 

diffusion in liquids, the results of which were an important contribution to the 
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development of the first constitutive equation for diffusion, now known as Fick’s law 

(Fick, 1855). 

For the next 100 years, Fick’s law was commonly thought to be the only 

constitutive equation necessary to codify the results of diffusion experiments. Fick’s law, 

developed for diffusion in liquids but often assumed to apply to gases as well, predicts 

that the components of an isobaric binary gas diffuse at equal rates in opposite directions 

and that no diffusion-engendered bulk flow occurs. While this prediction was 

inconsistent with Graham’s results, it was apparently correct in other experiments 

performed under different working conditions. Consequently, Graham’s results came to 

be discredited and were generally ignored or forgotten until the middle of the twentieth 

century when they were resurrected by Hoogschagen (1955). The simple empirical 

equation that conveniently expresses the salient result of Graham’s experiments was 

eventually elevated to the status of a law on par with Fick’s law and is now known as 

Graham’s law of diffusion. 

An important advance in the theoretical study of diffusion in gases occurred 

during the second half of the nineteenth century. According to Cussler (1997), Clerk 

Maxwell recognized as early as 1860 that diffusion generates bulk flow. He modified 

Fick’s law to include advection by diffusion-engendered bulk flow and interpreted the 

equation in terms of the rate of momentum loss of a component due to molecular 

collisions of that component with molecules of the second species (Cunningham and 

Williams, 1980). Hoogschagen (1955), who was evidently unaware of Graham’s work, 

conducted independent experiments that showed the mole fluxes of the individual 

components were related to each other in the manner discovered by Graham. He 

combined what is now known as Graham’s law with Maxwell’s constitutive equation to 

derive the first correct expression for steady diffusion in an isobaric, binary gas occupying 

the voids of a porous medium.  

Hoogschagen’s expression for isobaric diffusion applies when the resistance to 

diffusion is dominated by the collisions between the molecules of one component with 

those of the other. This is the situation that prevails in the so-called molecular regime. It 

was yet another several years before the theory of diffusion in gases in porous media was 

extended by E. A. Mason and coworkers (Evans III et al., 1961, 1962; Mason et al., 1967; 

Mason and Malinauskas, 1983) to include the resistance to diffusion that results from 

collisions of component molecules with solid particles embedded in the diffusion path. 

This prodigious work culminated in what is now known as the Dusty Gas Model, in 

which solid particles embedded in the system are regarded as giant immobile molecules. 

The Dusty Gas Model includes rigorously derived constitutive equations for 

multi-component transport in porous solids, together with physical interpretations and 

predictive expressions for the transport coefficients that emerge. The Dusty Gas Model 

constitutive equation for diffusion reduces to the familiar Fick’s law only under very 

restrictive conditions. 
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1.3 Scope 

Detailed presentations of the development of the Dusty Gas Model are provided 

in Cunningham and Williams (1980) and Mason and Malinauskas (1983). Key ideas of the 

Dusty Gas Model can be incorporated in a simpler “phenomenological” approach to 

diffusion that fosters physical insight and understanding at a level between a simple 

recitation of the equations and the in-depth physics and mathematics in the original 

scientific papers (Cunningham and Williams (1980). Most of the developments in the 

present book are drawn from Cunningham and Williams. However, the considerations in 

this book are limited to one-dimensional transport of ideal, binary gases at constant 

temperature. This is a special case that enables by relatively simple calculation the 

exploration of gaseous diffusion in porous solids, a fascinating but often confusing 

subject. First courses in calculus, physics, and physical chemistry provide an adequate 

foundation for understanding the developments in this book. 

2 Definition of Fluxes 

Key to the understanding and analysis of diffusion is the careful consideration of 

the various fluxes involved in the transport processes. In general, the flux of some entity 

is the quantity of that entity that passes through a unit area per unit time, the unit area 

being oriented normal to the direction of the flux. Because we are working with porous 

media, the area referred to here is the bulk or total area. The bulk area is generally 

comprised of portions occupied by solids, liquids, and gas. Flux defined in this way is a 

macroscopic quantity in the same sense that specific discharge of groundwater is a 

macroscopic quantity. 

Flux can be in reference to many different entities (e.g., electrical current, energy, 

heat, water, and other entities that are commonly transported). We will have occasion to 

use fluxes that reference volume, mass, moles and momentum, but we have selected 

moles of gas as our reference quantity for calculating flux and concentration in the central 

developments of this book. Developments entirely parallel to those in this book can be 

made using mass flux and mass concentration. Flux is, in general, a multi-component 

vector. In the interest of simplicity, we limit our treatment to transport along one 

coordinate, so the flux can be considered a scalar that may be positive or negative, 

depending upon direction.  

The mole flux (moles per unit bulk area per unit time) of an individual 

component, say species i, of a mixture is given the symbol Ni. The mole flux of the mixture 

as a whole is denoted by N and is the sum of the component mole fluxes N = Σi Ni, i = A, B. 

Therefore, N is the flux of gas as a whole (i.e., the phase motion). Recall the discussion of 

the second experiment relating to Figure 1b in which we observed that diffusion 

engenders bulk gas flow that is not driven by a pressure gradient. For this reason, we 

purposely do not equate phase motion with the viscous flow calculated by Darcy’s law. 
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Gas flow calculated by Darcy’s law is only one contributor to flow of the phase, a concept 

that will likely be foreign and seem incredible to those encountering it for the first time.  

2.1 Viscous Flux 

The viscous flux appearing throughout this book is the volume flux calculated by 

Darcy’s law. This calculation is most familiar in the context of water flow and appears in 

various forms throughout the GW-Project books. Here, we express Darcy’s law in a form 

suitable for the calculation of the viscous contribution to the flow of the gas phase. As is 

the case for water and other fluids, the driving forces are the pressure gradient and the 

body force due to gravity. The latter may be important when the gas column of interest is 

very thick (Thorstenson and Pollock, 1989), but we include only the pressure gradient in 

the following developments and write Darcy’s law as Equation 1. 

 𝑣 = −
𝑘𝑔

𝜇
𝑑𝑝 𝑑𝑙⁄   (1) 

where: 

v = macroscopic volume flux (specific discharge, L3 / L2 T = L/T) 

p = pressure of the gas (F/L2) 

l = coordinate along which the motion occurs (L) 

μ = dynamic viscosity (FT/L2) (which we treat as a constant in all 

subsequent developments) 

kg = permeability to gas (L2) (associated with the resistance to gas motion 

that arises solely from viscous shear at the pore scale) 

 

The subscript, g, distinguishes the gas permeability (kg, also known as effective 

permeability) from the intrinsic permeability, k, of the porous medium. This distinction is 

required because the co-existence of liquids in the pore space causes the gas permeability 

to be smaller than the intrinsic permeability, sometimes dramatically so (e.g., Brooks and 

Corey, 1966). The gas permeability kg is equal to the intrinsic permeability when the 

porous medium is dry. The reduction in gas permeability due to the presence of liquid in 

the pore space is related to the concepts of effective and relative permeability as described 

by Corey (1994). 

Multiplication of v by the total molar concentration of the gas C (total moles of all 

components per unit volume), followed by use of the ideal gas law, p = RTC, wherein R is 

the gas constant (FL/moles T) and T is absolute temperature, gives Equation 2 for the 

viscous mole flux of the gas phase. 

 𝑁𝑣 =  −
𝑘𝑔𝑝

𝜇𝑅𝑇

𝑑𝑝

𝑑𝑙
= −

𝑘𝑔𝑝

𝜇
 
𝑑𝐶

𝑑𝑙
 (2) 

The flux calculated by Equation 2 is a contributor to the motion of the mixture as a whole. 

Being a component of the mixture, an individual species is carried along (advected) by the 
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viscous contribution to the phase motion. The advection mole flux of an individual 

species due to the viscous flux is calculated according to 𝑁𝑖
𝑣 = xi Nv, i = A, B where xi is the 

mole fraction of component i in the mixture. The mole fraction is defined by xi = Ci/C, 

where Ci is the molar concentration of constituent i. The sum of mole fractions over all 

constituents is always unity. 

2.2 Total Diffusion Flux  

The flux calculated by Equation 2 is referred to as a viscous flux because the 

resistance to the fluid motion results from viscous shear. Diffusive motion is not resisted 

by viscous shear. Diffusion of a component in a gas mixture is defined as the increment of 

motion that is in addition to that imparted by the viscous motion. Thus, the overall or 

total flux of an individual constituent is given by Equation 3. 

 𝑁𝑖 = 𝑁𝑖
𝐷 + 𝑁𝒊

𝑣  ,        𝑖 = 𝐴, 𝐵 (3) 

Equation 3 defines diffusion as the increment of motion of constituents that is in addition 

to the motion imparted by advection in viscous flow. The first term on the right of 

Equation 3 is referred to as the total diffusion flux of component i and the second is the 

contribution to the flux of component i that results from advection via the viscous 

contribution to the motion of the phase. We will learn in later developments that the total 

diffusion term includes advection of species i by the diffusion-generated contribution to 

bulk flow. 

The sum of 𝑁𝑖 for 𝑖 = 𝐴, 𝐵 gives the flux of the gas as a whole as expressed in 

Equation 4. 

 𝑁 = 𝑁𝐷 + 𝑁𝑣 (4) 

The flux of the gas phase as a whole is due to both diffusion and viscous flow. Again, 

those who are used to thinking of binary diffusion as a process in which the diffusion 

fluxes of the constituents are of equal magnitude and opposite in sign will find Equation 4 

unfamiliar. 

Readers familiar with the traditional treatment of transport of dissolved 

constituents in groundwater may wonder why Equation 3 doesn’t contain a term 

representing mechanical dispersion. Non-uniform advection at the pore scale creates 

pore-scale concentration gradients that are manifest at the macroscopic scale by spreading 

or dispersal of species that is in addition to that attributable to diffusion alone. This extra 

increment of spreading is known as mechanical dispersion and is readily observable in 

solute transport in groundwater. However, multi-dimensional diffusion at the pore scale 

acts to smooth the variable concentration created by non-uniform advection and, thus, 

reduces mechanical dispersion. In the case of gases, where diffusion coefficients are 

typically 1000 times greater than for solutes in liquids, mechanical dispersion is not likely 
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to be an important spreading mechanism relative to macroscopic diffusion. For this 

reason, a term representing mechanical dispersive flux is not included in Equation 3. 

