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PREFACE TO THIRD EDITION

The primary objective of this text is the presentation of basic principles
of the mechanics of two-phase fluid systems in soils and porous rocks. It is
not designed as a reference book or as a thorough review of the literature.
The scope of the material presented is limited to what can be covered in a
one-semester course.

Since publication of the first edition in 1977, pollution of groundwater
aquifers by petroleum fluids and other non-aqueous liquids, such as
chlorinated hydrocarbons, has become a major concern of investigators both
nationally and internationally. Material presented in this text provides
necessary background for students interested in the analysis of such
problems.

Changes appearing in the third edition are made with the objective of
providing a clearer presentation of basic principles. Major changes appear in
Chapters 4, 5, and 6, which have been rewritten to provide new material and
a more rigorous treatment of the theory for flow of two immiscible fluids.

An effort is made to make the subject of similarity understandable to
students, a majority of whom have previously been exposed only briefly to
dimensional analysis. The analysis presented in Chapter VI derives criteria
of similarity from equations governing simultaneous flow of two immiscible
fluids. This procedure identifies similarity requirements more directly and
in a more useful form than is possible from a dimensional analysis
considering only the variables involved in two-phase flow.

Thanks are due Professor Jacob H. Dane of Auburn University for
reviewing the revised manuscript and providing significant suggestions that
have been included in the third edition. Thanks are also due Professor David
B. McWhorter who has reviewed the manuscript and contributed the
material in Section 5.3 dealing with linear imbibition with nonwetting phase
resistance.

August 1994 Arthur T. Corey
Fort Collins, Colorado Professor Emeritus
U.S.A. Colorado State University
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PREFACE TO FIRST EDITION

This text is concerned primarily with the mechanics of two-phase fluid
systems in soils and porous rocks. Applications relating to infiltration,
subsurface drainage and production of oil and gas from petroleum reservoirs
are included. Each of these applications involves the replacement of one
fluid by another, for example, water by air or the reverse and, consequently,
are beyond the scope of most texts dealing with groundwater hydrology.
Replacement processes, however, are relevant to the overall analysis of
groundwater hydrology because they are involved in the interchange
between groundwater and water in the atmosphere through the surface
mantle. Therefore, the material presented should be of interest to students of
hydrology as well as to students of soil science and petroleum reservoir
engineering.

The fields of possible applications are extremely diverse. Although the
primary sources for material presented in the text are journals of the
petroleum industry and soil science, contributions have come from the
literature of chemical, agricultural and civil engineers and also from
biologists, physicists, applied mathematicians and people working in
various industries. An important objective of this text is to prepare students
to read literature dealing with replacement processes in porous media
regardless of the origin of the literature.

It has often happened in the past that scientists in particular fields have
ignored the literature generated by others, perhaps because of the
inconvenience of digesting unfamiliar notations and somewhat different
viewpoints or because of a lack of awareness of the existence of literature
on the subject in unfamiliar journals. This text attempts to provide an insight
into the relationship among the various viewpoints and an awareness of the
extensive literature and broad application for the material presented.

Although reference is made to material from diverse sources, the text
does not provide an exhaustive literature review. In the first three chapters
particularly, where the emphasis is upon the presentation of basic concepts,
little effort is made to present the historical development of the concepts.
The motivation for this approach is the observation that students are often
distracted by excessive references. In the last three chapters, where concepts
are presented which are still undergoing research and change, the sources
for the material are given.

The text does not present the broad subject of transport in porous media
in all its aspects. The phenomena considered are those that can be analyzed
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from the viewpoint of traditional fluid mechanics, that is, by assuming that
each of the two fluid phases constitutes a continuum. The assumptions are
made that both fluid phases are Newtonian viscous fluids, that they undergo
negligible compression or expansion, and that the processes considered are
not affected significantly by temperature variations, chemical reactions, or
changes of phase. Consideration is not given to processes taking place on a
molecular scale. For example, diffusion involving molecular mixing in
response to a concentration gradient is not treated. The analysis is based
upon the statics and dynamics of fluid particles as the term “particle” is used
in fluid mechanics. Consideration is given also to properties pertaining to
macroscopic elements of the porous matrix which include solids as well as
fluids. In this sense, the subject is treated from both a “microscopic” and a
“macroscopic” point of view.

Because of the restrictions upon the material presented, the text is
expected to be useful mainly for students in programs that provide other
courses relevant to transport in porous media including groundwater
hydrology, soil physics and courses treating potential flow theory, the
solution of boundary value problems, etc. For students with an appropriate
background, it is expected that the material presented can be covered in a
one-semester course.

The text is designed primarily for students having a background in
elementary fluid mechanics and applied mathematics. Equations are written
using the Einstein summation convention which is explained where it is
introduced.

Much of the material used in the text is taken from courses taught by
the author at Colorado State University during the years 1956 through 1976.
The research and ideas of many former graduate students at this University
are incorporated in the material presented. The encouragement of the
administration and colleagues at the University in the preparation of the text
is appreciated. Thanks are due Drs. S. C. Jones of the Marathon Oil
Company and E. E. Miller of the University of Wisconsin whose
suggestions are incorporated in Chapters 5 and 6 respectively, and P. J.
Shuler of the University of Colorado who has reviewed the entire text and
made many useful suggestions.

Thanks are also due the author's wife, Vera, for final editing of the
entire text and Mrs. Betty D. Hutcheson for typing the manuscript.

January, 1977 Arthur T. Corey
Professor of Agricultural Engineering

Colorado State University, Fort Collins, Colorado U.S.A.
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Chapter 1

PROPERTIES  OF  POROUS  MEDIA  AND
IMMISCIBLE  FLUIDS

1.1. POROUS MEDIA

In its most general sense, the term "porous" could be applied to all
matter, because all matter contains non-solid space.  However, for the
purpose of this text, additional restrictions are placed upon matter which is
considered porous.  These are:

(1) Non-solid space within the solid matrix is interconnected.

(2) The smallest dimension of the non-solid space must be large
enough to contain fluid particles; that is, it must be large compared
to the mean-free path of fluid molecules.

(3) Dimensions of the non-solid space must be small enough so that
when interfaces between two fluids occur within the non-solid
space, the orientation of interfaces is controlled largely by
interfacial forces.

The first restriction eliminates consideration of a solid having only
isolated pockets of non-solid space.  It also eliminates consideration of a
bundle of capillary tubes which are not cross-connected.  A single capillary
tube might be regarded as a porous medium, but not a bundle.  The second
restriction eliminates consideration of molecular transport through solids
with non-solid spaces of such small dimensions that true convection cannot
occur and fluid mechanics cannot be applied.  The third restriction
eliminates consideration of a network of pipes.

As an explanation of the latter point, consider the distribution of a
mixture of water and air in a pipe compared to the distribution in a capillary
tube, as illustrated in Figure 1.1.
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pipe

air water
capillary tube

Figure 1.1. Orientation of interface in pipe as compared to the
orientation in a capillary tube.

1.2. TYPES AND OCCURRENCE

Primary concern in this text is with flow in earth materials, e.g., soils and
porous rocks.  Most soils and porous rocks consist of porous materials that
are granular in nature.  That is, they are composed of relatively solid grains
with non-solid space enclosed. The non-solid space is called pore space.
Grains are sometimes cemented at points of contact with a variety of
cementing agents and are said to be consolidated. A sandstone is an example
of a consolidated porous medium.  In other cases the grains are not
cemented at points of contact and such materials are said to be
unconsolidated.  Most soils and aquifers are unconsolidated.

Another type of porous rock consists of non-solid space created by
evolution of gases during crystallization and another by subsequent solution
of soluble constituents in water.  Examples of the latter are vugular
limestones and dolomites.  Pore space in such rocks consists of channels
called vugs formed by solution.  Not all porous limestones are vugular.
Some consist of cemented fragments of more or less solid limestone.  The
latter are called intergranular limestones or intergranular dolomites.

Other types of porous material important in various fields include wood,
living plant and animal tissue, textiles, building materials, filter materials
and others.

1.3. CHARACTERIZATION OF PORE SPACE

Hydraulic behavior of fluids in porous media depends to a large degree
upon the geometry of the non-solid space.  In the case of granular material,
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geometry is influenced by the size and shape of individual grains and how
they are cemented together.

Some granular media are said to possess structure.  This implies that
individual grains are cemented together to form porous aggregates that in
turn enclose additional pore space.  Pore space enclosed within individual
grains is called primary pore space, and that enclosed between aggregates is
called secondary pore space.  A granular medium with structure contains a
larger total volume of pore space in relation to its mass than one which does
not possess structure.

Important characteristics of porous materials in relation to hydraulic
behavior are described below.

1.3.1. Porosity

The average porosity of a sample of porous medium is defined as the
ratio of interconnected pore volume Vp to the total volume Vt of the sample.
The sample volume includes solid as well as non-solid space. In some
l i teratu re, average porosity may be called simply porosity and designated
by φ.

Sometimes, however, φ refers to a property which is assumed to apply to
a point and varies in space. In this case, φ is defined as the ratio Vp/Vm in
which Vp is the volume of pore space enclosed in Vm, a small volume of
porous medium containing the point under consideration.  To serve as a
reference volume for this definition, Vm must be small compared to the
entire system but large compared to individual solid grains.  It must be
sufficiently large that the ratio Vp/Vm does not change abruptly when a
slightly larger reference element is considered, unless the larger element
encompasses a boundary between different types of media.

In some analyses, φ is treated as if the ratio Vp/Vm is equal to the
derivative of Vp with respect to Vm.  Clearly an actual derivative is equal to
either 0 or 1 depending upon whether the point under consideration is
located within a solid grain or within the pore space, but this is not what is
meant by φ.  Consequently, the interpretation of φ as the derivative of Vp
with respect to Vm requires a special definition of the derivative as the limit
of Vp/Vm as Vm approaches a critical size somewhat larger than that at
which the ratio Vp/Vm undergoes abrupt changes as Vm changes.  Abrupt
changes in the ratio occur, for example, if Vm is of a size of the same order
of magnitude as that of individual grains.
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Porosity at a point, therefore, is an abstraction that cannot be measured
experimentally.  Only the average porosity of a sample of rock or soil can be
measured.  This may be accomplished in one of several ways, some of
which have been described by Collins (1961). Some of the methods
determine the volume of liquid required to fill the pore space.  Others
determine the volume of the solid and this is subtracted from the total
volume to obtain the pore volume.  Still others utilize Boyle's law to
compute the pore volume after allowing gas in the pores to expand.  Factors
affecting porosity include:

(1) Structure - Media with structure have larger porosities than media
without structure.

(2) Shape of grains - A medium consisting of flat platelets can be
packed so that the porosity is much smaller than for a collection of
spheres.  However, it would be possible to stack the platelets so that
the porosity would be much greater than for spheres.

(3) Grain-size distribution - A medium consisting of spheres of
varying sizes normally has a smaller porosity than one consisting of
spheres of a single size.  The smaller spheres may fit into spaces
between larger spheres, thus reducing the porosity.

(4) Mixing - A medium consisting of two different sizes of spheres, for
example, with the two sizes segregated into different regions has
the same porosity as a single-size medium.  If the two sizes are
mixed, the porosity is reduced.

(5) Packing - The way individual grains are arranged can be influenced
by mechanical conditions at the time of packing, for example,
whether the particles settled out of water or were deposited by
wind, or were deposited by some other geological process.
Laboratory samples can be affected in this regard by the mechanical
manipulation used in packing.  The effect can be visualized by
considering a stack of cards with the non-solid space enclosed when
they are in a usual deck as compared to the space enclosed when
they were arranged in a cubicle pattern.

(6) Cementation - The volume of cementing material, which may have
precipitated from solution after the particles were deposited,
reduces the porosity.  Consequently, consolidated sandstones
typically have smaller porosities than unconsolidated sand deposits.
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Approximate porosities that could be expected in soils and porous rocks
under various conditions include:

Consolidated sandstones 0.10 - 0.30

Uniform spheres packed to theoretical
  minimum porosity 0.26

Uniform spheres with normal packing 0.35

Unconsolidated sands with normal packing 0.39 - 0.41

Soils with structure 0.45 - 0.55

1.3.2. Specific Surface

The ratio of internal solid surface area to the total volume is called
specific surface and is designated by s.  In some texts the ratio of surface
area to the mass of solid matrix is called specific surface.  Specific surface
may also be regarded as existing at a point, employing a concept analogous
to that used for porosity.

The ratio of internal solid surface area to the total volume of a small
element of the medium is defined as the specific surface of a point contained
in the element.  The volume element to be considered must be small relative
to the volume of the system being analyzed and large enough that a slight
increase in the volume would not produce a significant change in the ratio
evaluated.  In contrast to porosity, which is dimensionless, specific surface
has the dimension of L-1.

As in the case for porosity, specific surface is not something that can be
determined experimentally at a point.  A method of determining specific
surface for a porous medium sample has been described by Bower and
Goertzen (1959).  With their method, a dry sample is allowed to adsorb
ethylene glycol molecules from a saturated solution until a monolayer has
formed on the solid surface. From the gain in weight of the sample produced
by the monolayer, the surface area of the solid is computed.  A method of
determining specific surface by the adsorption of nitrogen gas has been
described by Donaldson et al. (1975).

In the case of granular material consisting of grains of relatively uniform
size, specific surface may be estimated from hydraulic measurements which
are described in Chapter 3.
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Specific surface is affected by the size and shape of individual grains,
and to a lesser extent by structure.  The smaller and flatter the particles, the
greater the specific surface.  Clay (which belongs to a class of minerals
known as hydrous alumina silicates and consists of tiny plate-like crystals)
has an enormous specific surface compared to other earth materials.
Consequently, by far the most important factor (in determining the specific
surface of earth materials) is the amount and types of clay in the medium.

Three important types of clay are recognized.  These differ somewhat in
chemical composition and there are many sub-types differing in respect to
crystalline form.  The three main types are: kaolinite, montmorillonite, and
illite.  Of the three, montmorillonite has the largest specific surface, illite the
next largest and kaolinite the smallest.  Expressed as square meters per
gram, typical values are:

montmorillonite 800

illite 175

kaolinite 45

1.3.3. Pore Size

An average pore size –d for a porous medium is defined as the ratio φ / s.
The use of the term "average", in this case, does not mean that an entire
sample of porous medium is considered.  In fact –d may be conceptualized,
but not measured, as a property applicable at a point since both φ and s may
be applicable at a point.  When the reference volume used to define the
average pore size is of the order of individual grain sizes it is designated
here simply as d and may vary greatly from point to point.

Pore size has the dimension of length and is physically analogous to
hydraulic radius as the latter term is used in hydraulics.  To visualize this
analogy, consider a section of a capillary tube, and note that the cross-
sectional area of the tube divided by its internal perimeter is equal to the
ratio of its volume to its internal solid surface, provided the cross-sectional
area is uniform.  If the cross-sectional area is not uniform, the ratio of
volume to surface area gives the average hydraulic radius of the section.

Pore size is associated with grain size and grain-size distribution.  The
smaller the grains the smaller is the pore size. However, materials with
structure may have some large pore sizes associated with the secondary pore
space, even though the primary pore space is characterized by a small pore
size.
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1.3.4. Pore-size Distribution

Distribution of pore sizes is a concept applicable to d, but not to –d.  The
fraction of pore space represented by various ranges of d (within a volume
element) has an effect of equal importance to the average magnitude of d.
The distribution of d cannot be measured directly, but there is a way of
defining and measuring an index of pore-size distribution.  This is described
in Chapter 2 where the concept of pore-size distribution and its effect on
fluid flow is discussed in detail.

To some extent pore-size distribution is related to grain-size distribution.
A wider distribution of grain sizes result in a wider distribution of pore
sizes, other things being equal.  Thorough mixing, however, may produce a
relatively uniform pore size even with a wide distribution of grain sizes.  A
wide range of pore sizes is obtained in granular material only if it possesses
structure.

1.3.5. Stability and Other Characteristics

The degree to which the characteristics described above remain constant
in the presence of fluids (and under mechanical forces) is called stability.
Both mechanical and chemical stability are important characteristics of
porous media.

By far the most important stability factor for earth materials is the effect
on pore-size distribution produced by the sensitivity of clay crystals to
water.  Clay crystals are usually stacked together like cards in a deck, the
individual plates being bound together tightly in some cases and less tightly
in others.  The effect of water is to spread the plates, a process called clay
swelling or dispersion.  The opposite process, shrinking, results from
flocculation of the clay crystals.

When clay is dispersed, larger pore sizes are eliminated and the range of
the pore-size distribution is reduced.  This has an enormous effect on the
hydraulic properties of the medium which is explained in Chapter 3.  Of the
three types of clay, montmorillonite is the most sensitive to water solutions,
kaolinite is least sensitive, and illite is intermediate.  The order of sensitivity
parallels that for the specific surface of the three clay types.

Water has less tendency to enter the space between clay plates when the
solution is highly concentrated with electrolytes. Furthermore, certain ions
inhibit swelling and dispersion much more than others.  There is a tendency
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for ions of highest positive valence to be most effective. Thus, Al+++ is more
effective than Ca++ and Ca++ is more effective than Na+ or H+.  Potassium,
K+, is an exception in that because of its particular ionic size, it inhibits
swelling more than other monovalent ions.

In general, earth materials (rocks or soils) are more stable in the presence
of hydrocarbon liquids than in the presence of water, especially if they
contain significant quantities of clay or organic matter.  The reason is that
hydrocarbons have much less tendency to produce clay swelling.  This is
another reason why oils are often used in laboratories for flow experiments.

Mechanical manipulation of unconsolidated materials, especially when
wet, also has an effect on the stability of unconsolidated media.  The
tendency is for mechanical manipulation to break down aggregates and
reduce the size of larger pores.  The shape of pore space and the degree to
which it is interconnected are also important.  Homogeneity and isotropy are
important properties, but these are best characterized in respect to flow
behavior and are defined in that context in Chapter 3.

1.4. FLUIDS IN POROUS MEDIA

Fluids belong to a class of matter the boundaries of which depend upon
the geometry of the solid within which it is enclosed. This dependence
results from the inability of fluids to support shearing stresses without
continuous deformation.

The magnitude of shear stresses in fluids is a function of the rate of
deformation of fluid elements.  In some fluids, the magnitude of shear stress
is proportional to the rate of deformation.  Such fluids are called Newtonian
viscous fluids and this text deals almost exclusively with these.  Air, water
and most petroleum fluids can usually be regarded as Newtonian without
serious error. Although this text is restricted to a consideration of Newtonian
viscous fluids, mixtures of fluids such as air and water, gas and oil or water
and oil are considered.

1.4.1. Continuum

All fluids consist of particles such as molecules or ions, but this aspect of
fluids is ignored in fluid mechanics by an artifice known as the continuum
concept.  Neither the properties nor motion of individual molecules are
described by fluid mechanics.
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The word "continuum" is related to the mathematical concept of
continuous functions.  A function f(x) is said to be continuous at a point
x = xo if lim f(x) = f(xo) regardless of how x approaches xo. The foregoing
analytical definition of continuity is a formulation in mathematical language
of the intuitive concept of continuity; that is, if the function f(x) is
represented by a graph, and if it is continuous, the graph will have no breaks
in the interval within which the function is continuous.

For fluid mechanics, the pertinent functions are the relationships between
the space coordinates and the variables: pressure, velocity, and density.  If
the fluid is to be regarded as a continuum, it must be possible to define each
variable (at every point within the region under consideration) as a property
of a very small element containing the point.  In addition, it is assumed that
derivatives with respect to the space coordinates (at least the first and second
derivatives) exist at every point.  With some exceptions, fluid mechanics
also assumes that pressure and velocity are differentiable to any order.  In
other words, it is usually assumed that the latter variables are analytic as
well as continuous functions of the space coordinates.

One physical implication is that, theoretically, the fluid volume can be
divided indefinitely without changing its basic character.  This is obviously
not realistic because all fluids consist of molecules between which there is
empty space.  The definitions of density, velocity, and pressure clearly are
meaningless in respect to volume elements located in spaces between
molecules.

The unrealistic assumption upon which fluid mechanics (a branch of
continuum mechanics) is based, does not lead, necessarily, to significant
errors in its application.  For most cases in which fluid mechanics is applied,
the assumption that the fluid is a continuum is entirely adequate because the
dimensions of the fluid systems usually considered are large compared to the
average distance between individual fluid molecules.

However, it is not always possible to define pressure, density and
velocity as properties of a small volume containing a point in porous media,
without the reference volume approaching the cube of the pore size.  When
the fluid under consideration is gas at atmospheric pressure, for example, the
use of a continuum analysis leads to large errors for "fine-grained" media.

The continuum assumption is useful because it permits a description of
the physical behavior with differential expressions. Without such an
assumption, the analyses ordinarily performed by the methods of fluid
mechanics becomes very cumbersome. However, the continuum assumption
(in the sense it is used in fluid mechanics) cannot be applied to immiscible
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fluids separated by interfaces across which pressure discontinuities exist.  In
the latter case it is necessary to consider each individual fluid phase as a
separate continuum.

1.4.2. Fluid Elements

In fluid mechanics the physical variables (including velocity) are
specified at points within the fluid system.  The variables are defined in
respect to small volumes of fluid containing the points under consideration.
A reference volume must be small compared to the pore size, but it must not
be smaller than a limiting size which can be understood by referring to
Figure 1.2.

Volume of Element

Minimum volume for
reference element

Density
of

element

D
en

si
ty

Figure 1.2. Density as a function of element volume.

Figure 1.2 shows a plot of hypothetical data that might be obtained by
determining the density of volume elements of a fluid in the form of small
cubes.  If the dimensions of the elements were of the same order as the mean
free path of the fluid molecules (or smaller), the density would vary
erratically and be greatly different from one instant to another.  The density
variation would result from the random motion of the molecules and would
depend on the number of molecules that happened to be in a particular
volume element at a given instant.  As the sample size is increased, the
variation would decrease.  At some critical dimension, large compared to the
mean free path, the variation is negligible and a small increase in size of the
element does not change the measured density significantly.
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An element at least as large as the critical size, but small compared to the
fluid system as a whole, is sometimes called a fluid particle.  The critical
size is much larger for gases than for liquids.  No practical problems
involving liquids are likely to be encountered for which the size limitation of
a fluid particle invalidates a continuum assumption.  For gases, on the other
hand, many engineering problems can not be analyzed using the continuum
assumption without introducing significant error.  An example of the latter is
the flow of gas in fine-grained porous media at atmospheric pressure.

1.4.3. Two-phase Fluid Systems

When two or more fluids exist within pore space, they are separated by
boundaries (called interfaces) across which discontinuities in density and
pressure  exist.  The existence of interfaces is characteristic of immiscible
fluids.  In the case of miscible fluids, there is no distinct boundary, at least
on a microscopic scale.  An example of the latter situation is a groundwater
aquifer into which salt water has intruded.  On a macroscopic scale it is
possible to find distinct regions of salt and fresh water, but on a microscopic
scale there is no interface as this term is used here.

An interface is made possible by the existence of forces (called
interfacial forces) that act only at boundaries between separate phases and
are tangential to the boundaries.  When boundaries are curved, as they are in
porous media, the tangential interfacial force produces pressure
discontinuities at the interfaces.

A phase may consist of a number of chemical constituents, but each
phase is assumed to be homogeneous within itself and to constitute a
physical continuum to which the mathematical methods of fluid mechanics
can be applied.  Fluid mechanics (in the sense this term is used here) cannot
be applied to a mixture of phases.

1.4.4. Liquid Content

In the case of a two-phase system such as a liquid and gas, the volume
fraction of the total pore volume (of a medium element) occupied by liquid
is called saturation and is designated by the symbol S.  Saturation can be
conceptualized (but not measured) as a point property varying in space in a
manner entirely analogous to porosity.  Saturation should not be confused
with the term "saturated" which means that only a liquid phase exists, or in
other words, S is equal to unity.
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Another way of expressing liquid content is as a fraction of the volume
of porous medium in which it is contained.  The latter variable is called
volumetric water content by soil physicists and is often designated as θ.  A
third method is as a fraction W of the dry weight of porous solid in which
the liquid is contained. Designation of liquid content by W is found most
often in the literature of agronomists and soils engineers.

The relationship among the three expressions for liquid content is

θθ φφ γγ φφ== == −−(( ))S Ws 1 , 1.1

γ s  being the specific gravity of the solid.  The expression for liquid content
used depends upon the application under consideration. In this text, each of
them is used where appropriate.

Petroleum scientists frequently must consider systems in which three
fluid phases, such as, brine, oil and gas, are contained in the pore space of
porous rocks.  In their literature, the symbols Sw, So and Sg may designate
saturations of brine, oil and gas, respectively, each representing a fraction of
the total pore volume of the reference element.

Wherever two or more fluid phases occupy a porous medium, one of the
fluids is adsorbed on the solid surfaces more strongly than the other fluid or
fluids.  The fluid which is most strongly adsorbed (and which displaces the
others from the adsorbed film) is called the wetting fluid or wetting phase.
The displaced fluid is the nonwetting phase.  When referring to the wetting
phase, the fluid properties such as pressure or velocity are designated as pw
and uw, etc.  Similarly, the subscript nw designates the properties of the
nonwetting phase.

In most cases, liquids are adsorbed more strongly than gases and as a
consequence, in a two-phase system involving a liquid and gas, the liquid
usually is the wetting phase.  An exception is the case of a mercury-gas
system for which mercury is the nonwetting phase. If the term "saturation" is
used without adjectives to describe fluid content, it usually refers to a
volume fraction of the wetting phase in a two-phase system.  The content of
other phases is usually referred to as "gas saturation" or "nonwetting phase
saturation," etc.

1.5. CAPILLARITY

At boundaries between phases, forces of cohesion between fluid
molecules are not, within themselves, balanced.  There is a force component
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from unbalanced cohesion which acts tangentially to the boundary and
which is called interfacial force.  Discussions of the origin of interfacial
force have been presented by Adam (1968) and the Encyclopedia Britannica
(1964), among others.

Interfacial force acts in a direction tending to contract the interfacial
area, in a manner somewhat analogous to tension in a stretched membrane.
For this reason, it is often called surface tension, the dimensions being force
per unit length or energy per unit area.  The analogy between interfacial
force and the tension in a stretched membrane is not complete, however,
because in the case of the former, the force is unrelated to deformation.
Interfacial force is a function only of the physical and chemical properties
and state of the two fluid phases in contact.

The failure, in some respects, of the analogy between interfacial force
and tension in a membrane has led some authors to reject the concept of
interfacial force as a physical reality.  They prefer to speak only of
interfacial energy.  This view does not seem to be tenable, however,
considering the fact that energy can only be defined in terms of force fields,
and if there is no unique force at points in the interface, there could be no
energy uniquely associated with the interface.

The resultant of interfacial force acting on a curved interface is balanced,
at equilibrium, by a difference in pressure at points of contact between fluid
phases.  Without interfacial force, separate phases would not exist; that is,
distinct interfaces would not exist.  The difference in pressure, called
capillary pressure, is designated by pc and is defined by

p p pc nw w≡≡ −− , 1.2

In soils literature, pc is sometimes called suction or matric suction and
designated by ψ .  However, this symbol is more often used to indicate the
negative pressure head of water in a water-air system, assuming soil air is
everywhere at zero gauge pressure.  In the latter case, ψ  is p gc w/ ρ  and
may also be called soil water tension. Suction, capillary pressure and tension
are closely related but not identical variables.

One effect of interfacial force is a tendency to compress the nonwetting
phase relative to the wetting phase.  For example, in a water-gas system,
water tends to be preferentially adsorbed by the solid surfaces and the gas is
compressed if it is entirely surrounded by water. The gas pressure, therefore,
is higher than the water pressure at points of contact.  In a water-oil-gas
system, the gas usually is at the highest pressure, the oil at the next highest
and water at the lowest pressure when equilibrium exists.
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In a system in contact with the atmosphere, such as a soil, either the
wetting phase (water) or the nonwetting phase (air) is normally at
atmospheric pressure. If the soil is sufficiently desaturated for an
interconnected air phase to exist, the air is at atmospheric pressure and the
liquid is at less than atmospheric pressure.  This is the reason soil scientists
refer to water as being under "suction" or "tension."  On the other hand, if
the soil is in contact with water at atmospheric pressure, that is, if it is
flooded, some air may be entrapped within the pore space below the level
where water is at atmospheric pressure, and this air is at a pressure greater
than atmospheric.

1.5.1. Factors Affecting Capillary Pressure

The difference in pressure between phases occupying the pore space of a
porous medium is related to gravity, saturation, pore-size, pore-shape,
interfacial forces, the angle at which fluid-fluid interfaces contact solid
surfaces, the density difference between phases and the radii of curvature of
interfaces.  These factors are not all independent variables in respect to their
effect on capillary pressure.  There is, however, an interrelation among
them.

The way that gravity and saturation are related to capillary pressure is
discussed in Chapter 2.  The relationship among capillary pressure and the
other variables mentioned above can be visualized by considering the
following analysis in reference to Figures 1.3, 1.4 and 1.5.

α

σgs

σlg

σls

Figure 1.3.   Liquid-air interface across a capillary tube.
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Figure 1.4. Relationship between capillary pressure and curvature at
a point.

r1

r1 r2

Figure 1.5.   Interface across space between parallel flat plates.
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First, a balance of forces is considered on a free body consisting only of
the line of contact of the fluid-fluid interface with the solid (see Figure 1.3).
There are three interfacial forces σσ acting on the line of contact.  These are:

(1) liquid-solid  σσls ,

(2) gas-solid σσgs ,

(3) liquid-gas 
  
σσlg .

Surface forces act at all points along the line of contact in a direction
indicated in Figure 1.3.  However, gravity and pressure do not act on this
free body because it has neither mass nor area. Also, the component of σlg
normal to the solid surface is balanced by the normal force of the solid on
the line of contact.  The balance of forces, therefore, is given by

  
2 0ππ σσ σσ σσ ααrt gs s g−− −− (( ))[[ ]] ==l l cos 1.3

where rt is the radius of the tube and α  is the contact angle of the fluid-fluid
interface with the solid.

Equation 1.3 is useful to show, in a qualitative way only, how the contact
angle is related to the three interfacial forces.  The contact angle cannot
actually be computed from Equation 1.3 because σσgs  and   σσls  cannot be
measured.  However, the contact angle must adjust so that the component of

  
σσlg  (in the direction of the axis of the tube) is equal to the difference

  
σσ σσgs s−− l .

Next, a balance of forces is considered on a free body consisting of the
interface as a whole.  In this case, the pressure difference across the interface
must be considered, but gravity does not, because the interface has area but
no mass.  The unmeasurable interfacial forces, can be eliminated from
consideration by considering (as a free body) that part of the interface which
is not in direct contact with the solid.  The balance of forces is further
simplified by considering only the components of the pressure forces normal
to a plane passing through the line of contact of the interface with the solid.

With these simplifications, the balance of forces is given by

  
p r rc t g tππ σσ αα ππ2 2(( )) == (( ))l cos

or
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where –pc is the average capillary pressure over the interface.

Equation 1.4 shows that capillary pressure varies inversely with the
radius of the tube across which an interface is positioned and directly with
the cosine of the angle of contact.   However, capillary pressure varies from
point to point over the interface because of gravity. This variation is
associated with a corresponding variation in curvature of the interface with
elevation over the interface.

The dependence of capillary pressure on curvature is analyzed with
reference to Figure 1.4 which represents a small segment of a curved
interface containing the point p. The point is at the center of an
approximately square segment.  Edges of the segment are each of length  l.
The angles θ1 and θ2  are those subtended by an arc length of l/2 in
orthogonal planes normal to the segment at p, with radii of curvature r1 and
r2 respectively.

For small θ,

  
sinθθ1

12
≈≈ ⋅⋅

l

r

Balancing the force components, pressure and interfacial, normal to the
segment at p results in

  pcl l2
1 22≈≈ ++(( ))σσ θθ θθsin sin

or
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Equation 1.5 is called the Laplace equation of capillarity.  It evaluates the
pressure difference across the interface at a point as a function of surface
tension and curvature at the point only.  The contact angle and pore size are
not involved explicitly.

It is informative to consider the relationship between Equation 1.4 and
1.5 by applying Equation 1.5 to an interface across a tube as illustrated in
Figure 1.3.  For a very small tube such that fluid weight has negligible
effect, capillary pressure is constant over the interface consisting of a
segment of a sphere.  For example, with a zero contact angle, the interface is
a hemisphere with radii of curvature equal to the radius of the tube.  Since
for this case radii of curvature are equal, Equation 1.5 reduces to the same
form as Equation 1.4.  If the angle of contact is not zero, equating Equation
1.4 to Equation 1.5 shows that the radius of curvature of the interface is the
radius of the tube divided by cosα .  However, this result assumes the
absence of a gravitational effect.

The quantity 1 11 2/ /r r+( ) is sometimes referred to as the mean
curvature of an interface at a point.  Mean curvature is affected by pore
shape as well as pore size.  The effect of shape can be visualized by
considering an interface across a pore space with a shape that is different
from that of the tube illustrated in Figure 1.3.  In the case under
consideration, shown in Figure 1.5, the interface is positioned across the
space between two flat parallel plates.

The tendency is for an interface to reach (at equilibrium) an orientation,
position and shape such that the total potential energy of the system (relative
to the force fields of gravity, interfacial energy and pressure) is a minimum.
In the case under consideration, this tendency results in an interface that is
horizontal in vertical planes parallel to the plates.  This is produced by the
dominant effect of gravity in controlling the curvature in parallel planes, the
dimension of the fluid body being large in this direction. However, in
vertical planes normal to the plates, if the spacing "b" is small,
r b1 2= ( )/ cosα .  For this case Equation 1.5 reduces to

p
bc == ⋅⋅

2σσ ααcos
1.6

If the dimension of the pore space parallel to the plates is relatively large,
say more than a few millimeters, the magnitude of capillary pressure is
unaffected by further increases in this dimension.  Capillary pressure in such
cases is controlled only by the small dimension normal to the plates.
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In the case of interfaces in pore spaces enclosed in granular porous
solids, the orientation of interfaces is such that the area of interface tends to
be a minimum consistent with the fraction of wetting or nonwetting fluid
contained in the space.

1.5.2. Factors Affecting Surface Tension

Interfacial force is determined by chemical properties of the two phases
in contact, especially chemical properties of the boundary layer of the two
phases.  It is also affected by the temperature and pressure of the two phases.

Since surface tension is sensitive primarily to the chemical properties of
boundary layers, any chemical constituent tending to accumulate
preferentially in the boundary layer, may have a large effect even though the
average concentration in the phase as a whole may be very small.  Such
agents are said to be surface active and are called surfactants.  Surface active
agents which reduce surface tension for water, for example, occur frequently
as contaminants in soils, rocks and in laboratories.  Most often they consist
of organic molecules.

The reasons why many organic molecules are surface active can be
understood by considering the following principles:

(1) The tendency of the system as a whole is to reach a condition of
minimum energy.  Other things being equal this means a minimum
surface energy.

(2) In a solution, the tendency is for molecules or ions to mix
homogeneously, but the effect of interfacial energy is to oppose this
tendency.

(3) With a mixture of constituents in a solution, surface tension is
determined primarily by the molecules actually in the surface.

(4) Molecules or ions in the surface layer are under the influence of
interfacial force.  Therefore, they possess more energy than interior
molecules.

(5) It requires energy to move molecules from the interior to the
surface.
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(6) With a mixture of constituents, the minimum surface energy is
obtained when constituents which result in a lower surface tension
have a higher concentration in the surface.

Based on the above considerations, J. Willard Gibbs (1876) derived an
equation relating change in surface tension to concentration of particular
chemical agents.  He showed that

d
dc

RT
c

c
σσ

== −−
∆∆

1.7

in which

∆c ≡ excess concentration of agent in surface layer,

c ≡ concentration of agent in bulk of liquid phase,

R ≡ gas constant,

T ≡ absolute temperature.

Equation 1.7 reflects the fact that an agent tending to concentrate in the
surface, so that ∆c  is positive, causes the surface tension to decrease with
respect to c. Therefore, an agent tending to reduce surface tension
accumulates preferentially in the surface, because by accumulating largely
in the surface, the surface tension is reduced in conformance with the
principle of minimum energy at equilibrium.

An agent tending to increase surface tension results in a smaller
concentration in the surface layer than in the remainder of the fluid in
conformance with the same principle, and ∆c  is negative.  Since only
constituents in the surface layer have a significant effect on surface tension,
the concentration c must be larger to produce a substantial effect in the latter
case.  Consequently, agents that tend to increase surface tension cannot be
called surfactants.  Most inorganic salts are in a class of chemicals that
produce a small increase in surface tension of water solutions in contact
with air.

Surfactants usually consist of relatively large molecules, often organic.
Large polar molecules that tend to orient themselves to exclude other
molecules in the surface are particularly effective in this respect.  Many such
materials consist of organic salts of inorganic ions.  An example is sodium
sulfonate. The Na+ ion tends to dissolve in a water solution leaving a
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negatively charged sulfonate group (anionic) oriented in the surface with the
negative end pointed toward the interior of the solution.  Other surfactants
are cationic, that is, the surface active part possesses a positive charge, and
some are non-ionic.

Almost any organic contaminant reduces the surface tension of pure
water.  In fact, the surface tension of pure water is very unstable.  This is
because the surface tension of water is greater than the surface tension of
most common liquids.  Consequently, the value of surface tension for water
in soils and porous rocks is less than the surface tension specified in
handbooks for water at a particular temperature. Water in naturally
occurring earth materials often has a value of σ αcos  of about 60 dyne/cm,
whereas for pure water in contact with air at 20˚C the value is about
72 dynes/cm. In contrast, most oils have a smaller surface tension so they
are not so easily affected by common contaminants.  For this reason, oils are
often used in place of water in laboratory studies.