2.3 Fluxes That Comprise Total Diffusion Flux 

Graham’s (1833) experiments clearly demonstrate that the components of a binary 

gas at uniform pressure in a porous medium diffuse at different rates in general. 

Consequently, the sum of the total diffusive fluxes of the individual components, 𝑁𝐴
𝐷 +

𝑁𝐵
𝐷, is not zero. Rather, this sum contributes to the motion of the fluid as a whole—a 

feature of diffusion in porous solids that is not observable in systems free of solid 

obstructions. We refer to this net diffusive flux as the non-equimolar flux (Cunningham 

and Williams, 1980) and write Equation 5. 

 𝑁𝐷 = 𝑁𝐴
𝐷 + 𝑁𝐵

𝐷 (5) 

Similar to the viscous flux, the non-equimolar flux imparts motion to the individual 

species in the mixture by advection (i.e., xi ND, i = A, B), but is distinguished from advection 

via a viscous flux by the fact it arises solely as a result of diffusion. The sum of advection 

by the non-equimolar flux and by the viscous flux is the total advection by the phase 

motion.  

The increment of motion for component i that is in addition to advection via the 

phase motion is the equimolar diffusion flux Ji defined by Equation 6. 

 𝐽𝑖 = 𝑁𝑖 − 𝑥𝑖𝑁 , 𝑖 = 𝐴, 𝐵 (6) 

Because equimolar diffusion makes no net contribution to motion of the phase, we have 

Equation 7.  

 𝐽𝐴 + 𝐽𝐵 = 0 (7) 

Equation 7 expresses a condition that holds under all circumstances treated in this book. 

It is common to rearrange Equation 6 so that the mole flux is expressed as the sum 

of the equimolar and advection fluxes as in Equation 8a for constituent 𝐴. We may then 

express the flux of component 𝐴 by any one of Equations 8a through 8d. The subscripts 

can be interchanged to obtain the equivalent expressions for component 𝐵. 

 𝑁𝐴 =  𝐽𝐴 + 𝑥𝐴𝑁 (8a) 

 𝑁𝐴 =  𝐽𝐴 + 𝑥𝐴(𝑁𝐴 + 𝑁𝐵) (8b) 

 𝑁𝐴 =  𝐽𝐴 + 𝑥𝐴(𝑁𝐷 + 𝑁𝑣) (8c) 

 𝑁𝐴 =  𝐽𝐴 + 𝑥𝐴(𝑁𝐴
𝐷 + 𝑁𝐵

𝐷 + 𝑁𝑣) (8d) 

The reader is encouraged to become thoroughly familiar with these definitional equations 

and the various forms they may take. For example, if there is no viscous flux then 

Nv = 0, NA = 𝑁𝐴
𝐷 and Equation 8d becomes Equation 9. 
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 𝑁𝐴
𝐷 =  𝐽𝐴 + 𝑥𝐴(𝑁𝐴

𝐷 + 𝑁𝐵
𝐷) (9) 

Rearranging and solving for JA gives Equation 10. 

 𝐽𝐴 = 𝑁𝐴
𝐷𝑥𝐵 − 𝑥𝐴𝑁𝐵

𝐷 (10) 

This is in the form of a Stefan-Maxwell equation for a binary gas that we soon will have 

occasion to use in our calculations.  

2.4 Fick’s Law 

Fick’s first law of diffusion (Fick, 1855) is a central feature of practically all 

discussions of diffusion. A variety of mathematical expressions for Fick’s law that 

calculate different fluxes using different forms of concentration gradient are present in the 

literature. Not all of these expressions are equivalent to one another. We have elected in 

this book to carry out all of our developments in terms of molar fluxes and 

concentrations. In that notation, only Equation 11 is referred to as Fick’s law from this 

point forward. 

 𝐽𝑖 = −𝐷 𝐶𝑑𝑥𝑖 𝑑𝑙⁄     𝑖 = 𝐴, 𝐵   (11) 

The flux calculated by Equation 11 is the equimolar flux defined by Equation 10. The 

parameter D is the effective diffusion coefficient (L2/T), a modification of the molecular 

diffusion coefficient, Dm (L2/T), to account for the reduction of cross-sectional area 

available for gas diffusion and the increase in diffusion path length caused by the 

presence of solids and liquids (see Section 6). If there are no obstructions then the effective 

diffusion coefficient is equal to the molecular diffusion coefficient available in handbooks. 

We set aside for the time being any further discussion of the physical ingredients of D and 

Dm except to note that the coefficient pertaining to diffusion of A into B is the same as for B 

into A. Further, kinetic theory predicts that this binary molecular diffusion coefficient is 

inversely proportional to the gas pressure. It is clear from Equation 33 in Section 6 that 

these characteristics of the molecular diffusion coefficient are true of the effective 

diffusion coefficient as well. 

Importantly, Equation 11 satisfies Equation 7, a condition that is not restricted to 

isobaric diffusion. That is, Fick’s law in this book calculates the equimolar fluxes in either 

an isobaric or non-isobaric binary system. Many authors assume Ji = -D dCi/dl as the form 

for Fick’s law (or the equivalent form on a mass basis). However, this form is not 

consistent with the flux definitions presented herein; in particular Equation 10 is not 

satisfied by this alternate form when the diffusion is influenced by a pressure gradient. 

We regard Equation 11 as the more general form, applicable for both liquids and gases 

under either isobaric or non-isobaric conditions.  
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3 Driving Forces for Diffusion 

Consider a container (Figure 2a) of an ideal binary gas at uniform temperature, 

pressure and composition. On average, all of the molecules in the binary gas have the 

same kinetic energy because the temperature is uniform. Let us imagine a plane across the 

container so that it is divided into two sections as shown. Molecules of both components 

continuously pass back and forth across the plane due to their random thermally induced 

motion. We may also think of the dividing plane as a wall against which the molecules on 

either side collide. These collisions are responsible for exerting pressure on the wall. If the 

number of molecules per unit volume on both sides of the surface is the same, there is no 

pressure difference across the surface. The pressure created by molecules on one side is 

opposed by an equal pressure in the gas on the other. The contribution to total pressure 

made by an individual component is known as the partial pressure, pi, of that component. 

The partial pressure of each component is related to the component molar concentration 

by pi = CiRT. 

 

Figure 2a - Binary gas at uniform 
composition, pressure and temperature. 

Now suppose the composition of the binary gas is changed by removing from the 

left side some molecules of species A and replacing them with the same number of 

species-B molecules. The concentration of species-A molecules is now less on the left than 

on the right and the opposite is true for species B (Figure 2b). The total pressure on either 

side of our imaginary surface is unchanged because the total number of molecules is still 

the same on both sides of the surface. However, the number of A molecules impinging on 

the imaginary surface from the left is less than from the right and the opposite is true for 

B molecules. Thus, there is a net diffusion of species A from right to left and species B 

experiences a net diffusion from left to right. In both cases, diffusion occurs from high to 

low concentration or, equivalently, from high partial pressure to low partial pressure. 

Some authors employ differences in the thermodynamic quantity known as chemical 

potential (energy per mole) as the indicator of the direction of diffusion. However, 

concentration, partial pressure, and chemical potential are closely related quantities in 

isothermal ideal gases and each can be used to indicate the direction of component 

diffusion when the composition is not uniform. 
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Figure 2b - Binary gas with non-uniform 
composition. Molecules A diffuse to the 
left and molecules B diffuse to the right.  

The gradient of concentration, partial pressure, or chemical potential may be used 

to express the driving force for the diffusion described in the previous paragraph. We 

choose to use the gradient of partial pressure for the moment because it has dimensions of 

force per unit volume and makes the discussion of momentum balances in the following 

section more intuitive and easier to grasp. It is important to note that the gradient of 

partial pressure is not an external force that acts on the fluid as a whole; rather, the 

gradient of partial pressure of a component is an internal force that drives diffusion of 

that component. The partial pressure of component i is related to the total gas pressure 

and the component mole fraction by pi = pxi. The gradient of partial pressure is expressed 

below in Equation 12. 

 
𝑑𝑝𝑖

𝑑𝑙
= 𝑝

𝑑𝑥𝑖

𝑑𝑙
+ 𝑥𝑖

𝑑𝑝

𝑑𝑙
  (12) 

It follows that the driving force for diffusion of an individual component is affected by 

both a gradient of mole fraction and a pressure gradient in the gas as a whole. Of course, 

a pressure gradient also induces bulk gas flow, but the second term on the right side of 

Equation 12 derives from the gradient of partial pressure in the present context and is a 

force driving diffusion. Diffusion in response to the gradient of total gas pressure is often 

referred to as pressure diffusion.  

4  Resistance to Diffusion  

It is well known that the resistance to viscous flow in porous media primarily 

arises from viscous shear as the fluid makes its way through small, tortuous channels left 

open among the collection of solid particles. In contrast, diffusion occurs without loss of 

momentum by viscous shear. Nevertheless, diffusing species undergo a momentum 

change through collisions with other species and with solid particles. Resistance to 

diffusion arises from these collisions and the consequent change in momentum. 
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4.1 Momentum Balance in a Particle-Free System 

Newton’s law of motion relevant to the present discussion can be simply stated: 

the sum of the forces acting to drive motion is equal in magnitude and opposite in 

direction to the sum of the forces acting to resist the motion. It is helpful to examine the 

familiar Darcy’s law in the context of this principle before undertaking the application to 

diffusion. Equation 1 can be rearranged to -dp/dl = vμ/kg. In this form the left side is the 

driving force per unit volume and the right side is the force per unit volume that resists 

the motion. The quantity on the right is a macroscopic manifestation of the pore-scale rate 

of momentum loss per unit volume due to viscous shear within the complex and 

unknowable geometry of the pore space (Hubbert, 1956; Corey, 1994). 

In a similar way, Fick’s law represents a macroscopic momentum balance for 

diffusion in systems free of any solid particles or other obstructions. The interpretation of 

Fick’s law as a momentum balance (i.e., force balance) is easier to grasp if Equation 11 is 

written in terms of the gradient of partial pressure. For species A, we obtain Equation 13. 

 −
𝑑𝑝𝐴

𝑑𝑙
=

𝑅𝑇𝐽𝐴

𝐷𝑚
  (13) 

The molecular diffusion coefficient is used here because there are no obstructions in the 

case under discussion. The left side of Equation 13 is the driving force per unit volume 

and the right side is the resisting force per unit volume or, equivalently, the rate of change 

of momentum per unit volume for species A due to intermolecular collisions with species 

B within a local volume element. The molecular diffusion coefficient, Dm, is the 

phenomenological parameter that accounts for the complicated, unresolved 

molecular-scale process of intermolecular collisions within the volume element, just as the 

permeability appearing in Darcy’s law is the macroscopic manifestation of the process of 

viscous shear that occurs in the complex geometry of internal pore space. 

In this case of binary diffusion in space free of solid particles, the only mechanism 

by which the momentum of component A can be lost is through momentum exchange 

with component B. In the absence of solid particles, there can be no momentum loss by 

molecule-particle collisions or by viscous shear. Thus, pA + pB = p = constant and the only 

driving force for the flux, Ji, i = A, B is proportional to the gradient of the mole fraction as 

given in Equation 11. As mentioned previously, JA + JB = 0, as required by Equation 7. We 

now see that this means that intermolecular collisions do not contribute to a change in the 

momentum of the gas as a whole. 

4.2 Effect of Solid Particles Embedded in the Gas 

Diffusing species in a gas-particle mixture experience resistance that is the sum of 

that due to molecule-molecule collisions and molecule-solid collisions. Equation 14 adds 

the rate of momentum loss due to molecule-particle collisions (second term on the right) 

to the rate of momentum loss due to molecule-molecule collisions (first term on the right).  
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 −
𝑑𝑝𝐴

𝑑𝑙
=

𝑅𝑇𝐽𝐴

𝐷
+

𝑅𝑇𝑁𝐴
𝐷

𝐷𝐴
𝐾   (14) 

where: 

𝑁𝐴
𝐷   = total diffusive mole flux of component A (mol / L2) 

𝐷𝐴
𝐾  = effective Knudsen diffusion coefficient for component A (L2/T) 

Equation 14 is of central importance to the developments in this book and warrants 

further discussion. 

Note from Equation 10 that the flux, 𝐽𝐴, appearing on the right side of Equation 14, 

is a function of the mole fluxes of both constituents 𝐴 and 𝐵; hence, it can be concluded 

that the rate of momentum change for species 𝐴 due to intermolecular collisions depends 

upon the flux of both constituents. Now suppose that we regard the solid particles to be 

giant, stationary molecules, as did the authors of the Dusty Gas Model. Then the second 

term on the right is conceptually the same as the first term, but with the flux of one 

constituent, the giant molecules (solid particles), equal to zero (Cunningham and 

Williams, 1980). 

We use the effective diffusion coefficient, D, in the first term on the right of 

Equation 14 because particles are obstructing the diffusion space in this case. The 

parameter 𝐷𝐴
𝐾 appearing in the second term is known as the effective Knudsen diffusion 

coefficient in honor of Martin Knudsen, a pioneer in the study of molecule-solid 

collisions. As is the case for the effective molecular diffusion coefficient, the effective 

Knudsen diffusion coefficient is the macroscopic manifestation of molecular-scale 

momentum exchange, but in this case due to molecule-solid collisions instead of 

intermolecular collisions. Note that the Knudsen coefficient is species specific, i.e., the 

effective Knudsen diffusion coefficient for species A is different than for species B. This is 

because the molecule-particle collisions of a particular species are independent of the 

presence of other diffusing species. The determination of effective molecular and 

Knudsen diffusion coefficients is discussed in the section on parameter estimation. 

It might seem that conservation of momentum should dictate zero loss of 

momentum when the molecules elastically collide with massive immobile particles. 

Indeed, such would be the case for smooth particles on which the angle of reflection is 

equal to the angle of incidence for all collisions (specular reflection). On the other hand, 

Cunningham and Williams (1980) argue that reflection of molecules impinging on a 

macroscopic element of rough surface (rough at the molecular scale) are chaotically 

reflected (diffuse reflection) when viewed at the scale of the surface element as a whole. 

According to these authors “… in contrast to the situation with smooth walls, the gas will 

lose momentum as it flows along a rough wall”.  



Flux Equations for Gas Diffusion in Porous Media David B. McWhorter 

 

15 
 

4.3 Momentum Balance for the Gas as a Whole 

The momentum balance for component B is obtained from Equation 14 by 

replacing the subscript A with B to obtain Equation 15. 

 −
𝑑𝑝𝐵

𝑑𝑙
=

𝑅𝑇𝐽𝐵

𝐷
+

𝑅𝑇𝑁𝐵
𝐷

𝐷𝐵
𝐾   (15) 

The sum of Equations 14 and 15 for the individual components is the momentum balance 

for the gas as a whole, and is given by Equation 16. 

 −
𝑑𝑝

𝑑𝑙
 = 𝑅𝑇 {

𝑁𝐴
𝐷

𝐷𝐴
𝐾 +

𝑁𝐵
𝐷

𝐷𝐵
𝐾} (16) 

The first term on the right side of Equation 14 and Equation 15 sum to zero as required by 

Equation 7, and is an expression of conservation of momentum for intermolecular 

collisions within the gas, as a whole as noted previously. Thus, Equation 16 expresses the 

momentum balance for diffusion-initiated, molecule-particle collisions for the gas as a 

whole. No momentum loss due to viscous shear is accounted for in Equation 16. Under 

isobaric conditions Equation 16 becomes Equation 17. 

 
𝑁𝐵

𝐷

𝑁𝐴
𝐷 = −

𝐷𝐵
𝐾

𝐷𝐴
𝐾  (17) 

4.4 Graham’s Law 

Conservation of momentum for collisions between gas molecules and solid particles for 

an isobaric gas as a whole means that, on average, momentum transferred to particles by 

species A must be equal in magnitude and opposite in direction to that transferred by 

species B. The rate of momentum exchanged with the solids for each species is 

proportional to 𝑁𝑖
𝐷𝑚𝑖𝑣̅𝑖, 𝑖 = 𝐴, 𝐵, wherein mi is the molecular mass and 𝑣̅𝑖 is the mean 

molecular speed. Therefore, the momentum balance is expressed by Equation 18. 

 𝑁𝐴
𝐷𝑚𝐴𝑣̅𝐴 + 𝑁𝐵

𝐷𝑚𝐵𝑣̅𝐵 = 0  (18) 

From kinetic theory, the average values of molecular speed are inversely 

proportional to the square root of their respective molecular masses. Hence, Equations 17 

and 18, together, provide the important result given by Equation 19. 

 
𝐷𝐵

𝐾

𝐷𝐴
𝐾 = (

𝑀𝐴

𝑀𝐵
)

0.5
= (𝑀𝐴𝐵)0.5  (19) 

where:  

MA = molecular weight of A (mass / mol) 

MB = molecular weight of B (mass / mol) 

MAB = ratio of molecular weights of A to B, MA/MB, (dimensionless) 

In Equation 19, molecular weights Mi, i = A, B, are used in place of molecular masses and 

MAB denotes the ratio MA/MB. Prescription of the isobaric condition in our development is a 
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sufficient condition for Equation 19, but not a necessary one. The more rigorous Dusty 

Gas Model development shows the Knudsen diffusion coefficients are inversely 

proportional to the square root of the respective molecular masses and that Equation 19 

holds for both constant and variable pressure (Cunningham and Williams, 1980). 

A rearrangement of Equation 16, together with the use of Equation 19 and the 

ideal gas law, results in Equation 20. 

 𝑁𝐵
𝐷 = −𝐷𝐵

𝐾 𝑑𝐶 𝑑𝑙⁄ − (𝑀𝐴𝐵)0.5𝑁𝐴
𝐷 (20) 

This shows in compact form the coupling that exists between the total diffusive fluxes 

when the pressure is not uniform. Even under isobaric conditions (i.e., constant C), these 

fluxes remain coupled, but by the simpler expression of Equation 21. 

 𝑁𝐵
𝐷 = −(𝑀𝐴𝐵)0.5𝑁𝐴

𝐷 (21) 

Equation 21 is known as Graham’s law of diffusion. In what could be the earliest 

scientific investigation of diffusion, Thomas Graham (1833) studied steady 

counter-current diffusion of the components of binary gases through a porous plug under 

uniform temperature and pressure. Uniform pressure was achieved by frequent 

adjustment of the pressure on the face of the porous plug so as to negate the spontaneous 

pressure gradient that was otherwise engendered. He determined the ratio of the 

magnitudes of both component fluxes and noted the fluxes pointed in opposite directions. 

In the context of the foregoing equations, Graham measured the magnitude and direction 

of 𝑁𝒊
𝑫, i = A, B, for 10 gas pairs. His experiments foretold Equation 21, a result we have 

seen to arise from the momentum balance for the gas as a whole under isobaric 

conditions. We emphasize that Graham’s law holds only under the isobaric condition but 

Equation 19 holds for both variable and constant pressure. Graham’s law has been 

experimentally verified many times (e.g., Evans III et al., 1962; Gunn and King, 1969) 

since Graham’s pioneering investigations. 

4.5 Molecular, Knudsen, and Transition Regimes  

Resistance to diffusion resulting from both molecule-molecule and 

molecule-particle collisions is included in Equations 14 and 15 but no hints have yet been 

offered as to the conditions that dictate their relative importance. A qualitative guide to 

the relative importance of the resistance terms is provided by the Knudsen number, 

defined as the ratio of mean free path length to the characteristic pore dimension, 

Kn = λ/λp. The mean free path length, λ, is the average distance traveled by molecules 

between collisions with other molecules and can be calculated from elementary kinetic 

theory. The mean free path length is inversely proportional to gas pressure, but the gas 

pressure in most applications of interest to readers of this book will likely differ little from 

one atmosphere. 
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Various measures could be used to characterize pore dimension, but we elect to 

use the square root of intrinsic permeability, λp = k0.5. This is a natural choice because 

intrinsic permeability is proportional to the square of a characteristic pore dimension 

(Freeze and Cherry, 1979; Corey, 1994; Hubbert, 1956) and is determined or estimated in 

almost any study of fluid movement in the subsurface. Furthermore, it provides an 

immediate link between the Knudsen number and the range of porous media of interest 

to the earth scientist. 