Temperature also affects surface tension.  The variation of surface
tension of water in contact with air at room temperatures is small, being
about 75 dynes/cm at 5˚C and 72 dynes/cm at 25˚C.  At higher temperatures,
the change of surface tension in respect to temperature increases, and at
100˚C, the surface tension of water-air is about 50 dynes/cm.  Some
representative examples of other approximate surface tensions in dynes/cm
at 20˚C include:

mercury-air 470,

mercury-water 375,

water-octane 51,

ethyl alcohol-air 21.5,

water-octyl alcohol 8.5.

1.5.3. Wettability

Interfacial force also exists at solid-fluid interfaces, although it is
extremely hard to measure. The interfacial force at solid surfaces is
important, because it controls which fluid is the wetting or the nonwetting
phase.  It also determines the contact angle of the interface with the solid as
Equation 1.3 implies.  An associated property of solid surfaces is the energy
required to remove adsorbed constituents of various fluids, that is, the
strength of adhesion.
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Such properties are one aspect of what is called wettability. Another
aspect of wettability is the speed with which fluids spread over solid
surfaces.  The speed of spreading is affected by the surface tension and also
by viscosity.  Spreading speed is increased by lower surface tensions and
lower viscosities.

When water and oil are introduced at the same time into a porous
medium, the surface is first wet by the oil and later oil is replaced in the
adsorbed layer by water.  The initial wetting by oil is due to its smaller
surface tension in contact with air resulting in oil spreading faster than
water.  The reason for oil being eventually replaced by water is that water is
more strongly adsorbed.

The chemical condition of solid surfaces, particularly in respect to
adsorbed organic contaminants, is important in determining the strength of
adhesion of particular fluids and, to some extent, the speed of spreading.
Petroleum scientists frequently classify porous rocks as being either water-
wet or oil-wet, depending on the liquid preferentially adsorbed on the solid.
Given sufficient time, water replaces most oil constituents on the solid
surfaces of nearly all porous rocks.  The condition of being oil-wet is usually
a temporary situation existing in laboratory samples after they have been
dried and have a residue of adsorbed organic contaminants remaining.  Most
contaminants can be removed by heating the samples to the ignition
temperature of the contaminant.

Some adsorbed organic molecules, however, are very difficult to remove
except by burning.  Bradford sandstone in Pennsylvania is a well-known
example of rock considered to be oil-wet in its natural state.  In some cases,
porous materials may be deliberately made water-repellant by the adsorption
of agents such as silicon on their surfaces.

Agricultural, lawn, and forest soils sometimes become temporarily
water-repellant after desiccation because of the presence of organic
substances, especially bitumens produced by the metabolic processes of
certain microorganisms.  Prolonged exposure to water often restores the
normal hydrophilic character of soil.  Exposure of soil surfaces to heat, for
example from a torch, removes the bitumens faster.
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PROBLEMS AND STUDY QUESTIONS

1. By knowing the specific gravity of sand particles, usually about 2.65,
and the total volume in which a given weight of this sand is contained,
describe how the average porosity of the unconsolidated sample could
be estimated.

2. Could a similar method of estimating average porosity (as defined in
this text) be used to estimate the porosity of a volcanic rock containing
many void spaces formed from gas bubbles at the time of lava cooling?
Explain.

3. Explain why a geological formation consisting of cavernous limestone
rock might not behave as a porous medium as defined in this text.

4. Agricultural soils usually have much greater porosities than deposits of
sand on beaches.  Explain.

5. Describe the effect on the average pore size of adding a relatively small
amount of montmorillonite to a sample of beach sand.  Explain.

6. Explain why it is appropriate to apply the term "average pore-size" for
the ratio φ / s.

7. Would you expect the addition of montmorillonite to beach sand to
have any significant effect upon the pore-size distribution? Explain.

8. Would you expect average porosity of a consolidated sandstone rock
(containing a small amount of clay) to be affected to a greater or lesser
extent by clay dispersion than a pore-size distribution index?  Explain.
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9. Explain why a "fluid particle" in a gas system is necessarily larger than
a fluid particle in a water system.

10. Derive, by means of the "balance of work" principle, an equation for
the excess pressure inside a spherical air bubble surrounded by liquid.

11. Determine the pressure intensity within a soap bubble 0.01 cm in
diameter.  Assume the surface tension of the soap solution, at air
interfaces, is 40 dynes/cm.

12. Explain why the surface tension for the soap solution is 40 dynes/cm
and not about 70 dynes/cm as would be the case for pure water.

13. Contrast the trends of pressure variation during the process of
(a) blowing up a toy balloon, and (b) blowing a soap bubble. Explain.

14. In what physical way does an oil-gas two-phase system differ from a
brine-fresh water system encountered in a salt water intrusion into a
coastal aquifer?  Explain.

15. Explain how the relative strength of adhesion to a solid surface of two
fluids (mixed in a porous medium) determines which fluid phase is at
the higher pressure.

16. Why is it necessary to consider a system of two immiscible fluids as
two separate continua in the application of fluid mechanics?

17. A porous medium sample consisting of a liter of beach sand may have
either a slightly larger or a slightly smaller porosity than a liter of
uniform marbles.  Describe what factors might make the porosity of the
sand greater and what factors might make the porosity less than that of
the marbles.
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18. Agronomists often refer to water in a soil profile within the root zone
of plants as being under "tension."  Is this use of the term "tension"
analogous to the use of this term in connection with the state of stress
in a steel bar?  Explain.

19. Would you consider the term "suction" more (or less) appropriate than
"tension" to designate capillary pressure? Explain.

20. Would you expect a water-air interface or a water-oil interface to have
a smaller angle of contact?  Explain.

21. Explain the contrast in orientation of interfaces illustrated in Figure 1.1.

22. Considering the principle of minimum energy for equilibrium, would
you expect (with a very small concentration of amyl alcohol) to find all
of the alcohol molecules in the surface layer?  Explain the principle
involved in terms of thermodynamic concepts.

23. Give a possible reason why surface tension for mercury-air is greater
than for mercury-water and why both are greater than surface tension
for water-air.

24. It sometimes happens that in late summer, lawns develop dry spots that
seem hard to wet.  By poking a few holes through the turf in the dry
spots, the soil can be made to absorb water easily.  Explain.

25. Consider a cylindrical sample of porous sandstone (granular) having a
diameter of 2.54 cm and a length of 6 cm.  The sand grains have a
specific gravity of 2.65.  Before drying, the sample weight is 60 gm.
After drying, the weight is 53 gm. Assume the liquid contained in the
sample before drying was entirely water.  Estimate φ, S, θ and W
before drying.
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26. In reference to the sample described in problem 25, describe a method
of checking the estimated porosity using an independent procedure.

27. Given that the solid grains contained in the sample of porous sandstone
of problems 25 and 26 have a specific surface measured by the
ethylene glycol procedure to be 10 m2/g, estimate the average specific
surface of the bulk sample in cm2/cm3.
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Chapter 2

IMMISCIBLE  FLUIDS  IN
STATIC SYSTEMS

2.1. MECHANICAL EQUILIBRIUM

A fluid system is said to be in equilibrium when there is no net transfer
of matter within the system and no flow of heat.  The conditions for
equilibrium may be studied from the point of view of thermodynamics.  A
thermodynamic description of a fluid system begins with a definition of a
system that in this case is a definite quantity of fluid in interchange with the
surroundings only by flow of heat or by doing work.  In the case under
consideration, the porous solid is the surroundings.

According to Zemansky (1943) there are three conditions that must be
satisfied for any system to be in equilibrium:

(1) There must be no unbalanced driving force on any element of the
system and none between the system and its surroundings.  This is a
condition for mechanical equilibrium.

(2) The fluid system must not undergo a spontaneous change of internal
structure such as a transfer of matter from one phase to another.  A
system that meets this requirement is in chemical equilibrium.

(3) All parts of the system must be at the same temperature, and this
temperature must be the same as that of its surroundings.   Such a
system is in thermal equilibrium.

When conditions for all three types of equilibrium are satisfied, the
system is said to be in a state of thermodynamic equilibrium.  States of
thermodynamic equilibrium can be described in terms of macroscopic
coordinates not involving time, that is, thermodynamic coordinates which
refer to the system as a whole and not to its parts.

If an attempt is made to describe a fluid system in terms of
thermodynamic coordinates, the system must be relatively small, otherwise
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the description is inadequate.  Furthermore, when equilibrium does not exist,
coordinates referring to a system as a whole may not be possible unless the
system selected is very small. This is because gradients of pressure and
temperature exist.

The approach used in fluid mechanics is to choose a system consisting of
either a very small control volume that remains fixed in space or a small
element of fluid that may move in space.  The latter approach is employed
here.

In order to limit the scope of phenomena considered, to an entity of
reasonable size, only problems relating to mechanical equilibrium are
considered in detail.  The following analyses assume chemical and thermal
equilibrium exist.  A fluid is said to be static when all of its elements are in
mechanical equilibrium.  In such a state, none of its elements move with
respect to a coordinate system fixed to the solid boundaries, because the
driving forces on each element are balanced.

A fluid particle as defined in Section 1.4.2 is selected as a reference
element (or free body) for the analysis of forces acting on a static fluid.  A
fluid particle is considered which is entirely within a single fluid phase.
Consequently, there is no ambiguity in respect to density and other
properties assigned to the particle. It is regarded as being a part of a single
continuum constituting one fluid phase which may be mixed with another
phase (or other phases) occupying the pore space.

In some cases, the nonwetting fluid may be divided into separate parts
completely surrounded by the wetting phase.  When a phase is discontinuous
in this sense (not interconnected) it may be regarded as a part of the porous
matrix, analogous to the solid grains, in an analysis of the wetting phase.
When two or more interconnected phases are present, each is analyzed
separately as a single continuum.

2.1.1. Forces on Static Fluid Particles

Forces acting on a reference particle are classified as driving or resisting
forces according to whether they tend to produce motion or are a
consequence of motion.  In the case of static fluids, only driving forces act
on fluid particles.  Furthermore, their resultant must be zero.  Driving forces,
in turn, can be classified according to whether they are proportional to the
mass of the particle or to the surface area of the particle.  The former are
called body forces and the latter surface forces.
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The most conspicuous of the body forces acting on fluid elements is
gravity.  For the present analysis, it is assumed this is the only body force.
Force per unit volume due to gravity is ρg where ρ is fluid density and g is
a vector representing force per unit mass due to gravity.  The resultant of g
is directed vertically downward through the center of mass of fluid particles.
Although g varies inversely as the square of the distance between the fluid
particle and the center of the earth's mass, it is sufficient to regard g as a
constant for app l icat ions considered  here. A magni tude of g  of
980 dynes/gram is close enough for most purposes.

The force acting on the surface of fluid particles, in general, can have
tangential as well as normal components.  Tangential components, however,
exist only if there is relative motion of the center of one fluid element in
respect to another.  This does not happen in a static fluid.  The normal
component of surface forces may be a result of two factors.  The first factor
called pressure or hydrostatic pressure is the normal component that can be
related in an equation of state to the density and temperature of the fluid.
This portion of the normal surface force is conservative, that is, it has a fixed
value for a given fluid at a particular temperature and density.

In the case of static fluids, pressure is the only surface force, and it acts
equally in all directions.  From a microscopic point of view pressure results
from the rate of momentum transfer (by fluid molecules) normal to any
differential area at a point in the fluid.  In static fluids, pressure is invariant
in respect to orientation of the differential area.  Pressure, therefore, is a
scalar quantity acting at a "point."  It must be defined, however, with respect
to a volume element (the size of a fluid particle) containing the point.  The
definition is given by

p
A

dA
A

c≡≡ ∫∫lim •
1

σσ 2.1

in which A is the magnitude of the surface area of a fluid particle, dA is a
differential surface vector, and σσc  is the conservative surface stress, positive
outward.  Note that σσc  is a vector quantity whereas p is a scalar.

Another part of the normal surface force results from viscous resistance
to expansion or compression of fluid particles.  It does not exist in static
fluids or in flowing fluids undergoing no expansion or contraction, that is,
zero divergence. The portion of normal surface stress that is not
conservative, and is associated only with divergence, is not related to density
at a particular temperature. In the case of flowing fluids, even those
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undergoing negligible divergence, surface stress is not, in general, invariant
in respect to direction.  In such cases Equation 2.1 is still a valid definition
of p and is given by

p i j k== ++ ++(( ))1
3

σσ σσ σσ 2.2

in which σ i , σ j , and σk  are normal surface-stress components in three
orthogonal directions.  In this case, also, p is a scalar quantity, although it
has the dimensions of force per unit area.

For the analysis of static fluids the only forces acting on fluid particles
are gravity and the resultant of the pressure force. Because pressure is a
scalar, the resultant force on a fluid particle due to pressure is due to the
variation of pressure in space. Specifically, the component of force per unit
volume due to pressure (in a particular direction i) is given by

−−
∂∂
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p
xi

,

where xi is a coordinate length in the direction i, and the minus sign
indicates the force is positive in the direction i if p decreases in that
direction.

A balance of force components in the direction i is given by
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in which gi is the component of gravity in the direction i.  Note that the force
components in Equation 2.3 are expressed as force/volume.

2.1.2. Forces on Fluid in a Control Volume

The preceding analysis is in respect to a reference element consisting of
a fluid particle.  Some authors prefer to consider a force balance on a fluid
volume contained in a reference element such as is used in Section 1.3.1 for
the definition of porosity.  To show that the latter approach also leads to
Equation 2.3, a simplified model of a reference element, as illustrated in
Figure 2.1, is considered.
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The reference volume Vm consists of both solid and fluid space, but only
forces acting on the fluid contained in the reference volume are considered.
In this case, a single fluid is assumed to occupy all of the pore space.

dx

dz

dy

fluid

solid

Figure 2.I. Cross-section of model for reference volume

Force due to gravity is ρg φVm , or if only the component in a particular
direction i is considered, ρ φg Vi m.  The resultant force from unbalanced
fluid pressure on the faces of the reference volume can be visualized by
considering the forces existing on two opposite faces, say top and bottom.
For this purpose, a situation is considered in which porosity may be varying
in space so that the fluid area exposed at the upper face of the reference
volume is φu dx dy, and at the lower face is φ1 dx dy.  The total force due to
fluid pressure on the upper face is p dxdyu uφ  and that on the lower face is
p dxdy1 1φ .  The net component of force in the positive z direction is

p p dx dyu u1 1φφ φφ−−(( )) .

Insofar as pressure and porosity can be regarded as point concepts, the
component in the z direction due to fluid pressure on the reference element
is

−−
(( ))∂∂ φφ

∂∂

p

z
dz dx dy .
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which expressed as force/volume is
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In three dimensions, the fluid pressure force in any direction i is
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However, since the reference element is the fluid contained in the
volume Vm, the solid surface as well as the fluid surface exerts a force on the
fluid within Vm.  If porosity of the medium is uniform so that the fraction of
solid on each face is the same, the resultant of the solid force on the fluid
element is zero.

This situation can be visualized by expanding the expression for the
force/volume exerted by the fluid, that is,
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The first term on the left represents a force exerted by fluid on the fluid in
the reference element.  The second term on the left represents a force
exerted by fluid on solid surfaces of the reference element.  However, the
force of fluid on solid surfaces is counterbalanced by an opposite force of
solid surfaces on the reference fluid element.  The net surface force/volume
is given by
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Summing the pressure force and the gravitational force results again in
Equation 2.3.

2.1.3. Adsorptive Forces

The foregoing analyses of forces on static fluid particles assume the only
body force of significance acting on the particles is gravity.   Edlefsen and
Anderson (1943) have shown this is not necessarily a valid assumption,
especially in reference to a wetting phase at low saturations.
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Forces at fluid-solid interfaces producing adsorption and wetting may
extend outward from the solid surface for a few hundred molecular layers.
Although such forces are known to be very strong, they are also very short
ranged.  It has been estimated that they vary inversely with approximately
the 5th power of distance from the solid surface.  If a particle is more than
say 100 molecular diameters from a solid surface, the adsorptive force can
probably be neglected.  But, the potential energy due to adsorptive force
cannot necessarily be regarded as small.

The magnitude of adsorptive force, that may be electrostatic in origin or
due to a variety of other possible factors, depends upon the species of
molecules in a fluid particle.  It is not entirely clear such forces can always
be treated as a body force, but following the precedent of Edlefsen and
Anderson (1943), adsorptive force is treated as a body force on the fluid
particle illustrated in Figure 2.2.

Figure 2.2.  A fluid particle in an adsorptive force field.

In Figure 2.2, r is the distance of a fluid particle from a solid surface, g is
the gravity vector, a is the adsorptive force, and ei is a unit vector in the
direction i.  The forces, expressed as force/volume, acting on the particle are
indicated.  If the potential energy per volume in respect to these force fields
are summed and the sum is designated as p*, the result is

p p g ds a ds
d

s

d

s
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where s is a positional vector, d represents s at a datum point, and ρ is the
fluid density treated here as a constant.  For practical purposes, the first
integral on the right can be represented by ρgh . If the particle does not
move within say 100 molecular layers of the solid surface, the second
integral is essentially zero in respect to the datum point selected.  In this
case, the potential energy in respect to the three force fields is given by

p p gh∗∗ == ++ρρ

and is called piezometric pressure.

If the particle moves into a range where a is large, the second integral
may take on a large negative value.  If this integral is neglected, an error
may be made in determining the pressure at points in the pore space.  For
example, it might be concluded that water is under a large negative pressure
(tensile stress), whereas it is only the last integral that is negative.  A correct
analysis, if one is possible, might show that the water is actually under a
substantial positive pressure.

The latter conclusion seems to be justified experimentally because it is
known that water in porous media at low saturations has a lowered freezing
point, a characteristic of water under positive pressure.  On the other hand,
the water has a reduced vapor pressure indicating the opposite.  This
situation can be explained by the fact that adsorptive force fields have a
similar effect on the escaping tendency of water molecules as a reduced
water pressure.

The foregoing analysis is by no means rigorous since the concept of a
fluid particle as previously defined does not apply to fluid within a few
hundred molecular layers from a solid surface. Consequently, the analysis
must be viewed only as an artifice to aid in the visualization of qualitative
effects of adsorptive forces. Furthermore, it is not possible to measure the
potential energy resulting from adsorptive forces directly.  Instruments for
measuring fluid pressures in porous media actually measure the sum of
pressure and the potential energy due to adsorptive forces.

Unless one is concerned about problems dealing with freezing point
depression, or something similar, this is of no consequence. If the fluid
under consideration is under the influence of adsorptive force fields, it is the
sum of pressure and adsorptive force that controls the mechanical
equilibrium of the  fluid.  In such cases the measured pressure represents this
sum and may be regarded as an "apparent pressure."  In the remainder of this
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text, p is used to designate the measured pressure whether it happens to be
the actual pressure or only an apparent pressure.

2.2. DISTRIBUTION OF PRESSURE IN A STATIC TWO-
PHASE SYSTEM

Since the resultant of g is vertically downward, the force balance can be
written as

−− −− ==
dp
dz

gρρ 0

in which g is a scalar quantity representing the magnitude of g.

The solution of the preceding equation is

p p gho−− == −−ρρ 2.4

in which h is the elevation above a datum where p is po.  Equation 2.4 gives
the pressure distribution in a static fluid system.  When applied to
immiscible fluids in a porous medium, it must be applied simultaneously to
each of two or more fluids.  For example, in the case of a two-phase system

p p ghw wo w−− == −−ρρ

and

p p ghnw nwo nw−− == −−ρρ

where the subscripts w and nw refer to the wetting and nonwetting phases
respectively.  Subtracting the first static equation from the second gives

p gh pc w nw co== −−(( )) ++ρρ ρρ 2.5

in which pc is the capillary pressure at an elevation h, and pco is
the value of pc at the datum from which h is measured.  Provided each phase
is interconnected over the interval h, Equation 2.5 gives the value of pc at all
points of contact between phases.

A variation of Equation 2.5 is often used in reference to water in soil
profiles under static conditions; that is,

p ghc w== ρρ , 2.6
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the density of air being taken as zero, and h being measured above a datum
where pw is at zero gauge pressure.  The locus of points where water is at
atmospheric pressure is called a water table.  In a petroleum reservoir, none
of the fluids are at atmospheric pressure, so Equation 2.6 is not applicable.
Equation 2.5, however, can be used for any two-phase fluid system in a
static condition.

2.3. DEPENDENCE OF SATURATION ON CAPILLARY
PRESSURE

Combining Equation 1.5 with Equation 2.5 results in
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indicating that in a static two-phase system, the mean curvature at points on
interfaces changes with elevation.  Specifically, the radii of curvature are
smaller at higher elevations.  It is the change in curvature that permits a
greater pressure discontinuity across interfaces at higher elevations.

The changes in curvature and capillary pressure are accompanied by a
change in fluid distribution.  Saturation of the wetting phase is smaller and
saturation of the nonwetting phase is greater at greater elevations.  A
functional relationship between saturation and capillary pressure can be
visualized by considering a model of a cross-section of pore space as
illustrated in Figure 2.3.  In this case, the pore space contains a mixture of
water and air.

As capillary pressure is increased from pc1 to pc2, either by increasing the
air pressure or decreasing the water pressure, a volume of water is removed
from the pore space.  In the process, the interfaces retreat to portions of the
pore space having smaller dimensions, where the radii of curvature are
smaller.  In other words,

S f pc== (( )) ⋅⋅

However, if the pore space initially is fully occupied with water, a finite
value of capillary pressure, designated as pe, must be exceeded before air
can intrude into this element of the pore volume.  The value of pe, called air-
entry pressure, depends upon dimensions of the largest opening to the
particular element of pore volume considered.  If the pore volume
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Figure 2.3. Model of pore cross-section with varying saturation of
water.

considered contains some portion of pore space with dimensions larger than
the largest opening, that portion of the pore space immediately desaturates.
Consequently, the desaturation of pore space with increasing capillary
pressure does not occur smoothly in a dynamic process but proceeds in
jumps that can be observed experimentally [Corey and Brooks (1975)].

The jumps are caused by the entry of air, at ambient pressure, into
portions of the medium where no interconnected air previously existed.
The pressure of ambient air is suddenly applied to local air-water interfaces
resulting in a temporary increase in water pressure until the interfaces can
readjust to smaller radii of curvature.  The fluctuations have a greater
amplitude in media having a wider range of pore sizes.  When air is
interconnected throughout the pore space further increases in capillary
pressure may proceed without noticeable fluctuations.

If a laboratory sample of porous medium is desaturated by increments of
capillary pressure and allowed to arrive at a static state with each increment,
the values of saturation determined for corresponding values of capillary
pressure provide a curve as shown by the solid line in Figure 2.4.  In the
petroleum literature, it is customary to plot capillary pressure as a function
of saturation, as has been done in Figure 2.4 [Richardson (1961)].  Such
curves are called capillary pressure-saturation curves [Collins (1961)].  Soil
scientists usually plot water content as a function of suction, but the
relationship is equivalent, since it is entirely arbitrary as to whether
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Figure 2.4.  Capillary pressure as a function of saturation.

saturation or capillary pressure is regarded as the dependent variable.  Soil
scientists refer to such curves by a variety of names including water-
retention and water-characteristic curves.

2.3.1. Hysteresis

The relationship for pc(S) depends on the pressure (or saturation) history.
In other words, it is subject to hysteresis. A curve, such as the solid line in
Figure 2.4, is obtained starting with a wetting phase saturation of 1.0.  This
is called a desaturation curve in the petroleum literature, and a water-release,
drainage, or drying curve by soil scientists.

A different curve is obtained by starting with a sample containing only
the nonwetting phase and allowing it to imbibe the wetting phase from a
source undergoing successive increases in pressure relative to that of the
nonwetting phase.  The latter curve is sometimes referred to in petroleum
literature as an imbibition curve and in the soils literature as a wetting curve.

The two curves shown in Figure 2.4 belong to an infinite family of
curves that might be obtained by starting at any particular saturation and
either increasing or decreasing saturation. All such curves, presumably,
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would be between the two illustrated. Hysteresis has been studied
intensively by a substantial number of investigators including Topp (1969).

One factor undoubtedly involved in hysteresis is wettability change,
depending upon which phase is first in contact with the solid.  Another
factor, frequently cited, is illustrated in Figure 2.5 showing two identical
capillary tubes with irregular cross-sections.  The tube on the left in the
figure is first filled and then allowed to drain into the liquid reservoir,
whereas the tube on the right was initially empty and then allowed to imbibe
liquid from the reservoir.  The capillary pressure at the liquid-air interfaces
in the tubes is given by Equation 1.5 and the height of rise above the
reservoir by Equation 2.6.  Since the water stands about

Figure 2.5. Capillary hysteresis.

twice as high in the tube initially full, the capillary pressure for this tube is
about twice as large.  The drained tube contains more liquid, because the
interface in the tube on the right cannot advance beyond the enlarged cross-
section.

The situation in ordinary porous media is, of course, more complex than
indicated by the simple model, but it is supposed that an analogous
mechanism exists in soils, and porous media always contain more water on a
drainage than on a wetting cycle for corresponding values of pc.

Values of pc(S) are not shown in Figure 2.4 for saturations greater than
Sm on the wetting cycle.  The reason is that at the critical saturation, the
nonwetting phase becomes entrapped.  It is no longer interconnected and
cannot be replaced simply by decreasing capillary pressure.  Since the
nonwetting phase is not interconnected, it does not have a unique or a
measurable pressure so that capillary pressure cannot be determined.  Soil
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scientists sometimes present data for this range of saturation, but in that case
the data represent the negative pressure of water relative to atmospheric
pressure, rather than relative to the entrapped air phase.

2.3.2. Entry Pressure

As Figure 2.4 indicates, on a drainage cycle, saturation is very close to 1
over a finite range of capillary pressures.  When some critical value of
capillary pressure is exceeded, saturation decreases rapidly with increasing
capillary pressure.  It is supposed [White et al. (1972)] that desaturation
(occurring at capillary pressures smaller than that corresponding to the
critical saturation) takes place in pore space exposed at the sample
boundary.  The rationale for this view is that the nonwetting phase cannot
reach the interior of a sample until an interconnected network of channels
have been desaturated.

It is shown by White et al. that the inflection point on the capillary
pressure-saturation curve, where its slope is flattest, corresponds to the
highest saturation with an interconnected nonwetting phase.  Permeability to
the nonwetting fluid is zero at higher saturation.

There is some ambiguity in the literature in regard to what point
represents the critical value of capillary pressure on a curve of pc(S).
Petroleum scientists define a critical capillary pressure called displacement
pressure pd as being the capillary pressure at which first desaturation on a
drainage cycle occurs.  However, since some desaturation takes place in
laboratory samples at all finite capillary pressures, it is difficult to decide at
what capillary pressure a significant desaturation takes place.  Usually,
petroleum scientists appear to have defined the displacement pressure by
extrapolating the capillary pressure-saturation curve to the ordinate where
the saturation is l.0, neglecting that part of the measured data for values of
saturations close to 1.0. In the remainder of this text, this is the interpretation
assigned to pd.

It is common practice in the ceramics industry to classify porous
ceramics according to the air pressure needed to force air through an initially
water-saturated sample. They call this the bubbling pressure pb.
Presumably, this corresponds to the capillary pressure at the inflection point
as shown in Figure 2.4.  Soil scientists define a similar parameter as the air-
entry pressure. Both bubbling pressure and air-entry pressure imply that the
nonwetting phase under consideration is air.  A term for more general
application is simply entry pressure, pe.
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In most cases, the value of saturation at the entry pressure is in the range
0.8 to 0.9 for relatively homogeneous materials, but the entry pressure may
vary over a large range, from practically zero to many atmospheres.

2.3.3. Residual Saturation and Effective Saturation

Another parameter of considerable significance is the value of saturation
at which capillary pressure increases rapidly with negligible decrease in
saturation.  This is called the residual or irreducible saturation in the
petroleum literature.  A somewhat analogous concept in respect to a water
saturation found in an otherwise oil-saturated rock is called connate water.
Soil scientists sometimes refer to a related parameter θmin  as the minimum
water content.  The term residual saturation designated by Sr is used in this
text because the words "irreducible" or "minimum" seem to imply a physical
meaning which is not intended.

For example, it clearly is possible to remove practically all wetting fluid
from a porous sample by evaporation.  Furthermore, plants may remove
water from soils at a saturation substantially less than the residual saturation.
In many cases, even if the process of removal is restricted to liquid flow,
there is no well defined minimum saturation.  In spite of its ambiguity, the
concept of a residual saturation has practical utility.  Corey (1954) and
Brooks and Corey (1966) have presented methods of defining residual
saturation more or less objectively by extrapolation using data such as are
shown in Figure 2.4. Their methods are discussed in Section 2.4.
Sometimes residual saturation is determined as the saturation at some
arbitrarily large capillary pressure.

The physical interpretation of residual saturation depends to some extent
on how it is determined.  Some authors have claimed that residual saturation
represents wetting phase films over the solid surface or pendular rings
(about points of contact of grains) that are not interconnected.  This view
does not seem to be tenable in view of the observed fact that the wetting
phase never becomes completely immobile and the curve of pc(S) never
becomes exactly vertical.

When residual saturation is found by extrapolation, the value determined
seems to be associated with a volume of pore space characterized by pore
sizes substantially smaller than that of the bulk of the pore space.  Many
media, porous sandstones being a typical example, frequently have
extrapolated residual saturations correlated with the amount of clay in the
sample.  The residual saturation can be reduced to a very low value, often
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less than 0.05, by removing the clay with an ultrasonic cleaning technique.
Evidently, pore sizes associated with the clay are orders of magnitude
smaller than those associated with the remainder of the pore space enclosed
by the sand grains.

Furthermore, when the residual saturation is found by extrapolation, a
zero value is not uncommon.  A zero value of residual saturation often
occurs with fine-grained highly-structured soils with a very wide pore-size
distribution, even though they usually have a relatively large clay content.
Evidently the extrapolated value of residual saturation may be related to a
discontinuity in pore sizes such that sizes (associated with S < Sr) are
distinctly smaller than those corresponding to S > Sr.  In media with a pore
size ranging smoothly from zero to some finite value, the extrapolated
residual saturation appears to be zero.

In summary, residual saturation when determined as the saturation at an
arbitrarily high capillary pressure, is ambiguous because it depends upon the
value of high capillary pressure selected. When residual saturation is
determined by an extrapolated procedure, its physical meaning is uncertain,
and it probably should be interpreted as a parameter useful for curve-fitting
purposes as explained in Section 2.4.

Because the pore space containing the wetting phase at S < Sr contributes
relatively little to convective flow, it is convenient (for some purposes) to
define an effective saturation Se  given by
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2.7

Obviously, Se is significant mostly in reference to flow, but it is also
useful in empirical representations of pc(S) as is explained in Section 2.4.
Similarly an effective or drainable porosity is defined as

φφ φφe rS≡≡ −−(( )) ⋅⋅1 2.8

2.3.4. Field Capacity

A concept somewhat related to residual saturation is called field capacity
by agronomists and soil scientists (Miller and Klute, 1967).  The term is
used for two somewhat different concepts.  The first is often referred to
simply as "field capacity" F.C. and means the water content W in a soil
profile after "downward drainage has become very slow" following a
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thorough wetting.  Defined in this way, field capacity may be affected by the
position of a water table, if one is present, and by the structure of the entire
soil profile as well as the properties of the soil in a particular stratum.
Sometimes field capacity is taken as the value of W after an arbitrary period
of time following a thorough wetting.  A method of measuring field capacity
in the field has been described by Peters (1965).

A second usage of the term field capacity may sometimes be called
"laboratory field capacity" or the "normal moisture capacity" (Shaw, 1927).
In this case, it is determined on a column of soil in a laboratory.  A
substantial amount of water is added to the top of a column of dry soil, but
not enough to wet the soil to the bottom of the column.  The entire column is
then allowed to reach a pseudo static equilibrium while being protected from
evaporation.  Values of W are then determined for samples of the soil at
elevations sufficiently far from the dry soil to be unaffected by the water
content gradient in that region.

Values of laboratory field capacity, when converted to a volume basis by
use of Equation 1.1, are often close to values of residual saturation obtained
by extrapolation, but sometimes the values are significantly different.
Approximations of laboratory field capacity also may be obtained by
allowing samples to reach equilibrium at an arbitrarily high suction, for
example, in a centrifuge, or in a capillary pressure cell as described in
Section 2.5.3.

2.3.5. Measurement of Capillary Pressure as a Function of
Saturation

Capillary pressure as a function of saturation apparently was the first
functional relationship relating to immiscible fluids in porous media to be
measured.

Five methods of determining pc(S) are known, but there are innumerable
variations of each.  The methods are:

(1) Long column - A long column of porous medium is allowed to
reach equilibrium (with a source of wetting fluid at its base) in the
Earth's gravitational field.  Saturation is determined on samples
taken at particular elevations after the column reaches equilibrium.
The value of capillary pressure at corresponding elevations is
determined from Equation 2.5.  According to Collins (1961) this
was the first method employed.  The long column method is
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applicable only for unconsolidated materials which can be packed
into a long column.  It cannot be used for either undisturbed rocks
or soils, and it is useful only for determining pc(S) at relatively
small values of capillary pressure. Furthermore, the time for
equilibrium may be very long and uncertain.

(2)  Centrifuge - A short column of initially saturated porous material
(at most, a few centimeters in length) is placed with its long axis
horizontal in a centrifuge.  The centrifuge is run at some fixed
angular velocity until the wetting fluid contained in the sample has
reached equilibrium with the centrifugal force imposed by the
rotation.  A centrifugal force of g x 103 is often used.  A porous
plug is placed at the outer end of the sample during rotation, so that
when the rotation is stopped and the sample quickly removed, it is
at some arbitrarily high value of capillary pressure.  This procedure
is usually used to obtain an approximation of residual saturation
called the moisture equivalent.  An early use of the centrifuge for
this purpose was reported by Briggs and McLane (1907).

Another version is to use the centrifuge without the porous plug at the
outer boundary of the sample, so that a range of capillary pressure is
obtained, from 0 at the outer end to a large value at the inner boundary of the
sample.  Measurement of saturation at points along the axis of the sample
are obtained during rotation using gamma radiation attenuation.  An analysis
of the forces acting on the fluids and the distribution of fluids along the axis
of the sample during rotation are presented in Section 2.5.4.

A centrifuge has been used mostly for obtaining pc(S) on a drainage
cycle.  This is because it is difficult to connect the sample to a source of
wetting fluid during rotation.

(3) Vapor pressure - A sample of porous material with a known
wetting phase content is allowed to equilibrate with the atmosphere
inside a closed container.  The method is limited to cases for which
the nonwetting phase is gas, usually water-air systems.  The value
of capillary pressure at equilibrium is correlated with the vapor
pressure of the wetting phase at equilibrium.  Versions of the
procedure are available for both wetting and drying cycles.  The
method is useful primarily for studying pc(S) beyond the range for
which capillary pressure is related to pore dimensions by Equation
1.4.  This is because vapor pressure is very insensitive to pressure
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changes over this range.  It becomes more sensitive to changes in
liquid saturation, when most of the liquid is under the influence of
strong adsorptive forces.  In this case, the value of pressure
determined is an apparent pressure as explained in Section 2.1.3.

(4) Pressure cell - A sample of porous medium is placed in contact
with another fully saturated porous medium having an entry
pressure such that it will not desaturate at any capillary pressure
imposed during the experiment. The porous medium under the
sample is called a capillary barrier or a semi-permeable barrier in
petroleum literature.  The term "semi-permeable" used in this
context implies that during the experiment, the barrier (because of
its large entry pressure) permits the passage of the wetting phase
but not the nonwetting phase.

In the soils literature, a capillary barrier is usually identified by a name
alluding to the material from which it is made, e.g., a pressure plate (porous
ceramic or fritted glass), or pressure membrane (a thin sheet of porous
plastic), etc.  In any case, the material must have an entry pressure large
enough that it does not permit the breakthrough of the nonwetting phase
over the range of capillary pressure needed to desaturate the sample to the
degree desired.

A sample is placed on one side of the barrier (usually in a confined
chamber surrounded by the nonwetting phase), and the wetting phase is on
the opposite side of the container so that its pressure can be controlled.  The
capillary pressure at the surface of the barrier in contact with the sample is
adjusted either by adjusting the wetting-phase pressure in the barrier or by
adjusting the nonwetting phase pressure in the sample chamber.  When the
sample has reached an equilibrium saturation at the imposed capillary
pressure its saturation is determined by weighing the sample or by
measuring the amount of wetting fluid that was discharged or imbibed
during the increment of capillary pressure imposed.

The first use of such a device was reported by Willard Gardner et al.
(1922).  They called their device a "capillary potentiometer," and used it to
obtain an empirical relationship for pc(S) for a soil on the Utah Agricultural
Experiment Station at Logan, Utah.  The first plots of pc(S) analogous to
those shown in Figure 2.4 were presented by L.A. Richards (1928).  In that
paper, Richards described the use of a similar device (now called a
tensiometer) for measuring the suction of a soil in the field.  He also
described plans to determine the conductivity of partially saturated soils
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using an analogous device, which he eventually succeeded in doing as
explained in Chapter 3.  A more detailed discussion of the use of
tensiometers for measuring the "capillary tension" in soil water was
presented by Richards and Gardner in 1936.

Since the early work of Gardner and Richards, the pressure cell has
become the most common device for determining pc(S) by petroleum as well
as soil scientists.  Innumerable variations of the technique have been used.
One variation designed by A. T. Corey was used by White et al. (1970).
With this variation, the sample is not enclosed, and evaporation is allowed to
proceed continuously.  The liquid on the outflow end of the capillary barrier
is connected to a capillary tube that contains a liquid-air interface.  The tube
is connected to a vacuum controller to permit reducing the wetting phase
pressure in increments.  After each reduction, the wetting liquid moves
outward in the tube until evaporation from the sample causes the liquid-air
interface to retreat.  At the instant the interface begins to retreat, the sample
is weighed to determine its saturation. The sample is then returned to the
cell, the wetting fluid pressure is reduced by another increment and the
process is repeated.  The advantage of the latter technique is that a balance
of pressure is achieved much more quickly when evaporation is permitted,
especially at lower values of saturation.

(5) Brooks' method - A method has been devised by R. H. Brooks
(1980) which has great utility in respect to obtaining pc(S) on an
imbibition cycle, something difficult to accomplish by most other
methods.  With the Brooks system, a carefully metered quantity of
wetting fluid is added to a porous sample.  After a short time
(necessary for the wetting-fluid pressure to stabilize) the fluid
pressure is recorded using a capillary barrier in contact with the soil
and connected to a null-pressure transducer.  The saturation is
determined from the known quantity of water absorbed.

The advantage of this procedure is that the sample is not required to
imbibe fluid from a low pressure source through a capillary barrier.  The
problem of maintaining excellent contact with the barrier is removed and
equilibrium is established in a small fraction of the time required with a
pressure cell.  A capillary pressure cell based on the latter principle is
described by Lorenz, et al. (1992). Their cell is operated by adding or
removing a fixed volume of wetting fluid and then closing a valve in the
outflow tube.  Instead of waiting for the wetting fluid to stop flowing out, or
in, the operator waits for the pressure to equilibrate.
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2.3.6. Empirical Representations of pc(S)

Brooks and Corey (1966) plotted log Se as a function of log pc.  They
found that if they omitted data for saturations more than about 0.85 the data
plotted on a straight line as shown in Figure 2.6, provided that a suitable
value of residual saturation is used to compute effective saturation.   Brooks
and Corey determined residual saturation as the value which provided the
"best fit" linear curve. The shape of the curve was found to be sensitive to
the value of residual saturation selected.  An extrapolation of the linear
curve provides a sensitive evaluation of pd.

Figure 2.6.  Effective saturation as a function of capillary pressure.

As a result of their observation that data for all relatively homogeneous
and isotropic samples provided curves as shown in Figure 2.6, Brooks and
Corey suggested the empirical relationship
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Originally Equation 2.9 was suggested for use only on a drainage cycle, but
Su and Brooks (1975) have applied an analogous relationship (Equation
2.11) for the imbibition cycle as well.  In the latter case, a different
interpretation is given to the parameter pd.
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Brooks and Corey found that for typical porous media, λ  is about 2.
Soils with well-developed structure have values of λ  less than 2, and sands
normally have values of λ  greater than 2, sometimes as large as 5 or more.

Equation 2.9 does not represent the measured data for values of pc < pd.
Other empirical expressions have been suggested for this purpose.  One such
expression, suggested by Laliberte (1969), is
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In Equation 2.10, ζ  is a function of pc describing the pore-size distribution.

A semi-empirical expression, suggested by Su and Brooks (1975), is
given by
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in which a, b and m are constants.  The constant m is roughly equivalent to
1/λ  in the Brooks-Corey relationship.  Su and Brooks have described the
physical interpretation of the constants a and b in their paper.  Equation
2.11, like Equation 2.10, is designed to fit data for all values of pc.

An empirical expression presented by van Genuchten (1980) has gained
wide acceptance.  This equation, like Equations 2.10 and 2.11, describes
Se(pc) as a continuous function including values of capillary pressure less
than the entry pressure.  The equation of van Genuchten is given by
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where α , n, and m are constants, and h is the capillary pressure head.  The
constants n and m are dimensionless, whereas α  has the dimensions of 1/L.
Although Equation 2.12, as well as Equations 2.11, and 2.12, represent
Se(pc) as a continuous function, it is possible in each case to choose a set of
constants that provide a capillary pressure-saturation curve that approaches
the Brooks-Corey relationships closely.

White et al. (1970) have also presented semi-analytical relationships for
the entire capillary pressure-saturation curve, but they pointed out that
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values of pc < pe are a function of the external sample geometry and not the
pore geometry.  According to their theory, the desaturation that occurs at pc
< pe proceeds only from the boundaries of samples, and consequently is a
function of the ratio of external boundary area to volume of the sample.

Occasionally, samples are found with a pc(S) function unlike that
predicted by any of the empirical models.  Such samples are often found to
be obviously non-homogeneous materials, for example, layered rocks.
Curves of log Se as a function of log pc often consist of two or more straight-
line portions off-set by an increment of capillary pressure and connected by
an abrupt transition.

A similar result is produced by samples which consist of a sieve fraction
of soil aggregates or a sieve fraction of crushed (but not pulverized)
sandstone rock.  In this case, the two-staged curve (sometimes called
bimodal) undoubtedly results from a discontinuity in pore size between the
primary and secondary pore space.

2.4. PORE-SIZE DISTRIBUTION

From a force balance similar to that used in Section 1.5.1 to obtain
Equation 1.4, it is possible to obtain capillary pressure for an interface
across an irregular shaped space such as may exist in soil pores.  In general,
the line of contact of an interface with the internal solid surfaces of porous
media is not circular.  However, because of the tendency of interfaces to
reach a minimum area consistent with the saturation, the line of contact
tends to lie nearly in a plane.

In the following analysis, sections of interfaces are considered which are
concave toward the nonwetting fluid and which possess orthogonal radii of
curvature of the same sign, as well as having lines of contact that lie more or
less in a plane.  Adsorbed films and pendular rings are excluded.  A sketch
of a portion of pore space (across which several such sections might be
positioned) is illustrated in Figure 2.7.

A balance of forces across a particular section indicates that

p A wpc ≈≈ σσ ααcos

where wp designates the wetted perimeter, that is, the length of the line of
contact.  The area A represents the area of the plane passing through wp
enclosed by wp.  The force balance presumably would be exact if the wp
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Figure 2.7. Cross section of pore space with several interface
sections.

under consideration actually lies exactly in one plane, if the contact angle α
is constant over wp, and if σ  is constant over the section.

Rearranging gives

A
wp pc

≈≈ ⋅⋅
σσ ααcos

2.13

The quantity A/wp has the dimension of length and can be used to
characterize the size of the section of pore space across which interfaces are
positioned.  Note, that this concept is consistent with the definition of pore
size given in Section 1.3.3.  It is also consistent with the concept of
hydraulic radius.  However, the geometry of a particular pore region might
not be characterized by the value of capillary pressure in surrounding
regions if the nonwetting phase is blocked from entering the region by
smaller pore sizes at all points on the boundary of the region.

The following analysis assumes that practically all portions of the pore
space with pore sizes larger than that given by Equation 2.13 have access to
interconnected nonwetting fluid.  This may appear to be a severe restriction,
but evidence presented by White et al. (1972), and Corey and Brooks (1975)
imply that the condition is satisfied for practical purposes at saturations
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smaller than that corresponding to the inflection point in the liquid retention
curve occurring at the entry pressure.   However, pore sizes represented by
pc < pe  must be characterized by extrapolation.

A volume element of the porous medium is considered that is large
enough to be representative of a particular sample but small enough that
capillary pressure can be represented by a single value when the fluids are in
a static condition on the drainage cycle. This implies that the elevation
difference within the element is negligible.  Within such an element, there
usually are many sections of the interface.  The quantity A/wp should be the
same for each, regardless of the orientation of A.  Furthermore, if the
medium is isotropic, the orientations of A for each section is assumed to be
random, that is, there is no preferred orientation.

If capillary pressure is increased within the reference element, the value
of A/wp decreases.  In the process, a portion of the pore space loses its
wetting phase.  The increment of saturation is a measure of the fraction of
pore space characterized by the corresponding increment of A/wp.  The ratio
of change in saturation to change in A/wp is dependent upon the frequency
of pore sizes having values of A/wp within the increment of capillary
pressure considered.

Equation 2.13 indicates that if σ αcos  is essentially constant for a
particular fluid system, A/wp is proportional to 1/pc. The quantity 1/pc,
therefore, should be a measure of the largest pore size (in that part of the
pore space containing the wetting phase) at a particular value of capillary
pressure.  Similarly, a plot of saturation as a function of pd/pc should provide
an indication of the distribution of sizes characterizing the pore space.
Figure 2.8 presents contrasting examples of this kind of plot.

In Figure 2.8, Se rather than S has been plotted as a function of pd/pc.  By
normalizing the ordinate and abscissa in this way, data for any medium can
be plotted on the same graph without changing the scale.  Furthermore, for
media with similar pore-size distributions, the data plot on the same curve.
In any case, the end points of all curves are the same, that is, 0 and 1.0.  This
is because both Sr and pd are chosen by an extrapolation which forces the
curves to behave in this way.  It should be observed that pd is somewhat
smaller than pe.

Data for pc < pe are disregarded in the extrapolation process. The
rationale for this is that, for pc < pe,  some regions of the pore space may be
isolated from an interconnected nonwetting phase. The geometry of isolated
pore space is not characterized by pc(S) data for pc < pe.  Pore sizes larger



Mechanics of Immiscible Fluids in . . .

52

Figure 2.8.  Effective saturation as a function of pd/pc

than that corresponding to the entry pressure are assumed to be determined
by the extrapolation process, the largest being characterized by pd.

Data for high values of capillary pressure where the saturation
approaches residual are also disregarded.  The reason for this is that a
significant portion of liquid removed at such saturations is associated with
surface films and pendular rings.  There is no reason to suppose that
Equation 2.13 is valid in this situation, or that the pore geometry is described
by pc(S) where S approaches Sr.

Curves of pc(S) have been used by many investigators to characterize
pore-size distribution in porous media.  Perhaps the first to suggest this were
Childs and Collis-George (1948) and Purcell (1949).  However, none of the
investigators employing this principle have pointed out the apparent fallacy
of including data for pc < pe in the characterization of pore geometry.

Many investigators, Purcell being among the first, have used data for
pc(S) obtained by a mercury injection procedure. With this procedure,
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mercury is injected as a nonwetting phase into a porous sample that has been
first evacuated.  The value of capillary pressure is taken as the pressure
required to inject a given increment of mercury into the pore space, and
saturation is calculated from the volume of fluid injected.  The method of
mercury injection has the advantage of speed, but it does not evaluate any
changes in pore size that might result from the reaction of porous media to
fluids of the prototype system.

The first step in plotting curves of the type shown in Figure 2.8, after the
data are measured, is to determine values of Sr and pd .  One way of
accomplishing this is as follows:

(1) The data for pc(S) are plotted as shown in Figure 2.4.

(2) Estimations of pe, Sr, and pd are made, and the estimated values are
designated as pe`, Sr`, and pd`.

(3) Data representing pc < pe` and S < Sr` are disregarded.

(4) Using the remainder of the data, a plot of (pd`/pc)2 as a function of
S is made as shown in Figure 2.9.  For typical pore-size
distributions, the plot is roughly linear.  This is because an average
value of λ  is about 2 [see Equation 2.9].

(5) The plot is extrapolated to the abscissa to obtain Sr.

(6) The plot is extrapolated to the ordinate to obtain the intercept I.

(7)  pd is calculated from

` ` `
` `

`

p p Id d== ⋅/̀

(8) The improved values of Sr and pd are used to calculate Se and
corresponding values of (pd/pc) to plot curves of the type shown in
Figure 2.8.

More sensitive extrapolation procedures for obtaining Sr and pd can be
devised, such as the method presented in Section 2.3.6.  A variety of
extrapolation methods using a computer have been devised that provide
more or less the same results.

Another method of illustrating the size-distribution of pore space is by
plotting dSe/d(pd/pc) as a function of pd/pc. Examples of such plots are
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Figure 2.9.  Graphical procedure for estimating Sr and pd.

 shown  in Figure 2.10.  Curves l and 2 represent the same measured data as
curves 1 and 2 in Figure 2.8.

The plots shown in Figure 2.10 can be regarded as frequency distribution
curves because they indicate the rate of change of S with respect to a
function proportional to pore size.  The area under such curves is 1.0.

A medium having a wider range of pore size, e.g., Sample l, has a curve
less sharply peaked and its area is spread over a wider range of values than
is the case for Sample 2.  According to White et al. (1972), the highest value
of the ordinate occurs at the entry pressure.  Undoubtedly, this is because an
interconnected nonwetting phase cannot reach all regions of a medium until
the entry pressure is reached. For this reason, parts of the curves
representing pc < pe are shown with dotted lines.

2.4.1. Pore-size Distribution Index

Brooks and Corey used the parameter λ , as shown in Figure 2.6 and
Equation 2.9, as an index of pore-size distribution.  They reasoned that for
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Figure 2.10. Frequency distribution of pore-size as a function of
pd/pc.

media having a uniform pore-size, the index would be a large number that
theoretically could approach infinity.  On the other hand, media with a very
wide range of pore sizes should have a small value of λ  that theoretically
could approach zero.  They found that typical porous media, have values of
λ  about 2.

In the case of naturally occurring sand deposits, λ  is often about 5 or 6,
especially if the material is thoroughly mixed and densely packed.   For soils
in an undisturbed state λ  < 1 is not uncommon.

2.4.2. Factors Affecting Pore-size Distributions

The effect of grain-size distribution, structure and mixing on pore-size
distribution is mentioned in Section 1.3.4.  The grain-size distribution is
probably the least important.  There is a tendency, however, for finer
materials to have smaller values of λ .  All sands, regardless of grain-size
distribution can be made to have a very uniform pore-size by thorough
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mixing and dense packing.  The mixing and packing can be accomplished by
dropping the sand through at least two screens a few centimeters apart as
suggested by Wygal (1963). Even undisturbed sands found in natural
deposits usually have relatively high values of λ , say 4 or 5.

Laliberte and Brooks (1967) experimentally determined the relationship
between porosity and λ  for several soils and sands, and found that λ
increases as porosity decreases.  Evidently, the decrease in porosity reduces
the range of pore sizes as expected.  Structure increases the range of pore
sizes and decreases λ .  Shape of sand grains theoretically could also have an
effect, but this possibility has not been systematically investigated to date.
It is not known, for example, whether a freshly crushed deposit of rock
fragments would have a significantly smaller value of λ  than sand from a
stream bed.  The degree and type of cementation are other possible factors
that have not been studied systematically.

2.5. DISTRIBUTION OF FLUIDS IN STATIC SYSTEMS

If the pressure history for a static system is known and the relationship
pc(S) can be measured, for each distinct medium contained in the system, it
is possible to deduce the distribution of fluids.  This is accomplished by an
application of Equation 2.5. Examples of static fluid distributions are
described, some relating to field systems and some relating to laboratory
devices, in the following sections.

2.5.1. Soil-water System

As a first example of the application of Equation 2.5, a soil profile,
thoroughly soaked following a rain or irrigation, is considered.  If such a soil
is protected from evaporation and from large temperature fluctuations, the
soil-water system eventually approaches equilibrium.  If there is a water
table at some depth below the surface, the fluid system approaches
equilibrium with the water table and the water table then can be used as a
datum from which to measure the elevation and pressure.

In the case of a soil in the field, a pseudo static state can be expected
only in a fallow soil, where plants are not present to remove the water
continuously and where enough surface soil has dried to protect the
remainder from significant evaporation.  In such cases, the water below the
dry layer may approach a static distribution.
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Field soils never reach a condition of complete saturation, either above
or immediately below the water table.  This is because some entrapped gases
are always present.  Usually about 8-20 percent of the pore space is
occupied by gases, even where the water saturation is a maximum.  Under
such circumstances a saturation distribution similar to that shown in Figure
2.11 is expected if the soil profile is homogeneous.

In Figure 2.11, h represents an elevation measured above the water table,
that is, the locus of points at which the water is at atmospheric pressure.  The

Figure 2.11. Distribution of pseudo static water in a homogeneous
soil profile with water table.

water content both immediately above, as well as below, the water table is at
some maximum value determined by the saturation at which gas ceases to be
interconnected on the wetting cycle following rains or irrigations.

Part of the water distribution curve for the profile (below the zone of
evaporation and above the water table) is similar to the relationship shown
in Figure 2.4 except that the ordinate pc has been replaced by h in
conformance with Equation 2.6.
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A second example of a pseudo-static water distribution is shown in
Figure 2.12.  In this case there is no water table, a layer of dry soil being
beneath as well as above the moist soil.

Figure 2.12. Distribution of pseudo static water in a homogeneous
soil without a water table.

The abbreviation PWP in Figure 2.12 refers to the permanent wilting
point, a term used by soil scientists to designate the water content remaining
when plants growing in the soil permanently wilt. PWP usually is about half
of FC but is greater than the water content of air-dried soil.  The
distributions illustrated in Figures 2.11 and 2.12 do not represent conditions
of true static equilibrium because the presence of sharp transitions from wet
to dry soil imply a pressure gradient causing some flow.  The enormous
resistance in regions of dry soil results in a pseudo static condition in the wet
soil.  This situation is more easily explained by theory discussed in
Chapter 4.

Soil profiles often consist of layers having contrasting properties.  To
determine a water distribution curve for such a case, it is necessary to obtain
a pc(S) relationship on the appropriate cycle for each layer.  The distribution
of capillary pressure with elevation when a water table exists is not affected
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by the presence of contrasting strata, provided the system is truly static.
However, even an infinitesimal flow may change the distribution of
capillary pressure drastically.  Consequently, the distribution of fluids in
non-homogeneous media is better discussed in the context of theory
presented in Chapter 4.

A question relative to a soil-water system as illustrated in Figure 2.11, is
how much water drains from the soil when the water table is lowered to
another static position.  In some literature, the volume of water per unit
surface area that drains when the water table is lowered by a unit increment
is called specific yield.  In this text specific yield Sy is defined by

S dV
dDy

d≡≡ 2.14

in which Vd is the volume drained per unit surface area and D is the depth to
the water table from the dry surface layer.

Equation 2.9 provides a convenient tool for evaluating the derivative in
Equation 2.14.  In laboratory samples, Equation 2.9 is not valid for pc < pe,
but the boundary effect causing the initial desaturation is not expected to
have a significant effect in the soil profile.  This is because air can replace
water only by moving downward through the desaturated zone and not from
lateral boundaries as would be the case with small samples.

For the field soil, however, the value of S is not 1.0 at any point, even
below the water table where air is trapped.  Therefore, Se is redefined for
this case as

S S S
S Se

r

m r
≡≡

−−
−−

in which Sm is the maximum field saturation.  Also, Equation 2.9 is
modified in terms of Equation 2.5 as

S h
he
d≡≡ ⎛

⎝
⎞
⎠

λ

for h > hd, in which hd corresponds to an elevation at which pc is pd. The
meaning of pd may be modified slightly because of the fact that the
maximum water saturation is Sm rather than 1.0.
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The volume drained below the dry layer is given by

V S dhd e e

D
== −−(( ))∫φ 1

0

in which φe  is redefined as

φ φe m rS S≡≡ −−(( )).

Expressing Se in terms of h gives

V h
D

dhd e
d

h

D

d

== −− ⎛⎝
⎞
⎠

⎡⎡

⎣⎣
⎢⎢

⎤⎤

⎦⎦
⎥⎥∫φ

λ

1 .

for hd ≤ D.  Since the derivative of an integral with respect to a variable
upper limit (the lower limit being constant) is the integrand evaluated at the
upper limit,

S h
Dy e

d== −− ⎛⎝
⎞
⎠

⎡⎡

⎣⎣
⎢⎢

⎤⎤

⎦⎦
⎥⎥φ

λ

1 . 2.15

for D hd< ,

Sy == 0 .

For D hd> > ,

Sy e≈ φ .

It is often assumed by groundwater and drainage engineers that specific
yield is equivalent to the effective or drainable porosity. However, Equation
2.15 shows that this is a valid assumption only when the second term in the
brackets on the right side of Equation 2.15 is negligible.  For sandy soils
with λ about 4 or 5, effective porosity is a good approximation of the
specific yield when the depth to the water table is only about 2 hd.
However, for structured soils with pore-size indices less than 1.0, the
specific yield is significantly less than the drainable porosity unless the
water table is at a depth much greater than 2 hd.

It often happens, especially in respect to drainage design, that engineers
make a larger error than is realized by regarding specific yield as a constant.
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This fact has been pointed out by Duke (1972) who is responsible for the
derivation of Equation 2.15.  An excellent discussion of the concept of
specific yield has been presented also by Bear (1972).

2.5.2. Petroleum Reservoir

An oil-bearing rock formation is another example of a system which
sometimes may contain practically static fluids.  In such cases, the system
has fluid distributions somewhat analogous to those of a water-air system in
a soil.

A typical petroleum reservoir is a stratum of porous rock confined by
relatively impermeable rock.  Usually the petroleum fluids, oil and gas,
occupy only a small fraction of the porous stratum, and even there, they are
mixed with brine saturating the remaining and larger portion of the stratum.
If the fluids are static, the oil and gas are in the higher part of the stratum,
with gas at the apex.

Fluid carbon compounds, which make up the oil and gas, were formed in
mud buried in saline marine deposits with a shortage of oxygen.  Later the
mud underwent metamorphosis and became shale.  In this process, the heat
and pressure forced much of the oil and gas into adjacent aquifers, where it
could accumulate and become mobile.

The petroleum fluids were able to accumulate, however, only in
formations that were sealed.  Such formations were necessarily confined
between adjacent impermeable strata, and capped at the highest point.
Owing to their buoyancy, the density of most petroleum fluids being less
than that of the brine originally fully saturating the aquifer, the petroleum
fluids tended to migrate upward until blocked by the cap rock.

Often a petroleum body is found in a formation at the apex of an
anticline, as illustrated in Figure 2.13, or where the oil-bearing aquifer
slopes upward to a point where it is blocked by a fault.  In some cases,
discussed in Chapter 4, the cap rock is also porous but has an entry pressure
(oil into brine) sufficient to prevent further upward migration.  Often, the
cap rock is sufficient to provide a significant accumulation only under
dynamic conditions in which brine is flowing down slope.

Fluids in petroleum reservoirs are usually at elevated temperatures and at
pressures much greater than atmospheric. Consequently, there is nothing
completely analogous to a water table in a petroleum reservoir.  Also, the
carbon compounds often exist in two phases, i.e., liquid and gas.  The gas
occupies the apex of the petroleum body as shown in Figure 2.13.
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Figure 2.13.  Schematic of petroleum reservoir with static fluids.

Among the first questions to be considered is how much oil is
recoverable, and where is the best place to drill wells to accomplish the most
efficient recovery.  As the oil is removed, the brine migrates upward and the
gas migrates downward until eventually oil production becomes
unprofitable, either because too much brine is produced along with too little
oil, or the gas breaks through to the wells.  After gas breakthrough, the
reservoir pressure may fall precipitously, dissipating the energy available for
recovering oil.

The distribution of fluids in a virgin reservoir with static fluids is
estimated by first calculating the distribution of capillary pressure with
elevation.  The lower edge of the hydrocarbon region may be used as a
starting point for the calculation of capillary pressure.  The data needed are:

(1) the densities of each of the fluid phases, including brine,

(2) pe for oil into brine,

(3) pe for gas into oil,

(4) the elevations of the lower edges of the oil and gas bodies, or,

(5) the absolute pressures of the oil, gas and brine at some point or
points where these three phases exist,

(6) Sw, So and Sg as functions of pc for oil into brine and gas into oil.
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The value of capillary pressure at the brine-oil interfaces is given by
Equation 2.5 where h is the elevation above the bottom of the oil body and
pco is pe (oil into brine) for the rock at that position.  Similarly, pc (gas into
oil) in the upper portion of the stratum is given by Equation 2.5 where h is
the elevation above the bottom of the gas body and pco is pe (gas into oil) for
the rock at that position. The brine, oil and gas distributions can be estimated
from pc(S) curves although a complication exists within that portion of the
gas cap where three fluid phases may exist.  This is usually a relatively
narrow zone, however.

A possible distribution of fluids existing in such a reservoir is shown in
Figure 2.14, in which the distribution is with respect to elevation above the
bottom of the oil body.

Figure 2.14.  Distribution of fluids in a petroleum reservoir.
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Complications are caused by stratification as in the case of soils.
Furthermore, a stratum of oil in a state of true equilibrium is rarely found
even for virgin reservoirs.  Often the brine is found to be flowing slowly in
one direction or another, and this has a large effect on the distribution of
fluids.  In the static case, however, brine saturation decreases and oil
saturation increases with elevation until the brine saturation is residual.  At
some elevation, a gas body begins, at which level pc (gas into oil) is pe for
gas into oil.  Above this level, the oil saturation decreases and brine remains
at the residual saturation.  At a higher level, the oil body may disappear
completely so that only gas and residual brine remain. The reservoir portion
containing only gas and residual brine is called a gas cap.

2.5.3. Fluids in a Porous Solid in Equilibrium with a Capillary
Barrier

A sketch of a typical capillary-pressure cell is shown in Figure 2.15.  As
explained in Section 2.3.5, a pressure cell is used to control capillary
pressure at one boundary of a saturated porous medium, that is, at the
boundary of a capillary barrier.  When a porous sample is placed in contact
with the barrier, its saturation adjusts until the capillary pressure of the
sample at the point of contact reaches the controlled value.

Figure 2.15.  Capillary-pressure cell.

In reference to Figure 2.15, if po is maintained in the liquid at the top of
the barrier and a pressure pa in the gas within the chamber, the following
relationships hold at equilibrium:
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At z = 0

p p pc a o== −− .

At any z,

p p p gzc a o w== −− ++ρ .

At po = 0 and z = 0,

p pc a== .

It is necessary that the temperature and vapor pressure inside the sealed
chamber also be allowed to reach equilibrium.  For example, if the chamber
is connected to an air pressure regulator, provision should be made to
minimize diffusion of the wetting-fluid vapor through the air line to the
regulator.

2.5.4. Fluids at Equilibrium in a Porous Solid in a Centrifuge

A small sample of porous material (containing a wetting liquid) rotated
about an axis in a centrifuge is sketched in Figure 2.16.

Figure 2.16.  Schematic of porous sample in centrifuge.

The condition of the liquid in the sample (after the centrifuge has been
rotated for a sufficient time at a constant angular velocity ω ) can be
analyzed as a problem of statics.  The fluid elements no longer move with
respect to the solid matrix.  At this time, the pressure gradient in the liquid is
such as to balance the centrifugal force and gravity. In this case gravity can
be ignored because centrifugal force with a magnitude of about g x 103 is
imposed.



Mechanics of Immiscible Fluids in . . .

66

Since the centrifugal force is in the outward direction on fluid elements,
the negative pressure gradient must act inward.  The balance of forces is
given by

−− ++ ==
dp
dr

rw ρρωω2 0 .

where r is a distance outward from the center of rotation, and ωω is the
angular velocity .  If the density and pressure of air are taken to be zero,

dp r dr drc == −− ++ωω ρρ2 .

Integrating gives

p r cc == −− ++
ωω

ρρ
2

2
2 .

A consideration of the physics of this system indicates that on the
outflow face of the sample, at r = R, the liquid pressure is only negligibly
greater than the pressure of surrounding air.  Thus

c R≈≈
ωω

ρρ
2

2

2

and

p R rc ≈≈ −−(( ))ωω
ρρ

2
2 2

2
. 2.16

where R is the radius at the outflow end of the sample.

Capillary pressure varies from zero where the radial distance is R to a
higher capillary pressure towards the center of rotation, depending upon the
rate of angular rotation.  In practice capillary pressure can be made very
large at a short distance from the outflow face.  If it is desired to determine
the residual saturation for a sample, a porous plug is placed in contact with
the outflow face of the sample.  This, in effect, moves the outflow face of
the system outward from the sample and places the entire sample in the high
capillary pressure region.  When the rotation of the centrifuge is stopped,
negligible redistribution of water in the sample takes place, because the
entire sample is at residual saturation and has a negligible water
conductivity.
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PROBLEMS AND STUDY QUESTIONS

1. Consider a sealed tube of soil partially saturated with water. A small
temperature differential is maintained continuously across the ends of
the tube. (a) Will the tube eventually reach a condition of thermal
equilibrium? (b) Will it reach a condition of mechanical equilibrium?
Give reasons for each answer.

2. Consider the same situation as described in question 1, except that the
soil is replaced by a hypothetical medium having pores small enough to
prevent bulk flow (too small to hold fluid elements).  Answer question
(a) and (b) above and give reasons.

3. Explain why pressure p is treated as a scalar quantity, whereas the
surface stress, σσ, is treated as a vector.

4. Explain why (when balancing forces on a reference element of fluid) it
is not necessary to consider surface forces produced at solid-fluid
boundaries, whereas for macroscopic reference elements, this is
necessary.

5. Give a possible reason why soil water at a negative gauge pressure of
5 atmospheres does not cavitate, whereas water in pipes usually
cavitates at a negative pressure of 1 atmosphere.

6. What is the meaning, if any, of capillary pressure in a soil at a point a
few centimeters above a water table?  How could this capillary
pressure be measured?



Mechanics of Immiscible Fluids in . . .

68

7. Consider two capillary tubes, one having a circular cross section, and
the other a square cross section. If both tubes have the same cross-
sectional area, which tube is likely to have the higher capillary rise?
Explain.  Answer the same question in respect to a capillary tube
having a rectangular cross section, with one side being twice the
dimension of the other.

8. Consider a straight capillary tube with  uniform cross-sectional area but
with varying cross-sectional shape.  Would such a tube be expected to
exhibit hysteresis in an analogous way to the tubes illustrated in Figure
2.5?  Explain.

9. It is supposed that the small amount of desaturation occurring at
capillary pressures less than the entry pressure is due to retreating
interfaces at the sample boundary. Describe a possible experiment to
provide evidence of this premise.

10. Would the correlation between residual saturation (found by
extrapolation) and field capacity be better for a sandy soil or a fine-
textured soil with a well-developed structure?

11. If a porous sample 5 cm in length is placed in a centrifuge to determine
capillary pressure-desaturation curves, what length of sample would
have to be employed by the "long-column" method to obtain the same
range of capillary pressures?  Assume the centrifuge is operated at the
usual angular velocity.

12. Would you expect the long-column procedure for determining capillary
pressure curves to be popular in petroleum industry for characterizing
porous rocks?  Explain.
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13. Would you expect a piezometer to be equally as effective as a
tensiometer for measuring the pressure of water in soil within the root
zone of crops?  Explain.

14. Why would one want to determine the pressure of soil water within the
root zone of crops?

 15. Would you expect the value of λ  in the Brooks-Corey equation to be
larger for a medium consisting of freshly crushed quartz particles, or
for sand taken from a swift flowing river bed?  Assume that both media
have the same grain-size distribution.

16. Other things being equal, would you expect a packing technique that
results in a smaller porosity to result in a larger or smaller value of λ
for a given granular sedimentary material in a laboratory column?

17. If the entry pressure head measured with air into water is 50 cm for a
particular sandstone, what would you expect entry pressure (expressed
in atmospheres) to be for mercury into air?

18. Consider a soil containing static water, with a water table at a fixed
elevation beneath the surface.  If the soil texture varies in horizontal
planes, describe qualitatively how you would expect the saturation to
vary in horizontal planes in respect to the entry pressure.

19. Explain why the term "pseudo equilibrium" is used to describe the
condition of water in fallow soils.
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20. It is desired to locate the lower edge of an oil body and also the lower
edge of a gas body in a static petroleum reservoir. Assuming that it is
possible to measure the pressure of brine, oil and gas independently at
the bottom of an observation well, explain where such a well might be
drilled to obtain the necessary data from a single hole.  Describe all the
data needed and explain how it would be used to make the necessary
calculations.

21. The Brooks method (of determining capillary pressure-saturation
curves on the wetting cycle) reduces the importance of excellent
contact between sample and capillary barrier as compared to the
pressure-cell procedure.  Explain.

22. When using a centrifuge to obtain the moisture equivalent of a sample
of porous rock, it is important to obtain good contact between the
sample and a porous plug at the outer face of the sample.  Explain.

23. Sketch a hypothetical capillary pressure-saturation curve such that the
specific yield would not be a function of depth to the water table.
What would the displacement pressure be for this case?

24. The U.S. Bureau of Reclamation assumes a constant value of specific
yield in their procedure for the design of drainage systems.  List all of
the conditions that are necessary for this to be a valid approximation.

25. Would you expect that the use of mercury injection (to obtain capillary
pressure-saturation curves for characterizing the pore-size distribution)
to be more valid for a sandstone containing negligible clay or for one
that contained considerable montmorillonite?  Explain.
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Chapter 3

EQUATIONS  OF  FLUID  FLUX  IN
POROUS  MEDIA

3.1. FLUID MOTION

According to Newton's second law, the rate of change of momentum
with respect to time (of an element of mass) is equal to the resultant force
acting on the element.  If the mass of the element does not change with time,
Newton's law implies that the product of mass and acceleration is equal to
the force.  In the following analyses, Newton's law is written in respect to a
fluid particle, as defined in Section 1.4.2.  It is assumed that the particle
undergoes negligible divergence.

In this case, the only force acting on the particle, other than the driving
forces that act also on static elements, is fluid shear. With this simplification,
Newton's law indicates that, for any direction i,

ρρ ρρ
∂∂
∂∂

du
dt

g
p
x

F sheari
i

i
i== −− ++ (( )) . 3.1

In Equation 3.1, all force terms are expressed on a per volume basis. The left
side represents the product of mass and acceleration, and the right side is a
summation of force components in the i direction.

The first two terms on the right represent the driving forces as described
in Section 2.1.1.  The terms representing acceleration and shear force
components, however, require further explanation.

3.1.1. Fluid Velocity

The component of velocity ui refers to motion of the center of mass of a
fluid particle. It does not refer to the motion of individual molecules or ions,
or to any species of molecules that constitute the fluid mass.  It is required,
for the analysis presented here, that the particle contains the same mass at all



Mechanics of Immiscible Fluids in . . .

72

times as it moves in space, but the individual molecules contained in the
element are continuously interchanging with those of neighboring elements.
Consequently, the fluid particle is an abstraction rather than a physical
entity.

It is assumed that the derivatives of ui (of any order) with respect to the
space coordinates exist.  Thus, ui is regarded as an analytic function of the
space coordinates throughout a fluid phase including the solid boundaries.
This assumption has limitations as explained in Section 3.7.2.

3.1.2. Fluid Acceleration

The derivative dui/dt is the "total" component of acceleration in the
direction i.  Noting that, in general, ui is a function of orthogonal space
coordinates, xi, xj, and xk , as well as t,
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Dividing by dt gives
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in which ui, uj, uk are velocity components in the xi, xj, and xk directions
respectively.

Writing this with the summation convention results in
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, 3.2

the repeated subscript j indicating a summation over three orthogonal
coordinate directions.

The first term on the right of Equation 3.2 is the convective acceleration
due to velocity variations (direction as well as magnitude) with respect to
position in space.  The term ∂ui/ ∂t is called "local" acceleration and refers
to the variation of ui (at a particular point in space) with respect to time.
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3.1.3. Fluid Shear

A resisting force acting tangentially to the surface of moving particles is
called shear.  It is proportional to the area over which it acts, and depends on
the component of velocity gradient normal to the plane in which it acts.
Shear on a particular face of a fluid element (say an element consisting of a
cube) is a force in the direction of motion of a faster moving adjacent
element.  If the motion of the adjacent element is slower, the force of shear
is in the opposite direction on the face under consideration.  The force/area
is called intensity of shear τ .

Shear is a tensor quantity.  In order to specify τ at a particular point, it is
necessary to identify the orientation of the plane under consideration and the
direction within this plane as well as its magnitude.  Thus, τ ij means the
intensity of shear (at a particular point) in a plane normal to i in the
direction j.

In analyzing the resultant force on a volume element, say a cube, it is
necessary to consider only the shear at the faces of the cube.  This is because
shear on other planes within the cube exerts equal force in opposite
directions on adjacent parts of the same element; that is, the resultant effect
of shear on all but the surface faces is zero in respect to a particular element
under consideration.

The resultant of shear on a fluid particle of any shape can be expressed
generally by

F dA
A p

== ××∫ σσ 3.3

in which σσ is the surface force, dA is a vector having the direction of the
outer normal to the surface and the magnitude of a differential segment of
the surface, and Ap is the entire surface area of the particle.  Note that σσ is
not τ , because it may have a normal as well as a tangential component.  The
cross product σσ ×× dA, however, evaluates only the tangential components.
Unlike σc appearing in Equation 2.1, σσ is not conservative, and cannot be
related to volume and temperature in an equation of state. Furthermore F,
unlike pressure as defined by Equation 2.1, is a vector.

Although, Equation 3.3 is useful for visualizing the effect of shear in
creating a resultant force on a volume element, it does not help in evaluating
this force.  A more useful expression for Fi, the component of shear in the
i direction, can be developed in respect to the spatial distribution of
velocity.  A derivation of the latter expression, when a velocity component
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is varying in three coordinate directions, is beyond the scope of this text.
Such a derivation is given in all advanced texts on fluid mechanics.
However, a derivation of Fi, for the simple case of 1-dimensional flow,
provides a relationship in the same form as the general relationship and may
provide some insight into the way shear acts.

A case is considered in which ui is varying in an orthogonal direction j
and components uj and uk are zero.  The space coordinate in the j direction is
xj.  In this case it is assumed that

τ μ
∂

∂ji
i
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u
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== ,

in which μ is the viscosity of the fluid.  The partial derivative ∂ ∂u xi j/
represents the rate of angular deformation (in planes normal to k) of volume
elements of the fluid.  The assumption that the partial derivative is linearly
related to the shear stress means that the fluid is a Newtonian viscous fluid.
For such a fluid, in the general case of 3-dimensional flow, it is possible to
show that
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However, in the case under consideration, the first term in the parenthesis is
zero because uj is zero.

A particle having the shape of a cube with a volume δl( )3 is considered,
as illustrated in Figure 3.1.

Figure 3.1.  Shear on a cube undergoing 1-dimensional deformation.
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The direction of shear in the upper face τu is indicated in Figure 3.1, as
is the direction of shear in the lower face τ

l

.  These directions imply that
dui, also shown in the figure, is positive.  In other words, ∂ ∂u xi j/  is
positive for the case illustrated.