The terms involving the Knudsen diffusion coefficient in Equations 14 and 15 are 

negligible for the condition Kn << 1. From the point of view of the gas molecules, the 

diffusion space appears to be densely populated with molecules but only sparsely 

populated with solid particles for Kn << 1. For this condition, molecules are likely to 

experience a great many intermolecular collisions before encountering a solid particle. 

Thus, the resistance offered to diffusion of individual components via molecule 

particle-collisions is negligible relative to that offered by inter-molecular collision (i.e., 

𝐷𝑖
𝐾 ≫ 𝐷). The diffusion regime is said to be molecular in this case. Note that small 

resistance to diffusion is characterized by large diffusion coefficients, just as small 

resistance to viscous flow corresponds to large permeability. 

At the other extreme, terms involving the molecular diffusion coefficient are 

negligible and the Knudsen regime prevails when 𝐾𝑛 ≫1. Now it is the particles that 

densely populate the diffusion space and solid surfaces appear in close proximity to all of 

the gas molecules as measured relative to the mean free path length. The probability of 

molecule-particle collisions overwhelms the probability of molecule-molecule collisions 

and the diffusion is said to be occurring in the Knudsen regime. When neither molecular 

nor Knudsen diffusion dominates, diffusion occurs in the transition regime. 

Suppose nitrogen gas at 20°C and one atmosphere pressure is present in clean 

coarse sand with an intrinsic permeability of 1 × 10-10 m2. For this case, λ is about 

6.5 × 10-8 m as calculated from λ = 1/(20.5πσ2ñ), where σ is the diameter of the molecule 

(3.75 × 10-10 m for N2; Daniels and Alberty, 1962) and 𝑛̃ is the number of molecules per 

unit volume (2.5 × 1025 m-3 for the given temperature and pressure). The square root of 

intrinsic permeability is λp = 1 × 10-5 m, and the Knudsen number is about 0.0065. 

Resistance to diffusion offered by molecule-particle collisions is likely negligible in this 

case and diffusion is said to be molecular diffusion. On the other hand, the Knudsen 

number would be 6.5 for the same gas present in a glacial till with an intrinsic 

permeability of 1 × 10-16 m2. This situation is likely in the transition regime in which both 

molecular and Knudsen diffusion is important.  

The values of intrinsic permeability vary widely within the large range of 

materials that may be of interest to the earth scientist. Based on the calculations in the 

above paragraph, the molecular regime can be expected to prevail in materials with an 

intrinsic permeability greater than about 1 × 10−12 m2. The transition regime is likely to 

prevail in the remainder of the permeability range of interest to the practicing earth 
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scientist. These guidelines are intended to provide the reader only with a rough idea of 

where the diffusion regimes might occur in the permeability range of interest. 

The above discussion might lead one to erroneously conclude that diffusion in the 

molecular regime is independent of molecule-particle collisions. Even when such collisions are 

negligible in the context of resistance to diffusion of individual components, molecule-particle 

collisions remain very important in the context of the momentum balance for the gas as a whole, 

regardless of the prevailing diffusion regime. Therefore, the coupling between the diffusive fluxes 

expressed in Equations 20 and 21 must be satisfied in all diffusion regimes because they follow 

from the momentum balance for the gas as a whole.  

5 Flux Equations 

With Equation 14 now understood in the context of conservation of momentum, 

we replace partial pressure, pA, with the more familiar molar concentration, CA and use 

Equation 10 to replace JA and obtain Equation 22. 

 −𝐷 𝑑𝐶𝐴 𝑑𝑙⁄ = (𝑥𝐵𝑁𝐴
𝐷 − 𝑥𝐴𝑁𝐵

𝐷) + (𝐷 𝐷𝐴
𝐾⁄ )𝑁𝐴

𝐷 (22) 

Equation 22 and the corresponding equation for species B (interchange the subscripts) 

apply in both the molecular and transition regimes under both isobaric and non-isobaric 

conditions. The total diffusive fluxes are expressed by Equations 20 and 21 for the 

non-isobaric and isobaric condition, respectively. 

5.1 Molecular Regime – Uniform Pressure 

Resistance to diffusion of an individual species in the molecular regime is 

dominated by inter-molecular collisions, so the ratio 𝐷 𝐷𝐴
𝐾⁄  is very small and the second 

term on the right side of Equation 22 is negligible. Also, Graham’s law and the relation 

dCA = CdxA apply for the isobaric condition. Equation 22 becomes Equation 23. 

 − 𝑁𝐴
𝐷 =  −

𝐷𝐶 𝑑𝑥𝐴 𝑑𝑙⁄

1 − (1 − 𝑀𝐴𝐵
0.5)𝑥𝐴

 (23) 

The diffusive flux for species B is obtained from Equation 23 by interchanging the 

subscripts (note: MBA ≡ MB/MA.). Strictly speaking, these results become Fick’s law only if 

the molecular weights of the species are the same. However, diffusion is closely 

approximated by Fick’s law when the molecular weights are nearly equal and/or when 

one species is present in dilute concentration (i.e., xA << 1). The latter situation is common 

in environmental applications where the species of interest often appears in only trace 

amounts (e.g., vapor from a neat liquid with low vapor pressure or evaporation from the 

dissolved state in aqueous solution). 

Integration of Equation 23 for steady-state diffusion between open boundaries on 

which the pressure is the same is demonstrated in subsequent examples. Non-equimolar 

diffusion results in the development of a pressure gradient in any system in which the 

free flux of gas components is prevented on one (a semi-open system) or both boundaries 
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(a closed system). Even in completely open systems, transient pressure gradients are 

present during unsteady diffusion (Fen and Abriola, 2004). Thus, the isobaric condition 

under which Equation 23 applies is expected to occur rarely if ever in natural field 

settings. The case of simultaneous diffusion and viscous flow is addressed in the 

following section. Click on these exercise links to view example problems Exercise 1 and 

Exercise 2. 

5.2 Molecular Regime – Non-uniform Pressure  

The total flux of a component is the sum of the total diffusive flux and the 

advective flux resulting from viscous flow (Equation 3). The advective flux resulting from 

viscous flow is the product of the mole fraction and viscous flux, as explained previously. 

Then our task is reduced to determining the total diffusive flux affected by non-uniform 

pressure. The spadework pertinent to this task has already been accomplished. Neglect 

the second term on the right side of Equation 22 because we are considering the molecular 

regime and substitute Equation 20 for 𝑁𝐵
𝐷 in the remaining term. Upon rearrangement we 

have Equation 24. 

 𝑁𝐴
𝐷 = − 

𝐷𝐶 𝑑𝑥𝐴 𝑑𝑙⁄ + (𝐷 + 𝐷𝐵
𝐾)𝑥𝐴 𝑑𝐶 𝑑𝑙⁄

1 − (1 − 𝑀𝐴𝐵
0.5)𝑥𝐴

 (24) 

Equation 24 uses dCA = CdxA + xAdC. When the ideal gas law is used to replace the total 

molar concentration gradient with the gradient of gas pressure, we see that the second 

term in this result calculates the effect of pressure gradient on diffusion. This effect is 

sometimes referred to as pressure diffusion. Recall the discussion in Section 3 in which we 

identified the pressure gradient in the bulk gas as a driving force for diffusion of 

individual species, as well as for viscous flow.  

 The flux equation for species A (interchange subscripts for species B) affected by 

both diffusion and advection via viscous flow is obtained by simply adding the viscous 

advective flux to Equation 24. We then have Equation 25. 

 𝑁𝐴 = − 
𝐷𝐶𝑑𝑥𝐴 𝑑𝑙⁄ +(𝐷+𝐷𝐵

𝐾)𝑥𝐴𝑑𝐶 𝑑𝑙⁄

1−(1−𝑀𝐴𝐵
0.5)𝑥𝐴

− 𝑥𝐴(𝑘𝑔𝑝 𝜇⁄ ) 𝑑𝐶 𝑑𝑙⁄  (25) 

This equation is readily reduced to the simpler expression of Equation 26 for the 

condition 𝐷𝐵
𝑘𝜇 𝑘𝑔𝑝⁄ ≪ 1. 

 𝑁𝐴 =  − 
𝐷𝐶 𝑑𝑥𝐴 𝑑𝑙⁄

1 − (1 − 𝑀𝐴𝐵
0.5)𝑥𝐴

 − 𝑥𝐴(𝑘𝑔𝑝 𝜇⁄ ) 𝑑𝐶 𝑑𝑙⁄  (26) 

This simplification is tantamount to assuming that dCA ≈ CdxA (i.e., pressure diffusion is 

negligible) and that the total diffusion flux is satisfactorily approximated by Equation 23. 

Note that the product DC is independent of pressure, owing to the fact that the effective 

diffusion coefficient is inversely proportional to pressure. Click on these exercise links to 

view example problems Exercise 3 and Exercise 4.  
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5.3 Transition Regime – Constant and Non-uniform Pressure 

Diffusion in the transition regime is distinguished by the fact that resistance to 

diffusion offered by both molecule-molecule and molecule-particle collisions must be 

considered. That is, the second term on the right of Equation 14 must be retained. For the 

isobaric condition, the relation between the component fluxes is given by Graham’s law, 

Equation 21. Upon introduction of Equation 21 into Equation 22, followed by some 

algebraic manipulation, the equation for the flux of species A under isobaric conditions is 

derived to be Equation 27.  

 𝑁𝐴
𝐷  = −

𝐷𝐶 𝑑𝑥𝐴 𝑑𝑙⁄

(1 + 𝐷 𝐷𝐴
𝐾⁄ ) − (1 − 𝑀𝐴𝐵

0.5)𝑥𝐴

 (27) 

The corresponding result for the non-isobaric condition is obtained by using Equation 20 

in Equation 22 and adding advection via viscous flow to obtain Equation 28. 

 𝑁𝐴  = −
𝐷Cd𝑥𝐴 𝑑𝑙⁄ +(𝐷+𝐷𝐵

𝐾)𝒙𝐴𝑑𝐶 𝑑𝑙⁄

(1+𝐷 𝐷𝐴
𝐾⁄ )−(1−𝑀𝐴𝐵

0.5)𝑥𝐴
− 𝑥𝐴(𝑘𝑔𝑃 𝜇⁄ ) 𝑑𝐶 𝑑𝑙⁄   (28) 

As usual, the corresponding equation for the flux of species B is obtained by 

interchanging the subscripts. 