For this case,
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Although Equation 3.4 was derived for a case in which all velocity
components except ui are zero, and ui is varying only in the j direction, it has
the same form as the expression for the case of 3-dimensional flow.  In the
latter case
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which conforms with the summation convention.

In vector notation,
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2
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x x
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j j
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3.1.4. Equation of Fluid Motion

Substituting Equation 3.2 and 3.4 into Equation 3.1 gives
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== −− ++

2

. 3.5

Equation 3.5 is the Navier-Stokes equation of fluid motion for Newtonian
viscous fluids undergoing negligible divergence.

Equation 3.5 can be simplified further for application to flow in porous
media.  If the medium is homogeneous, the convective acceleration

u
u
xj

i

j

∂∂

∂∂
,

when integrated over a macroscopic volume, is zero for uniform, rectilinear
macroscopic flow [Hubbert (1940)]. The velocity (statistically) is unchanged
in respect to both magnitude and direction as a result of fluid passing
through a macroscopic volume element of the medium.  If ui is small, ∂ ∂u t/
is also small.  Usually both local and convective terms are small even for
non-homogeneous porous media or for flow that is not uniform or
rectilinear. Neglecting the terms in Equation 3.5 that are insignificant for
flow in porous media gives

∂∂
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ρρ µµ
∂∂
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−− ==
2

. 3.6

Both Equation 3.5 and 3.6 are written in respect to fluid particles totally
within a single fluid phase.  Elements that include some of each phase are
excluded.

3.2. POTENTIALS

It is sometimes convenient to express force components acting on fluid
particles as negative gradients of scalar quantities called force potentials.
Potentials are related to potential energy, implying a capacity to do work.
However, it is possible to define force potentials only in respect to force
fields that are conservative [Hubbert (1940)].
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The potential energy of an element of fluid (with respect to a particular
field of force) is a function of its position in the field.  The value of the
potential (when it exists) is a measure of the work that would be done by a
particular force field on a fluid particle in moving from a given position to a
datum position, providing this work could be done reversibly.

The existence of a potential of a particular force field does not depend
upon whether or not a fluid particle physically could be moved from one
point to another reversibly.  The existence depends, instead, upon the way
the force is related to the space coordinates.  A force field for which a scalar
potential can be defined is said to be conservative.

A necessary and sufficient condition for a force field to be conservative
is that the work integral

f ds• ==∫ 0

where f is the force considered, and ds is a differential displacement vector
in the field.  The circle indicates that the integral has been taken about any
closed path.  If this condition is satisfied, it is possible to define a scalar Φ
by

ΦΦ ≡≡ −−∫∫ f ds
s

s

o

• 3.7

where Φ is the potential at the position s, and so represents the position of a
datum in respect to which Φ is evaluated.  The negative sign of the
integrand conforms with the standard sign convention for potentials.  The
definition is ambiguous if the work integral around every closed path is not
zero.

3.2.1. Pressure Potential

The significance of a potential (when its definition is valid) is that the
negative gradient of the potential represents the force acting at any point in
the system.  Forces that are a consequence of motion (in this case shear) and
result in the dissipation of energy in the form of heat are non-conservative.
Driving forces (those that tend to produce the motion) are sometimes
conservative.  For example,

p
p
s

dss
s

s

o

≡≡ −− −−



∫∫
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,
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if pso is set equal to zero.  The value of the line integral is independent of the
path so the definition of ps is not ambiguous. In this case the force field is
conservative and a potential exists.

Pressure, therefore, is a potential having the dimensions of
energy/volume, the negative gradient of which is the force per unit volume
resulting from the spatial distribution of pressure.  Whereas p is a scalar, the
gradient of p,

∂∂
∂∂

p
x

e
i

i ,

is a vector and as such has a particular direction associated with it,
depending upon the relative magnitude of its components,

∂∂
∂∂

p
xi

.

In physics, it is customary to define force potentials with the dimensions
of energy/mass. However, a pressure potential having dimensions of
energy/mass does not exist for the general case.  If such a potential existed it
would be defined by

ΦΦp
s

s p
s

ds
o

≡≡ −− −−
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∂∂ ρρ
∂∂

( / )
.

The integral is path independent only if ρ is constant with respect to s, or
varies only with p.  Cases where density varies only with pressure are called
"barotropic" cases.

The error resulting from regarding p/ρ as a force potential (for a case of
ρ varying independently with the space coordinates) can be understood by
arbitrarily defining Φ  as p/ρ.  Note that

−− == −− −−
∂∂ ρρ
∂∂ ρρ

∂∂
∂∂

∂∂ ρρ
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( / ) ( / )
.

p
x

p
x

p
xi i i

1 1

Clearly, the component of force in the i direction (due to the pressure
gradient) is −( ) ( )1/ /ρ ∂ ∂p xi , but the second term on the right is not a force
component.  It is an error term resulting from arbitrarily defining Φ  as p/ρ.
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M.K. Hubbert (1940) interpreted the pressure potential as representing
potential energy of compression, that is, work done against compressive
forces in increasing the pressure of a fluid element from po to p.  In fact,
pressure potentials have no relation to compressibility.  Evidence for this is
the fact that the coefficient of compressibility does not appear in the integral
defining Φg.  A correct interpretation of Φg is the work done in moving a
reference element of fluid from a datum position to a position under
consideration against forces generated by pressure gradients.
Unfortunately, the misinterpretation of pressure potentials, apparently first
introduced by Hubbert (1940), has been repeated in many textbooks dealing
with fluid flow, especially in textbooks dealing with groundwater
hydraulics.

3.2.2. Gravitational Potential

The potential Φg due to gravity is given by

ΦΦg
s

s

g ds
o

≡≡ −−∫∫ •

where g is the force/mass due to gravity.  Where the elevation difference is
small enough that changes in g can be ignored,

ΦΦg gh== ,

where h is the elevation difference between so and s.  Here Φg has the
dimensions of energy/mass.

A gravity potential having the dimensions of energy/volume is defined
by

ΦΦgv gh≡≡ ρρ ,

in which g is a scalar representing the magnitude of g.  Taking the negative
derivative of ΦΦgv  with respect to xi gives

−− == −− −−
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,

providing g is a constant.  The first term on the right, is a valid expression
for the component of force/volume due to gravity, but the second term is an
error term having no relation to a force component.
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The magnitude of − ( )gh xi∂ρ ∂/  depends on the elevation h as well as
on the component of the density gradient. Its importance depends on its
magnitude relative to that of − ( )ρ ∂ ∂g h xi/  and − ( )∂ ∂p xi/ .  A potential
evaluated as ρgh, therefore, should be used with caution, and in particular, it
should not be assumed that the error is unimportant when the variation in
density is small.  The error, if the system is large, can be important even
with small density differences, such as, when ∂ ∂h xi/  and ∂ ∂p xi/  are both
of the same order as ∂ρ ∂/ xi .

3.2.3. Combined Potentials

When it is possible to define two or more force potentials in respect to
their individual force fields, it is permissible to add the potentials to obtain a
total potential Φ t .  The negative gradient of Φ t  gives the combined force
component in the direction i.  It is impossible to combine Φp  and Φg,
regardless of the dimensions in which these potentials are expressed, unless
ρ is constant or depends only on p.  Either Φp  or Φg is undefined in the
general case.  For the special case of a constant density, however, it is very
convenient to combine Φp  and Φg. This requires that both component
potentials have the same dimensions and refer to the same reference
element.  Two ways of doing this are in common use:

(1) A potential p* is defined by

p p gh∗∗ ≡≡ ++ρρ 3.8

where the dimensions are energy/volume.  The potential p* is called
piezometric pressure.

(2) A potential H is defined by

H
p
g

h≡≡ ++
ρρ

3.9

where the dimensions are energy/weight or length.  H is called piezometric
head.

Occasionally some authors have used a third combined potential,

ΦΦM
p

gh≡≡ ++
ρρ

. 3.10

having the dimensions of energy/mass, but the latter is seldom used in either
hydraulics or fluid mechanics.
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Combined or "total potentials" should be used with caution.  Many early
investigators, for example, Richards (1928), called piezometric pressure a
"total" potential.  This is a valid concept provided ρ is constant.  In later
years, however, some investigators [notably Edlefsen and Anderson (1943)]
attempted to extend the concept of total potential to include terms not
pertaining to forces on fluid particles as defined in this text.  For example,
they included terms pertaining to the motion (of individual species of
molecules, e.g., water) in response to osmotic and temperature effects.  As
pointed out by Corey and Kemper (1961), this procedure led to erroneous
conclusions that have been widely disseminated among soil scientists and
plant physiologists.  A "total" potential is defined only if:

(1) All force fields for which potentials are defined are conservative.

(2) All component potentials are in respect to a common reference
element.  It is not valid, for example, to add an osmotic potential (in
respect to water molecules) to a potential relating to fluid particles.

(3) All potentials are force potentials in the Newtonian sense.  For
example, so-called "forces" pertaining to molecular diffusion in
response to temperature and concentration gradients have no
independent effect on the acceleration of the center of mass of a
fluid particle.

Convective and diffusion processes should be treated as separate
transport mechanisms, and the fluxes combined after each mechanism has
been evaluated independently [A. T. Corey and A. Klute (1985)].

3.3. VISCOUS FLOW

Equation 3.6 is a simplified form of the Navier-Stokes equation
applicable where divergence of the velocity vector and fluid inertia are
negligible.  Flow under such circumstances is called "viscous flow,"
implying that the resistance force is due only to fluid viscosity.  Writing
Equation 3.6 in terms of the potential function p* results in

∂∂
∂∂

µµ
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j j
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==
2

, 3.11

which is a valid approximation for flow in porous media under ordinary
potential gradients provided the fluid density is constant.
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Equation 3.11 is applicable to flow through the pore space of porous
media.  However, it is necessary to describe the geometric boundaries of the
pore space mathematically to solve the differential equation.  The pore
space, however, has a very complex geometry. Even if the complex
geometry could be described, it is doubtful that the equation could be solved
for such boundaries.  The approach used in the following analyses is to
select highly idealized and simplified models involving viscous flow, and to
solve Equation 3.11 for these cases.  By this procedure, an insight is
provided into the behavior of fluids in porous media.

In addition to the assumptions, previously discussed, that were accepted
for the derivation of Equation 3.11, additional assumptions are made in
describing the boundary conditions for the flow.  These are:

(1) At boundaries where a fluid is in contact with a solid, fluid velocity
relative to the boundary is zero. If this were not true, derivatives of
u with respect to the normal to boundaries would be infinite and an
infinite shear at boundaries would be implied.  This is not in
conformance with the continuum assumption that velocity is an
analytic function of the space coordinates at all points including the
boundaries.

(2) At boundaries where a liquid is in contact with a gas, shear is
assumed to be negligible.  This assumption is based on the fact that
the viscosity of common liquids are more than 50 times the
viscosity of common gases.

(3) Symmetry of velocity distribution is assumed where there is no
reason to postulate a lack of symmetry.

3.3.1. Flow in a Film

The first model considered is a liquid flowing steadily over a flat solid
boundary in a film of uniform thickness d.  The flow is 1-dimensional in the
direction i; that is, uj and uk are zero.  Such a model is illustrated in Figure
3.2, in which a section of the film (in a plane parallel to i and normal to the
solid boundary) is shown.

Because all components of u orthogonal to ui are zero, the right side of
Equation 3.11 can be written as an ordinary second derivative, that is

µµ
d

dy
du
dy




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Figure 3.2.  Flow in a film over a flat solid boundary.

in which y is a coordinate measured from the surface of the film in a
direction normal to the solid boundary and also to the direction of u.  The
subscript i is dropped because u has zero components in orthogonal
directions.  Likewise, the left side of Equation 3.11 can be written as an
ordinary derivative since there is no flow and no component of the potential
gradient orthogonal to i.  Letting x be the coordinate in the i direction results
in

dp
dx

d
dy

du
dy
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==
⎛
⎝
⎜

⎞
⎠
⎟μ .

The piezometric pressure does not vary with y because there is no flow
normal to the boundary. Consequently, the derivative of piezometric
pressure with respect to x can be treated as a constant when integrating with
respect to y.  Integrating with respect to y gives

dp
dx

y
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Since τ  at an air boundary is assumed to be zero
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therefore
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Integrating a second time gives

y dp
dx
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2

2µµ
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Evaluating ′c  on the basis that u is zero at the solid boundary gives

u
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2
2 2
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which indicates that the velocity distribution is parabolic.

The average velocity u  is defined by the expression

u
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o
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.

Substituting Equation 3.12 into this expression and integrating gives

u
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The discharge through the film per unit width normal to the flow is given by
ud .

3.3.2. Flow Through Slits

The second case considered also involves 1-dimensional flow.  The
model is like that for the film except that the upper flow boundary, as well
as the lower, is solid.  This model is illustrated in Figure 3.3.  Again a

Figure 3.3.  Flow through a slit of uniform thickness.

ud .

3.3.2. Flow Through Slits

The second case considered also involves 1-dimensional flow.  The
model is like that for the film except that the upper flow boundary, as well
as the lower, is solid.  This model is illustrated in Figure 3.3.  Again a

ud .

3.3.2. Flow Through Slits

The second case considered also involves 1-dimensional flow.  The
model is like that for the film except that the upper flow boundary, as well
as the lower, is solid.  This model is illustrated in Figure 3.3.  Again a

u  is defined by the expression
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section normal to the boundaries and parallel to the flow is considered.  The
coordinate in the direction of flow is designated as x, and the coordinate
orthogonal to both x and the boundaries is y. The origin  for y is at one of
the solid boundaries.

The flow equation reduces to an ordinary differential equation as for the
case of flow over a plate.  Integrating with respect to y twice, and using the
assumption, that because of symmetry, du/dy is zero where y is b/2, and that
ui is zero where y is either zero or b, the result is

u y by
dp
dx

== −−(( ))
∗∗1

2
2

µµ
. 3.14

Also,

u
b dp
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== −−

∗∗2

12µµ
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3.3.3. Flow Through Tubes with Circular Cross-sections

In the case of flow through circular tubes, Equation 3.11 cannot be
reduced to an ordinary differential equation in an orthogonal coordinate
system.  However, in cylindrical coordinates it is an ordinary equation,
assuming the flow is symmetrical about the axis of the tube.  Such a tube is
shown in Figure 3.4.

Figure 3.4.  Flow through a capillary tube.

In cylindrical coordinates, the operator

∂∂
∂∂ ∂∂

2

x xj j

Figure 3.4.  Flow through a capillary tube.

In cylindrical coordinates, the operator
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becomes
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in which ρ is the radial coordinate with origin at the axis.  For the
symmetrical case, the two terms on the right are zero.  Consequently,
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Again using the argument that du d/ ρ is zero at the center and u is zero at
the solid boundary, the result is

u r dp
dx

== −−
∗∗2

8μμ
, 3.16

where r is the radius of the tube.  Equation 3.16 is known as Poiseuille's
equation.

3.3.4. Generalized Equation for Flow Through Straight Conduits

By induction, after examining Equations 3.13, 3.15 and 3.16, one may
conclude that an equation of the form

u D
k

dp
dxs

== −−
∗∗2

μμ
3.17

describes the average flux rate for small uniform conduits in general.  In
Equation 3.17, D is a characteristic length dimension describing the size of
cross-section and ks is a factor depending on the shape and the dimension
selected.  For example ks is 32 instead of 8 if the diameter had been used
instead of the radius to describe the size of tube shown in Figure 3.4.

Equation 3.17 states that the average velocity (and, consequently, the
discharge) is proportional to the driving force in a small straight tube.  It also
indicates that the constant of proportionality is directly related to a
characteristic length squared and is inversely related to fluid viscosity.

⎡⎤
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3.4. HYDRAULIC RADIUS

Since the factor ks in Equation 3.17 depends on the choice of a length
dimension to describe the tube size, it is desirable to select a dimension that
can be defined in an unambiguous way for all cross-sectional shapes. It is
also desirable to select a dimension that correlates well with discharge for a
given driving force and minimizes the range of ks.

The length used to describe the tube size is the "hydraulic radius" R
defined by

R
A

wp
≡≡ 3.18

in which A is the area of cross-section normal to flow and wp is the length
of the wetted perimeter of the flow section in the plane of A.

For the tubes analyzed in Sections 3.3.1, 3.3.2 and 3.3.3, the value of R
is given by d, b/2 and r/2 respectively.  By replacing the dimensions d, b and
r with their equivalent in terms of R, the equations for average velocity for
the film and slit become

u
R dp

dx
== −−

∗∗2

3µµ
, 3.19

and that for the circular tube becomes

u
R dp

dx
== −−

∗∗2

2µµ
  . 3.20

For films, slits, and tubes, use of the hydraulic radius as a characteristic
length reduces the range of ks to a factor varying from 2 to 3.

However, the use of R does not reduce the range of the shape factor for
all shapes.  For example, consider a tube of about the same cross-sectional
area as that shown in Figure 3.4, but with a shape as illustrated in Figure 3.5.

For a case of laminar flow of a viscous fluid, u  is not greatly different
from u  for a tube with a smooth bore of the same cross-sectional area.  As
long as turbulence is not a factor, the spatial distribution of velocity in the
main part of the tube is affected only slightly by the local variations near the
perimeter.  Yet the value of R may be smaller by a large factor in the tube
with the extended perimeter.  It is clear that the hydraulic radius must be
used with caution.

u  is not greatly different
from 
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Figure 3.5.  Cross-section of tube with extended wetted perimeter.

3.4.1. Effect of Tube-size Distribution

One way to overcome the problem posed by shapes analogous to that
shown in Figure 3.5 is to regard the flow region in the vicinity of the rough
perimeter as being separate from the main portion of the tube.  It is
theoretically possible to evaluate an R for each little crevice around the
boundary, and to sum the flow contributions of the crevices, which in the
case illustrated would be negligible.  An analogous procedure is used in
hydraulics in evaluating flow through river channels with irregular cross-
sections.

In a similar way, it is possible to evaluate the flow through a model
consisting of straight circular tubes of varying diameter as shown in Figure
3.6.  Assuming that Equation 3.20 applies to each individual tube, it is

Figure 3.6. Cylinder of solid material with a number of round holes
bored parallel to its long axis.

possible to find a valid value for u  for the model as a whole by adding the
contribution to the discharge of each individual tube and then dividing by

u for the model as a whole by adding the
contribution to the discharge of each individual tube and then dividing by
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the total cross-sectional area. Applying Equation 3.20 to flow through each
hole in this model results in

Q
R dp

dxi
i== −−

∗∗4
2
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µµ
,

where Qi is the discharge through a particular hole with hydraulic radius Ri.

Consequently, for the bundle as a whole,
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Using the relationship that the total cross-sectional area of the bulk system is
equal to the total pore area divided by φ gives
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in which q is the ratio Q/A, A is the total cross-sectional area of the cylinder,
and
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The quantity R2  is a weighted mean value of R2.

In general, R2  is larger than the square of a mean value of R given by
the ratio of total tube volume to the total internal surface area of a tube.  This
can be verified by considering a model with two holes with Ri equal to 1 and
3 respectively.  For this case, ( )R 2 is 6.25 whereas R2  is 8.2.  The disparity
becomes much greater as the ratio of larger to smaller Ri values increases.
The disparity is enormous when the Ri differ by orders of magnitude.

3.4.2. Hydraulic Radius Related to Pore size

As explained in Section 3.4.1, an expression which gives an average
value of R, for a tube of non-uniform cross-section, is the internal volume of
the tube divided by its internal surface area. A statistically equivalent

( )R 2 is 6.25 whereas 
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expression applicable to a porous medium is φ / s.  If the volume of the
reference element is as small as a portion of the pore space between
individual grains, the volume divided by the internal surface approaches the
value of R for that portion of the pore space.  As explained in Section 2.4,
one way to evaluate A/wp for a portion of pore space is to assume that it is
inversely related to the value of capillary pressure when an interface is
stretched across the section of pore space under consideration.

Capillary pressure, therefore, should be a measure of the largest pore-
size or R value for that part of the pore space occupied by the wetting fluid
at a particular saturation.  It is also a measure of the smallest R value of that
part of the pore space occupied by the nonwetting fluid.

3.4.3. Value of 
—
R2 as a Function of S

As S decreases, the maximum  R for the wetting phase (or minimum R
for the nonwetting phase) also decreases.  The size of the pore space is
characterized by R for all of the space occupied by a particular fluid.  For
the wetting phase,
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and for the nonwetting phase,
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Equations 3.22 and 3.23 can be modified for a 3-phase fluid system.
Equations similar to Equations 3.22 and 3.23 were first proposed by Purcell
(1949).  Purcell based his derivation on a model of a porous medium
consisting of a bundle of capillary tubes.

3.5. TORTUOSITY

A porous medium is not a bundle of straight tubes, or even a bundle of
sinuous tubes.  An appropriate model must consist of a network of
interconnected channels.  Fluid particles flowing through granular porous
media follow a sinuous path.  Although in granular media the pore space is
interconnected, some aspects of the effect of the sinuous path can be
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deduced by considering a model consisting of a single sinuous channel, as
shown in Figure 3.7.

Figure 3.7.  Solid with a single sinuous channel.

It is possible to measure the length l  in the direction i from the point
where the piezometric pressure is p1

∗ to a point where it is p2
∗ . However, it is

not possible to determine directly the distance l  that fluid particles must
move in passing from point 1 to point 2.  The path length is designated by
le, implying this is the effective distance of flow between point 1 and
point 2. The fact that   l le /  is greater than 1.0 has two important
consequences:

(1) The average value of  −
∗∂ ∂p e/ l  acting on the fluid is

 

p p

e

1 2
∗∗ ∗∗−−
l

or

 

l

l le

p p1 2
∗∗ ∗∗−−






 .

(2) The average component of velocity in the i direction is

  
u ui

e
t==

l

l
,

in which  ut  is the average velocity tangential to the flow path.

Calculating ut  (knowing only R for the tube and the values of p1 and p2),
gives

u
R
k

p p
t

s e
==

−−


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
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1 2

µµ l

ut  is the average velocity tangential to the flow path.

Calculating 
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or

u
R
k

p p
i

e
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l

l
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In differential form this is written as

u
R

k T
p
xi

s i

== −−
∗∗2

µµ
∂∂
∂∂

, 3.24

in which T is called tortuosity   ( / )l le
2 . The ratio   l l/ e may also be

interpreted as the average cosine of the angle of ut  with respect to the
direction i.

According to Wyllie and Spangler (1952), T for typical granular porous
media, when fully saturated with a single fluid, is about 2, which implies
that the average angle of the fluid path to the macroscopic flow direction is
about 45 degrees.  This also was observed to be a good approximation by
Sullivan and Hertel (1942).  By assuming a random-walk model with the
preferred angle being zero, and the probability decreasing to zero at an angle
of π , it is possible to deduce that the average angle is π/4 which agrees with
the observation that the value of T is about 2 for the fully saturated case.
Values of T may differ from 2 significantly, however, for non-isotropic
media.

3.5.1. Tortuosity as a Function of Saturation

As the wetting-phase saturation of a porous medium decreases, fluid
particles of the wetting phase must take an increasingly longer path in
moving between two points.  This is because the particles cannot take a
direct route across pore spaces because the central portion of the spaces are
occupied by the nonwetting phase.  After sufficient desaturation takes place,
the nonwetting phase has a finite tortuosity, and this tortuosity decreases
with decreasing liquid saturation.

Burdine (1952) and Corey (1954) found that the tortuosity of a wetting
phase T is inversely related to Se

2 ; that is,

T
T

S
S w

e
1 0 2.







 ≈≈ 3.25
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in which T1.0 is the tortuosity of the wetting phase when Se is 1.0. The same
investigators also found that for the nonwetting phase

T
T

S
S nw

e
1 0 2

1. .








 ≈≈ −−(( )) 3.26

Both Equation 3.25 and 3.26, however, are valid only for isotropic media.
Wyllie and Gardner (1958) later deduced the same T(Se) functions from
probability considerations using a capillaric model for a porous medium
consisting of randomly interconnected bundles of tubes.

3.6. KOZENY-CARMAN EQUATION

Kozeny (1927), and later Carman (1937) and Fair and Hatch (1933)
developed an equation for ui for a fully-saturated granular media by
substituting the average value of R (given by φ / s) into Equation 3.24.
Noting that the discharge Q through an area A of the porous medium normal
to i is uiφ , they obtained

q
k p

xi
i

== −−
∗∗

µµ
∂∂
∂∂

in which

k
k Tss

≡≡
φφ3

2 , 3.27

and qi is Q/A.  Equation 3.27 is known as the Kozeny-Carman equation for
permeability.  Kozeny entered only one constant in his original equation and
determined that it was about 5.  Carman pointed out that Kozeny's constant
was actually a product of two factors, that is, ks and T.  However, Carman
agreed that the product was about 5, since he thought ks to be about 2.5 and
T to be about 2.0 for sand beds. The equation, with these constants, has been
used in some industries as an indirect method of determining specific
surface for granular powders and casting sands.

The same constants have been found for sands by many later
investigators, but the relationship fails completely when applied to
something other than sands. This is not surprising in view of the discrepancy
between ( )R 2 and R2  which was discussed in Section 3.4.1.  The Kozeny-
Carman equation also cannot be applied to media less than fully saturated
with a single fluid.

R2  which was discussed in Section 3.4.1.  The Kozeny-
Carman equation also cannot be applied to media less than fully saturated
with a single fluid.

( )R 2 and 
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3.6.1. Generalized Kozeny-Carman Equation

A version of Equation 3.24 should be valid for porous media in general,
provided account is taken of the range of values of R due to the distribution
of pore-sizes.  A relationship valid for S < 1 can be obtained by accounting
also for the changes in R2  and T with S.

An examination of Equation 3.22 indicates that a more valid expression
for Rw

2  might be obtained by averaging Rw
2  over the range of saturations

(S Sr> ) that actually contributes significantly to flow.  This gives

R
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p
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2
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σσ ααcos
.

The value of the integral is not changed significantly by the substitution of
Se for S because the ratio pd/pc approaches zero for S < Sr.  However, Rw

2  is
made slightly larger because 1/Se is slightly larger than 1/S.  This is because
Rw

2  is averaged over only that part of the pore space in which R has a size
large enough to permit significant flow.  Observing that qi for the wetting
phase is u Si e eφ , and employing the expression for Rw

2  and Equation 3.25
for Tw(Se) results in
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Similarly,
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in which
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u Si e eφ , and employing the expression for u Si e eφ , and employing the expression for 
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Equations 3.28 and 3.29 are analogous to equations first proposed by
Burdine (1952).  They may be regarded as generalized Kozeny-Carman
equations, a name proposed by Wyllie and Spangler (1952) for related
equations.  They are not valid for non-isotropic media, because the analysis
assumes that the pore space has no preferred orientation.

Equations 3.28 and 3.29 were greatly simplified by Brooks and Corey
(1964) by substituting Equation 2.9 into the integrals and performing the
indicated integration. They obtained

k kw == ,     for   p pc d≤≤

and

k k
p
pw

d

c

==










ηη

,      for     p pc d≥≥ 3.30

in which k is the value of kw when Se is 1.0, and

ηη λλ== ++2 3 . 3.31

In terms of S, they obtained

k kSw e== εε 3.32

in which

εε
λλ

λλ
==

++2 3
. 3.33

For the nonwetting phase, they obtained

k k S Snw e e== −−(( )) −−(( ))1 1
2 γγ 3.34

for S < Sm, in which Sm is some maximum value of Se at which knw exists,
and γ  is (2 + λ)/λ .  The value of Sm is usually about 0.85 for homogeneous
and isotropic materials.

Equations 3.30 through 3.34 were verified experimentally by Brooks and
Corey (1966) and by Laliberte et al. (1966).  Laliberte et al. (1968) obtained
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an expression for k by evaluating the integrals in Equation 3.28 between the
limits of Se from 0 to l, to obtain

k
k T p
e

s d

==
φφ σσ αα

γγ

2 2

1 0
2

cos

.

3.35

in which γ  is the same parameter appearing in Equation 3.34.  Since
Laliberte et al. used a light hydrocarbon liquid with a negligible angle of
contact in obtaining pc(S), they set cos α  equal to 1.  They also accepted the
published approximations for ks and T1.0, so that

k
p

e
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≈≈
φφ σσ

γγ

2

5 2 . 3.36

Combining Equation 3.36 with Equation 3.32 gives

k S
p

Sw e
e
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εε

2

5 2 . 3.37

3.7. PERMEABILITY

The analysis beginning in Section 3.1 by considering the motion of fluid
particles leads finally to Equation 3.28, a macroscopic flux equation.  That
is, qwi is a volume flux rate averaged over an element of area that includes
solid as well as pore space.  The fluid does not actually flow through all of
the area, and qwi does not represent the seepage velocity ui. The relationship
between qwi and ui is given by

q S uwi e e i≈≈ φφ . 3.38

The relationship between qwi and the average velocity of particles tangential
to their flow path is approximated by

 
q S u

S
uwi e e

e
t e t

e≈≈ ≈≈φφ φφ
l

l

2

2
. 3.39

Consequently, qwi is not a velocity component of the center of mass of a
fluid particle.  Equation 3.28 is more accurately called a flux equation rather
than a flow equation.
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The proportionality function kw(Se) in Equation 3.28 is called effective
permeability in the petroleum literature.  It is a function of the geometric
properties of the pore space occupied by the wetting fluid under
consideration.  It has the dimensions of L2.  In the petroleum literature,
permeability (when used without adjectives) refers to the value of kw when S
is 1.0.  This is often designated simply by k as was done in Equations 3.30
and 3.34.  The ratio kw/k is called relative permeability to the wetting phase
and is designated by krw.  Likewise kn w/k is designated by krn w.

3.7.1. Factors Affecting Permeability

According to Equations 3.32 and 3.34, the maximum value of both kw
and kn w is k.  There are factors which are not taken into account in the
theory, however, which invalidates this assumption.  One factor is the
reaction of clay minerals to liquids, especially water with a low electrolytic
content.  Another is the failure of the continuum theory in respect to gases at
ordinary pressures.

Factors which are indicated by Equation 3.37 to affect kw(Se) include:

(1) effective porosity,

(2) maximum pore size,

(3) pore-size distribution,

(4) effective saturation.

The factors ks and T1.0 probably do not vary over a very wide range, but
shape of grains might have an important effect on λ , the pore-size
distribution index.  The same factors affecting kw(Se) also affect kn w(Se).

Another factor of importance, not accounted for in the capillaric theory,
is isotropy.  The theory assumes that the media are isotropic so that the pore
channels have no preferred orientation and neither kw  nor kn w have
directional properties.  A related factor is the degree of interconnection of
the pore space.

3.7.2. Klinkenberg Effect

When the fluid is a gas at normal pressures, a fluid particle meeting the
requirements for the continuum analysis usually does not exist.  This is
because, such a particle must be small compared to the pore dimensions and
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large compared to the mean free path of fluid molecules.  With pore sizes of
the order of magnitude of those in common earth materials, these
requirements are incompatible.

The error resulting from the assumption of a continuum (with derivatives
of velocity existing at the boundary) is usually small in the case of coarse
sands, but huge in the case of silts or clays. In the latter case, the difference
in k as compared to kw even when the latter is measured with a liquid that
does not react with clays, may be a factor of 2 or 3.

The reason for this huge discrepancy is that the specific surface for fine
materials is large, and the boundary condition of a zero velocity at the solid
surface is not satisfied in the case of gases unless the mean pressure is, at
least, 5 atmospheres.  This phenomenon has been called gas slippage and, in
respect to flow in porous media, the Klinkenberg effect.

Klinkenberg (1941) measured gas permeabilities as a function of the
inverse of mean pressure in a variety of media.  He obtained data typified by
that shown in Figure 3.8.

Figure 3.8. Permeability of a gas as a function of the inverse of
mean pressure.

Klinkenberg found that the extrapolation of the curve (to 1/pm equal
zero) gave a value of k which was identical to that for hydrocarbon liquids.
In the petroleum literature the permeability to gas found by this type of
extrapolation is sometimes designated by k, without subscripts, and is called
simply permeability.  It is regarded as being a property of the pore geometry
unaffected by reaction with liquids, e.g., clay swelling.
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3.8. DARCY EQUATION

Despite the obvious shortcomings of the theory upon which Equation
3.28 is based, it is to be expected that an equation of the form

q
k p

xi
i

i
ij== −−

∗∗

µµ
∂∂
∂∂

δδ 3.40

or its equivalent

q
k g H

xi
i

j
ij== −−

( )ρρ

µµ
∂∂
∂∂

δδ 3.41

would be a good approximation for a medium containing only one fluid of
constant density.  Here δ ij  is the Kronecker Delta and the subscript i implies
that the medium may not be isotropic so that qi is a component of q in a
direction i, and ki is a permeability associated with this direction.  In the
most general case k should be regarded as a tensor quantity.  However, by
aligning the coordinate system with the principle axes in respect to
permeability, the k tensor is converted to a diagonal tensor and k becomes a
vector quantity in effect.  It is assumed here that this is always possible.

Equation 3.40 or 3.41 can be regarded as describing a flux component at
a point.  If the flux rate is integrated over a large area and ∂ ∂p xi

∗ /  is
integrated over a macroscopic portion of the flux path, the result is

Q
A

K
H

L
i

i
j

ij== −−
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δδ 3.42

in which A is an area of a porous system normal to i, Ki is
related to ki by

K
k g

i
i≡≡
ρρ

µµ
,

averaged over a length L in the direction i, and ∆H is a piezometric head
difference measured between two points a distance L apart.  The coefficient
Ki has the dimensions of velocity and is called hydraulic conductivity to
distinguish it from ki which has the dimensions of L2.  In some literature,
however, K is called permeability and k specific or intrinsic permeability.
In any case, K includes the effect of both fluid and medium properties,
whereas k theoretically includes only geometric properties of pore space.
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If the medium is isotropic, the subscript i can be dropped. Equation 3.42
is simplified for this case as

Q
A

K
H

L
== −−

∆∆
3.43

in which A is normal to the direction of L.

Equation 3.43 is called Darcy's law and was discovered by Darcy (1856)
experimentally.  Other forms of the flux equation for flow in porous media
are sometimes called Darcy's law also, but they are actually extensions of
Darcy's equation.

3.8.1. Generalized Flux Equation

One version of the flux equation having more general validity than
Equation 3.40 is

q
k p

x
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j
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Equation 3.44 is more general than Equation 3.40 because it does not
assume the existence of a combined force potential.  Furthermore, Equation
3.44 is more convenient to use when dealing with the flow of gases as well
as liquids.  The reason is that the densities of liquids and gases differ by
several orders of magnitude. Consequently, it is more convenient to add
equations when the forces are expressed in terms of gravity and gradient of
pressure rather than as a gradient of a combined potential.

In this text, therefore, combined potentials are not employed where the
problem deals with the simultaneous flow of immiscible fluids. If the media
are known to be isotropic and a combined potential exists, it is permissible
to write Equation 3.44 in the vector form

q k p
x

e
i

i== −−
⎡

⎣ ⎦
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∗∗

μμ
∂∂
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3.45

in which e is a unit vector, and the repeated subscripts imply a summation
over three orthogonal directions.  The direction of q and the negative
pressure gradient correspond only when k is a scalar.

⎦

⎥
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3.8.2. Units Used in Flux Equations

Practically every system of units has, at one time or another, been used in
connection with flux equations.  Often, the systems used have been
inconsistent.  The latter are often erroneously called "practical" units.  In
order to discourage the use of inconsistent and varied units, only consistent
units are used in this text.  A list of units to be used are given in Table 3.1.

Table 3.1. System of units for describing flow in porous media.

Quantity Symbol Unit (cgs) Unit (SI)

Force F dyne (d) Newton  (N) = 105d

Mass M gram (g) kilogram (kg) = 103 g

Length L centimeter (cm) meter (m) = 102 cm

Time t second (s) second (s)

Pressure p d/cm2 Pascal (N/m2) = 10
d/cm2

Density ρ g/cm3 kg/m3 = 103 g/cm3

Scalar gravity g 980 d/g or cm/s2 9.8 N/kg

Vector gravity g 980 d/g or cm/s2 9.8 N/kg

Permeability k cm2 = 102 µ2 m2 = 1012 µ2

Conductivity K cm/s m/s = 103 cm/s

Viscosity µ poises (d-s/cm2) N-s/m2 = 10 poises

Volume flux q cm/s m/s = 102 cm/s

Surface tension σ d/cm N/m = 103 d/cm

The use of an inconsistent system of units in the petroleum industry is so
widespread in the literature that it cannot be ignored completely.  In
petroleum literature, p is expressed in atmospheres/cm2, viscosity in
centipoise.  Other units, except k, are as indicated in Table 3.1.  The k that
results from this system is inconsistent in that it corresponds to no ordinary
unit of length squared.  It is called a darcy unit d, having a value of about
0.987 x 10-8 cm2 or about 0.987 microns squared.  Another unit of k found in
petroleum and geology literature is the millidarcy md, equal to 0.001 d.



Mechanics of Immiscible Fluids in . . .

102

3.8.3. Non-homogeneity

When a differential equation is used to describe flux at a point, the
question of isotropy arises but not homogeneity.  However, when an
integrated form of the equation is used, the lack of homogeneity may
invalidate conclusions drawn from models that assume homogeneity.  This
is particularly true in respect to k as a function of saturation when the media
are layered [Corey and Rathjens (1956)].

When media are layered, such that the layers are very thin, it is difficult
to analyze the individual layers as separate systems. In this case, the
assembly of layers act as an anisotropic system. This may drastically alter
k Snw e( ) and to a somewhat lesser extent kw(Se).  Consider, for example, a
rock consisting of thin layers with contrasting values of pe from which
samples have been taken using a core drill both parallel and normal to the
bedding planes.  Sketches of some hypothetical cores of this type are shown
in Figure 3.9.

Figure 3.9.  Core samples from layered rocks.

The darker layers in Figure 3.9 represent fine materials with a very large
pe.  The opposite is depicted as granulated layers.  Air permeabilities
determined, as a function of average liquid saturation, in an apparatus that
permits air flow parallel to the axes of the cores are very different for the
two cases and neither resembles kn w(Se) predicted by Equation 3.34.