We appealed to the conditions 𝐷 𝐷𝑖
𝐾⁄ ≪ 1, 𝑖 = 𝐴, 𝐵 and 𝐷𝑖

𝐾𝜇 𝑘𝑔𝑝⁄ ≪ 1, 𝑖 = 𝐴, 𝐵 to 

justify simplifications leading to Equation 26, applicable in the molecular regime. Neither 

of these conditions generally applies in the transition regime now under consideration. 

However, important to groundwater scientists and engineers is the circumstance in which 

the species of interest, say species A, is present only in trace concentrations. Equation 28 

can then be simplified to Equation 29. 

 𝑁𝐴  =  −
𝐷C𝑑𝑥𝐴 𝑑𝑙⁄

(1+𝐷 𝐷𝐴
𝑘⁄ )

  − (
𝐷+𝐷𝐵

𝐾

1+𝐷 𝐷𝐴
𝐾⁄

+ 𝑘𝑔𝑝 𝜇⁄ ) 𝑥𝐴 𝑑𝐶 𝑑𝑙⁄   (29) 

This result is of the same mathematical form as the widely used advection-diffusion 

model. Webb and Pruess (2003) calculated the transport of trace species using a flux 

equation that can be derived from Equation 29 written on a mass flux basis. Click on this 

exercise link to view an example problem Exercise 5.  

5.4 Transition Regime - A Pure Gas 

We have seen that the fluxes of individual species in a binary mixture are affected 

by mole-fraction diffusion, pressure diffusion and viscous flow. Only pressure diffusion 

and viscous flow occur in a pure gas. The diffusion flux for a single-species gas as shown 

in Equation 30 follows immediately from Equation 22. 

 𝑁𝐷 = −𝐷𝐾 𝑑𝐶 𝑑𝑙⁄  (30) 

The viscous flux is added to the diffusion flux as usual to obtain the Equation 31 for the 

mole flux of a pure gas.  
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 𝑁 = −(𝐷𝐾 + 𝑘𝑔𝑝 𝜇⁄ )𝑑𝐶 𝑑𝑙⁄  (31) 

Equation 31 shows that the viscous flux calculated by Darcy’s law is a satisfactory 

approximation of the total flux of a single component gas when conditions in the 

molecular regime satisfy the criterion expressed in Equation 32. 

 
𝜇𝐷𝐾

𝑘𝑔𝑝
≪ 1 (32) 

Klinkenberg (1941), as well as Heid and others (1950), present experimental data for the 

flux of air in response to pressure gradients in porous media with low permeability where 

the diffusion contribution is significant. These data and Equation 31 play a key role in the 

following section wherein we address the estimation of numerical values for the Knudsen 

diffusion coefficients. 

6 Estimation of Diffusion Coefficients 

The diffusion coefficients appearing in the above developments are macroscopic 

parameters. Macroscopic values for these parameters are automatically obtained when 

measured by application of macroscopic equations. The estimation of Knudsen diffusion 

coefficients by the method described in this section is an example of this circumstance. On 

the other hand, values for molecular diffusion coefficients tabulated in handbooks are not 

macroscopic and must be modified to account for obstructions present in the diffusion 

space. 

6.1 Effective Molecular Diffusion Coefficient 

The molecular diffusion coefficient, Dm (L2/T), that appears in Equation 13 applies 

when the diffusion space is free of obstruction. This is the parameter that has been widely 

measured and tabulated in handbooks and reference works. Typical values for common 

gas pairs often fall in the range 1 × 10−5 to 1 × 10−4 m2/s. It can be shown from kinetic theory 

that diffusion in a particular gas pair is characterized by a single molecular diffusion 

coefficient (Cunningham and Williams, 1980). Further, for the conditions of interest in this 

book, the molecular diffusion coefficient is proportional to p-1 and T2/3 while being 

practically independent of composition.  

The existence of obstructions in the diffusion space causes the effective 

(macroscopic) molecular diffusion coefficient to be less than the molecular diffusion 

coefficient applicable in particle-free space. The effective diffusion coefficient must be 

determined by an appropriate direct measurement for the problem at hand or estimated 

by suitable adjustments to the free space coefficient, Dm. The effective molecular diffusion 

coefficient is often calculated from Equation 33. 

 𝐷 = 𝜃𝑔𝜏𝐷𝑚 (33) 

where: 
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θg = fraction of bulk porous medium that is occupied by gas, i.e., 

volumetric gas content (dimensionless) 

τ = tortuosity (dimensionless) 

The volumetric gas content accounts for the reduction of area available for gas diffusion 

because part of the macroscopic cross-sectional area is occupied by solids and other 

fluids. The tortuosity adjusts for the fact that the observable macroscopic distance 

between two macroscopic points is less than the distance along the tortuous pore-scale 

travel path. The values of both parameters are less than unity.  

A popular empirical expression for tortuosity is shown in Equation 34 (Millington 

and Quirk, 1961). 

 𝜏 = 𝜃𝑔

7
3⁄

𝑛2⁄  (34) 

where: 

n = porosity (dimensionless) 

For a dry porous medium, the volumetric gas content equals porosity and the 

corresponding tortuosity is n0.33. Dry, loose sand with a porosity of 0.35 can be expected to 

have a tortuosity of about 0.7, according to Equation 34. Notice, however, the tortuosity 

falls rapidly as the gas content decreases. Furthermore, the volumetric gas content itself is 

highly sensitive to the heterogeneity of the porous medium. Consequently, the effective 

diffusion coefficient can be expected to exhibit large, even extreme, spatial variability in 

field problems. A single fine-grained layer oriented normal to the diffusion path, even if 

very thin, may effectively block and re-direct gas-phase diffusion because of small gas 

content.  

Calculation of the effective diffusion coefficient by the procedure outlined above 

(or similar calculation) is popular because it is simple and inexpensive. Field 

measurements of the effective diffusion coefficient offer an alternative when they can be 

made with reasonable effort and reliability. Field measurements are accomplished by 

fitting a suitable diffusion model to appropriate field measurements (e.g., Johnson et al., 

1998; Kreamer et al., 1988; Weeks et al., 1982). Values of the effective diffusion coefficient 

determined in this way are automatically macroscopic values and reflect the effects of 

spatial variability over some scale.  

The method presented by Johnson et al. (1998) is a particularly innovative and 

practical example of this procedure. A known mass MO of inert tracer gas that does not 

significantly partition into water is mixed with air in a small volume, VO. This volume is 

injected at a “point” from which it spreads radially by diffusion. A measured volume VS 

of the gas mixture, larger than the injected volume, is subsequently withdrawn (at time tS) 

from the point of injection and the mass M(tS) of extracted tracer gas is determined. The 

effective diffusion coefficient is calculated from Equation 35. 

 𝐷 =  
𝜃𝑔

1 3⁄

4𝑡𝑠𝛽
(

3𝑉𝑠

4𝜋
)

2 3⁄

 (35) 
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where: 

β = a dimensionless parameter  

The dimensionless parameter β only depends upon the ratio of recovered to injected 

tracer mass and is determined from the implicit Equation 36.  

 𝑀(𝑡𝑠) 𝑀𝑜⁄ = erf (𝛽1 2⁄ ) − 2 (
𝛽

𝜋
)

1 2⁄
𝑒𝑥𝑝(−𝛽) (36) 

The volumetric gas content appearing in Equation 35, θg, is usually not measured. 

However, the calculation of D from Equation 35 is not very sensitive to θg and a 

reasonable estimate for θg is sufficient in most cases. 

Equations 35 and 36 follow from the solution of Fick’s law-based partial 

differential equation for unsteady radial diffusion from a point source. The developments 

in this book predict that transient non-equimolar and viscous fluxes are engendered by 

unsteady diffusion from a point source and in many other cases of unsteady diffusion. 

There exists a paucity of solutions for unsteady diffusion that are based on the flux 

equations of this book, and it remains unknown whether solutions derived from 

differential equations based on Fick’s law constitute suitable models in the sense used 

above. However, any differences between effective diffusion coefficients derived by 

fitting either Fick’s law-based models or models based on the flux equations of this book 

will likely be overwhelmed by the range of uncertainty in the determination, irrespective 

of which flux equations are used. 

6.2 Effective Knudsen Diffusion Coefficient 

 Equation 31 calculates the mole flux of pure gas subjected to a pressure gradient. 

The flux of a pure gas is comprised of both diffusive and viscous contributions as 

indicated by the two coefficients in parentheses. Equation 31 suggests that the effective 

Knudsen diffusion coefficient can be estimated from measured values of the quantity in 

parentheses, together with independently determined values for permeability 

(Thorstenson and Pollock, 1989; Webb, 2006) and that procedure is presented in the 

following paragraphs. 

Klinkenberg (1941) was interested in the estimation of liquid permeability of 

porous media from measurements made with air. He determined the quantity in 

parentheses in Equation 31 from measurements of volume flux of air and the 

corresponding pressure gradient from which he computed an apparent permeability. 

Thus, Klinkenberg’s apparent permeability included a contribution from Knudsen 

diffusion. The apparent permeability was found to be a function of the mean pressure at 

which the experiments were conducted. A plot of apparent permeability versus the 

inverse mean pressure was approximately linear with slope b. The graph was 

extrapolated to 𝑝̅−1 = 0 to provide a value for the apparent permeability to air at a 

pressure sufficiently large to preclude a contribution by Knudsen diffusion. Because the 

experiments were conducted with dry porous media, the extrapolated value was taken to 
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be the intrinsic permeability, k, of the porous medium. Klinkenberg’s results can be 

expressed by Equation 37. 

 
𝑘𝑎𝑝̅

𝜇
= (

𝑘𝑝̅

𝜇
) (1 +

𝑏

𝑝̅
) (37) 

The left side of Equation 37 contains the measured apparent value of permeability, ka, and 

the right side contains the intrinsic value. The parameter b is known as the Klinkenberg 

parameter. Equation 38 follows from Equation 31 and 37. 

 
𝐷𝐾𝜇

𝑘
= 𝑏  (38) 

Heid et al. (1950) correlated the Klinkenberg parameter with intrinsic permeability from 

more than 150 measurements over the permeability range 10−17 to 10−12 m2 to arrive at 

Equation 39. 