In particular, the values of Sm are very small (possibly approaching zero)
for the perpendicular core and large (possibly approaching 1.0) for the
parallel core.  This is in contrast to a average value of Sm for homogeneous
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cores of about 0.85.  The values of kw(Se) also are different from predicted
values but the difference may not be quite so extreme as for kn w(Se).  If
Sm < 0.85, strata across the flow path should be expected.  If Sm > 0.85,
strata parallel to the flow path are to be expected. Many other examples of
effects from small scale non-homogeneity can be found.

3.8.4. Capillary Pressure-saturation Function During Drainage

The relationships shown in Figures 2.4 and 2.6 for pc(S) were obtained
by measurements made under static conditions.  A question arises as to
whether pc(S) would be the same if the measurements are made while S is
continuously changing rather than changing by increments.  If there is a
difference, it would be expected that k(S) would also change, in view of the
theory presented in Section 3.6.1.

Topp et al. (1967) and Corey and Brooks (1975) have presented evidence
that such a difference actually exists.  The difference arises primarily in the
range of pc < pe.  In this range of pc both the pc(S) and k(S) functions may be
dependent on the rate at which saturation changes take place.  During a
continuous process when an interconnected nonwetting phase does not exist,
practically no desaturation takes place, especially if large masses of media
are involved that are not close to an exposed boundary.  If the media are
allowed to remain at a capillary pressure less than the entry pressure for a
long time, it may be possible for a gaseous nonwetting phase to evolve from
solution or to pass through restricting liquid films by diffusion.

3.8.5. Typical Permeability-saturation Relationships

Typical curves of k(S) for both the wetting or nonwetting phases are
shown in Figure 3.10.

The k(S) functions shown in Figure 3.10 are expressed as kr(S). Here kr
means relative permeability defined as kw/kw(max) or kn w/knw(max), in which
the subscript (max) refers to the maximum value of k for the particular phase
under consideration.  Usually kn w(max) is somewhat larger than kw(max)
because of clay swelling and gas slippage.  Permeabilities determined with a
hydrocarbon liquid are usually the same as permeabilities to gas determined
by extrapolation to infinite mean pressure.  Also, if kw and kn w are both
liquids, e.g., brine and oil, the maximum values of k for both phases may be
nearly the same.
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Figure 3.10.  Typical relative permeability curves.

Unlike capillary pressure functions, permeability-saturation functions
exhibit little hysteresis.  However, Sm may be significantly different when
obtained on a drainage cycle as compared to Sm on a wetting cycle, although
this has not been investigated systematically.

Semi-empirical relationships for kw (S) have been presented by Brooks
and Corey (1964) as described in Section 3.6.1. For the wetting phase krw(S)
is expressed by Equation 3.32, that is,

k Srw e== εε .

Semi-empirical relationships for kw(S) have been presented by other
authors including:

(1) Childs and Collis-George (1948),

K B sw == θθ3 2/ 3.46

in which θ is the volumetric water content, B is a constant, and s is the
specific surface.

(2) Irmay (1954),

k Srw e== 3   . 3.47
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(3) Corey (1954),

k Srw e== 4 . 3.48

(4) Averjanov (1950),

k Srw e== 3 5. . 3.49

(5) van Genuchten (1980),

k S Srw e e
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1 2 11 1
2

/ / , 3.50

in which m is a dimensionless constant appearing in Equation  2.12.

The relationships of Childs and Collis-George and Irmay could be
expressed in the same form, except that the former does not account for the
residual saturation.  It is doubtful that any relationship that does not account
for residual saturation could be valid for anything except sands or soils with
very small values of Sr.  Irmay's equation corresponds to that of Brooks and
Corey for media with a uniform pore size.  Experiments by Hausenberg and
Zaslavsky (1963), conducted with sands of uniform grain size, confirm
Irmay's equation for such materials.

The relationship of Corey (1954) was determined from experiments with
a variety of porous rocks that evidently had a pore-size distribution index of
about 2, giving an ε value of 4.  According to Brooks and Corey (1964), this
is a typical value for soil materials as well as porous rocks.  Some soils and
porous rocks with highly developed structures have values of ε larger than
4.  The experiments of Averjanov leading to Equation 3.49 were made with
naturally occurring sand deposits.  The value of ε obtained by him has been
found by Brooks and Corey to be typical for such materials.

3.8.6. Typical k(pc) Relationships

Typical curves of k rw(Pc) for a fine sandy soil are shown in Figure 3.11,
taken from Brooks and Corey(1964).  As predicted from Equation 3.30 the
curves are linear on a log-log plot over a considerable range of pc.  A
discrepancy exists on the drainage cycle mainly in the range of pc < pe.
Although, some  decrease in saturation occurs with any increment of
capillary pressure greater than zero, krw curves show no change of krw over
a significant range of pc.
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Figure 3.11. Wetting phase relative permeability as a function of
capillary pressure on the drainage and wetting cycle.

Evidently, the initial desaturation that occurs at the boundary does not
affect the interconnected flow channels.  There is some reduction of krw just
before pe is reached, although this again is apparently a boundary effect.
Evidence for the latter conclusion is presented in Figure 3.12, in which a
comparison is shown of data obtained by a continuous drainage process with
that of a typical curve determined by steady state procedures.

In the case of continuous drainage, kw is not reduced below 1.0 until the
capillary pressure exceeds the entry pressure [Corey and Brooks (1975)].  At
this time, liquid pressure may undergo an abrupt but small increase while kw
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continues to decrease rapidly.  The abrupt increase in wetting fluid pressure
(decrease in capillary pressure) probably results from the sudden entry of air
at atmospheric pressure into the interior of the draining column.  The value
of kr w typically decreases by 50 percent, or slightly more, before pc again
reaches pe. The capillary pressure continues to be unstable during
continuous drainage and to undergo small abrupt decreases as air breaks into
new regions of the column.  The increase in pc becomes gradual and stable
once pc exceeds pe in the entire column.

Figure 3.12. Log krw as a function of log pc measured during
continuous drainage [after Corey and Brooks (1975)].

Air permeability does not exist at capillary pressures less than the entry
pressure, as White et al. (1970) have shown.  Consequently, it is reasonable
to suppose that the erratic behavior of pc in this range is due to abrupt
emptying of certain larger pore channels when air breaks through restricting
liquid-filled spaces of somewhat smaller dimensions.  Once nearly all of the
larger pores contain some air, and this air is interconnected, the unstable
behavior stops.

Figure 3.11 illustrates the effect of hysteresis on krw(pc).  In the case
illustrated, the fine sand was first vacuum saturated and then drained by
increasing pc in increments. At a value of pc of about 2 pd when krw had
decreased to about 5 x 10-4, pc was decreased in increments until air was
entrapped.  At that time the rate of increase of krw was very slow.  A gradual
increase in krw did occur with time, however, without any increase in pc.
This phenomenon has been interpreted by Adams et al. (1969) as being due
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to a slow diffusion of entrapped air out of the system.  Adams et al. found
that the diffusion of entrapped air out of a system, in which air permeability
does not exist, occurs faster from fine materials than from coarser materials.

When the capillary pressure was again increased with most of the
entrapped air still in the soil, krw did not change until the entry pressure was
again reached [see Figure 3.11].  The curve then followed practically the
original drainage curve rather than following some intermediate curve.

Semi-empirical relationships for kw(Pc) on the drainage cycle have been
proposed by a number of authors including:

(1) Gardner (1958),

k a b pw c
n== ++(( ))/ 3.51

in which a, b and n are constants with dimensions, and values
depending on the units employed.

(2) Gardner (1958),

k aprw c== −−(( ))exp 3.52

in which a is a constant with values depending on the units.

(3) Arbhabhirama and Kridakorn (1968),

k p prw c d
n

== (( )) ++[[ ]]1 1/ / 3.53

in which n is a dimensionless constant.

(4) Brooks and Corey (1964),

krw == 1      for p pc d≤≤

and

k p prw d c== (( ))/ ηη     for p pc d≥≥ 3.54

(5) van Genuchten (1980),
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in which the symbols are the same as for Equations 2.12 and 3.50.

Equation 3.55 was obtained by substituting Equation 2.12 into an
expression derived by Mualem (1976).  In order to obtain an exact solution
with an equation of reasonable complexity, it was necessary to specify a
fixed relationship between the constants m and n, that is,

m n== −−1 1 / .

This relationship between m and n implies a capillary pressure-saturation
curve with saturation decreasing in the low capillary pressure range to a
greater extent than measurements show [see Figure 3.11].  The result is
calculated permeabilities decrease in the low capillary pressure range to a
much greater extent than experiments indicate.

It is impossible, with the restrictions placed on m and n, for Equation
3.55 to approximate a portion of a curve where experiments show
permeability to be invariant with capillary pressure.  However, the smooth
function is convenient for some types of computation.  For this reason, the
van Genuchten equation has gained wide popularity.

The Brooks-Corey equations are unique in that they express the
relationship between capillary pressure and permeability with two separate
functions rather than as a single continuous function.  This is in accord with
experimental observations that indicate kw remains invariant over a
significant range of pc.

Equation 3.52 provides the poorest fit to actual data, but it is the easiest
to incorporate into mathematical solutions. Consequently, it is the favorite
function among many applied mathematicians.  Neither Equation 3.51 nor
Equation 3.52 are dimensionally consistent so the constants used depend on
the units employed.  Equation 3.53 is much like Equation 3.51 except that
the former is dimensionally consistent.

Brooks and Corey (1964) also have published data for krnw(pc). Typical
curves of this type are shown in Figure 3.13 for several media representing a
wide range of pore-size distributions. The smooth curves shown in Figure
3.13 were calculated by combining Equations 2.9 and 3.34, that is,
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The agreement between theory and measured data is very good
considering the highly divergent nature of the materials studied. The
materials did have one important property in common.  All samples used to
obtain the data in Figure 3.13 were relatively homogeneous and isotropic.

Figure 3.13. Relative permeability of air as a function of capillary
pressure compared with theoretical function.

It is essential to remember that Equation 3.56 holds only for capillary
pressures greater than the entry pressure and saturations less than Sm.  Since
pe is somewhat larger than pd, a small but significant nonwetting fluid
permeability is calculated for the saturation Sm. The predicted finite
nonwetting fluid permeability at first breakthrough (of the nonwetting fluid)
agrees with the experimental observations of Brooks and Corey (1966) and
White, et al (1970).  An exact value of Sm can be obtained only from
experimental measurements. However, a good estimate of Sm for
homogeneous and isotropic media is 0.85.
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3.9. SOIL-WATER "DIFFUSION"

For the special case where capillary pressure is a single-valued function
of wetting-phase content, it is possible to write the flux equation

q
k p

x
gwi

w

w

w

i
w i== −− ++









µµ

∂∂

∂∂
ρρ

in terms of a gradient of wetting-phase content.  Since this procedure is
practical only for flux of water in partially saturated soils, the symbols used
in this connection are those employed by soil scientists.  That is, qi is a flux
of water in the i direction, K is the conductivity of water, k gw w wρ µ/ , and is
assumed to be a scalar. The negative gauge pressure head of water is
designated as ψ ; that is, ψ  is − p gw w/( )ρ

With these symbols, the flux equation is written as
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Assuming ψ  to be a single-valued function of θ permits a transformation of
variables such that

∂∂ψψ
∂∂

ψψ
θθ

∂∂θθ
∂∂x

d
d xx i

≡≡ ,

where θ is φ S.

A function D(θ), also assumed to be single-valued, is defined as

D K
d
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so that
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. 3.57

Equation 3.57 was first derived by L. A. Richards (1931).  Prior to that
time, an analogous equation without the gravity term, was employed on a
heuristic basis in recognition of the apparent tendency of water to spread
from wetter to drier soil.
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Writing the flux equation in the form of Equation 3.57, is a mathematical
artifice that results in a loss of generality in the following respects:

(1) The equation is valid only for homogeneous soils such that ψ θ( ) is
single-valued.

(2) The air pressure must be atmospheric everywhere, or at least
constant, so that p gw w/( )ρ is −ψ . Therefore, Equation 3.57
cannot be used to describe water-air flow unless resistance to air
flow is negligible.

(3) An interconnected air phase must exist at all points in the region
considered, otherwise, ψ θ( ) is not single-valued.

Practical problems ruled out as applications of Equation 3.57, or at least
made inconvenient to solve, include:

(1) flow in layered, or otherwise non-homogeneous soils,

(2) 2-phase flow with air resistance; for example, it is impossible to
analyze what happens as a gas cap breaks into an oil well or what
happens when water is driven from a tube of wet soil by air
pressure,

(3) infiltration from a ponded source of water, such as, a river bed,
canal, reservoir, or even an irrigation furrow,

(4) drainage from a soil immediately above a water table.

Equation 3.57 does have some mathematical advantages, especially for
cases of horizontal flow, or when the gravity term is negligible. In such
cases, the equation takes the form of a true diffusion equation or a heat-flow
equation, for which solutions to many boundary value problems have been
tabulated.

The function D(θ) can also be formulated in terms of the pore-size
distribution index of Brooks and Corey as
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in which
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and

K K atm m≡≡ θθ ,

the maximum water content.

3.10. MEASUREMENT OF RELATIVE PERMEABILITY

Methods of measuring permeability of a fully saturated porous sample
are discussed in texts on soil mechanics and groundwater hydraulics and are
not reviewed here.  Measurement of relative permeability as a function of
either capillary pressure or saturation is a more complex problem, but is
fundamental to the development of the mechanics of immiscible fluids in
porous media.

An extensive review of methods used by soil scientists has been given by
Klute (1972).  A review of a few of the more common procedures used to
determine kr(S) or kr(pc) on rock cores has been presented by Richardson
(1961).  The methods can be classified as either steady-state or unsteady-
state procedures, but there are innumerable variations of each.  Only a few
of the simpler procedures are reviewed here.  Some procedures can be
understood only with additional background theory relative to steady and
unsteady flow. A further discussion of such methods is presented in
Chapters 4 and 5 as applications of the theory presented there.

3.10.1. Steady-state Methods

The variables: pressure, saturation and flux rate are held constant with
respect to time, at particular values of pressure and saturation, until the
measurement of permeabilities to both phases is completed.  In some cases
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the permeability of only one phase is determined, but in other cases the
permeabilities of both phases are measured for a particular capillary pressure
or saturation.

With some procedures, capillary pressure and saturation are permitted to
vary along a column and permeability is determined at various points along
the column.  More often, a uniform capillary pressure or saturation is
established throughout a sample or, at least, within a test section of a column
during the determination of particular values of the permeabilities.  Methods
of achieving a uniform  capillary pressure and saturation within a sample
include:

(1) Downward flow of a liquid wetting phase is initiated under a
gravitational force only.  The nonwetting phase is air at atmospheric
pressure, but air permeability is not determined.  The first
measurements of kw(pc) (of which there is a record) were made
using this system by L. A. Richards (1931).

(2) Simultaneous flow of two fluid phases is produced under the same
pressure gradient.  This procedure was introduced in the petroleum
industry by Hassler et al. (1944), for determination of permeability-
saturation curves for wetting and nonwetting phases on small cores
of porous rock.  The method was adapted for use on soil samples by
Brooks and Corey (1966).

(3) Two fluid phases are injected simultaneously through a porous
sample, with the individual flow rates controlled independently,
rather than the pressure gradients being controlled.  This is called
the Penn State method in the petroleum industry,  because it was
developed in the Petroleum Engineering Department at
Pennsylvania State University.

(4) Upward flow of air through a sample is induced by a pressure
gradient equal to the pressure gradient in a static liquid phase.  This
method was designated as the stationary liquid method by Osoba et
al. (1951).  It is useful for the determination of air permeability-
saturation  curves only, but it is very convenient and precise for
such measurements on small rock cores.

3.10.2. Richards Method

An apparatus similar in  principle to that invented by Richards (1931) is
shown in Figure 3.l4.  By adjusting the pressure at the upper and lower
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Figure 3.14.  Richards permeameter.

barriers to compensate for the head loss through the barriers (and contact
regions), the pressure difference in the sample, as recorded over the length
L, can be adjusted to zero. Under this condition the wetting liquid flows
under the influence of gravity only, and the nonwetting phase (in this case
air) is everywhere at atmospheric pressure.  In order to be sure that the air is
actually at atmospheric pressure, air vents should be provided that do not
permit significant evaporation of liquid from the sample.

The outflow rate is measured at the time the pressures at the upper and
lower tensiometer rings are recorded, so that Darcy's equation can be solved
over the length L.  The tensiometers are at some distance inside the ends of
the sample to avoid end effects. The tensiometers are designed to contact the
circumference of the sample so that the normal flow path through the sample
is not distorted.
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Pressures at the top and bottom barriers are changed in increments,
maintaining a zero pressure gradient at each increment until a steady state is
achieved at which time a value of permeability is measured.  The
corresponding value of capillary pressure is recorded as the difference
between atmospheric and liquid pressures, the latter being less than
atmospheric after desaturation occurs.  The test section of the sample can be
scanned with gamma attenuation to determine its saturation also.

Capillary barriers for particular samples, should be selected from
materials that have as much permeability as possible, consistent with the
requirement that the barrier entry pressure not be exceeded while
desaturating the sample.  It is not practical to use the same kind of barrier
material for all types of samples.  When the barriers have a high resistance
compared to that of a sample, it is difficult to exercise control over the
pressure gradient in the sample.  It is also important to use clean liquids, free
of algae and other micro-organisms to minimize plugging of the capillary
barriers.

With an appropriate change in design, the Richards apparatus can be
adapted for use with both rock cores and undisturbed soil samples [Laliberte
and Corey (1967)]. It is much easier, however, to obtain precisely
reproducible results using hydrocarbon liquids, e.g., soltrol, than with water
as the wetting fluid.  This is because hydrocarbons have more consistent
wetting properties and surface tensions, and are less likely to become
contaminated with algae or to cause progressive changes in media structure
due to clay dispersion.

3.10.3. Long and Short Columns

One can obtain a more or less uniform capillary pressure and saturation
in the upper part of a long column during steady downward flow to a water
table located near the base of the column.  This can be done without any
capillary barriers at the top or bottom and without any adjustment other than
that necessary to control the inflow rate at the top of the column.

The long-column technique was first suggested by Childs and Collis-
George (1950).  It is useful for unconsolidated materials that can be packed
uniformly in a long column. Non-homogeneous media prevent the
establishment of a uniform pressure in the column.  A uniform pressure and
saturation in a homogeneous medium can be established in a much shorter
column by creating a high capillary pressure at its base rather than
maintaining a zero capillary pressure at that point.
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The distribution of capillary pressure during steady downward flow in
porous media is considered again in Chapter 4 as an application of steady
flow theory.  Some of the pitfalls in the operation of both long and short
column permeameters are discussed in the context of theory presented there.

3.10.4. Air Relative Permeability Measurements

By far, the simplest method of determining air permeability as a function
of liquid saturation is the stationary-liquid procedure. With this method air
flow is upward through a confined sample of porous medium containing a
static liquid.  The pressure gradient producing air flow is made exactly equal
to the pressure gradient caused by the weight of the static liquid so that a
uniform capillary pressure and saturation are established during the
measurements of air permeabilities.  The corresponding values of saturation
are obtained by weighing the sample before and after each permeability
measurement.  Apparatus used for this purpose is illustrated in Figures 3.15,
3.16 and 3.17.

With this apparatus, a cylindrical sample is confined laterally by a rubber
sleeve inside an outer cylinder.  When the sample is in place, the sleeve is
pressed against the sample by air pressure.  If the sample is a rigid rock core,

Figure 3.15. Air permeameter with pressurized-sleeve sample holder
and soap-film air flow meter.
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Figure 3.16.  Soap-film flow meter.
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Figure 3.17.  Pressurized sleeve sample holder.

the pressure should be about 7 atmospheres.  If an unconsolidated sample is
used, a pressure of 1/3 atmosphere is sometimes sufficient to prevent
bypassing of air, but even this pressure often causes compression of a wet
sample and a reduction in air permeability, thus causing the measurements
to be erratic.

The top and bottom of the sample must be open to air flow, and in the
case of unconsolidated samples, this requires some type of low resistance
screen to support the sample at the bottom.  Provision must be made to
change the liquid saturation between measurements.  With rock samples,
this is easily done by blotting the sample with an absorbent tissue or simply
allowing the liquid to evaporate until a desired weight is obtained.  In the
case of unconsolidated samples, the problem of desaturation is more
complex, and a number of procedures have been devised.  Brooks and Corey
(1966), for example, employed a sample that was packed into an annular
space between an outer pressurized sleeve and a hollow porous cylinder
through which the liquid could be extracted.  The saturation was computed
by a material balance procedure.

The stationary liquid procedure requires a method for measuring very
small flux rates precisely. The flux rates cannot be varied by changing the
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pressure difference causing flow because the air pressure gradient must be
held equal to the static pressure gradient in the liquid, in order to maintain a
uniform capillary pressure and saturation in the sample.  For small cores of
about 2.54 cm diameter, air flows are best measured with a soap-film flow
meter with at least two calibrated tubes of varying diameters.  The smaller
tube should permit the precise measurement of flow rates at least as small as
0.01 ml/s.  A soap-film tube made from a 1-ml pipette is satisfactory for the
small flow rates whereas a 25 ml or larger pipette is useful for the larger
flow rates.

3.10.5. Unsteady-state Methods

No attempt is made to induce a uniform saturation within a test section of
a sample with an unsteady-state method.  The pressure, saturation, and flux
rates are permitted to vary with time at all points within a sample.  The
computation of relative permeability from measurements made during such
experiments are usually indirect and depend upon the solution of unsteady
flow equations.

The best known procedure under this classification is the Welge (1952)
technique that depends upon an integration of the Buckley-Leverett
displacement equation.  With this method, a wetting fluid is displaced from
a sample by a nonwetting fluid under an extremely large pressure gradient.
The pressure gradient is large enough to permit the assumption that the two
fluids flow through the sample under the same pressure gradient, even
though the saturation is nonuniform.  Values of permeability are determined
from the instantaneous rates at which the two fluids emerge from the
outflow end of the sample.  The corresponding values of saturation are those
calculated for the outflow end of the sample by the Welge integration.  This
subject is discussed in Chapter 5 as an application of unsteady flow theory.

Other unsteady procedures include variations of the outflow method, first
described by Gardner (1956).  A saturated soil sample is placed in a
capillary pressure cell and desaturated by applying increments of capillary
pressure.  In the original version, outflow was in response to very small
increments.  Doering (1965) modified the procedure by desaturating samples
in one-step increments.  In any case, values of soil water diffusivity D are
obtained indirectly by applying unsteady flow theory.  Permeability values
are not measured directly.

Outflow methods have not given consistently reproducible results
because the resistance of the region of contact between samples and
capillary barriers varies erratically with the capillary pressure applied.
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Attempts have been made to account for this resistance by making the
assumption that resistance across the barrier is proportional to the flux rate,
but this assumption is not even close to being satisfied, because of the
varying resistance at the barrier boundary.  Air diffusing through the
capillary barrier and reappearing as bubbles in the outflow system also
causes problems.

A procedure called the continuous drainage method by Corey and
Brooks (1975) is an exception among the unsteady-state procedures in that
more or less uniform (although continuously decreasing) saturation is
produced in a portion of a draining column where observations of capillary
pressure and saturation are made.  Like other column procedures, downward
flow is produced under the influence of gravity only.  This procedure might
also be called a "pseudo-steady" method, because the pressure distribution in
the column is nearly like that in a column during steady downward flow.
The theory of this behavior is also discussed in Chapter 4.

3.11. NON-DARCY FLOW

From theoretical considerations leading to the generalized Kozeny-
Carman equation, it is expected that a linear flux equation would be invalid
for velocities such that fluid inertia becomes a factor.  Although the
convective acceleration term, in the Navier-Stokes equation of fluid motion,
should be statistically zero when integrated over a macroscopic area and
distance, the local effect of such acceleration may be to create a spatial
distribution of velocity different from that predicted by ignoring inertia.  In
this case, the shear force increase may be non-linear with respect to the
average flux rate.  This causes a corresponding non-linear increase in
piezometric gradient.  However, the non-linear response is not often
associated with turbulence in porous media.

By analogy with flow through large conduits, a Reynolds number Re is
often used as a criterion to define the regime for which inertial forces are
unimportant.  According to this analogy

Re ,≡≡
gDρρ
µµ

in which D is some length parameter characterizing the pore geometry. It
would appear that D should be related to the largest pore size. Perhaps σ /pd
would be a reasonable choice, but innumerable parameters having the
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dimension of length have been suggested by various authors.  Among these
are:

(1) Collins (1961), D k≡≡ (( ))/ /φφ 1 2 ,

(2) Ward (1964), D k≡≡ 1 2/ ,

but by far the most often used is some D determined by a sieve analysis.  For
example, the I0 percent size or the 50 percent size.

In practically all cases when Re is based on a grain diameter, Darcy's
equation is valid unless Re exceeds an Re between 1 and 10. This removes
the problem of inertia effects from the type of applications considered in this
text.  However, if non-Darcian flow of this type is suspected, it can be
verified by plotting the flux rate as a function of the piezometric gradient. If
the flow is Darcian, the data should plot as a straight line. If the flux rate
deviates toward lower values than a linear relationship indicates, inertia
effects may be suspected.

A variety of equations have been proposed to describe non-linear flow of
the latter type.  One of the first, proposed by Forchheimer (1901), is of the
form

∂∂
∂∂
p
x

aq bq
i

i i

∗∗

== ++ 2

in which a and b are constants. A verification of an equation of this form has
been presented by Ahmad and Sunada (1969).  When equations of this form
are used, the constant b is small so when the flux rate is small, the equation
reduces to Darcy's law.

Another class of non-Darcian flow may occur at very small velocities.  It
has been theorized that such flows could result from one of several causes,
such as:

(1) adsorptive force fields near solid surfaces that interfere with the
normal Newtonian behavior of water,

(2) electrostatic force fields set up in the boundary layer as a result of
flow tangential to the boundary (i.e., streaming potentials) which
act to oppose the flow,

(3) diffusion or other molecular transport processes acting concurrently
with convection and responding to a potential gradient differently
from the response of convection.
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Many cases of so-called non-Darcian flow reported in the literature are
undoubtedly due to faulty laboratory techniques or misinterpretation of the
measurements made.  One example, is the use of a piezometric potential for
cases in which the density is not constant, or the use of some other so-called
total potential in an attempt to describe transport resulting from a variety of
unrelated mechanisms [Corey and Kemper (1961)].

A review of non-Darcian flow, including a discussion of experimental
pitfalls leading to misinterpretation of observed behavior, has been
presented by Kutilek (1972).  Other authors who have written extensively on
the subject of non-Darcian flow include Swartzendruber (1962), and Bolt
and Groenvelt (1969).

3.12. POTENTIAL FLOW

In groundwater systems (and some petroleum reservoir situations), it
may be possible to regard the flow system, on a macroscopic basis, as being
irrotational.  This requires the aquifer to be homogeneous, isotropic and to
have a constant saturation with a homogeneous fluid.  Under such conditions
it may be possible to define a velocity potential as the scalar, -KH, and a
conjugate function called a stream potential.  It may also be feasible to
assume divergence of the flow is zero.

If these conditions are satisfied, many flow problems can be solved by
the application of potential flow theory.  This subject is discussed at length
in most books on flow in porous media and groundwater hydraulics.
However, for the simultaneous flow of two or more immiscible fluids, the
saturation is not necessarily constant so that the divergence is, in general,
not zero.  Furthermore, the saturation depends on the fluid pressure so
potential flow theory is not useful for the applications analyzed in this text.
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PROBLEMS AND STUDY QUESTIONS

l. If ui is an analytic function of the space coordinates even at a solid
boundary, what does this imply about the magnitude of ui at a solid
boundary?  Explain.

2. If ui does not vary with time at particular points in a system, what does
this imply about the acceleration of fluid particles?  Explain.

3. Shear acts throughout a fluid volume.  Explain why, in evaluating the
force per unit volume acting on a fluid particle due to shear, it is
necessary to sum the shearing forces only on the boundaries of the
particle.

4. Although the direction of shearing forces on opposite faces of a fluid
particle are often in opposite directions, the direction of shear at solid
boundaries is always in a direction opposite to ui of the particle.
Explain.

5. Despite the fact that pressure in air varies substantially at different
elevations within the Earth's atmosphere, it is often possible for
atmospheric scientists to define a combined potential, including
pressure and gravitational components, for analyzing motion of air
masses.  This is called the barotropic case.  Explain.

6. It is well known that when two water solutions with different
concentrations of salts are separated by a membrane that excludes the
salt, water passes through the membrane toward the solution with the
higher salt concentration until the pressure is sufficiently higher on that
side to counteract the higher osmotic concentration.  What can one
conclude from this concerning pore size in the membrane relative to
the size of fluid particles?  What happens if the pore sizes are made
substantially larger, say the size of a pin hole?  Explain.



3 / Equations of Fluid Flux in Porous Media

125

7. If one attempts to derive Poiseuille's equation by regarding the entire
volume of fluid held in a section of tube as a free body, and balancing
shear and pressure forces on this body, what additional assumption is
necessary as compared to when forces are balanced on fluid particles?

8. State as simply as possible the mathematical reason why the Kozeny-
Carman equation is not valid for porous media having a range of pore
sizes.

9. According to the Kozeny-Carman equation, if one were to mix a
teaspoonful of montmorillonite with 10 liters of sand, the value of k
calculated might be reduced by an order of magnitude.  Explain why
this is probably unrealistic.

10. Derive an equation for k rn w as a function of pc and λ  from the
generalized Kozeny-Carman equation.

11. Would you expect the generalized Kozeny-Carman equation to give
better results in terms of relative permeabilities or in terms of
permeability per se?  Explain.

12. Consider a case of steady downward flow of water through a column of
homogeneous soil.  The system has the following properties:

(1) The pressure in the water is uniform.

(2) The porosity of the soil is 0.5.

(3) The saturation of the soil is 0.7.

(4) The residual saturation is 0.3.

(5) When fully saturated, kw for the soil is 10-8 cm2.

If dye is injected into the column at some point, estimate the time for
some of this dye to appear at a point one meter lower in the column.
What if any effect would molecular, or other dispersion phenomena,
have on the estimated time of arrival.

13. Estimate a mean distance that dye would have traveled upon arrival at a
point l meter from the starting point.  Assume that the dye molecules
are too large to be affected significantly by molecular dispersion.
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14. The U.S. Salinity Laboratory at Riverside, California once proposed an
index of soil-structure stability obtained from the ratio of kw (when
fully saturated with water) to kg of a dry sample.  Explain why such a
ratio might not be a measure of stability of soil structure only.

15. Using the generalized Kozeny-Carman equation, derive an expression
for k rw, a function of S, for a sand having a completely uniform pore-
size and a residual saturation of zero. What would be the theoretical
values of ε  and λ  for this case?

16. A sample of porous medium has a value of k0 (to oil) of 0.5 µ2  as
measured in a laboratory at sea level. Estimate the value of k0 (to the
same oil) if the measurement is made in a laboratory at a site where the
temperature is colder by 10 degrees centigrade and g is 1 percent less.
Estimate the conductivity K to an oil with a viscosity of 2.5 centipoise
and density of 0.75 gm/cm2.  Would you expect the permeability to
water to be equal to, more than, or less than 0.5 square microns?  What
about the permeability to air?

17. Adams et al. (1969) found that entrapped gas diffuses out of samples of
fine-textured porous materials (in contact with a source of wetting
liquid) faster than from coarser-textured porous materials.  Give a
theory to explain this behavior.

18. Oil is often forced out of porous rocks by the injection of brine.
Explain why a flux equation in the form of Equation 3.57 is not
suitable for analyzing the penetration of brine into the rock in this case.

19. Consider a case in which a porous rock sample containing water at a
saturation of 0.72 is placed in a permeameter (of the type shown in
Figure 3.15) to measure kg. If the sample is 5 cm in length and the
U-tube manometer contains oil with a specific gravity of 0.75, what
should be the ∆h reading on the manometer to be sure that the brine
saturation remains uniform along the length of the sample during the
measurement?

20. Describe an experiment to check whether or not a flux equation in the
form of Darcy's equation or Forchheimer's equation should be used to
describe a particular flow system.
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 Chapter 4

STEADY  FLOW  OF
IMMISCIBLE  FLUIDS

4.1. STEADY FLOW

Steady flow implies that the variables p, q, ρ and S do not vary with time
at any point within a system under consideration.  When this situation exists,
the relationship among the variables can be analyzed by employing
equations that do not include time as a variable.  However, we first examine
the more general case where the variables are not necessarily constant with
respect to time and steady flow is considered as a special case of the more
general situation.

To analyze the more general case, it is necessary to combine a flux
equation with a continuity equation which involves time as a variable.

4.1.1. Continuity for Flow of Two Immiscible Fluids

A continuity equation is one which expresses the conservation of mass
for a reference volume element.  In some cases an entire system is
considered as a reference element.  In other cases only a fluid particle is
considered.  For flow in porous media containing immiscible fluids, it is
usually more informative to consider a volume element of the porous
medium such as is used to define porosity or saturation at a point.

When a fluid particle is used as a reference element in fluid mechanics, a
continuity equation is written as

∂∂ ρρ

∂∂
∂∂ρρ
∂∂

v

x t
i

i

(( ))
== −−

which states that the divergence of the mass flow is equal to the rate of
decrease of density of the fluid.  This equation could also be written in



Mechanics of Immiscible Fluids in . . .

128

respect to a fluid element within a porous medium, but it does not supply the
information needed to solve the type of problems considered here.

Such an equation is useful for situations in which the entire flow region
remains completely occupied with one fluid.  This is not true for a porous
medium in the general case.  In fact, changes in saturation are usually of
much greater significance than changes in fluid density or medium porosity.
Consequently, for immiscible fluid systems it is usually permissible to
ignore changes in density or medium porosity with respect to time.

Consequently, a continuity equation is written for flow of a particular
fluid phase in a two fluid system as
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for which the reference element is a volume element of porous medium.
Equation 4.1 is written for the flux of the wetting phase, but it could be
written in respect to qnw, because where compressibility is not a factor
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4.1.2. Simultaneous Flow of Two Immiscible Fluids

Flow equations are a result of combining flux equations with continuity
equations.  For two immiscible fluids, the equations are written for each
fluid separately and then combined.  The assumptions are:

(1) The fluids are immiscible so pc  =  pnw - pw.

(2) The differential form of Darcy's law applies independently to each
fluid.

(3) Medium and fluid properties, e.g., φ, k, ρ and µ are practically
constant in time and space.

(4) Permeability can be treated as a scalar.

(5) Compressibility is not an important factor.
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Based on these assumptions:

(1) ∂∂
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For the special case of steady flow of two fluids, the first three equations are
combined to give
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4.2. STEADY FLOW OF A WETTING FLUID

Equation 4.2 can be rewritten as
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in which Δ denotes the quantity evaluated for the wetting fluid minus the
quantity evaluated for the nonwetting fluid.  Although Equation 4.2 contains
the fluxes for both fluids, the pressure for neither fluid appears in the
equation explicitly.   Consequently, the equation can not be employed to
determine the distribution of pressure of either fluid. It is useful only for
determining the distribution of capillary pressure.

If only the wetting fluid is flowing, Δ can be dropped from the first term
so that
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Solving Equation 4.3 for qwi gives
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the flux equation for steady flow of a wetting fluid in a two-phase fluid
system.  Equations 4.3 and 4.4 have been derived assuming  the nonwetting
fluid is static, so the pressure distribution of the nonwetting fluid is
determined if its pressure is known at any particular elevation.  In this case,
solutions of Equations 4.3 and 4.4 provide information about the distribution
of fluid pressures as well as capillary pressures.

4.2.1. Steady Downward Flow of Water Through a Homogeneous
Petroleum Reservoir

Accumulations of oil are often found in geological traps through which
water is flowing steadily downslope.  The trap consists of an aquifer
(containing brine) between impermeable strata inclined at some angle with
respect to a horizontal plane.  At some point higher in the aquifer, a porous
rock having an entry pressure higher than the entry pressure of the
remainder of the aquifer has blocked the upward migration of oil that
otherwise would have occurred due to the lower density of oil compared to
the brine originally saturating the entire aquifer.  A geological trap of this
type is shown in Figure 4.1.

Figure 4.1.  Geological oil trap with brine flowing steadily downslope.



4 / Steady Flow of Immiscible Fluids

131

Questions to be answered in regard to the oil trap include:

(1) What is the extent of the oil body below the cap rock?

(2) How much oil is in the trap?

(3) How is the oil distributed?

(4) Where is the best place to drill wells to recover the oil?

To answer the questions listed, the distribution of capillary pressure
within the oil body must be determined.  The maximum capillary pressure
(oil into brine) occurs at the cap rock.  Capillary pressure cannot be higher
than the entry pressure of the cap rock without oil leaking through the cap
rock and being lost.  Likewise, oil cannot exist as an interconnected phase in
the aquifer below an elevation where capillary pressure is equal to entry
pressure of the rock containing the oil body.

The distribution of capillary pressure within the oil body can be
determined by applying the boundary conditions mentioned above to a
solution of Equation 4.3.  It is assumed downslope flow is 1-dimensional
and the aquifer containing the oil body is homogeneous and has a uniform
slope making an angle β with a horizontal plane.  Since flow is steady, qwi is
a constant.  However, kw is a function of pc.

For the case under consideration, qwi is a positive flux component
whether the flow is upslope or downslope.  Sin β and the derivative ∂ ∂h xi/
are negative when the flow is downslope.  It is more convenient to plot
capillary pressure as a function of elevation h rather than xi. Since xi is equal
to h/sin β, Equation 4.3 becomes

dh
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where the second term on the right is negative because sin β is negative, and
hc is the capillary pressure head p gc /( )∆ρ .  Because the flow is steady and
1-dimensional, the flow equation is an ordinary differential equation.

A solution can be obtained numerically if experimental data for kw(pc)
are available.  It can be solved using the Brooks-Corey relationship
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where η is 3λ + 2.  At the lower boundary of the interconnected oil body,
where pc  is pe, kw is approximately 0.5 km.

The flow equation for this case is written as
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in which
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and hd is p gd /( )Δρ .  Equation 4.5 applies only where hc is equal to or
greater than he, that is where both fluids are interconnected.

The solution of the flow equation is of the form
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so that values of h corresponding to particular values of hc can be obtained
by integration.  In particular, the elevation difference over which the oil
body may extend can be obtained by integrating Equation 4.6 over a range
of hc from p ge /( )Δρ  of the aquifer material to p ge /( )Δρ  for the cap rock.

The integration is difficult to perform analytically because η is usually
greater than 6.0.  In any case, the analytical expression for the integral is
complex, and it is much easier to use a computer program to integrate the
function numerically for any value of η.

Qualitative aspects of the relationship hc(h) can be determined by
inspection of Equation 4.5, noting that qwi is typically a very small number.
When hc is equal to p ge /( )Δρ , k kw m≈ 0 5. , and dhc/dh is only slightly less
than 1.0.  Thus the distribution of hc is practically hydrostatic at the bottom
of the interconnected oil body.  Furthermore, dhc/dh theoretically cannot be

⎡⎤
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negative, because this would imply a decreasing h which restores the value
of dhc/dh to zero.  Consequently, dhc /dh is approximately 1.0 at the bottom
of the interconnected oil body and approaches zero if the oil body extends
over a sufficient depth.

A plot of hc(h) is shown in Figure 4.2.  Note that capillary pressure
changes abruptly from a practically hydrostatic relationship with elevation to
a capillary pressure that is essentially invariant with elevation.  This is
because η is usually large, a value of 8 being typical.  The larger the value
of η, the more abrupt the transition.

A case is considered in which  the entry pressure of the cap rock is twice
the value of pd for the aquifer rock and η for the aquifer material is 8.  It is
desired to determine the value of qw that permits the oil body to reach a
maximum saturation at the cap rock and allows the oil body to extend for an
indefinite distance downslope with an invariant oil saturation.

Such a condition exists when dhc/dh approaches zero and pc equals pe of
the cap rock.  The value of qw can be determined from Equation 4.5 by
setting dhc/dh equal to zero.  In this case, "a" in Equation 4.5 is 2-8, and

q
g k

w
m

w

== −−
( ) sin∆∆ρρ ββ

µµ28   . 4.7

Figure 4.2. Distribution of capillary pressure with elevation in
geological oil trap with brine flowing downslope.

A smaller value of qw results in oil leaking through the cap rock. In the
limit as the magnitude of qw approaches zero, the distribution of capillary
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pressure is hydrostatic, and the elevation interval occupied by
interconnected oil is given by

∆∆
∆∆

∆∆
h

p
g

e==
( )ρρ

where ∆pe  is the difference in entry pressures of the cap rock and the
aquifer materials.  A value of qw larger than that given by Equation 4.7
causes the oil body to be stretched over a larger h, but the capillary pressure
is smaller than the entry pressure of the cap rock and the oil saturation is
smaller.

When the downward flux rate exceeds a critical flux rate qc given by
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an oil body cannot exist as an interconnected phase because dhc/dh is
negative.  Substituting the critical flux rate into Darcy's equation for the
brine shows that the magnitude of a piezometric head gradient that moves all
interconnected oil downstream exceeds ( / )∆ρ ρw  sinβ.

Sometimes brine flow is upslope, and in such cases the maximum height
of an interconnected oil accumulation is smaller than that given by

∆∆
∆∆

∆∆
h

p
g

e==
( )

.
ρρ

In fact, oil bodies have not been observed where flow of brine is upslope
although, surprisingly, upslope flows are not uncommon.

In cases where flow is downslope through a geological trap, the most
appropriate place to drill oil wells is in the upper part of the oil body near
the cap rock.  In this region the proportion of brine produced along with the
oil is less than elsewhere in the trap.  In aquifers that are not homogeneous,
distributions of capillary pressure are different from that shown in Figure
4.2.  The latter situation is discussed in Section 4.2.5.

4.2.2. Steady Flow of Water Through Aquifers Containing a NAPL

Problems similar in theory to those discussed for petroleum reservoirs
are encountered as a result of the introduction of non-aqueous polluting
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liquids into fresh water aquifers.  Non-aqueous polluting liquids are
designated as NAPLs.  Those less dense than water are called LNAPLs.  Oil
and gasoline spills, or leaks from storage tanks, are common sources of such
pollutants.  Liquids more dense than water are known as DNAPLs.

DNAPLs of greatest concern are chlorinated solvents used as cleaning
solutions for clothing and machinery.  They are commonly used for cleaning
metal parts of airplanes and in de-icing solutions, and are frequently
introduced into groundwater around airports and defense facilities.
Although DNAPLs are less common pollutants than petroleum fluids, they
are even more dangerous because they are usually very toxic, and also
because they are more dense than water.

Theory presented in this section relating to steady flow of brine through
a petroleum reservoir applies equally to flow of fresh water through aquifers
that have been polluted with LNAPLs.  The steady flow case with a static
LNAPL phase is significant in this regard because, as a first step in a clean-
up program, one may try to flush out as much LNAPL as possible by
establishing a steady flow of water through a polluted aquifer.

Questions to be investigated include:

(1) What is the best way to conduct a water flushing operation, and
what flux rate is needed to remove the maximum amount of mobile
LNAPL?

(2) How much LNAPL remains in the aquifer after the LNAPL
becomes static and no more is removed by flushing?

(3) How is the LNAPL distributed after it reaches a static condition?

Answers to the questions listed above can be found by applying
Equations 4.3 or 4.5. Equation 4.5 assumes the Brooks-Corey
approximations for the capillary pressure-saturation and capillary pressure-
permeability relationships are valid, but it is useful for calculating at least
qualitatively how LNAPLs are distributed in an aquifer during steady
(1−dimensional) flow of water.

Qualitative deductions from an examination of Equation 4.5 include:

(1) Sinβ is positive in the upslope direction so the critical flux rate
upslope is negative.  Consequently LNAPL moves upward with any
flow rate until only entrapped LNAPL remains.  However, a flow
rate greater than zero speeds up the process.
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(2) When flow is downslope, a water flux rate greater than a critical
flux rate ( )∆ρ g k m  sin /β µw  is needed to remove all mobile
LNAPL.  In this case km is interpreted as the maximum water
permeability for an aquifer that may contain entrapped air as well as
entrapped LNAPL.  The critical flux rate is that producing a zero
capillary pressure gradient with an effective water permeability
equal to km and a static LNAPL.  The piezometric gradient required
to produce a critical flux rate is given by ( / )∆ρ ρw  sinβ.

(3) A downslope flux rate less than critical in a confined homogeneous
aquifer may spread LNAPL as an interconnected fluid (with a
uniform saturation) over an indefinite distance in the direction of
flow.  The saturation in the LNAPL body depends on the medium
properties and the flux rate.  The length of the interconnected
LNAPL body depends also on the volume of LNAPL originally
present relative to the total pore volume of the aquifer per unit of
length in the direction of flow.

The distribution of capillary pressure and saturation for 1-dimensional
flow systems can be estimated from Equation 4.6. The calculation can be
made by evaluating the integrals numerically between appropriate limits.
However, if the flow diverges or converges due to a changing cross-section
for the flow, qwi varies with the space coordinates and the solution is more
complex.  Another complication occurs where there is a change in the angle
β, as for a case where the slope of an aquifer changes.

 Equations used to analyze the distribution of LNAPLs apply also to
DNAPLs.  However, the density difference is negative and often much
greater in magnitude than for LNAPLs.  Consequently, DNAPLs migrate
downward in an aquifer until blocked by a barrier of higher entry pressure
than the entry pressure of the aquifer material, or unless they encounter an
upward flux of water that exceeds the critical flux rate.

The forgoing theory applies only to convection of water when the
nonwetting fluid is static.  It is important to keep in mind that other
processes including diffusion, partitioning between phases, adsorption of
constituents on solid particles, and biodegradation of organic compounds
occur simultaneously with convection.

4.2.3. Downward Flow of Water Through a Homogeneous Soil
Profile to a Water Table

Equation 4.5 applies also to steady 1-dimensional downward flow
through a soil in which air is present as a nonwetting phase.  For this case, it
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is feasible to assume that both pnw and ρnw are equal to zero, and sin β is
- 1.0, so that
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for hc > he.  It is often convenient to scale the variables hc and h by dividing
each by hd.  The scaled version of hc is designated as ĥc   The ratio qw/Km is
also a scaled variable designated as q̂ .  The result in terms of scaled
variables is
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Equation 4.8 assumes that ĥc  is equal to or greater than ĥe  because the
equation applies only where both fluids are interconnected.  A solution is
obtained by numerical integration [P. R. Corey et al. (1982)].

When flow is steadily downward to a water table, the result is
qualitatively like that shown in Figure 4.2 for downward flow through an oil
trap.  In this case, however, there is no cap rock to set a limit on the value of
hc.  Instead, air at atmospheric pressure at the soil surface insures that the air
pressure will never become less than atmospheric. When q̂  becomes greater
than 1.0, dhc/dh becomes negative and an interconnected air phase does not
exist.  In the limit, as q̂  approaches zero, the distribution of capillary
pressure becomes everywhere hydrostatic.  Figure 4.3 shows a family of
distributions for a range of values of q̂ .

In Figure 4.3, q̂1 is less than 1.0 and ĥc  is small enough that pc is
everywhere less than pe, and consequently an interconnected air phase does
not exist.  When this situation exists, Equation 4.8 does not apply. Instead,

dh

dh
qc

ˆ

ˆ
ˆ== −−1 4.9

so that dhc/dh is a constant.  Equation 4.9 is used for all values of ĥc  less
than pe/pd, a ratio slightly greater than 1.0.

The behavior indicated in Figure 4.3 makes possible the long-column
method of determining krw(pc).  Steady downward flow is established at a
range of values of q̂  such that the capillary pressure is practically constant
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Figure 4.3. Capillary pressure head as a function of elevation
during steady downward flow of water through a
homogeneous soil.

with elevation over a range of elevations at the top of the column.  The value
of ĥc  may be determined with tensiometers in the section of the column
with an invariant capillary pressure, and saturation can be determined using
gamma attenuation.  Since pressure is invariant with elevation in this region
of the column, ∂ ∂H z/  is 1.0, and K is equal to qw.  The procedure requires
that the column be packed homogeneously, and is sufficiently long that
capillary pressure is actually invariant with elevation in the test section.

The length of column needed depends upon the entry pressure of the soil
because dhc/dh is a constant equal to ( ˆ )1− q  for values of ˆ .hc <1 0. Where
ˆ .hc >1 0, the product ˆ ˆq hc

η increases toward a value 1.0.  The transition is
short if η is large and somewhat longer if it is relatively small.
Consequently, the length of the column needed depends upon η as well as
pe, but the latter is usually the more important factor.

A complication may arise when Kw(pc) is determined on the drainage
cycle, that is, when the flux rate is decreased in increments starting with a
fully saturated column.  When the flux rate is reduced, a period of time is
required before a new steady state exists.  Although the flux rate decreases
immediately throughout the column, air does not immediately replace the
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water necessary to produce a new steady state.  During the transition period
Kw is higher than its steady state value.  Consequently, the flux rate is
smaller and dhc/dh is larger than for the steady state intended because the
top of the column over desaturates.  A steady state is eventually reached, but
it is reached from the wetting direction rather than the drainage direction.
This produces erratic data for Kw(pc), but Kw(S) is not affected significantly.

The problem of reversing cycles can be minimized by making the
increments of qw small and providing sufficient air vents along the length of
the column to minimize the time for air to penetrate the column in response
to a reduction in water pressure.

4.2.4. Steady Downward Flow to a High Capillary Pressure Sink

The column length needed to produce a practically uniform capillary
pressure near the top of a column can be substantially reduced by
maintaining a high value of capillary pressure at the bottom of a column of
homogeneous soil.

In this case Equation 4.8 applies to the entire column provided ˆ .q <1 0 .
This is because hc  is greater than p ge / ( )∆ρ  everywhere in the column.
The solution is

f h dh dhc c
ˆ ˆ ˆ(( )) == ∫∫∫∫

which can be integrated numerically.  The integration begins at the lower
boundary where the scaled capillary pressure head is at a controlled value
greater than 1.0, say 3.0.  The integral gives the scaled elevation at which a
calculated scaled capillary pressure head occurs.

A curve obtained by this procedure is shown in Figure 4.4 as the solid
line.  This is compared to an analogous curve (for the same q̂  and η)
obtained for downward flow to a water table.  For steady downward flow to
both a high capillary pressure sink and a water table, the value of capillary
pressure head in the upper part of the column approaches the same
asymptote, providing the scaled flux rate is the same.  The value of scaled
capillary pressure head at the asymptote depends on the scaled flux rate and
the pore-size distribution index.  However, with a high capillary pressure
sink, the asymptote is approached over a much shorter length of column.

The behavior illustrated in Figure 4.4 permits the determination of
Kw(pc) or Kw(S) using columns shorter than those needed for the long-
column procedure.  There is an important difficulty, however, in that high
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Figure 4.4. Distribution of capillary pressure head during steady
downward flow to a high capillary pressure sink
compared to flow to a water table. [Adapted from P. R.
Corey et al. (1982)].

capillary pressure sinks are not easy to maintain.  It would seem that the
only requirement would be a capillary barrier at the base of a column
connected to a siphon tube with an outlet at a sufficiently low elevation.

Unfortunately, the resistance of a capillary barrier (and especially the
contact zone between barrier and the soil column) has a tendency to increase
rapidly with the discharge of water passing through the column. What starts
out being a high capillary pressure sink may quickly become a barrier to
flow.  Experience has shown that a capillary barrier consisting of a sequence
of unconsolidated granular layers, coarser at the bottom and progressively
finer at the top in contact with the soil, is the most satisfactory arrangement.
Such a barrier has much less tendency to become plugged or to lose contact
with the soil than a rigid or semi-rigid porous membrane.  The entry
pressure of the finest layer in the barrier should not be larger than necessary
to hold the vacuum of the outflow tube.  Also, the fine layer should not
contain clay or organic material.

Another interesting application of a high capillary pressure sink is for
monitoring the soil water solution passing through a soil profile. There are



4 / Steady Flow of Immiscible Fluids

141

numerous occasions for which a measurement of the quantity and quality of
the soil leachate is needed.  For example, environmental engineers employ
such methods for studying pollution of groundwater from a variety of
sources.

The principle problem to be overcome is due to the soil water being at
some pressure less than atmospheric.  Therefore, to get the water into a
collection device, the pressure of water in the device (in contact with soil
water) must be lower than the soil water pressure. This must be done
without permitting the device to fill with air, thus excluding the soil water.
However, the soil water pressure at the entrance to the collector must not be
substantially lower than that of the undisturbed soil water because this
causes excessive convergence of streamlines and invalidates a quantitative
determination of the rate at which leachate passes a particular horizontal
plane.

Several investigators have utilized porous ceramic capillary barriers
operating under a suction for this purpose.  Cole (1968) used this technique
to measure rate of water flow through a forest soil. Convergence of
streamlines towards capillary barriers was prevented by manual adjustment
of the suction to that of the water in the surrounding soil.

Duke, Kruse and Hutchinson (1970) improved on Cole's device by
installing an automatic system to adjust the suction in the collector to that in
the surrounding soil.  It was found, however, that the automatic equipment
was difficult to maintain as well as being expensive to install. When suction
is applied at the bottom of a buried trough (as shown in Figure 4.5) the

Figure 4.5.  Sketch of soil water monitoring system.
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amount of leachate collected is insensitive to the amount of suction applied.
P. R. Corey et al. (1982) investigated the depth of a trough required to
ensure that the suction at the trough would depend only on the vertical
component of qw and would not be affected significantly by the suction at
the bottom of the trough.

This problem is tantamount to that of determining the magnitude of ∆ ĥ
(indicated in Figure 4.4) such that the scaled capillary pressure head is
within some arbitrarily small increment of the asymptotic value.  When the
capillary pressure head is at the asymptotic value, no convergence of flow
lines toward the top of the trough should occur. The magnitude of ∆ ĥ  is
greater for soils having small η and for smaller scaled flux rates. The
necessary trough height also is affected slightly by the scaled capillary
pressure head applied at the bottom of the collecting trough.

P. R. Corey et al (1982) found that a trough 20 cm deep would be
satisfactory for typical soil conditions but might not be satisfactory for a soil
having a very wide range of pore sizes, say η less than about 6.

4.2.5. Steady Upward Flow from a Water Table

The rate of evaporation from a fallow soil may be controlled by either
the capacity of the atmospheric environment to evaporate water or the
capacity of the soil to transmit water to the surface.  Except where the water
table is at very shallow depths, the capacity of fallow soil to transmit water
usually is the limiting factor [Anat et al. (1965)].

When upward flow is from a stationary water table, the flux rate may
sometimes approach a steady state, and the limiting rate may be determined
by application of Equation 4.3.  In this case, Equation 4.3 is written as

dh

dh
qc

ˆ

ˆ
ˆ== ++1       for     ĥc ≤≤ 1

and

dh

dh
q hc

c

ˆ

ˆ
ˆ ˆ== ++1 ηη      for     ĥc >> 1   . 4.10

Equations 4.10 differ from Equation 4.8 in that sin β is positive rather
than negative.  The value of dh dhc

ˆ / ˆ , therefore, cannot equal zero anywhere
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in the soil profile and has a minimum value of 1.0. Figure 4.6 presents a
typical solution of Equations 4.10 giving the variation of ĥc  with ĥ .

Because the change in pressure due to flow and to gravity are additive,
the transition from wet to dry soil is very abrupt.  For any particular soil
(and distance from dry soil to water table) there is a maximum upward flux
rate.  This fact was first pointed out by Gardner (1958).  The maximum
upward flow rate (for a given depth from dry soil to water table) occurs
when the dry soil is encountered only at the extreme surface, or perhaps
when the surface is not completely dry.  Further drying causes the upward
flow rate to decrease, evidently because of contact angle hysteresis or some
such mechanism.  The latter phenomenon has been discussed by Schleusener
and Corey (1959).

Figure 4.6. Distribution of capillary pressure head during steady
upward flow from a water table.

The solution of Equation 4.10 is of the form

f h dh dhc c
ˆ ˆ ˆ ,(( )) == ∫∫∫∫
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and the integrations are performed numerically.  The integration is carried
out in two steps.  The first step is ĥc  from zero to 1, where f hc( ˆ )  is a
constant equal to 1/(1 + q̂ ) and the second step is ĥ c  from 1 to ∞∞∞∞ , the
capillary pressure of the dry soil being assumed to approach infinity.  The
integration is performed by substituting arbitrary values of q̂  and η.  The
sum of the two integrals gives the scaled depth d̂  from dry soil to the water
table corresponding to the value of q̂  and η selected. By repeating the
process for a range of values of q̂  and η,  H. R. Duke obtained a nomograph
[Anat et al. (1965)] showing the relationship among q̂ , d̂  and η.

Anat developed an approximate analytical expression for ˆ ( ˆ, )q d η .  He
expanded f( ĥc ) into a convergent series and integrated term by term.  For
values of ˆ .q <1 0 , including the range for most applications, the relationship
is

ˆ . ˆq d n≈≈ ++
++









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−−1
1 886

12ηη

ηη

  . 4.11

Equation 4.11 is more general, but comparable in form, to equations
presented earlier by Gardner (1958) for the special case of integer values of
η from 1 to 4.  In deriving his equations, Gardner also assumed q was small.

4.2.6. Steady Downward Flow Through Stratified Media

A case is considered in which water is percolating steadily downward
through a sequence of layers to a deep water table.  The layers have
contrasting properties but are homogeneous within themselves.  For
simplicity, a system is considered in which alternating layers of only two
types of media exist. The Kw(pc) relationships for these two media are
shown in Figure 4.7 on log-log plots. The arrangement of the layers is as
shown in Figure 4.8.

Continuity requires the flux rate to be the same in all layers since the
flow is steady.  Furthermore, the water is interconnected (continuous)
throughout all layers, including at the boundaries between layers, otherwise
there could be no flow.  The water pressure, therefore, is continuous at all
points in the column because a pressure discontinuity in a continuous liquid
phase would imply an infinite driving force at the point of discontinuity in
pressure.
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Figure 4.7. Kw as a function of pc (for two media from a layered
soil) on a log-log plot.
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Figure 4.8. Distribution of capillary pressure during steady
downward flow of water through layered soils.
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The value of dhc/dh at all points is given by Equation 4.3, written for the
purpose of this analysis as

dh
dh

q
K

c w

w

== −−1

in which Kw is a function of hc.  The solution of the equation is

f h dh hc c(( )) ==∫∫ ∆∆ .

When the integration is carried out across boundaries between layers,
however, there is an abrupt change in Kw which produces a discontinuity in
dhc/dh.  Consequently, hc is a continuous function of the space coordinates
but not an analytic function in this case.

The shape of the curve shown in Figure 4.8 can be understood by
reference to the differential equation of flow.  When Kw equals qw,  dhc/dh is
zero, the hydraulic gradient is 1.0, and the driving force is entirely
gravitational.  This situation exists in the regions indicated by the vertical
portions of the curve.

It is informative to consider the behavior of dhc/dh starting at the water
table in soil(2).  The point (a) on the Kw(hc) curve for soil(2) indicates the
value of hc and Kw at this point.  Immediately above this point, hc increases
practically in a hydrostatic manner because qw « Km of soil(2).  This trend
continues until hc exceeds hd of soil(2).  The curve then bends until hc
reaches a value indicated by point(b) in Figure 4.7, where Kw equals qw.
The curve is then vertical because dhc/dh is zero. Where soil(1) is
encountered, however, Kw is very small, as indicated for point(c).  The ratio
qw/Kw is large, and dhc/dh has a large negative value. This causes hc to
decrease rapidly to a value indicated by point (d) where Kw again is equal to
qw and the curve is again practically vertical.  At this value of hc , however,
Kw in soil(2) is as indicated by point(e). Where this soil is encountered, the
pressure distribution is practically hydrostatic until hc (indicated at point(b))
is again reached and the curve again becomes vertical.

As indicated in Figure 4.8, the wettest soil (other than near the water
table) is just above the coarse material.  The driest soil is in the coarse
material just above the underlying fine soil.  In fact, the resistance to flow in
the thin dry layer on top of the fine soil, is probably greater than the
combined resistance of the remainder of the profile.  In other words, the flux
rate is controlled by this region of the profile.  Conditions analogous to this
case occur frequently in nature and for this reason, layered soils drain much
slower than homogeneous soils.
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The behavior illustrated in Figure 4.8 was demonstrated experimentally
by Scott and Corey (1961) who were the first to apply Equation 4.3 to flow
through layered soils.  They showed that Equation 4.3 described the
experimentally measured pressure distributions during steady downward
flow in layered soils for the cases they investigated.

Equation 4.3, in its more general form, also can be used to describe the
pressure distribution during steady flow of brine or water through an oil trap
(or a fresh water aquifer containing an LNAPL) in which the aquifer
material varies in texture along the path of flow. The relationships illustrated
in Figure 4.8 hold for this case also.  Therefore, it can be predicted that oil or
LNAPL concentrations are highest in regions of coarse sands just upslope
from finer-textured materials.  The highest wetting fluid saturations are in
the finer materials immediately upslope from coarser materials.

4.3. STEADY FLOW OF A NONWETTING FLUID

Steady flow of air is sometimes induced in the field to aerate polluted
aquifers allowing biodegradation of a residual NAPL.  In this case air is
injected under pressure in a well penetrating an aquifer.  The process is
called "sparging."  A flow of air may also be induced in the reverse
direction, i.e., towards the well, in an attempt to remove contaminating
chemicals as vapor mixed with the air.  The latter process is called "soil
vapor extraction."

Two Laboratory experiments are discussed in Chapter 3 involving steady
flow of a nonwetting fluid.  One involves the simultaneous flow of two fluid
phases under the same pressure gradient imposed to obtain uniform
saturations for the measurement of kw and knw as functions of saturation.
The other involves steady upward flow of air only, under a pressure gradient
equal to the static pressure gradient in the liquid wetting phase.  This is done
in order to obtain knw on porous rock cores.

Another experiment, considered here, is an exercise to illustrate the
physics of nonwetting phase flow emerging into the atmosphere from a
partially saturated porous medium.  This involves horizontal flow of a
nonwetting fluid in the presence of a static wetting phase.  A cylindrical core
of porous rock of small diameter is considered.  The surface of the cylinder
is sealed except for the ends.  The porous cylinder is first fully saturated
with a liquid.  A pressure difference is imposed in the air across the ends of
the core sufficient to displace some of the liquid and to establish a flow of
air through the medium.  The air is pre-saturated with the vapor of the
liquid, and the flow is initially assumed to reach a steady state so that the
liquid retained in the porous rock eventually becomes static.  The situation is
illustrated in Figure 4.9.
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Figure 4.9. Horizontal porous cylinder containing static liquid and
flowing air.

The version of Equation 4.3 applicable after the liquid becomes static is

dp
dx

q
k

c a a

a

== −−
µµ

where the subscript "a" refers to air.  In order for air to pass entirely through
the core, pa must exceed p  l  by an amount at least equal to pe for the
particular medium and fluids considered.  The subscript " l" refers to liquid.

It is assumed that pc at the outflow face is equal to pe.  Since the liquid is
static, p  l  is a constant along the line of flow.  It is convenient to use p  l  as a
datum from which to measure the pressure of air because pc is then equal to
pa, and ka is a function of pa.  The air pressure at any point x along the
centerline of the cylinder is given by

k dp q xa
p

p

a a a

a

a

1

∫∫ == −− µµ .

The integral on the left side of this equation can be evaluated if ka(pc) is
known.  One way of estimating this is to employ Equation 3.56. In any case,
the integration can be performed numerically.

The pressure distribution shown in Figure 4.9 was determined by
numerical integration using Equation 3.56 for ka(pa) with λ  = 2.  Figure 4.9
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indicates that much of the pressure drop occurs near the outflow face. This is
because the liquid retained in the core tends to accumulate at the outflow
face and resistance to flow at this face is large relative to resistance through
other parts of the core.

The analysis described above is based on a steady state assumption that
contradicts the conclusion.  Air pressure must exceed the ambient pressure
by an amount equal to the entry pressure before emerging from the medium,
but at the instant air emerges its pressure is reduced to the ambient pressure.
The only way this can occur with horizontal flow is for air to emerge in
spurts, as if bubbles of air emerge from the medium.  One must conclude
that flow of air emerging from a partially saturated horizontal column cannot
be steady, contradicting the initial assumption of a steady state.  In fact, the
latter conclusion is supported by visual observation.

The conclusion that liquid tends to concentrate at the outflow face where
air exits the porous medium is also supported by observation.  The tendency
for water to accumulate at the outflow face is increased in the case of soil
vapor extraction, because of the convergence of flow around the well bore.
This presents a problem in conducting a vapor extraction operation, because
the high resistance to air flow near the well bore reduces the rate at which
vapor can be removed.

The tendency for air to preferentially flow through channels of the lowest
entry pressure and highest permeability also reduces the efficiency of both
sparging and vapor extraction.  Pockets of wetting fluid and entrapped
nonwetting fluid are likely to be by-passed by the channels of flowing air.
Vapor extraction and biodegradation are both limited by the rates at which
constituents can be interchanged by diffusion between the bypassed pockets
and the air channels.

4.4. STEADY FLOW TOWARD PARALLEL DRAINS

The problem considered here is to a large extent hypothetical although it
has considerable practical importance.  In many parts of the world,
agricultural drains are designed (with respect to depth and spacing) by
assuming water percolation to the water table is steady.  Upon reaching the
water table, water flows laterally to some sink.  In order to maintain the
water table at a safe depth below the surface, artificial sinks may be
provided in the form of parallel drains at some depth below the surface,
preferably near a low-permeable stratum if such a stratum exists.

The hypothetical model usually used as a basis of design is illustrated in
Figure 4.10. This model is idealized in several respects. First, the recharge
rate w is assumed to be constant in respect to both time and areal
distribution.  Secondly, the drains are considered to act as open ditches
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penetrating to some constant depth, whereas in reality, the drains are usually
buried conduits of relatively small size, say 15 to 20-cm tile.  The water
table is regarded as being in equilibrium under the existing conditions of
recharge and drainage.  It also is assumed that the Dupuit approximations
are valid for this case and that the aquifer is homogeneous and isotropic.

Figure 4.10.  Flow toward parallel drains with uniform recharge.

For the usual analysis of this problem, it is assumed that the water table
is the upper streamline.  This latter assumption may often lead to serious
error, and the purpose here is to show how this assumption can be avoided.
However, the standard analysis is presented first.

The origin of coordinates is placed on a layer, assumed to be
impermeable, below the center of the drain on the left.  A vertical plane
drawn between the center of the two drains at x = S/2 is regarded as a divide
across which no flow takes place.  To the left of the central divide, all flow
eventually reaches the left drain, and to the right of the divide flow is toward
the right drain.

Flow through a vertical plane at x is considered.  The flow through this
section is toward the left drain and is equal to the recharge on the surface
between the section and the divide.  The surface area on which this recharge
takes place (for a slice of aquifer of unit thickness) is equal to S/2 - x.  The
quantity of water flowing per unit time through the vertical plane of unit
width is, therefore,

Q w S xx == −−⎛
⎝

⎞
⎠2

.
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According to the Dupuit approximation, Qx should also be given by

Q Kh dh
dxx == ,

where h is the elevation of the water table above the impermeable layer.
Equating the two expressions for Qx and integrating with respect to x gives

wS x w x K h ho2 2 2
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In the usual case ho « hm so that ho can be considered as equal to zero.  In
this case, the flow equation can be integrated between the limits
(x h d= =0, ) and (x = S/2, h = hm + d) which gives

S Kh
w

h dm
m

2 4 2== ++( ) . 4.13

Equation 4.13 has been used in many parts of the world and especially by
the U.S. Soil Conservation Service for determining the spacing of relief
drains.  The equation is sometimes known as the ellipse equation. In other
places it is called the Hooghoudt, Donnan, or  steady state equation.  It is
more appropriate for areas of frequent rainfall, such as Holland where it
originated, than for irrigated regions.  In such cases, the assumption of a
constant recharge and an equilibrium state of the water table may be a
reasonable approximation.

If the height d is not relatively small compared to hm, the Dupuit
approximation fails rather seriously because flow into the drain approaches
radial rather than horizontal.  In the latter case, a different equation for the
drain spacing is advised.  For example, according to Equation 4.13, as d
becomes infinite, S also becomes infinite.  This is not realistic, the difficulty
being that the equation fails to account properly for radial flow in the
vicinity of the drain.

Equation 4.13 also fails for cases in which the so-called capillary fringe
pe/ρw g, designated by he is not small compared to hm.  This is a frequent
situation, but for many years little attention was given to accounting for the
flow in the region above the water table. The following analysis was
suggested by Duke (1973) as a way of accounting for this flow.

The capacity of the region above the water table to conduct water
horizontally toward a drain is given by an expression suggested by Myers
and van Bavel [Bouwer (1964)] as

H
K

K dhk
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where Hk is the "effective permeable height," a hypothetical height of
saturated soil having the same capacity to transmit water as does the
partially saturated region above the water table.  The maximum field
conductivity is designated by Km and Kw is the conductivity at any other
saturation.  The elevation above the water table is designated as h, and H is
the elevation to the soil surface.

When H < he, the soil remains saturated to the surface and Hk = H.  If
H > he, Kw is dependent on h and any vertical flux that may exist.  During
steady percolation to a water table, hc is less than h at every point.  Figure
4.3 illustrates this situation.

The integration indicated in Equation 4.14 can best be performed in two
steps:
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The limit hs refers to the value of hc at the soil surface.  In the usual case, the
surface is dry and hs →∞ , the value of the integrand at this limit being
equal to zero.

In order to evaluate the integrals, however, the variable of integration h
must be expressed in terms of hc.  This is accomplished by application of
Equation 4.3 in the form
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For the first term on the right in Equation 4.15, Kw is Km, a constant.
Therefore, this term is
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in which  q̂  is the scaled flux qw/Km.  For the second term
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so that
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Equation 4.16 can be solved easily by numerical integration. It is sufficient
to assume that Hk is a constant at all values of x (see Figure 4.10).  The
reason is that the integrand in Equation 4.16 becomes very small when hc is
substantially larger than he , say by a factor of about 2 or 3.  Consequently,
the greater depth to the water table near the drains has negligible effect on
the value of Hk.

For a case of steady flow to parallel drains, with a steady percolation
rate, the variable h in the ellipse equation (in particular, hm) can be replaced
with h + Hk.  This procedure was used by Duke to calculate the water table
profile in a laboratory drainage model consisting of a soil flume.  The results
are shown in Figure 4.11.  In this figure, the measured water table elevations
are shown along with those calculated by numerical solution of Equation
4.12 with h replaced by h + Hk.   Evidently this procedure provides a better
representation of the measured data than is obtained from Equation 4.12 in
its original form.
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Figure 4.11. Numerical solution of Equation 4.12 corrected with
Equation 4.16. [Adapted from Duke (1973)].
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PROBLEMS AND STUDY QUESTIONS

l. Equation 4.4 does not imply a summation over 3 orthogonal directions.
However, Equation 4.1 necessarily implies a summation over 3
orthogonal directions.  Explain why this is necessary, physically.

2. In the process of geophysical exploration for oil, the geophysicists look
for structural "highs;" that is, they check to see if certain rock strata are
encountered at higher elevations than the known elevation of the
corresponding strata in surrounding areas.  Explain.

3. In a confined aquifer containing both oil and brine, in which the aquifer
texture is at places relatively fine-grained and in other places coarse-
grained, wells that are drilled into the fine-grained material may
produce mostly brine.  Explain.

4. Consider a vertical column of sand initially fully saturated with water
and with a water table maintained at the base of the column. Fuel oil
(specific gravity = 0.75) was then spilled at the top of the column until
most of the water was removed from the column.  Subsequently a
water flood from the top of the column was initiated to remove as
much of the fuel oil as possible.  Calculate the piezometric gradient
required to insure all mobile oil is flushed downward and out of the
column.

5. In reference to the column in Problem 4, suppose one removed only
part of the mobile oil by establishing a steady downward flow of water
at a smaller rate than the critical rate.

(1) Describe the oil distribution in the column when steady state is
achieved.

(2) Explain qualitatively what happens to the oil distribution after the
flushing operation is terminated.

(3) What additional information is needed about the column, the oil,
and the sand to determine the distribution of oil when equilibrium
is reestablished after the downward flow of water is terminated?
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(4) How would your answers to questions (2) and (3) change if the
water table at the base of the column, as well as the water flood
from the surface, is terminated and both ends of the column are
exposed to the atmosphere but protected from evaporation?

6. Consider an unconfined aquifer consisting of fully saturated sand with
an entry pressure head (DNAPL into water) of 5 cm of water.  There is
a horizontal layer of finer textured sand at some depth below with
he = 15 cm of water.  When a sufficient amount of DNAPL (S.G. = 1.2)
is spilled at the surface of the aquifer, a mound of DNAPL builds up
over the fine-textured layer.

(1) Calculate the maximum height the mound could reach before
DNAPL enters the fine-textured layer.

(2) Describe qualitatively what happens to the mound after the
spilling stops.  Will the DNAPL spread for an indefinite distance?

(3) When the spreading stops, what will be the maximum thickness of
the mound?

(4) Will all of the DNAPL be in the zone of interconnected DNAPL
at the time spreading stops?  Explain.

7. Consider a soil profile in which there is a junction between a coarse
and a finer-textured material.  Assume that both the coarse and the
finer material are partially desaturated.  Compare

(1) the capillary pressures,

(2) the saturations, and

(3) the values of Kw of the two materials at the junction.  Explain.

8. Given that a sand has an entry pressure head of about 30 cm, estimate
the length of column necessary to obtain kw(pc) by the long-column
method.  How would the necessary length of column be affected if the
soil under investigation is highly structured (with a low value of η
being expected)?  Explain.

9. When using a long column to determine kw(pc) there is a danger that
upon decreasing the flow rate by some increment, the column may
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over-desaturate at the top and later resaturate to some degree.  Explain.
This tendency is greater when columns are not supplied with sufficient
air vents.  Explain.

10. The tendency indicated in question number 9 may not affect the results
significantly if the method is used to obtain kw(S).  Explain.

11. The length of column needed to obtain kw(pc) by the short-column
method is affected by η, but not by the entry pressure head.  Explain.

12. Consider a case of steady downward flow of water in homogeneous
sand in a long column to a water table below.  If the value of qw is
10 8− cm/s and Km is 10-4 cm/s, what is Krw in the upper portion of the
column?

13. Consider a case of water moving steadily downward through a very
long column of homogeneous sand (λ  = 2 and Sr = 0.2) which is
partially saturated.  The upper half of the column has a diameter of
3 cm and the lower half has a diameter of 6 cm. The value of q for the
upper portion is 1.2 x 10-3 cm/s and Se = 0.8.  Ignore the situation
existing near the junction of the upper and lower half and estimate the
following:

(1) the value of kw of the soil in the lower half in square microns,

(2) the value of S for the lower half,

(3) the value of krw for the upper and the lower portion,

(4) the ratio of the pc in the upper half to that in the lower half.

14. When using a soil water extractor to determine the rate at which
leachate passes a horizontal plane in a soil profile, it is important that
streamlines do not converge or diverge toward the extracting device.  If
the extractor consists of an interceptor operating at atmospheric
pressure, would you expect the streamlines to diverge or converge
toward the device under usual soil water conditions?  Explain.