 𝑏 = 0.11(𝑘)−0.39  (39) 

where: 

k = permeability (must be in m2)  

b = Klinkenberg parameter (expressed as Pascals) 

When permeability is expressed in m2, Equation 39 returns a Klinkenberg 

parameter value with units of Pascals (Thorstenson and Pollock, 1989). Equation 39 was 

developed from measurements with air flow through dry porous media, so values of 

Knudsen diffusion coefficients computed from Equations 38 and 39 are specific for air in 

dry media and are given the symbol 𝐷𝑎
𝐾. Coefficients for other gases in dry porous media 

can be determined from Equation 40. 

 𝐷𝑖
𝐾 = (𝑀𝑎 𝑀𝑖⁄ )0.5𝐷𝑎

𝐾  (40) 

The subscripts a and i denote air and the gas of interest, respectively. Equation 40 is 

Equation 19 rewritten specifically for the case at hand. The procedure is as follows: 1) 

determine the intrinsic permeability, 2) compute b from Equation 39 and use Equation 38 

to compute the Knudsen diffusion coefficient for air, and 3) calculate the Knudsen 

diffusion coefficient for the gas of interest from Equation 40. 

The porous media of interest in field applications are rarely dry. The presence of 

water in porous media reduces the characteristic dimension of the space available for gas 

diffusion and, therefore, causes Knudsen diffusion to be more significant than if the 

medium were dry. Thus, it may be important to estimate values for the Knudsen 

diffusion coefficients even in rather coarse-grained media. First-cut estimates of Knudsen 

diffusion coefficients, affected by the presence of water, can be made by using the 

effective gas permeability, kg, determined at the water content of interest, in place of the 

intrinsic permeability k in the above procedure.  
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Reinecke and Sleep (2002) found that this first-cut approximation overestimated 

the Knudsen diffusion coefficient for air when compared to experimental measurements. 

These authors propose the correlation of Equation 41. 

 𝐷𝑎
𝐾 = 2.69 ×  106 (𝑘𝑔)

0.764
  (41) 

Equation 41 yields the Knudsen diffusion coefficient for air in cm2/s corresponding to an 

effective gas permeability expressed in cm2. The values for other gases follow from 

Equation 40.  

The above procedure offers a practical way to estimate the difficult to measure 

Knudsen diffusion coefficients that are required for the application of the flux equations 

developed in the foregoing paragraphs. Note that the values of Knudsen diffusion 

coefficients calculated from the above procedure are already effective (macroscopic) 

values and do not require adjustments for tortuosity and open area.  

7 Summary and Conclusions 

The molecules of gases exist in a state of continuous random, chaotic motion. In 

multi-component gases with non-uniform composition, individual components 

spontaneously diffuse from locations of high to low concentrations because the 

component energy per unit volume is greater at high concentration than at low 

concentration. Diffusing molecules in systems free of solid particles experience a 

resistance to their collective motion due to collisions with molecules of other components. 

The rate at which there occurs a net transfer of component molecules from one location to 

another is represented by Fick’s law and is characterized by the molecular diffusion 

coefficient. 

Gases diffusing through porous media experience an additional resistance to 

motion caused by the collision of molecules with solid particles embedded in the gas. The 

effect of molecule-solid collisions on the rate of diffusion is characterized by the effective 

Knudsen diffusion coefficient. When the diffusion problem of interest occurs in the 

transition regime (porous solids of small to moderate permeability), the applicable flux 

equations involve both the molecular and Knudsen diffusion coefficients. This is because 

neither inter-molecular nor molecule-solid collisions dominate in the transition regime. 

These flux equations will appear unfamiliar to those who are used to thinking about 

diffusion in spaces free of obstruction where Fick’s law applies. 

The molecular diffusion regime prevails when the pores are so large that 

molecule-molecule collisions account for essentially all resistance to diffusion. This 

regime occurs in porous media with moderate to high permeability. Even in this case, 

diffusion fluxes are not independent of molecule-solid collisions and the component flux 

equations are generally not the familiar Fick’s law expressions. Molecule-solid collisions 

during isobaric diffusion in the molecular diffusion regime are responsible for the fact 

that component fluxes are not of equal magnitude. The difference between the 
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magnitudes of the fluxes is a diffusion-generated bulk flow that is not a viscous flow (i.e., 

there is no pressure gradient associated with this non-equimolar flow). This case becomes 

a familiar Fick’s law problem if the molecular weights of the diffusing species are equal or 

if the species of interest is present only in trace quantities (i.e., mole fraction of one 

component everywhere is much less that unity). The latter of these conditions is often 

encountered in environmental applications. 

Isobaric diffusion can be established in the laboratory where the pressure on the 

system boundaries can be externally controlled, but diffusion-generated viscous flow and 

associated pressure gradients are to be expected in virtually all field settings. We have 

provided an example of how this occurs in a semi-open system at steady state. Even in a 

completely open system, transient pressure gradients develop during unsteady flow. 

However, the practical significance of diffusion-generated pressure gradients is a separate 

question, one for which an answer can be provided only on a case-by-case basis. 
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8 Exercises 

Exercise 1 

Argon and helium diffuse through dry fine sand with a porosity n = 0.3 in the 

diffusion chamber of Figure Exercise 1-1. The molecular weights are 39.9 g/mole for argon 

(species A) and 4 g/mole for helium (species B). The pressure in both headers is 

maintained at 1 × 105 Pa and the temperature is 25 °C. The effective molecular diffusion 

coefficient is 2.37 × 10−5 m2/s under these conditions. To a close approximation, the mole 

fraction of argon is xA = 1 in the left header and xA = 0 in the right header. The diffusion 

chamber is 0.05 m long. For the steady-state condition: 

a) Compute the magnitude and direction of the total diffusive mole flux for both 

species. Compare with the values of flux computed from Equation 11. 

b) Compute the magnitude and direction of the non-equimolar flux.  

c) Derive an equation for xA(l) that shows how xA varies along the diffusion path. 

d) Compute the values for JA and JB at the midpoint of the diffusion chamber.  

 

Figure Exercise 1-1 - Isobaric diffusion of 
argon (species A) and helium in a sand-filled 
chamber. 

Click here for solution to Exercise 1 

Click here to return to where the text links Exercise 1 
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Exercise 2 

Flux equations such as Equation 23 are often referred to as constitutive equations. 

Darcy’s law and Fick’s law are familiar examples. Derive the constitutive equation for the 

non-equimolar flux for isobaric diffusion in the molecular regime. 

Click here for solution to Exercise 2 

Click here to return to where the text links Exercise 2 
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Exercise 3 

Consider again the diffusion of argon and helium as described in Exercise 1. All 

conditions are the same in the present problem except that the pressure in the left-hand 

header is elevated just enough to cause the steady-state mole fluxes of argon and helium 

to be equal in magnitude and opposite in direction. Assume that diffusion due to the 

pressure gradient is negligible. If the intrinsic permeability of the dry sand is 1 × 10−12 m2 

and the viscosity of the gas is 2.3 × 10−5 Pa-s, calculate the pressure difference between the 

headers. 

Click here for solution to Exercise 3 

Click here to return to where the text links Exercise 3 
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Exercise 4 

Aerobic biodegradation of petroleum hydrocarbons present in the vadose zone is 

manifest by a predominately upward flux of carbon dioxide. The magnitude of CO2 flux is 

an indicator of the rate of depletion of the liquid-phase hydrocarbon. Among the various 

methods that have been used to estimate the CO2 flux in the field is the so-called gradient 

method, by which the upward flux is computed from a measured concentration 

distribution and the effective diffusion coefficient. More than two gas components are 

involved in the depletion of a liquid-phase hydrocarbon by aerobic biodegradation. 

Nevertheless, it is instructive to revise the gradient method using the flux equations for a 

binary gas in which air and carbon dioxide are assumed to be the only two constituents.  

a) Refer to Figure Exercise 4-1 and derive an equation by which the steady CO2 flux can 

be calculated from a measured concentration distribution and a known effective 

diffusion coefficient. Assume the molecular regime prevails, pressure diffusion is 

negligible, and air can be considered to be a single species (species A).  

b) Compute the mole flux of carbon dioxide, phase (bulk gas) flux, non-equimolar flux, 

and viscous flux using the following data from Tracy (2015). 

𝑝 = 8.3 𝑥 104 𝑃𝑎 

𝑇 = 21.6 °𝐶 

𝐷 = 4.7 𝑥10−6  𝑚2 𝑠⁄  

𝑧2 − 𝑧1 = 1.29 𝑚 

𝑥𝐵(𝑧1) =  0.0583 

 𝑥𝐵(𝑧2) = 0.0013 

𝑀𝐵𝐴
0.5 = 1.232 

 

Figure Exercise 4-1 - Sketch of steady diffusion of carbon 
dioxide in the vadose zone from a source at the water table. 

Click here for solution to Exercise 4 

Click here to return to where the text links to Exercise 4.  
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Exercise 5 

Use Equation 27 to demonstrate that Graham’s law of diffusion holds for isobaric 

diffusion in the transition regime.  

Click here for solution to Exercise 5 

Click here to return to where the text links Exercise 5 
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10 Exercise Solutions 

Exercise 1 Solution 

Part a) 

Arbitrarily set the origin of the coordinate, l, at the left end of the diffusion 

chamber. The value of l on the right-hand end of the chamber is L, equal to 0.05 m. 

Equation 23 is applicable because diffusion occurs in the molecular regime with no 

pressure gradient. At steady state, the total diffusive flux of each component is constant 

with respect to time and position along the diffusion path. Thus, Equation 23 is integrated 

to obtain Equation Exercise Solution 1-1. 

 𝑁𝐴
𝐷 = 

𝐷𝐶

(1−𝑀𝐴𝐵
0.5)𝐿

𝑙𝑛 {
1−(1−𝑀𝐴𝐵

0.5)𝑥𝐴(𝐿)

1−(1−𝑀𝐴𝐵
0.5)𝑥𝐴(0)

} (Exercise Solution 1-1) 

where: 

xA(L) = mole fraction of argon at l = L 

xA(0) = mole fraction of argon at l = 0 

The molar concentration is computed from the ideal gas law, C = P/RT, 

with: 𝑝 = 1 ×  105 𝑃𝑎, 𝑅 = 8.205 
𝑚3 𝑃𝑎

𝑑𝑒𝑔− 𝑚𝑜𝑙𝑒
 and 𝑇 = 298 𝐾. 