15. Evapotranspiration rates may fluctuate greatly from hour to hour
depending upon atmospheric conditions, whereas evaporation from a
nearby fallow soil may not fluctuate at all during the same period of
time.  Explain.
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16. Explain why layered soils typically drain much more slowly than
homogeneous soils.  Describe conditions under which a coarse stratum
may control the percolation rate, and other conditions in which a fine-
textured stratum may be the major restriction.

17. The vertical distribution of soil water obtained with a trickle irrigation
system is likely to be much more favorable than that obtained by a sub-
irrigation system.  Explain fully.

18. Would you expect the effective permeable height to be greater or less if
the recharge rate w is increased, other conditions being equal?

19. Consider a horizontal cylinder (of small diameter) of homogeneous
porous rock.  The medium is initially saturated with water and is open
to the atmosphere.  Water is maintained at atmospheric pressure at the
inflow end of the cylinder.  The water pressure at the outflow end is
maintained at a very low value (very high capillary pressure) and the
outflow approaches a maximum qm.

Assuming that pc < pd,  Kw  =  Km, and for p pc d≥  ,

K K p pw m d c== (( ))/ ,
ηη

show that

q K
p
gLm m

d==
−−
ηη

ηη ρρ1

in which L is the length of the cylinder of porous rock.

20. In reference to problem number 19, assume the rock has a very uniform
pore size and p gd / ρ  is twice the length of the porous cylinder.
Estimate km in square centimeters if qm  is 10-4 cm/s at a room
temperature of about 20 degrees centigrade or slightly less.  What
would qm be if T = - 10 degrees C?
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Chapter 5

UNSTEADY  FLOW  OF
IMMISCIBLE  FLUIDS

5.1. UNSTEADY FLOW WITH TWO FLUIDS

Variables pertinent to a description of unsteady flow in porous media
containing two fluids include pressure, flux rate and permeability of each
fluid along with saturation, space coordinates and time.  Fluid properties
including density and viscosity are treated as constants, although a more
general analysis would treat them as variables.  Medium properties including
porosity and maximum permeability also are treated as constants. The
effective permeabilities are functions of capillary pressure but are
considered invariant in respect to direction  since the medium is assumed to
be isotropic.

For isotropic media, the generalized flux Equation 3.44 is written for
each fluid as
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For fluids undergoing negligible changes in density, material balance
equations are obtained by considering a reference volume of the bulk
medium, including the solid matrix as well as a representative portion of
each of the two fluids.  Such a volume is of a size sufficient for the
specification of porosity as explained in Section 1.3.1.  The resulting
material balance equations are
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From the definition of capillary pressure,
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Problems involving displacements of one fluid by another are analyzed
by solving Equations 5.1-5.4 simultaneously, with appropriate initial and
boundary conditions. Examples include imbibition of water in soils,
infiltration, drainage of soils and the displacement of one liquid by another,
e.g., oil by brine or an LNAPL by water.  Solutions require the relationships,
kw(pc), knw(pc), and S(pc) to be known or estimated, and usually a solution
requires numerical integrations.

Many practical problems can be analyzed by solving simpler equations
because a number of the factors accounted for in the complete two-phase
equation set are not significant in all cases.  A simplification often made by
soil scientists for application to water-air displacements in soils is to neglect
the density and pressure of air.

An assumption of constant air pressure is applicable where the resistance
to air flow is negligible in all parts of the flow system, and consequently,
capillary pressure is essentially equal to the negative of the water pressure.
Since the viscosity of water is more than 50 times the viscosity of air this
assumption is often justified.  However, there are regions in many air-water
systems where kw is much greater than knw in which case the assumption is
not justified.  Obviously it is not justified, for example, in the case discussed
in Section 4.3, because air emerging from the porous sample must exit
through a region of high liquid saturation.

A contrasting simplification is often made by petroleum engineers when
dealing with displacements of petroleum fluids, especially oil by brine.  The
two fluids flow side by side over large distances with very small gradients of
capillary pressure and saturation.  The driving force causing flow is large,
and nearly the same for both fluids.  The two fluids often have comparable
viscosities at the temperature existing in the aquifer.  Furthermore, the
slopes and the density difference are often small so that buoyancy, ∆ρgi,
may be negligible.

Under the latter conditions, the two fluids are assumed to flow together
under the same pressure gradient.  In most oil-brine aquifers, however, there
are regions where the saturation changes substantially over relatively short
distances.  An analysis of saturation changes in such regions requires the
retention of both pressure gradients in Equations 5.1 and 5.2.
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A statement frequently made by petroleum scientists is that capillary, as
well as buoyancy effects are disregarded.  In fact, capillary effects are not
entirely ignored.  It is only the contribution of capillary pressure gradients
and buoyancy to the driving force causing flow that is ignored.  The effect of
capillarity on kw and knw remains implicit in their equations.

5.2. FLOW OF WATER AND AIR IN SOILS

Assuming that the density and viscosity of air are negligible, and that
wherever an interconnected air phase exists, the pressure of air is
everywhere atmospheric.  Equations 5.1-5.4 can be combined to give
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where ψ ρω≡ − p gw /  and h is the elevation above a datum.  Equation 5.5 is
known as the Richards equation after L. A. Richards (1931).  The Richards
equation is further simplified for special cases.

5.2.1. Horizontal Linear Imbibition without Air Resistance

The case of horizontal linear imbibition of water into a homogeneous soil
is of considerable academic interest and has been studied often.  The
additional simplifications made in this case include neglecting the gravity
force and assuming that θ is a single-valued function of ψ  only.  The latter
assumption eliminates the possibility of analyzing flow into soils which are
non-homogeneous or soils where hysteresis may occur.

The particular case most often analyzed is that of imbibition of water
from a source into a soil (with uniform water content θ i), while maintaining
a constant water content θo at the plane where x = 0.  It is required that θo
satisfy the condition

θθ θθ θθm o i>> >> ,
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where θm is the maximum water content for the soil.  If the conditions
described above are satisfied, Equation 5.5 can be simplified as

∂∂θθ
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where

D K
d
d

≡≡ −−
ψψ
θθ

,

and is called the diffusivity coefficient.  Defining D in terms of the total
derivative of ψ  is based on the assumption that ψ  is a single-valued
function of θ only.

Equation 5.6 is nonlinear, because D is a function of θ. A solution can
be found by first reducing the equation to an ordinary form with a suitable
transformation of variables, i.e., the Boltzman transformation given by

z xtθθ(( )) == −−1 2/ .

With this transformation, Equation 5.6 becomes
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z d
dz

d
dz

D d
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The initial and boundary conditions considered are:

θθ θθ0 , t o(( )) == ,

θθ θ∞∞ θ(( )) ==, t i ,

θθ θθx o i, .(( )) ==

Under the transformation, these become

θθ θθz o==(( )) ==0 ,

θθ θθz i→→∞∞(( )) == .

Since the boundary and initial conditions (as well as the starting
equation) are reduced by the transformation,

x z tθθ θθ(( )) == (( )) 1 2/ 5.8
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is a valid solution of Equation 5.6 for the conditions specified.  This implies
that the distance to a plane where θ has a specified value is proportional to
the square root of time, provided that the conditions are satisfied.  In this
case z(θ) is a single-valued function of θ satisfying Equation 5.7.  Equation
5.8 is known as the square root of time law.

Equation 5.8 also implies that the wetted region has a saturation profile
that stretches with time but remains similar in shape.  Consequently, it
seems reasonable to suppose that the cumulative inflow should also be
proportional to t1/2.  In fact, this can be shown to be true based on theory
which has been verified, at least roughly, by many investigators.  Figure 5.1
shows some typical results obtained by King (1964) for conditions as near as
possible to those assumed for the derivation of Equation 5.8.

Figure 5.1. Cumulative volume of inflow as a function of time
during horizontal linear imbibition [King (1964)].

Because of the very restrictive conditions for which Equation 5.8 is
derived, experimental verification is difficult.  According to King (1964),
the difficulties include:

(1) The soil must be packed in a homogeneous manner.

(2) The vertical dimension of the tube must be sufficiently small that
the effect of gravity on the distribution of water is negligible.  King
stated that the vertical dimensions must be small compared to
pd/ρwg.  In other words, the tube for a coarse-textured soil must be
smaller than for a fine-textured soil.



Mechanics of Immiscible Fluids in . . .

164

(3) The value of ψ  at the inflow boundary must be constant and larger
than pe/ρwg.

The latter condition is particularly difficult to satisfy rigorously because
water must be admitted through a capillary barrier. The resistance to flow
through such a barrier and through a contact region must be compensated for
in some way.  However, the resistance of the barrier and the contact region
vary with the flow rate, and also with time because of plugging.  Failure to
compensate for the resistance may result in curves, such as those shown in
Figure 5.1, having a small intercept on the time axis.  In fact, it is practically
impossible to satisfy the theoretical conditions rigorously, because Equation
5.8 implies an infinite flux rate at t = 0.  This cannot be achieved physically,
especially through a capillary barrier.

In the derivation of Equation 5.8 described above it is assumed that θ is
a single-valued function of ψ  and that the resistance to air flow is
negligible.  In fact, an equation of the same form as Equation 5.8 can be
derived without the single-value assumption.  To demonstrate that θ need
not be a single-valued function of ψ  to obtain Equation 5.8, consider the
imbibition of water into a horizontal tube as shown in Figure 5.2.

Figure 5.2.  Imbibition into a horizontal capillary tube.

For the capillary tube in Figure 5.2, the flux rate q is given by
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in which r is the radius of the tube.  A continuity equation referring to the
entire wetted volume of the tube is given by

q c
dx
dt

f== 2 .

Consequently,

dx
dt

c
x

f

f

== .

Integration results in

x c tf
2 == ′′ ,

or

x c tf == ′′′′ 1 2/ . 5.9

Equation 5.9 implies that both the distance to the front and the volume of
water imbibed increase in proportion to t1/2.  In this case, the value of θ
behind the wetting front is constant although ψ  varies from θo to ψ f.
Therefore, θ is not a single-valued function of ψ .  An analogous result can
be obtained assuming a homogeneous tube of soil having a uniform pore
size.  It would seem, therefore, that the validity of the square root of time
law does not imply that θ is necessarily a single-valued function of ψ .

In order for Equation 5.6 to be of any use beyond the derivation of
Equation 5.8, it must be possible to measure the function D(θ).  R. R. Bruce
and A. Klute (1956) have presented a procedure for making such a
measurement.  The measurement is made by performing experiments which
satisfy the conditions for which Equations 5.7 and 5.8 are valid.

Equation 5.7 is integrated between limits with respect to z(θ). The result
is
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The last term on the right of Equation 5.10 is zero at constant time because
the derivative ( / )d dz

i
θ θ  is zero at values of x large enough to be ahead of

the wetting front.
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It follows that
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Replacing z with its equivalent in terms of x and t, and considering a
constant t results in
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Equation 5.11 provides the basis for the following procedure for
evaluating D(θ):

(1) Obtain θ(x) at a particular t.

(2) Evaluate the integral in Equation 5.11 graphically or numerically.

(3) Calculate D at values of θx, thereby obtaining D(θ).

The reader is referred to the paper by Bruce and Klute (1956) for details of
the experimental procedure.

5.2.2. Infiltration from a Constant Head Source

The term "infiltration" designates vertical flow of water into a soil from a
source at the surface.  Resistance to air flow in response to the advancing
water may or may not be important.  Infiltration is a common physical
phenomenon and is a major process of the hydrologic cycle.

Assuming that resistance to air displacement can be neglected, the
downward flow can be described by Equation 5.5.  For this case, Equation
5.5 becomes
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where z is the vertical coordinate measured positive downward, i.e., positive
in the direction of flow.
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The term in parenthesis in Equation 5.12 represents the combined driving
force (per unit weight of water) due to the pressure gradient and gravity.
The vertical component of the pressure gradient is a result of capillary
effects due to the variation of θ with z. The gravity force per unit weight of
water in a vertically downward direction is 1.0.  As an aid in visualizing the
way the two forces are interrelated as water infiltrates downward through the
soil, an idealized model consisting of a vertical capillary tube is considered
first.  The idealized model is shown in Figure 5.3.

Figure 5.3 Downward imbibition into a capillary tube from a
constant head source.

For the capillary tube shown in Figure 5.3, the flux rate I is given by
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in which K* is a constant depending on the fluid properties and the radius of
the tube.  Ho is the depth of ponded water that is maintained constant, zf is
the distance to the air-water interface from the source and ψ f is the value of
- pw /ρwg at the interface.

For simplicity, a case is considered for which Ho is small enough to be
neglected so that
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where ψ f/zf represents the capillary force per unit weight of water, and 1.0
is the gravity force per unit weight of water.  When zf is small, the capillary
force is relatively large and may be more important than gravity.  However,
the capillary force decreases with zf and eventually becomes negligible,
whereas the gravity force remains constant.  Consequently, at large times,
the flux rate approaches the constant K*.

An equation of the same form as Equation 5.13, for infiltration into soils
from a ponded water source, was derived by Green and Ampt (1911). For
this case, K* is considered to be Km, the maximum conductivity existing
after the soil is flooded, and ψ f has been given various interpretations.
Whisler and Bouwer (1970) recommended the use of pe/ρwg for ψ f, and
suggested a way of measuring pe directly in the field. This is an obvious
choice since zf should correspond to an elevation where pc is pe.

Equation 5.13 provides a relationship between I and zf but does not
provide any information about the time at which a particular I will occur or
about the distribution of θ with respect to z and t. To obtain this
information, it is necessary to introduce a continuity equation. Green and
Ampt assumed that all the water infiltrated is held by the soil above the
elevation where ψ  is ψ f and pc is pe.  This is a simplification of the real
situation since some water advances ahead of the front.  Consequently, the
Green and Ampt equation in its original form, can give no information about
the distribution of θ in the partially saturated region.

The continuity equation used by Green and Ampt is

I
dz
dtm i

f== −−(( ))θθ θθ 5.14

where θm  and θ i are the final and initial water contents respectively.
Combining Equations 5.13 and 5.14 and integrating with respect to t gives
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in which Ht is the sum Ho+ψ f, and V is the volume/area of water infiltrated
in time t, i.e., zf ∆θ.

The use of Equation 5.15 requires a knowledge of:

(1) the initial water content θ i,

(2) maximum water content θm,
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(3) hydraulic conductivity Km,

(4) the sum Ho + ψ f.

Whisler and Bouwer (1970) have suggested methods of measuring the
required quantities in the field.  Whisler and Bouwer (1970) and later Mein
and Larson (1973) have presented results indicating that the Green and
Ampt equation agrees well with measured data. Considering the
assumptions made in its derivation, this equation would be expected to have
greater validity for soils with a relatively narrow range of pore sizes.  In
such soils, the quantity of water advancing beyond the front where ψ is ψ f
should be minimal, especially at early times, and the resistance to air flow
ahead of the front also should be minimal.

Philip (1957) was among the first to solve Equation 5.12 for the case of
infiltration from a constant head source.  He first wrote this equation in the
θ-dependent form
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where z is the vertical coordinate, positive downward.  For the case
considered, the conditions are:
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in which θi is the initial water content and θo is a water content maintained
at the surface by a constant ψ at z = 0.

Equation 5.16 is converted into a z-dependent form by multiplying each
term by ∂ ∂θz / , and using the identity
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which is subject to the conditions pertaining to Equation 5.16.
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The solution of Equation 5.17 is considered to be a perturbation of the
solution of
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where z* is taken as a first estimate of z. The solution of Equation 5.18 is
analogous to Equation 5.11, i.e.,
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Subtracting Equation 5.17 from Equation 5.18 gives
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where y* is used in place of y because of the approximation.  The
transformation
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From Equation 5.19

αα θθ(( )) == ∗∗ −−z t 1 2/ . 5.23

Integrating Equation 5.22 with respect to θ gives
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where Ki  corresponds to θ i. The conditions are

θθ θθ== i   for   χχ == 0 .

Equation 5.24 is solved numerically for this condition.  A new residual error

y y y∗∗∗∗ ∗∗≡≡ −−

is introduced, and the procedure is repeated with new residuals as often as
required to give the necessary accuracy.

The solution finally is developed as a power series in t1/2 :

z t t t f tm
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where the coefficients of tm/2 are functions of θ which are solutions of a
series of ordinary equations that can be solved numerically.  For details of
the method of calculation, the reader is referred] to the paper by Philip
(1957).

According to Philip (1957), within the range of variables most often
encountered, only the first few terms of Equation 5.25 are needed since the
series converges rapidly.  For practical applications, the first two terms on
the right are often considered sufficient.  With this simplification, Equation
5.25 can be shown to be in approximate agreement with the Green and Ampt
equation where z(θ) = z(θm).  In this case,

I
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(( ))
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θθ
.

At large times, I →χ   where χ  is an approximation of Km.  At very early
times, the first term is more important so that the infiltration tends to
proceed as it would for the horizontal case, indicating that capillary forces
are predominant at early times.
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5.2.3. Infiltration with Air Compression

 Infiltration occurring when the soil contains an underlying water table,
or some other restrictive layer delaying the escape of air, results in
compression of the air ahead of the wetted front.  The effect of this is an
increase in the air pressure resulting in a decrease in infiltration rate,
frequently followed by an abrupt breakthrough of air to the surface. Youngs
and Peck (1964), Peck (1965) and McWhorter (1971) are among those who
have studied this situation experimentally and theoretically.

The observations of the latter investigators indicate that the threshold
pressure at which air breaks through to the surface is significantly larger
than that which is indicated from the primary loop of a wetting ψ(θ) curve.
Evidently, a region of θ θ≈ m  moves into the soil during compression, and at
the time of breakthrough, there is a slight desaturation of this region so that
the threshold pressure observed is one that occurs on a desaturation loop
starting with θm.

Prior to breakthrough, there is a substantial but gradual reduction in
infiltration rate. After breakthrough, a counterflow of air begins,
accompanied by an immediate increase in the infiltration rate.  At this time
there is often a sharp decrease in air pressure which is thought to be caused
by a disturbance of the soil at the time of air breakthrough. McWhorter
(1971) tested this hypothesis by conducting an independent experiment with
a column of consolidated Berea sandstone in which no decrease in air
pressure was observed at the time of breakthrough.

Experimental results obtained by McWhorter (1971) are shown in
Figures 5.4 and 5.5, illustrating the phenomena described above.

Figure 5.4. Infiltration into a column of Poudre sand (185-cm length)
with air compression followed by air counterflow.
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Figure 5.5. Infiltration into a column of Berea sandstone (17.4-cm
length) with air compression followed by air counterflow.

McWhorter derived an equation that was successful in predicting the
cumulative inflow into the columns.  The reader is referred to the paper by
McWhorter for a detailed discussion of this theory.

5.2.4. Constant Rate Infiltration

In the preceding sections dealing with infiltration, a condition of constant
water pressure or constant water content is imposed at the soil surface.
Imposing a constant value of qw at the surface is of equal interest.  However,
the latter condition has not received as much theoretical study as the former
case.  Perhaps this is because the constant rate case is not amenable to the
type of solutions that can be used for the constant head case.  Several cases
of constant rate are of interest:

(1) infiltration into a semi-infinite homogeneous profile with no
restrictive layer, at a rate smaller than Km so that no ponding
occurs,

(2) infiltration into a similar profile at a rate exceeding Km and
producing ponding after a period of time,

(3) infiltration into a soil profile with a restriction at some depth, such
as a water table, producing a counterflow of air toward the surface.
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The first of the cases listed has been investigated by Rubin and
Steinhardt (1963), using numerical methods for solving Equation 5.16
subject to the constant rate boundary condition.  Parlange (1972) obtained an
analytical  solution of the same problem after first rewriting Equation 5.16 in
the z-dependent form, i.e., Equation 5.17, as Philip (1957) had written it
earlier for the constant water-content condition.  Parlange obtained his
solution by using a method of successive approximations described by Ames
(1965), and employed by McWhorter (1971 and 1976) for solving 2-phase
flow problems.  The results of Parlange's analytical solution agree with the
numerical results of Rubin and Steinhardt and confirm the qualitative
observations noted by numerous experimental investigators.

For a case in which qw at the surface is less than Km and resistance to air
flow is a negligible factor, the qualitative observations are as follow:

(1) After a period of time such that water has infiltrated to a substantial
depth, a region of the soil profile starting at the surface exists which
is wetted to a nearly constant water content and in which capillary
pressure is nearly constant.  In this region, flow is practically steady
and the driving force is mainly gravity. This is called the
transmission region.

(2) A transition region exists, below the transmission region, that has a
water content decreasing toward the lower end of the region.
Within this region, the driving force is predominantly due to a
gradient of capillary pressure.

(3) The length of the transition region is relatively longer in soils
having a wider range of pore sizes, i.e. , a smaller value of λ .

(4) The value of θ in the transmission region depends on the ratio of
qw / Km.

(5) The magnitude of Kw in the transmission region approaches qw.

For cases where qw at the surface is greater than Km, the problem is more
difficult because a region of θ close to θm develops quickly at the surface.
Furthermore, the steady inflow rate cannot be maintained.  Ponding occurs
where θ = θm, and the problem of practical significance is to determine the
time at which ponding takes place.  The high value of θ near the surface
creates a situation such that resistance to air flow may become important.
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The latter problem has been studied by Smith (1972), by Mein and
Larson (1973) and by Morel-Seytoux (1975).  The restricted air-flow case
may result from long lateral escape routes, high water tables or soil strata
that are impermeable to air because of high water content or dense structure.
This case has been investigated by McWhorter (1971) and McWhorter
(1976).  His formulation of the problem begins with the unsteady 2-phase
flow Equations 5.1-5.4, written for the case of 1-dimensional flow.

The equations are combined and converted to the θ-dependent form. It is
assumed that air is totally restricted from flowing downward or laterally, so
that air can escape only upward through the wetted soil region at a rate equal
to the flux rate of water into the soil surface, i.e., qnw = - qw.  Other
conditions imposed for McWhorter's (1976) solution included qw = q0
(constant), at z = 0 and t ≥ 0;  θ = θ i at z > 0 and t = 0.  McWhorter
obtained a solution by a method of successive approximations similar to that
used by Parlange (1972) for solving Equation 5.16.

McWhorter (1976) calculated numerical results for his equation as well
as that of Parlange (1972) using a Brooks-Corey (1966) relationship among
the variables kw, ka and pc, and assuming an arbitrary value of λ  and q0.  By
comparing the profiles of θ = f(z) obtained with and without taking air
resistance into account, he noted that at early times, air resistance has little
effect so that the profiles are nearly the same.  At longer times when θ at the
surface gets closer to θm , the effect of air resistance becomes apparent.  At
this time, there is a more rapid increase in θ at the surface and ponding may
occur shortly after, even when q0 is less than Km.

Parlange's (1972) equation does not predict any ponding when q0 is less
than Km.  However, when q0 is greater than Km, Parlange's equation predicts
a larger time for ponding than is the case with air resistance.  On the other
hand, McWhorter's (1976) equation probably underestimates the time for
ponding, because it assumes that air is incompressible and that q0 = qw.  In a
real case, especially where the water table is at a substantial depth, the
ponding time may be intermediate between that predicted by the two
equations.  In the limit, where the depth to the water table is large,
Parlange's equation should be accurate; and at small times, both equations
should be valid.

The effect of air counter flow has sometimes been observed in field
situations, particularly in fields under border irrigation [Dixon and Linden,
(1972)].  The magnitude of the effect can be expected to vary with the depth
to a water table, the width of borders, the period of time for which the water
source persists and on soil properties, among other factors.
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The behavior described above for constant rate infiltration, where air
resistance is negligible, provides a convenient method for determining Kw as
a function of θ or pc on a wetting cycle.  The method depends on the
existence of a transmission region at the upper portion of a soil column
when water is introduced at a constant rate at the surface.  This method has
been employed by Davidson et al. (1963) for obtaining Kw(θ) and by Anat
et al. (1965) for obtaining Kw(pc).

The method employed a procedure similar to that described in Section
4.2.3 for determination of Kw on the drainage cycle by either the long or
short-column procedure.  The only difference is that the first measurements
are made before the column is fully saturated.  Water is admitted to the top
of the column at a small steady rate.  After the wetting front has reached the
bottom of the column where the outflow is withdrawn, the upper part of the
column is at some constant θ and pc which are measured.  The piezometric
gradient within the transmission region is approximately 1.0 and the value of
Kw is some constant equal to the inflow rate. The inflow rate is then
increased by small increments and a set of measurements is made for each
increment until θ approaches θm and Kw approaches Km.

5.2.5. Linear Drainage

Drainage is a process in which air replaces water from soils.  A typical
field situation of practical interest in this regard is an unconfined aquifer
with a falling water table.  The flow that occurs in the soil above the water
table may be almost linear if the water table is relatively horizontal and
remains that way while the water table is lowered.  Another case of interest
is the redistribution of water toward drier soil below (following a heavy rain
or irrigation) where the water table (if one exists) is too deep to affect the
flow.

Soil-water engineers, however, are primarily interested in the water table
case, because it is for this case that artificial drains may be required.
Frequently, artificial drains consisting of perforated tubes are placed in a
parallel pattern at some depth below the water table. This creates a
2 −dimensional flow pattern after a rain or irrigation.  The water table
slopes downward toward the drains creating a horizontal component of flow
both below and above the water table.

In the usual field situation, water tables fall gradually toward an
equilibrium position following a rain or irrigation.  The downward
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component of the water flux in the soil above the water table may be
controlled by the rate at which water can move laterally toward a drain, thus
permitting the water table to fall.  Although, a sudden incremental lowering
of a water table rarely occurs in the field, it often is imposed in laboratory
experiments or as a boundary condition for analytical solutions.
Consequently, this type of drainage process also has been given considerable
theoretical attention.  Sometimes a study of drainage following sudden
drawdowns leads to insights that permit an understanding of certain field
behavior.

The theory used to analyze drainage differs only in details of solution
from that employed to study infiltration.  Various investigators have
idealized the problem as one of single-phase flow of water and have
employed the Richards equation in their analyses.  More recently the
problem has been analyzed as a displacement process involving 2-phase
flow [Morel-Seytoux (1975)].  Corey and Corey (1967) employed a scaled
physical model to study linear drainage.  Their investigations are described
in Chapter 6.

Vertical drainage of a soil column (which is initially fully saturated
except for trapped air) is a problem of mainly academic interest, but a study
of this problem may provide insights into aspects of several real problems.
The drainage under consideration occurs when the plane of atmospheric
pressure in the soil water is suddenly lowered from one stationary position
to another.  If the water table is initially at the surface, however, there may
be essentially no drainage until the water table is lowered to a depth equal to
pe/ρwg below the surface.

The simplest way possible of analyzing this problem is entirely
analogous to the Green and Ampt analysis of infiltration.  The method might
be called an upside-down Green and Ampt approach.  It is assumed that an
abrupt drainage of the pore space takes place when the pressure of the liquid
is lowered below atmospheric pressure to some critical pressure.  The
critical pressure represents the value of pe for the soil under consideration.
Below the level where pe exists, the soil is fully saturated and above this
point, the soil is assumed to be drained to a water content equal to θr.  The
existence of a transition region is ignored.  Ligon et al.(1962) and Youngs
(1960) have presented typical analyses based upon this assumption.

The analysis of Youngs (based upon the upside-down Green and Ampt
approach) leads to

Q
Q
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in which Q is the cumulative outflow in time t, Q∞ is the outflow as t → ∞,
and q0 is the initial flow rate.  This equation represents only the first term in
a series solution.  However, according to Jensen and Hanks (1967), Equation
5.26 is reasonably accurate for Q/Q∞ up to about 0.6, after which it begins to
overestimate the outflow volume.

Gardner (1962) derived another approximate solution for the same
boundary conditions.  His equation was obtained by assuming that the
average conductivity K  between the surface of a column and the top of the
fully saturated region remains constant during the drainage process.  He also
employed an adjustment (for the increasing length of partially saturated
medium) which was proposed by Miller and Elrick (1958).  His equation is
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in which  D KL Q= ∞
2 / , L being the length of the column, and α2 is

obtained from the ratio of impedance of the partially saturated region to that
of the fully saturated region.  At the beginning of drainage, α2 has the value
of π/4.  Equation 5.27 like Equation 5.26, represents the first term of a
rapidly converging series.

In comparing the values of Q/Q∞ predicted by Equation 5.27 with
experimental data, Gardner found he could select a value of K  which would
allow the equation to fit the data fairly well.  Jensen and Hanks (1967) tried
to find a simple way of predetermining K  because, in a practical case, this
would be necessary. The methods they tried for determining K  did not
result in satisfactory agreement between Equation 5.27 and experimental
data.  They suggested a better method of determining K  would improve the
accuracy of Equation 5.27.

Jensen and Hanks (1967) employed a numerical method developed by
Hanks and Bowers (1962) to solve the Richards equation for vertical
drainage in one dimension with a plane of atmospheric pressure at the base
of a column.  They used a computer to obtain Q/Q∞ as a function of time and
pressure as a function of depth and time.  Typical results are shown in
comparison with experimental data in Figures 5.6 and 5.7.

The functional relationship among S, pc and kw needed for the numerical
solution of the Richards equation was determined independently by steady-
state techniques similar to those described in Section 3.10.3.  The results of
Jensen and Hanks, therefore, seem to confirm the validity of the Richards
equation for an unsteady drainage situation.  However, the Richards
equation does not rigorously apply to that portion of the draining column
which is fully saturated.  This is because the function D, equal to -K dpc /dθ

K  which would
allow the equation to fit the data fairly well.  Jensen and Hanks (1967) tried
to find a simple way of predetermining K  because, in a practical case, this
would be necessary. The methods they tried for determining 



5 / Unsteady Flow of Immiscible Fluids

179

Figure 5.6. Comparison of laboratory data with numerical solution
of Richards equation for vertical drainage [Jensen and
Hanks (1967)].

Figure 5.7. Comparison of laboratory data with numerical solution
of Richards equation for vertical drainage [Jensen and
Hanks (1967)].
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does not exist in the fully saturated region. Jensen and Hanks sidestepped
this problem by assigning an arbitrarily small constant value to dθ/dpc
where  pc < pe.  They found that the computed drainage rates were
insensitive to the exact value of dθ/dpc chosen, provided that the value was
small.

It would appear from the numerical results of Jensen and Hanks that the
2-phase approach is not necessary in the case of drainage.  However,
consideration of drainage from the point of view of a 2-phase flow process
may provide insights in respect to the interrelation between drainage and
infiltration.

5.2.6. Two-dimensional Drainage

 A problem of considerable interest to soil-water engineers involves
2 −dimensional transient flow toward parallel relief drains.  The physical
model to be considered is analogous to that described in Section 4.4 except
that a period is considered in which no recharge occurs and the water table
falls.  The problem is to determine the position of the water table at the
midpoint between drains as a function of time [see Figure 5.8].  The
objective is to determine whether or not a particular depth and spacing of
drains satisfies design criteria with respect to lowering of the water table
after heavy irrigations or flooding.

Figure 5.8. Physical model for transient flow towards parallel drains.
[McWhorter and Duke (1976)].

The traditional procedure is to ignore both the flow and storage of water
above the water table.  This approach has led to the well-known and
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frequently used equation of Glover which has been described by Dumm
(1964 and 1967).  Use is made of the Dupuit-Forchheimer assumptions for
flow in the region below the water table; that is, it assumes the vertical
component of flow is negligible.  This assumption leads to
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a result which is reasonably accurate if d is large compared to h and if the
region of flow above the water table is small compared to d.  Equation 5.28
is known as the Dupuit-Forchheimer equation.

Equation 5.28 is nonlinear because the coefficient of ∂ ∂h x/  includes h.
Glover linearized this equation by replacing h + d by an average value of
h d+  designated as d .  Therefore, Glover's equation has the form
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This equation provides satisfactory results (where Equation 5.28 is also
valid) provided the slope of the water table is very small so that linearization
does not introduce a significant error.

In many cases, however, pe/ρwg is not small compared to d  so that it is
not sufficient to neglect either flow or storage above the water table, or to
assume that the specific yield Sy is a constant equal to φe .  Theoretically, the
problem can be solved rigorously treating the system as a 2-phase flow
region and solving the unsteady 2-phase flow Equations 5.1-5.4.  For the
2 −dimensional transient case under consideration, a rigorous solution
requires a complex numerical solution.

McWhorter and Duke (1976) have presented an approximate analytical
solution which accounts for flow and storage above the water table.  Their
solution also accounts (to a large extent) for the nonlinearity of the flow
system.

A differential slice of soil, oriented parallel to the axis of the drains is
shown in Figure 5.9.  The depth below the soil surface to the top of the
saturated region is denoted by zd and the thickness of the fully saturated
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Figure 5.9. Differential slice of soil, oriented parallel to axis of drains
[McWhorter and Duke (1976)].

region (except for trapped air) above the water table is ψd.  Hk  is the
effective permeable height used by Duke (1973) for the analysis of steady
flow towards parallel drains [Section 4.4].  Hk is a height of saturated soil
having the same capacity to transmit water as does the actual soil region
above the water table. The mathematical expression for Hk is given by
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With this addition to the flow section, Equation 5.28 becomes
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in which V is the volume of drainable water per unit surface area stored in
the slice at any time.

An approximate expression for V is obtained using the assumption that
the distribution of water in the slice is as if the vertical component of flow is
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negligible. This is a reasonable assumption since in field situations the rate
of lowering of the water table is extremely slow. The empirical expression
for effective water saturation of Brooks and Corey (1966),
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is used to evaluate water content at any point above the fully saturated
region.  Integration of φe eS dz( )1− from the top of the fully saturated
region to the soil surface (z = 0) and differentiation of the result with respect
to time yields
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in which ˆ /z zd d d= ψ .  Equation 5.31 is a tractable continuity equation
which accounts for the major effects of storage above the water table.

Substituting Equation 5.31 into Equation 5.30, scaling all quantities
having a dimension of length by ψd and noting that ˆ ˆ ˆz D hd = − −1 results in
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For a static water distribution, the Brooks-Corey relationship for Kw(pc)
gives
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In cases of practical interest (where the water table is not very near the soil
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In this analysis, Equation 5.33 is used to evaluate Ĥk. In most cases of
practical interest ˆ .Hk <1 4. Note that in this formulation Ĥk is treated as a
constant, its dependence on ĥ being considered negligible.

⎡⎤
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Expanding the derivative on the left side of Equation 5.32 gives

∂∂
∂∂

∂∂
∂∂

∂∂

∂∂

∂∂
∂∂ˆ

ˆ ˆ ˆ
ˆ

ˆ
ˆ ˆ ˆ

ˆ

ˆ

ˆ

ˆ
.

x
h d H

h
x

h d H
h

x
h
xK k++ ++(( ))







 == ++ ++(( )) ++











2

2

2

Except in the immediate vicinity of the drains at small times, the second
term on the right is negligible compared to the first term on the right, so that
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Equation 5.34 retains the important effects of the nonlinearity of flow.  The
conditions imposed on Equation 5.34 are expressed as

ˆ , ˆ ˆ ˆ , ˆ .h t h L t0 0(( )) == (( )) ==

This condition ignores the existence of the seepage face at the drain wall.
However, Equation 5.34 implies that the entire interval Ĥk is available for
flow, including that part where the water is at sub-atmospheric pressure.
The latter simplification should tend to compensate in some degree for
ignoring the seepage face.

Duke (1973) obtained a finite difference solution for Equation 5.34.
Later, McWhorter and Duke (1976) found an approximate analytical
solution for this equation.  Figure 5.10 shows some typical results from their
solutions compared with experimental data obtained by Hedstrom et al.
(1971) with a large soil flume.  Results from the solution of Glover's linear
Equation 5.29 also are shown in this figure.  In Figure 5.10, hm is the water
table elevation above the drains at the midpoint and Ho is the initial water
table elevation [see Figure 5.10]. Equation 5.34 clearly provides a better
approximation to the measured data than does Equation 5.29 for this case.
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Figure 5.10. Drawdown at midpoint between parallel drains as a
function of time [McWhorter and Duke (1976)].

5.3. HORIZONTAL LINEAR IMBIBITION WITH NON-
WETTING PHASE RESISTANCE

The problem analyzed here is that presented in Section 5.2.1, but full
consideration is given to the viscosity of the nonwetting phase.  The results
are rigorously correct for systems with two incompressible fluids. Also,
some insights into the effects of air viscosity in air-water systems are
obtained, even though air is highly compressible.

Equations 5.1, 5.2 and 5.4 are combined to yield an expression for the
wetting-phase flux that incorporates the viscous resistance to flow of both
phases:
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The quantity qt appearing in Equation 5.35 is referred to as the total flux

q q qt w nw≡≡ ++

and is, at most, a function of time as can be deduced immediately from
Equation 5.3.  Because qw and qnw may have different signs and magnitudes,
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the total flux can be zero, positive, or negative depending upon the problem
under consideration.  The analysis in this section is restricted to imbibition
of the wetting phase, in which case qt ≥ 0.

The functions f and D are sensitive functions of S and are defined by
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The function D has the dimensions of a diffusivity and is a generalized
version of the diffusivity defined in Section 5.2.1.  When the nonwetting
fluid viscosity approaches zero, the two D functions approach the same
quantity.  However, the reader should note that the two-phase diffusivity of
this section is greatly different from the diffusivity used when the viscosity
of the nonwetting phase is assumed zero.  The function f has no counterpart
in the traditional treatment of air-water systems.

A key variable in the mathematical analysis of the imbibition problem is
the function Fn defined by

F
q f q

f qn
w i t

i t

≡≡
−−

−−(( ))1

where  fi = f(Si) and Si is the initial saturation (also, the saturation at x = ∞).
This function is a normalized version of the fraction of total flux contributed
by the wetting phase.

It has been shown [McWhorter (1971); McWhorter and Sunada (1990)
and (1992)] that Fn is a function only of S for the imbibition problem and
can be calculated by iteration in
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where fn is a normalized f given by
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−−

−−1
.