𝐶 =
P

𝑅𝑇
=

105 𝑃𝑎

8.205
𝑚3 𝑃𝑎

 𝑑𝑒𝑔  𝑚𝑜𝑙𝑒
298 𝐾

= 40.9 
moles

𝑚3
 

Other parameter values are: 

𝑥𝐴(𝐿) = 0, 𝑥𝐴(0) = 1, 𝑀𝐴𝐵
0.5 = 3.158, 𝐿 = 0.05 𝑚 and D = 2.37 × 10-5 m2s-1.  

The total diffusive flux of argon is: 

𝑁𝐴
𝐷 = 

(2.37 𝑥 10−5)(40.9){𝑙𝑛(3.158−1)}

(1−3.158)(0.05)
= 0.0103 

moles

𝑚2 𝑠
 

The flux of argon is positive because it is in the direction of increasing l. 

 

The flux of helium can be calculated from Equation Exercise Solution 1-1 after 

interchanging the subscripts. However, the flux of helium is computed more easily from 

Graham’s law:  

𝑁𝐵
𝐷 = −𝑀𝐴𝐵

0.5 𝑁𝐴
𝐷 =  −3.158 (0.0103) =  − 0.0325 

moles

𝑚2 𝑠
 

 

The corresponding values of flux computed from Fick’s law (Equation 11) are 

0.019 moles/(m2s) for species A and -0.019 moles/(m2s) for species B. The Fick’s law 

calculation results in a rather large error in this case as there is significant disparity 

between the molecular weights of the gas components.  
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Part b) 

The non-equimolar flux or net flux is given by Equation 5. 

𝑁𝐷 = 𝑁𝐴
𝐷 + 𝑁𝐵

𝐷 = 0.0103 − 0.0325 =  −0.0222 
moles

𝑚2 𝑠
 

This is the flux of the gas as a whole. It is engendered entirely by diffusion, occurs 

without loss of momentum by viscous shear, and is in the direction of diffusion of the 

lighter component (helium). 

 

Part c) 

Integrate Equation 23 subject to xA = xA(l) at position l and xA = 1 at l = 0 or use 

Equation Exercise Solution 1-1 to obtain Exercise Solution 1-2. 

 𝑁𝐴
𝐷 =  

𝐷𝐶

(1 − 𝑀𝐴𝐵
0.5)𝑙

𝑙𝑛 {
1 − (1 − 𝑀𝐴𝐵

0.5)𝑥𝐴(𝑙)

𝑀𝐴𝐵
0.5 } (Exercise Solution 1-2) 

However, xA(L) = 0, consequently, Equation Exercise Solution 1-2 becomes 

Equation Exercise Solution 1-3. 

 𝑁𝐴
𝐷 =  

𝐷𝐶

(1−𝑀𝐴𝐵
0.5)𝐿

𝑙𝑛 (
1

𝑀𝐴𝐵
0.5)  (Exercise Solution 1-3) 

The desired result is obtained by combining these two equations and solving for xA(l) to 

obtain Exercise Solution 1-4. 

 𝑥𝐴(𝑙) =  
1 − 𝑒𝑥𝑝{(1 − 𝑙 𝐿⁄ )𝑙𝑛𝑀𝐴𝐵

0.5}

1 − 𝑀𝐴𝐵
0.5  (Exercise Solution 1-4) 

 

Part d) 

Equation 10 is combined with Graham’s law to obtain Exercise Solution 1-5. 

 𝐽𝐴 =  𝑁𝐴
𝐷{1 − 𝑥𝐴(1 − 𝑀𝐴𝐵

0.5)} (Exercise Solution 1-5) 

Then Equation Exercise Solution 1-4 is substituted for xA to arrive at 

Equation Exercise Solution 1-6. 

 𝐽𝐴(𝑙) =  𝑁𝐴
𝐷𝑒𝑥𝑝{(1 − 𝑙 𝐿⁄ )𝑙𝑛𝑀𝐴𝐵

0.5} (Exercise Solution 1-6) 

Equation Exercise Solution 1-6 shows how the equimolar flux varies over the length of the 

diffusion chamber.  

At a point midway between the supply headers (l/L = 0.5), we have 

𝐽𝐴 = (0.0103) 𝑒𝑥𝑝{0.5𝑙𝑛(3.158)} = 0.0183 
moles

𝑚2 𝑠
 

The corresponding helium flux follows from Equation Exercise Solution 1-6 by 

interchanging the subscripts to obtain: 
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𝐽𝐵 = (−0.0325)𝑒𝑥𝑝{0.5𝑙𝑛(0.317)} = −0.0183 
moles

𝑚2 𝑠
 

These molar fluxes are equal in magnitude and opposite in direction so they 

satisfy Equation 7. This numerical computation applies to a particular point, and we leave 

it to the reader to demonstrate that Equation Exercise Solution 1-6 and its counterpart for 

component B sum to zero at all points. Of course, this must be the case because Equation 7 

is at the heart of the analysis leading to the starting point for this example, Equation 23. 

Return to Exercise 1 
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Exercise 2 Solution 

Start with Equation 5, which defines the non-equimolar flux. 

ND ≡ NA
D + NB

D =  (1 + NB
D NA

D⁄ )NA
D 

Use Graham’s Law to obtain the following expression.  

ND = (1 − MAB
0.5)NA

D 

Then replace the total diffusion flux of component A using Equation 23 to obtain the 

desired constitutive equation (Equation Exercise Solution 2-1). 

 𝑁𝐷 = −
(1−𝑀𝐴𝐵

0.5
)𝐷𝐶𝑑𝑥𝐴 𝑑𝑙⁄

1−(1−𝑀𝐴𝐵
0.5

)𝑥𝐴

 = −
(1−𝑀𝐵𝐴

0.5
)𝐷𝐶𝑑𝑥𝐵 𝑑𝑙⁄

1−(1−𝑀𝐵𝐴
0.5

)𝑥𝐵

 (Exercise Solution 2-1) 

Underpinning this development is the prescription of uniform pressure. However, 

Section 5.2 illustrates that Equation Exercise Solution 2-1 is a satisfactory approximation 

under non-isobaric conditions when diffusion that is driven by variable pressure is 

negligible relative to that driven by gradients of mole fraction.  

Return to Exercise 2  
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Exercise 3 Solution 

From Equation 8c, the condition NA + NB = 0 requires that the viscous flux cancel 

the non-equimolar flux: Nv = -ND. 

The value of the non-equimolar flux (𝑁𝐷 =  −0.0222
moles

𝑚2 𝑠
) computed in Exercise 1 

applies here because the diffusive fluxes are not appreciably affected by the pressure 

gradient. So 𝑁𝑣 = 0.0222
moles

𝑚2 𝑠
 and, from Equation 2, 𝑁𝒗 = −

𝑘𝑔

𝜇𝑅𝑇
𝑝 𝑑𝑝 𝑑𝑙⁄  = 0.0222

moles

𝑚2 𝑠
.  

This is integrated to obtain the following expression 

𝑘𝑔

2𝜇𝑅𝑇𝐿
 (𝑝0

2 − 𝑝𝐿
2) = 0.0222 

which can be used to directly calculate the desired pressure difference. However, 

computations are facilitated by rewriting the left side using: 

1

2
(𝑝0

2 − 𝑝𝐿
2) = 𝑝̅(𝑝0 − 𝑝𝐿) 

where, 𝑝̅ is the average pressure in the chamber. 

𝑝0 − 𝑝𝐿 = 0.0222 
𝜇𝐿

𝐶𝑘𝑔
 = 

(0.0222)(2.3 𝑥 10−5)(0.05)

(1 𝑥 10−12)(40.9)
 = 624 𝑃𝑎 

The pressure drop is quite small (about 6 cm H2O) relative to the 1 × 105 Pa 

pressure maintained in the right-hand header, justifying the assumption that the mean 

pressure is closely approximated by the controlled pressure in the right-hand header.  

Return to Exercise 3 
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Exercise 4 Solution  

Part a) 

The water table constitutes a zero-flux boundary for both air and carbon dioxide. 

The air flux must be zero everywhere because the flux is zero at the boundary, there are 

no sources or sinks for air, and the system is at steady state. On the other hand, carbon 

dioxide is generated by an aerobic source present near the base of the vadose zone. The 

carbon dioxide migrates upward toward the ground surface at a steady rate. 

A qualitative understanding of this problem is described by the following 

reasoning. Because the source is at the base, the concentration of carbon dioxide must 

decrease in the upward direction. It follows that the concentration of air must decrease in 

the downward direction and, therefore, air must diffuse downward from the surface 

toward the base of the vadose zone in response to the gradient of mole fraction. The rate 

of downward diffusion of air must be canceled by upward advection in the bulk gas; 

otherwise, the air would not be stagnant. The concentration gradient drives upward 

migration of carbon dioxide, enhanced by upward advection. The motion of the gas as a 

whole (phase motion) is the sum of the non-equimolar flux and the viscous flux. The 

non-equimolar flux is directed downward because it always occurs in the direction of 

diffusion of the constituent with the smaller molecular weight (air in the present case).  

Writing Equation 4 with air (species A) and with CO2 (species B) results in the 

following expression. 

 𝑁𝐴 + 𝑁𝐵 = 𝑁𝐷 + 𝑁𝑣  

The air is assumed to be stagnant so, NA = 0, which leads to Equation Exercise Solution 4-1. 

 𝑁𝐵 =  𝑁𝐷 + 𝑁𝑣 (Exercise Solution 4-1) 

The CO2 flux accounts for the motion of the fluid as a whole (i.e., the phase motion). It is 

comprised of a non-equimolar flux and a viscous flux. 

 Writing Equation 26 for the stagnant air component (NA = 0) and combining it 

with Equation 2 results in Equation Exercise Solution 4-2 for the viscous flux.  

 𝑁𝑣  =
𝐷𝐶 𝑑𝑥𝐴 𝑑𝑙⁄

𝑥𝐴{1 − (1 − 𝑀𝐴𝐵
0.5)𝑥𝐴}

 (Exercise Solution 4-2) 

This expression is used for the viscous flux in Equation 26, written for the carbon dioxide, 

to obtain Equation Exercise Solution 4-3. 

 𝑁𝐵 = − 
𝐷𝐶𝑑𝑥𝐵 𝑑𝑙⁄

1−(1−𝑀𝐵𝐴
0.5)𝑥𝐵

 + 
𝑥𝐵𝐷𝐶𝑑𝑥𝐴 𝑑𝑙⁄

𝑥𝐴{1−(1−𝑀𝐴𝐵
0.5)𝑥𝐴}

 (Exercise Solution 4-3) 

This result is simplified with xA + xB = 1 and 𝑀𝐵𝐴
0.5 = 𝑀𝐴𝐵

−0.5 to obtain the differential 

equation shown as Equation Exercise Solution 4-4. 

 𝑁𝐵 = 
𝐷𝐶𝑑𝑥𝐴 𝑑𝑙⁄

𝑥𝐴
= −

𝐷𝐶𝑑𝑥𝐵 𝑑𝑙⁄

1−𝑥𝐵
 (Exercise Solution 4-4) 
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The flux of carbon dioxide is constant (because the system is at steady state), so 

integration between the points z1 and z2, where the mole fractions of CO2 are xB(z1) and 

xB(z2), respectively, provides the equation we seek, Equation Exercise Solution 4-5. 

 𝑁𝐵 = 
𝐷𝐶

𝑧2−𝑧1
 𝑙𝑛 {

1−𝑥𝐵(𝑧2)

1−𝑥𝐵(𝑧1)
} (Exercise Solution 4-5) 

Equation Exercise Solution 4-4 reduces to Fick’s law when one species is present in 

trace concentrations (e.g., xB << 1). Indeed, it is common practice to employ Fick’s law for 

the estimation of flux by the so-called gradient method (e.g., Tracy, 2015; Johnson et al., 

2006; Maier and Schaak-Kirchner, 2014). Such practice is satisfactory if CO2 is present in 

only trace quantity, but masks the fact that non-equimolar and viscous fluxes significantly 

affect the transport, as demonstrated in the following computations.  

Part b) 

 Equation Exercise Solution 4-5 produces a value for NB. 

𝑁𝐵 =
(4.7 𝑥 10−6)(34.34)

1.29
 𝑙𝑛

(1−0.0013)

(1−0.0583)
 = 7.5 𝑥 10−6 moles

𝑚2 𝑠
  

With the flux of carbon dioxide known, the phase (bulk gas) flux is as follows.  

𝑁 = 𝑁𝐴 + 𝑁𝐵 = 𝑁𝐵 = 7.5 𝑥 10−6
moles

𝑚2 𝑠
 

For the conditions set out in this example (i.e., negligible pressure diffusion), the 

non-equimolar flux is given by (Exercise 2). 

𝑁𝐷 = −
(1 − 𝑀𝐵𝐴

0.5)𝐷𝐶 𝑑𝑥𝐵 𝑑𝑙⁄

1 − (1 − 𝑀𝐵𝐴
0.5)𝑥𝐵

 

This is integrated to obtain the following expression. 

𝑁𝐷 = 
𝐷𝐶

𝑧2−𝑧1
  𝑙𝑛 [

1−(1−𝑀𝐵𝐴
0.5)𝑥𝐵(𝑧2)

1−(1−𝑀𝐵𝐴
0.5)𝑥𝐵(𝑧1)

] 

This is evaluated with the data provided to obtain a value for ND. 

𝑁𝐷 = −1.7 𝑥 10−6 moles

𝑚2 𝑠
 

The viscous flux is then calculated. 

𝑁𝑣 =  𝑁𝐵 − 𝑁𝐷 = 7.5 𝑥 10−6 − (−1.7 𝑥 10−6) = 9.2 𝑥 10−6
moles

𝑚2 𝑠
 

We have the remarkable result that the viscous flux exceeds the magnitude of the total 

mole flux of CO2. Even though the viscous flux is the dominant flux, the associated 

pressure gradient can be expected to be quite small provided that the intrinsic 

permeability is sufficiently large to assure the molecular diffusion regime prevails. 

 

Return to Exercise 4  
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Exercise 5 Solution 

Start with Equation 27 for species B. 

𝑁𝑩
𝑫  = −

𝐷𝐶
𝑑𝑥𝐵
𝑑𝑙

(1 +
D

𝐷𝐵
𝐾) − (1 − 𝑀𝐵𝐴

0.5)𝑥𝐵

 

Then, because xA + xB = 1 and 𝑀𝐵𝐴
0.5 = 𝑀𝐴𝐵

−0.5, the denominator is written as follows.  

D

𝐷𝐵
𝐾 + 1 − (1 − 𝑀𝐵𝐴

0.5)𝑥𝐵 =  
D

𝐷𝐵
𝐾 + {1 − (1 − 𝑀𝐴𝐵

0.5)𝑥𝐴} 𝑀𝐴𝐵
−0.5 

With 
D

𝐷𝐵
𝐾 𝑀𝐴𝐵

0.5 =
D

𝐷𝐴
𝐾 from Equation 19, the flux of species B is shown below. 

𝑁𝐵
𝐷 = 

𝑀𝐴𝐵
0.5𝐷𝐶

𝑑𝑥𝐴
𝑑𝑙

D

𝐷𝐴
𝐾+1−(1−𝑀𝐴𝐵

0.5)𝑥𝐴

 

This combines with Equation 27 to form Graham’s law. 

𝑁𝐵
𝐷 = −(𝑀𝐴𝐵)0.5𝑁𝐴

𝐷  

Return to Exercise 5 
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11 Notation 

Subscript denoting species A A 

Subscript denoting species B B 

Klinkenberg parameter (F/L2) b 

Moles of gas per unit volume (moles/L3) C 

Moles of species i per unit volume (moles/L3) Ci 

Effective molecular diffusion coefficient (L2/T) D 

Molecular diffusion coefficient (L2/T) Dm 

Knudsen diffusion coefficient for species i (L2/T) 𝐷𝑖
𝐾 

Equimolar flux of species i (moles/L2T) Ji 

Intrinsic permeability (L2) k 

Permeability to gas or effective gas permeability (L2) kg 

Apparent gas permeability (L2) kga 

Knudsen number Kn 

Coordinate tangent to path of motion (L) l 

Ratio MA/MB MAB 

Ratio MB/MA MBA 

Molecular weight of specie i Mi 

Molecular mass of specie i mi 

Porosity n 

Number of molecules per unit volume (L-3) ñ 

Mole flux of species 𝑖 (moles/L2T)  Ni 

Mole flux of species 𝑖 due to diffusion (moles/L2T) 𝑁𝑖
𝐷 

Diffusive flux for the gas as a whole (non-equimolar flux) (moles/L2T) ND 

Mole flux of gas due to viscous flow (moles/L2T)  Nv 

Mole flux of species 𝑖 due to advection in viscous flow (moles/L2T) 𝑁𝑖
𝑣 

Pressure (F/L2) p 

Mean pressure (F/L2) 𝑝̅ 

Partial pressure of species 𝑖 pi 

Ideal gas law constant (FL)/(moles temperature)  R 

Absolute temperature T 

Volume flux (L/T) v 

Mean speed of species 𝑖 molecules (L/T) 𝑣̅𝑖 

Mole fraction of species 𝑖 xi 

Vertical coordinate (L) z 

Volume of gas per unit bulk volume θg 

Mean free path length (L) λ 

Characteristic pore dimension (L) λp 
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Molecular diameter (L) σ 

Dynamic viscosity (FT/L2) μ 

Tortuosity τ 
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Please consider signing up to the GW-Project mailing list and stay informed about new 

book releases, events, and ways to participate in the GW-Project. When you sign up to 

our email list it helps us build a global groundwater community. Sign up. 

 

 

 

 

 

 

 

 

 

 

https://gw-project.org/email-signup/
http://www.gw-project.org/
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Modifications from Original Release 

 
page iii, added recommended citation 

 

page 8, Ni
v was changed to italic font, 𝑁𝑖

𝑣 

 
page 8, equation 3 was separated into two equations using a comma, one for 𝑁𝑖 = 𝑁𝑖

𝐷 +

𝑁𝒊
𝑣 and another for 𝑖 = 𝐴, 𝐵 

 

page 9, equation 6 was separated into two equations using a comma, on for 𝐽𝑖 = 𝑁𝑖 − 𝑥𝑖𝑁 

and another for 𝑖 = 𝐴, 𝐵 

 

page 9, last line, NA
D was changed to italic font, 𝑁𝐴

𝐷 

 

page 13, equation 13, pressure variable P was changed to p 

 

page 13, paragraph after equation 13.  added the word “to” in “for species A due to 

intermolecular collisions” 

 

page 13, third paragraph, pressure variable P was changed to p 

 

page 14, equation 14, pressure variable P was changed to p 

 

page 15, negative sign was added to left hand side of equation 15 

 

page 15, equation 15, pressure variable P was changed to p 

 

page 15, first paragraph of section 4.4, Graham's Law, added a comma between 𝑁𝑖
𝐷𝑚𝑖𝑣̅𝑖 

and 𝑖 = 𝐴, 𝐵 

 

page 16, last paragraph, a period was added to Kn = λ/λp. The 

 

page 17, second paragraph, a period was added to 𝐷𝑖
𝐾 ≫ 𝐷). 

 

page 18, second line after "5 Flux Equations", pressure variable P was changed to p 

 

page 19, paragraph after equation 24, 3.0 was changed to 3 

 

page 20, superscript K of the Knudsen diffusion coefficient was changed from lower case 

to upper case in five locations 

 

page 21, equation 32, pressure variable P was changed to p 
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page 23, equation 38, K of the Knudsen diffusion coefficient was changed from lower case 

to upper case 

 

page 23, last paragraph, pressure variable P was changed to p 

 

page 24, equation 37, pressure variable P was changed to p 
 

page 30, added "a)" to the paragraph "Refer to Figure Exercise 4-1 and derive and 

equation..." and added "b)" to the paragraph "Compute the mole flux..." to correspond to 

parts a and b in the exercise solution 

 

page 34, middle portion of page, pressure variable P was changed to p 
 

page 38, 𝑁𝑉 was changed to 𝑁𝑣 

 

page 40, corrected erroneous text after "Part b)" and before “Exercise Solution 4-5“ 

 

page 41, superscript K of the Knudsen diffusion coefficient was changed from lower case 

to upper case in six locations 
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