The saturation on the plane  x = 0  has been taken to be Sm, where Sm is the
maximum achievable saturation under wetting conditions.  To achieve a
boundary saturation other than Sm requires that the wetting phase be
introduced through a membrane that is impervious to the nonwetting fluid.

The quantity Fo in Equation 5.36 is Fn(Sm), the value of the fractional-
flow function at x = 0.  For imbibition problems, Fo ≥ 1 with the actual value
determined by the wetting-phase pressure drop imposed across the saturation
profile.  The implications of Fo ≥ 1  and the conditions under which it arises
are the most interesting aspects of two-phase imbibition but are more easily
elucidated after the formal solution is complete.

The saturation profile is given by McWhorter and Sunada (1990),

x S t
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, 5.37

where A is a constant given by McWhorter and Sunada (1990),
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The required derivative  dFn/dS  is calculated from Equation 5.36 to be
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The physical significance of the constant A is revealed by its presence in the
flux equation

q A tt == −−1 2/ 5.39

where it is seen to be the determining factor for the total flux.
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At this point an algorithm for the computations emerges.  A value for Fo
is arbitrarily selected, subject to  Fo ≥ 1, and Fn(S) is computed from
Equation 5.36.  With Fn(S) now known, A is computed from its definition.
This determines the total flux as shown in Equation 5.39.  Finally, dFn/dS is
computed from Equation 5.38 and the saturation profile is calculated from
Equation 5.37.  Thus, it is observed that specification of Fo determines all
other features of the problem.

The differences between imbibition processes calculated with different
values of Fo are shown in Figures 5.11 and 5.12.  Figure 5.11 shows Fn(S)
for three different values of Fo.  At all saturations for which Fn(S) is less
than unity, the wetting and nonwetting phases flow in the same direction.
This is deduced from the definition of Fn(S).  The saturation for which
Fn(S) = 1 is the point at which the nonwetting fluid flux is zero.  At all points
where  Fn(S) > 1, counter-current flow of nonwetting phase occurs.  Thus, it
is concluded that for any  Fo > 1, there is a zone in the vicinity of  x = 0  in
which counter-flow of the nonwetting fluid is established.  Beyond this
zone, the two phases flow co-currently.  This interesting feature of the
two −phase imbibition problem was first established by Chen et al. (1990)
and described briefly by McWhorter and Sunada (1990).

Figure 5.11.  F(S) for three values of Fo.
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Figure 5.12.  Co-current and counter-current flow divide .

The flow divide separating the co-current and counter-current flow zones
is shown on the imbibition profiles in Figure 5.12.  The larger the value of
Fo, the greater the extent of the counter flow zone.  As  Fo → ∞, counter
flow occurs throughout.  On the other hand, the flow is everywhere co-
current for  Fo = 1.  The value of the flux parameter A appearing in Equation
5.39 declines with increasing Fo and becomes zero for  Fo → ∞.

The results of the foregoing analysis are correct only if the input flux is
indeed proportional to t-1/2.  An obvious way to create the imbibition flows
of this section is to impose such a flux as a boundary condition by pumping
the wetting fluid into the column according to

q o t F Atw o, ./(( )) == −−1 2 5.40

The linkage between a particular imbibition process and the physical
conditions required to produce the process, say in the laboratory, could be
established by selecting a value of Fo,, computing the corresponding value of
"A", and then set the pump according to Equation 5.40.  The experimental
set-up must allow the nonwetting phase to exit freely from both ends of the
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sample while the wetting fluid is injected at x = o, according to Equation
5.40.  Computer controlled syringe pumps are available that can closely
approximate the rate given by Equation 5.40.

The counter flowing nonwetting fluid exiting the column into the end
chamber must take on the pressure of the fluid inside the chamber and
external to the porous medium.  This implies a capillary pressure of zero at
x=0.  However this contradicts the requirement that capillary pressure must
equal or exceed the entry pressure before the nonwetting fluid exists as a
continuous phase.  In fact, the nonwetting fluid exits in a sporadic manner as
the capillary pressure fluctuates rapidly between zero and the entry pressure,
as explained in Section 4.3.

An examination of Equation 5.37 shows that "A" is a maximum when
Fo =  1.0.  Since for the imbibition process Fo ≥ 1.0, the product, Fo A, must
have a finite maximum, Am, equal to "A" calculated for Fo = 1. However,
the pump used to inject the wetting fluid is not constrained. If the pump
injects wetting fluid at a rate exceeding that consistent with the assumed
boundary conditions, the plane at which  S = Sm can no longer remain
stationary at x = 0.  This plane is propagated into the porous medium,
forming an expanding region in which the saturation is constant and equal to
Sm.  In this case, Equation 5.36 for F Sn ( ) must be replaced by a more
general form presented by McWhorter and Sunada (1990).

Consider a column of finite length L, initially containing wetting fluid at
a uniform saturation, Si < Sm.  Let the nonwetting fluid be at atmospheric
pressure.  One end of the column (x = 0) is suddenly exposed to wetting
fluid at atmospheric pressure, while the wetting fluid pressure at x = L is
controlled at the initial value, so the pressure drop in the wetting fluid across
the column is constant.  This is the way imbibition experiments are usually
conducted for air-water systems.

Application of the theory presented in this section shows that the
constant  pressure drop imposed in the experiment is inconsistent with
Equation 5.39. In other words, the above experiment conducted with
incompressible and viscous fluids, would not result in an imbibition rate
proportional to t-1/2.  Such an experiment would yield square-root-of time
behavior only if the pressure drop in the nonwetting fluid, downstream of
the wetted portion, is zero.  The small viscosity and high compressibility of
air contribute to minimal pressure drop in the air downstream of the wetting
front in air-water experiments.  In addition, laboratory experiments are often
conducted so that displaced air can escape through perforations in the
column walls, further minimizing the resistance to air flow downstream of
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the wetting front.  As a result, water imbibition proportional to t-1/2 is often
observed.

In addition to the insights into the physics of imbibition described above,
the solution of Equation 5.35 provides a tool for evaluating a variety of
simulation models that have been proposed for predicting two-phase flow in
porous media.  This is because Equation 5.35 is exact when applied to a
linear horizontal displacement process, provided both the displacing and
displaced phases are incompressible viscous fluids.

5.4. DISPLACEMENT OF PETROLEUM FLUIDS

Petroleum fluids, e.g., crude oil and natural gas, are produced from
porous rocks, usually aquifers containing brine, by displacement of one fluid
by another.  The displacement process may involve the displacement of oil
by brine from surrounding rock or from injection wells, or it may involve
the displacement of oil by natural gas evolving from solution or invading
from an expanding gas cap.  In such systems, brine is usually the wetting
phase and oil is the nonwetting phase.  When gas is present, it is the
nonwetting phase in respect to either oil or brine.  The displacement process
may occur spontaneously when a well is drilled into an aquifer, or it may be
induced by an artificial injection of either brine or gas.

In some cases, fluids may be produced from an aquifer simply by
compression of the pore space upon the reduction of fluid pressure or by the
expansion of the fluids.  The matrix compression and fluid expansion are
significant mainly when they take place over a very large volume of the
aquifer, and the effect locally (at the site of a producing well) is mostly the
replacement of petroleum fluids by fluids being squeezed out of the
surrounding aquifer.

The theory used in analyzing petroleum displacements is basically the
same as that for air-water or LNAPL-water displacements, since each
involves the displacement of one immiscible fluid by another. Consequently,
the starting equations are the same, i.e., Equations 5.1 - 5.4.  However, the
relative magnitudes of the several forces producing the flow are often quite
different.  Therefore, the simplifications made in the case of petroleum
displacements are likely to be very different from those made for air-water
or LNAPL-water displacements, as explained in Section 5.1.
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5.4.1. Linear Displacement

The displacement of one fluid by another in a 3-dimensional system is
difficult to analyze mathematically.  Fortunately, considerable insight into
the practical problems encountered can be obtained by analyzing
1−dimensional flow systems.  Furthermore, many field situations can be
approximated by assuming 1−dimensional models as an idealization of the
real situation [Richardson (1961)].

Most oil producing aquifers are thought to have been originally saturated
with brine that subsequently was partly replaced by oil and perhaps gas,
although brine remains as a residual wetting phase.  The question to be
answered is how much oil can be produced when a well is drilled into the
formation before the operation of the well is no longer economical.
Operation of a well becomes uneconomical some time after the invading
brine breaks through to the well, and the production of brine becomes large
compared to the production of oil.  Often, the brine comes from a line of
injection wells and the brine advances along a broad wetting front toward a
line of producing wells.

Such a system may sometimes be idealized as a linear displacement
process.  A long thin tube of homogeneous porous material is used to model
the displacement process.  The tube may be inclined at an angle β to a
horizontal plane.  The porous material is originally fully saturated with
brine, but the brine (in excess of residual saturation) is replaced later by oil.
The tube of porous material is then in a condition called the restored state,
presumed to be similar to the condition of many petroleum aquifers before
petroleum production begins.

Subsequently, some of the oil is replaced by brine by flooding the tube
from one end where the brine is introduced at high pressure.  A question to
be answered is how are the fluids distributed along the tube at any time
during the flooding process.  Another question is how much oil is produced
from the outflow end of the tube as a function of time and as a function of
the injected volume of brine.

An analysis of the idealized case provides some insights into the
practical problem.  Formulation of a flow equation for this case involves
simplification of Equations 5.1-5.4.  Most petroleum aquifers have a small
slope, and the displacement takes place under large pressure gradients over
large distances where the fluids flow side by side with small saturation
gradients.  Therefore, it is reasonable to drop the gravity terms in Equations
5.1 and 5.2, and to assume one pressure gradient applies to both fluids.



5 / Unsteady Flow of Immiscible Fluids

193

Furthermore, the idealized case is one of linear displacement so that the
directional subscripts also can be dropped from the governing equations.
With these simplifications, Equations 5.1-5.3 can be combined to give
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Under the condition of a negligible capillary pressure gradient, the term
on the right of Equation 5.41 is an approximation of − ∂ ∂q xw / .  However,
qw varies with x so qw is a varying fraction Fw of the total flux rate qw + qnw,
designated as qt.  The fraction Fw is assumed to be a function of S only, for a
given pair of fluids.  Equation 5.41 is rewritten in terms of qt and Fw as
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The assumption that the fluids are incompressible is equivalent to assuming
that qt does not vary with x so that
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The saturation S is a function of x and t only, where x is regarded as the
coordinate of a plane (perpendicular to the tube) where S has any specified
value.  Therefore, the total derivative of S with respect to time is given by
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The quantity dx/dt is interpreted as the velocity of a plane (perpendicular to
the tube) having any specified value of S, i.e., dx/dt = (dx/dt)S. Since
(dS/dt)S = 0,
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Combining this with Equation 5.42 gives
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which is called the Buckley-Leverett equation [Buckley, S. E. and Leverett,
M. C. (1942)].

If the permeability ratio knw/kw as a function of S is known, dFw/dS can
be evaluated as a function of S.  When S is known at t = 0, Equation 5.43
can be integrated to give the saturation distribution for any t > 0.
Unfortunately, particular values of dFw/dS may occur at two different values
of S, so that two different values of S are calculated for particular values of
(x)S, a physical impossibility.  This problem is resolved by postulating a
discontinuity in S at a front, and requiring that a material balance be
satisfied.  The volume of displacing fluid behind the front must equal the
volume of fluid displaced.

An explanation of this procedure is presented in a paper by Buckley and
Leverett (1942) and in texts on petroleum engineering, including one by
Collins (1961).  However, the above procedure can give only a rough
approximation of the real distribution of fluids near the front because the
effect of capillarity is substantial in this region and this effect is neglected in
Equation 5.43.

The integration of Equation 5.43 with respect to time gives
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, 5.44

in which Qi(t) is the cumulative total volume of fluid flowing through an
area A in an interval of time t, and (x)S is the distance traveled along x by
the plane of saturation S in the same interval of time.  Experience has shown
that Equation 5.44 gives a good approximation of the actual distribution of S
for long systems with large flow rates, except near the advancing front as
previously noted.

5.4.2. Determination of Permeability Ratios Using the Welge
Technique

When conditions are such as to justify the use of Equation 5.43, it can be
integrated using a method proposed by Welge (1952).  The following
analysis applies to the displacement of oil by brine from a horizontal tube of
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homogeneous porous material which has been brought to a restored state as
described in Section 5.4.1.  In this case, the tube has a length L, area A and a
zero angle of inclination.  At time t = 0, brine is introduced at x = 0 at high
pressure.  This causes brine to flood the tube at a rate qw which is a function
of time.

At x = 0, only brine is flowing at t > 0, while at x = L, only oil flows
initially.  After breakthrough of brine, both fluids flow at x = L. Designating
the cumulative inflow by Qi, the cumulative outflow of oil by Qo (and brine
by Qw, it is noted that Qi = Qo + Qw.

At the outflow end,

F
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where F0 is the fraction of the total volume flux that consists of oil flux.  For
the conditions under consideration, F fo nw≈ , where fnw is an approximation
of Fnw valid when both fluids flow under nearly the same potential gradient.
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where p* is the piezometric potential.  Consequently,

q
q

k
k

fnw

t

nw w

w nw
nw≈≈ ++









 ==
−−

1
1

µµ

µµ
.

An analogous approximation of Fw is designated as fw.

The approximation for F0 leads to
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Solving the latter equation explicitly for the permeability ratio kw/knw gives
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Consequently, the permeability ratio at any t > 0 can be determined from the
ratio of brine inflow to oil outflow rates.  The ratio is zero until brine
breakthrough after which it gradually increases and eventually becomes
infinitely large when the outflow ceases completely.

The value of S at the outflow end of the tube can be computed as a
function of Qi and dQi/dQo by solving a material balance equation; i.e.
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in which A is the cross-sectional area of the tube and L is its length.
Integrating by parts gives
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where SL is S at x = L.  Note that (-dS) is inserted in the integral because this
is equivalent to d(l-S). The equation may be rewritten as
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It was pointed out by Welge (1952) that the sum of the first two terms on the
right of this equation gives the average wetting phase saturation of the tube
at any time during the flood.

According to Equation 5.44, the third term on the right of the expression
for SL can be written as
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At the inflow end, fnw = 0, and at the outflow end, fnw = dQ0/dQi.  Therefore,
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All quantities on the right of Equation 5.47 can be determined from inflow
and outflow data as is the case for Equation 5.45.

Equation 5.45 and 5.47 provide a method of determining permeability
ratios as a function of S on small rock cores.  The method is widely used in
the petroleum industry.  Cores of rock from producing formations are
obtained with a core drill at the time wells are drilled. Such cores are usually
about 10 cm in diameter.  In order to obtain cores parallel to the bedding,
smaller cores are removed from the well cores with the axis of the smaller
cores being more or less parallel to the bedding.  The latter cores are usually
about 2 to 2.5 cm in diameter and about 5 to 8 cm in length.

The residual fluids are extracted from the laboratory cores and the
porosities are determined. The surface of the cores (except for the ends) are
sealed, usually with an acrylic plastic.  The cores are then saturated with
brine.  Next, all of the brine except residual brine is replaced by oil. The
core is then in the restored state as previously described.

Finally, brine is injected at one end of the core at a very high pressure,
and the outflow of both oil and brine from the opposite end are measured
separately until the outflow of oil nearly stops.  The cumulative outflow of
oil Qo is plotted as a function of the total outflow Qi.  The slope of the curve,
dQo/dQi is substituted into Equations 5.45 and 5.47 to obtain kw/ko as a
function of S.

Equations 5.45 and 5.47 apply strictly for long tubes only.  However, it is
believed that the error introduced by their application to short cores is
minimized by using larger pressure gradients. The Buckley-Leverett
equation also is used to describe displacement of oil by gas from short cores.

In this case, where the displacing fluid is a gas, the error is likely to be
more serious.  However, the error is thought to be substantially reduced by
first saturating the core with an oil of very high viscosity which permits
displacement experiments to be carried out under an extremely large
pressure gradient.

In any case, this technique is widely used in the petroleum industry to
obtain kg/ko ratios as a function of S.  The ratios kg/ko and ko/kw are used in
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the petroleum industry to predict reservoir behavior as explained in Section
5.4.5.  Both of these ratios tend to plot as a straight line on a semi-log plot of
knw/kw as a function of S as shown in Figure 5.13.

Figure 5.13.  Permeability ratio as a function of saturation.

5.4.3. Calculation of Relative Permeabilities from Linear Dis-
placement Experiments

For some calculations, the determination of knw /kw curves is not
sufficient and individual relative permeability curves for each flowing fluid
are needed as well. Johnson et al. (1959) have shown that linear
displacement experiments on small cores can be used to determine krn w and
krw as functions of S.

The analysis upon which the method of Johnson et al. is based makes use
of several relationships that can be deduced from the Buckley-Leverett and
Welge theories.  For a water-oil system, these are:

(1) f q k p xo t o o== −− ( / ) ( / )µµ δδ δδ , which is Darcy's equation for the oil
phase.

(2) f f k kw o w o o w/ /== µµ µµ , which can be deduced from the
definitions of fw and fnw.
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(3) S S Q A L fav L i o L
== (( )) ++ (( ))( / )φφ , where the subscript L indicates

that the quantities are evaluated at the outflow end of the sample.
This is the Welge Equation 5.46.

(4) ( / ) ( / )( / )dX dt q dF dSS t w S== φφ , the Buckley-Leverett equation.

(5) x Q A dF dSS i w S(( )) == ( / )( / )φφ , obtained by integrating the Buckley-
Leverett equation over an interval of time and distance of travel of
the saturation S.

(6) Q A L df dSi w L/ /( / )φφ == 1 , which comes from evaluating the
relationship (5) at the  outflow end  where (x)S = L.  Note that
Q A Li / φ  represents the number of pore volumes injected.

(7) f A L dS dQo L av i(( )) == φφ ( / ), which is obtained by differentiating the
relationship (3) with respect to Qi.  Note that for a fixed value of
(fo)L, SL is a constant.

The sample preparation and experimental procedure is the same as for
the determination of ko/kw curves described in Section 5.4.2.

At a given instant during the displacement experiment, the pressure drop
across a sample of length L is given by
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According to (5) and (6), the various saturations (at a particular instant)
occur at distances which can be calculated from
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and
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under consideration.  Substituting this expression for dx into Equation 5.48
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According to Johnson et al. (1959), the quantity q L pkt o mµ / ∆  has been
called relative injectivity Ir by Rapoport. Ir and ( )fw

∗
L are interrelated since

both vary with the amount of water injected. Differentiating both sides of
Equation 5.61 with respect to ( )fw
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During the experiment, Qi and Qo are recorded as well as ∆∆∆∆p. This
permits the evaluation of the derivatives in Equation 5.50 and in the
relationship (7).  From (7), (fo)L is determined permitting the evaluation of
(kro)L.  The corresponding value of (S)L is determined from (3), Sav being
given by
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5.4.4. Calculation of Relative Permeabilities by Application of
Linear Scaling

A displacement resulting from the injection of a single fluid is said to be
linearly scalable if the average saturation of any portion of a porous sample
is a function only of the number of pore volumes of displacing fluid that
have been injected into or through the portion under consideration [Parsons,
R. W. and Jones, S. C. (1977)].  The processes discussed in Section 5.4 are
linearly scalable if the assumptions made concerning these processes are
valid.  In fact, Equation 5.44 implies that the displacement is linearly
scalable.

Jones and Roszelle (1978) have shown how the acceptance of the
principle of linear scalability can simplify the mathematics and expedite the
calculations involved in the determination of relative permeabilities from
displacement experiments on laboratory samples.  To understand their
procedures, it is necessary first to examine the concept involved in
specifying the number of pore volumes injected.

The concept can be examined in reference to Figure 5.l4.

Figure 5.l4. Schematic of sample undergoing linear displacement of
oil by water.

In Figure 5.l4, Qi indicates a volume of water that has been injected through
an area A at time t (through the input face of a linear sample initially
saturated with oil and residual water).  The height of the shaded area
indicates the water saturation S at any vertical plane along the length of the
sample.  The sample has a length L, and the coordinate x indicates a distance
along the sample beginning at x = 0.  The number of pore volumes injected
PVi for the entire sample at any time is Qi/ φAL, whereas PVi for the portion
extending from 0 to x is a larger number given by Qi/ φAx.  Note that as
x →0, PVi →∞ , even for a small value of Qi.

The water saturation increases and the oil saturation decreases as PVi
increases.  The value of S reaches some limiting value when PVi → ∞∞∞∞.
Theoretically, the limiting (maximum) value of S is obtained instantly (upon
the beginning of injection) at the input surface where x = 0.  The value of S
decreases with x and is smallest at x = L.  However, when Qi becomes very
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large, the variation of S with x is very small, and as Q → ∞∞∞∞, is theoretically
at the limiting value at all x.

A mathematical advantage is gained by starting with the assumptions
that:

(1) Saturation and other properties related to S are single-valued
functions of PVi only.

(2) The same functional relationship between any of these properties
and PVi holds for values of the variables averaged over a segment
of a homogeneous sample regardless of the size of the segment,
provided the segment is large enough to be a representative element
of the porous medium.

It is possible to show that any property satisfying the condition of being a
single-valued function of S will also be a single-valued function of PVi only.
In fact, the theory of Buckley and Leverett (1942) and Welge (1952) imply
this is the case provided the relative permeabilities are single-valued
functions of S.

To demonstrate the mathematical consequences of linear scaling, an
unspecified property    is considered which satisfies the linear scaling
conditions.  This property might be S or some function of S, e.g., fw, krw, or
kro.  The following analysis also can be applied to any function of the latter
variables, for example, it also applies to   -1.  In general,    varies with x
and Qi in a cylindrical porous sample during a displacement process in
which the displacing fluid is injected through a face perpendicular to x at
x = 0.  The value of  at x for a particular Qi is defined by
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in which all quantities including the derivative are functions of PVi. Since
  x  is assumed to be a single-valued function of PVi only, this also can be
written as
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Applying Equation 5.51 to Sx at x = L, and noting that the increase in Sav
of the sample as a whole is related to the outflow of oil Qo, gives
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which is Equation 5.48. Jones and Roszelle (1978) have presented a
convenient graphical procedure for evaluating SL using plots of Sav as a
function of Qi  from laboratory displacement data.  An expression for (krw)L
corresponding to SL also can be derived using the linear scaling principle.
The procedure employs the concept of an effective viscosity (or relative
reciprocal mobility Λ r

−1) which is defined so that a flow equation for qt is
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in which k is the permeability when the sample is fully saturated with water
and (dp/dx)x is assumed to apply for either the water or the oil phase.  By
writing separate equations for qw and qo and adding these to obtain qt it can
be shown that
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which is called relative mobility, Λ  being called total mobility.  A second
equation for qt is given by

f q
k k dp

dxw x t
rw

w x
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.

Equating the latter expression to Equation 5.53 and solving for k at the
outflow end gives
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Since krw and kro are considered to be single-valued functions of S, it
follows that Λ r and Λ r

−1 are also single-valued functions of PVi.  Therefore,
Equation 5.51 can be applied to Λ r

−1, i.e.,
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Jones and Roszelle (1978) have described a graphical procedure for
solving Equation 5.55 similar to that used by them to obtain SL.  However,
the data needed are values of ( )Λ r

−1
av as a function of PVi.  Values of ( )Λ r

−1
av

are obtained as a function of PVi from the experimental data which include
∆p across the entire sample; i.e.,
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which results from integrating Equation 5.64 over x from 0 to L.

The linear scaling principle and the procedures employed by Jones and
Roszelle involve the same theoretical limitations as the procedures for
Johnson et al. (1959).  These include the requirement that dp/dx is very large
compared to dpc/dx and that krw and kro are single-valued functions of S
only.

The latter assumption may not be entirely valid since there is evidence
that both krw and kro are to some extent dependent on qt.  This has been
observed particularly in respect to the residual oil saturation during water
floods, the residual oil saturation supposedly representing the saturation at
which kro is zero.  However, increasing the injection rate decreases the
residual oil saturation slightly.  Lowering the oil-water interfacial tension
also reduces the residual oil saturation. Furthermore, injection rates
necessary to minimize the effect of dpc/dx (in small laboratory samples) are
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much greater than those found in field applications.  It is believed, however,
that this difficulty is not very serious because there is evidence that krw and
kro are not very sensitive functions of rate.

5.4.5. Prediction of Reservoir Behavior from Permeability Ratios

Permeability ratios and relative permeabilities as functions of saturation
constitute the basic data used in the prediction of petroleum reservoir
behavior.  Equations 5.1-5.4 provide the theory for the calculations.  The
processes to be evaluated may involve water displacing either oil or gas (or a
gas displacing oil).  Sometimes more than one of these processes occur
simultaneously.  The displacements are rarely truly linear, but they often can
be idealized as such with an error that is not large compared to other
uncertainties involved.

Linear displacements are often described by the steady two-phase flow
equations presented in Section 4.1.2.  However, it is convenient for many
purposes to rearrange Equation 4.2, and to write it explicitly for the ratio
qw/qt designated as Fw.  The result is
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Equation 5.57 is called the fractional flow equation, and has an important
role in reservoir engineering calculations.  When both ∂ ∂p xc /  and ∆ρgi are
negligible, F fw w≈  as noted in Section 5.4.1.  The latter situation frequently
prevails for petroleum displacements, especially where brine displaces oil.
However, it may sometimes be desirable to retain the term ∆ρgi where oil is
displaced by gas.  The retention of ∂ ∂p xc /  is rarely required in routine
petroleum engineering calculations because field systems are usually long
enough that this term is negligible.

In most cases which can be idealized as linear, Equation 5.44 (or a
modification of it) can be used to predict reservoir behavior.  For a
displacement by water (brine), for example, it is often useful to predict the
amount of oil that can be recovered before the water-oil ratio at the
producing well becomes such that additional production is uneconomical.

The data needed, in addition to ko/kw curves, include the thickness of the
oil-bearing stratum, the distance from the wetting front to the producing
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wells, the values of Sr, φ, km, µw, µo and the water injection rate Qi/t per
unit width of stratum.  If the term ∆ρgi is to be included in the expression
for Fw the densities ρo and ρw and the angle of inclination of the formation
must also be included.

The first step in the computation is the determination of Fw, which for
the case of small ∆ρ  and/or small angles of inclination is approximated by

f k kw o w w o≡≡ ++ (( ))[[ ]]−−1
1

µµ µµ/ .

A plot of fw(S) is made and the slope dfw/dS is measured at intervals of S
(say at increments of 0.05), beginning with some value of S greater than Sr.
Typical fw(S) and (dfw/dS) (S) functions are shown in Figure 5.15.

Figure 5.15. The fractional flow of wetting fluid and its derivative as
a function of saturation.

Values of dfw/dS are recorded for the selected values of S.  The distances
travelled by the various saturations during a given time interval are
determined from Equation 5.44, approximated by
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in which Qi is the volume (per unit width of stratum) of brine injected during
the same interval, and A is the thickness of the stratum.

A plot of S(x) is made, as illustrated in Figure 5.16, for a number of time
intervals.  The curve identified as t1 indicates that, in this time interval, the
flood front has not yet reached the producing wells. Note, that before the
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time of breakthrough, the area under the curve (above Sr) equals Q LAi / φ ,
because the volume of oil displaced must equal the volume of brine injected.
After breakthrough, the area under the curve equals the volume of oil
displaced but, in general, this is less than the volume of brine injected
because the wells produce brine as well as oil.

1.0

S 0.5

0
0.1

x / L
0.5 1.0

Sr

t 1

t 3
t 2

Figure 5.16.  Saturation profiles for a linear displacement

Equation 5.44 does not permit an explicit solution of the maximum
distance travelled by the flood front.  In fact, the location of a given
calculated saturation is double-valued, because dfw/dS is double-valued as
explained in Section 5.4.1.  The dotted line in Figure 5.16 illustrates this
situation.  However, the real saturation is not double-valued since a portion
of the curve is not applicable to the displacement process.  A discontinuity
in saturation at the front is postulated such that the area under the curve
(above Sr) behind the discontinuity equals Q LAi / φ .  In an actual case, the
saturation is not discontinuous at the front, the apparent discontinuity being
a consequence of neglecting ∂ ∂p xc /  in the expression for Fw.

The Qi for breakthrough can be determined by trial from plots as shown
in Figure 5.16, and if Qi/t is known, the time for breakthrough is also
determined. After breakthrough, the value of Fw gradually increases at the
producing wells where x = L. The amount of oil that can be recovered by the
time Fw reaches a specified value can be determined from a version of
Equation 5.47 in the form
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As an example, consider the curve designated as t2 in Figure 5.16. This
curve has been plotted for a given time interval corresponding to a specified
Qi and a specified value of (S)L.  The value of Q A Lo / φ  is given by the area
under the curve above Sr.  The specified values of Qi and (S)L along with the
computed value of Q A Lo / φ  permits the calculation of Fw for this particular
value of t and Qi.  The process is repeated for a number of values of Qi.  A
plot of Qo as a function of Qi typically has characteristics as illustrated in
Figure 5.17, in which Qb indicates the water injected at the time of
breakthrough.

Qo

Qb Q i

Figure 5.17. Oil recovered as a function of water injected for a linear
displacement.

Since the ultimate recovery of oil is approached asymptotically, it is
never economically feasible to reach the ultimate recovery.  The amount of
water that must be produced becomes excessive before the ultimate recovery
is achieved.
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PROBLEMS AND STUDY QUESTIONS

1. When formulating problems involving displacement of one fluid by
another, petroleum reservoir engineers frequently state that they have
ignored capillary effects.  Explain in what sense they have, in fact,
ignored capillary effects and under what conditions this is a valid
approximation.

2. The integrated form of the Buckley-Leverett equation (with the term
∂ ∂p xc /  omitted) gives a reasonably accurate approximation of the
actual distribution of S for long systems with high flow rates. Explain
why the length of a system is significant in this respect.

3. What difficulties would be expected in using the technique of Johnson
et al. (based on the Welge integration of the Buckley-Leverett
equation) for determining air and water relative permeabilities of soil
materials.

4. Starting with the 2-phase unsteady flow equations, show that the fact
(of air viscosity being much smaller than water viscosity) is not
sufficient to justify neglecting air resistance in a water-air displacement
process.

5. In a soil water-air system, one should not assume Fw is approximately
equal to fw.  Explain.

6. Explain why the diffusivity equation is not valid for the description of
flow in a fully saturated soil.

7. According to King (1964), the vertical dimension of a horizontal tube
of soil (used to check the square root of time law) should be small
compared to pd/ρwg.  Describe some difficulties that would be
expected if this condition were not satisfied.

8. Describe an important mathematical advantage of writing a flux
equation for an infiltration analysis in terms of the total flux.

9. Would the same mathematical advantage apply for an infiltration
process involving 2- or 3-dimensional flow?  Explain.
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10. Explain why the fractional-flow analysis employed by Morel-Seytoux
for infiltration problems is more effective for determining infiltration
rates than for determining saturation distributions.

11. Explain why a flux equation in the form of the Green and Ampt flux
equation can be exact, whereas an equation combining this flux
equation with a continuity equation is usually not exact.

12. When infiltrometers are used to measure infiltration rates in a field
overlying a high water table, it is possible that the measured rates may
be significantly higher than those observed during a flooding operation.
Explain.

13. Describe a set of conditions under which infiltration may be described
by the “diffusivity” equation with negligible error.

14. Describe a set of conditions under which it is more appropriate to use a
2-phase flow analysis of the infiltration process.

15. Consider an experiment in which a small square plot of ground, say
four square meters, is exposed to a small constant rate input of water
(from a sprinkler) slightly less than Km. Assuming that a water table
exists at a depth of 2 meters, would the 2-phase flow equations of
McWhorter, accounting for air compression, give a better evaluation of
ponding time than the solution of Parlange for the diffusivity equation?
Explain.

16. Consider a case of drainage from an initially fully saturated column of
sand.  The water table is suddenly lowered to the base of the column at
time t = 0.  Assuming the water table is maintained at this depth
throughout the period of observation, derive an equation (based on an
upside down Green and Ampt analysis) for the discharge rate as a
function of the cumulative discharge at a particular time.

17. Discuss the possible consequences of analyzing drainage for the case
described in problem 16 by assuming the distribution of water above
the point where pc = pe to be a static distribution.  Would you expect
this assumption to provide a more or less accurate description of the
discharge rate as a function of the cumulative discharge than that
obtained from the upside down Green and Ampt analysis?  Explain.
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Chapter 6

MODEL  SIMILARITY

6.1. MODELS

Only a small fraction of systems encountered in practice are amenable to
analytical solutions.  More often, boundary conditions are too complex to be
expressed in simple mathematical terms.  In such cases, it is necessary to
idealize the problem or to obtain solutions by using a finite difference or
finite element model, and perhaps to check the results with an appropriate
physical model.

An appropriate model, whether physical or numerical, should create the
same relationship among the pertinent variables as the system being
analyzed, i.e., the prototype.  In other words, the model should be similar to
the prototype.  Numerical models may require considerable time to
formulate and substantial expense for computer time.  Consequently, it is
desirable to obtain results in a form applicable to as large a range of field
conditions as practical.  To accomplish this, the governing equations (and
the initial and boundary conditions) should be expressed in terms of
variables that minimize the requirements for similarity. This is
accomplished by choosing the most appropriate set of variables to describe
the system and scaling the variables with appropriate scale factors.

Physical models are more expensive to construct and operate than
numerical models.  Therefore, it is desirable to determine the least restrictive
criteria of similarity so that the model is as inexpensive to construct and
operate, as well as being similar to as large a range of field situations as
possible.

6.2. DEFINITION OF SIMILARITY

The technical meaning of "similarity" is somewhat more restricted than
its non-technical meaning, because it refers to a specified closed set of
variables and not to every conceivable property.  For example, variables
describing a fluid system might include pressure, density and velocity, but
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not color.  Two systems are similar in a technical sense when the same
relationship exists among the specified variables after they have been
transformed in an appropriate manner.

The size of a set of similar systems depends in part upon what variables
have been selected to describe the systems, and in part upon how the
variables are transformed.  An objective of the transformation process is to
maximize the set of similar systems. The process is perhaps more easily
understood with respect to geometric variables.  In any case, an
understanding of geometric similarity is essential before other kinds of
similarity can be explained.

6.2.1. Geometric Similarity

When investigating similarity of physical systems, boundaries enclosing
the systems must be considered.  Spaces enclosed by boundaries of the same
shape are geometrically similar regardless of their size.  For example, every
sphere is similar to every other sphere regardless of the length of its radius.
Likewise every cube is similar to every other cube regardless of the
dimension of its sides.

On the other hand, a prolate spheroid (generated by rotating an ellipse
about its major axis) is not necessarily similar to other prolate spheroids.
The shape of such a space depends upon the ratio of two characteristic
dimensions, i.e., the lengths of the major and minor axes.  If the ratios of the
two axes are equal, the spheroids are similar.  Furthermore, if two prolate
spheroids are similar, the ratio of lengths of the major axes are the same as
the ratio of lengths of the minor axes.

The length of one of the axes (say the minor axis) can be selected as a
common "scale factor" with which to measure the "scaled length" of any
other "corresponding dimension," e.g., the major axis.  If prolate spheroids
are similar, the scaled lengths of corresponding dimensions are equal.

An analogous relationship can be used to define geometric similarity of
spaces with boundaries of any shape, regardless of their conformation or
symmetry.  However, an infinite set of dimensions is needed to specify the
shape in the general case. Furthermore, the meaning of the term
"corresponding" in the general case is not as obvious as for prolate
spheroids.

An origin for a coordinate frame of reference can be located within space
enclosed by the boundaries of any system.  If spaces are similar, it is
possible to identify a common point for an origin in each of the spaces, say
at the centroids.  Coordinate axes can be oriented so distances to the
boundary from the origin divided by a common "scale factor" are equal in
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any particular direction.  Coordinate frames of reference consistent with this
condition are called corresponding frames of reference. Similar geometric
spaces are those for which corresponding frames of reference exist.

A geometric scale factor is a characteristic dimension of spaces being
compared.  For example, a suitable scale factor could be the length of a line
segment from the origin of a corresponding frame of reference to the
boundary in a particular direction.  With such a scale factor, the scaled
distance to the boundary from the origin in any given direction is the same
for all geometrically similar spaces.

Points located at equal scaled distances in the same direction from the
origin of corresponding frames of reference are called corresponding points.
Lengths of line segments connecting corresponding points are called
corresponding dimensions.  Any corresponding dimension is a valid scale
factor, because it characterizes the size of spaces being compared.

There is an infinite set of factors consistent with this definition of a
geometric scale factor.  In choosing a particular factor from the set, it is
appropriate to select one that can be identified without ambiguity and which
can be measured easily with adequate precision.

Similarity of geometry in respect to three coordinate directions may not
be required in some models.  For example, models of flow systems
characterized adequately as 1-dimensional vertical flow problems might be
small-diameter columns, only the depth dimension in relation to media
properties being important. Usually, it is necessary to maintain geometric
similarity only for dimensions included in differential equations describing
the interrelation among the variables.  This is one way in which an
appropriate selection of variables can make requirements for similarity less
restrictive.

When investigating geometric similarity for some systems, similarity of
more than one kind of boundary must be considered. For example, when
dealing with two fluids in a porous matrix, it is necessary to consider (at
least implicitly) the geometry of a particular fluid with boundaries consisting
of internal solid surfaces and fluid interfaces, as well as the external
boundary of the porous matrix.  The need to consider the internal geometry
explicitly on a microscopic scale may sometimes be avoided by selecting
"macroscopic" variables to describe systems, where the latter variables are
volume averages of corresponding "microscopic" variables.  This is another
way an appropriate selection of variables can make requirements for
similarity less restrictive.

When boundaries of a system are changing with time, a more restricted
definition of the characteristic dimension used as a scale factor may be
necessary.  For example, it may be necessary to define the scale factor as the
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length of a line segment between two corresponding points at a particular
scaled time. The question of how time is scaled is discussed in the following
section.

An example of a system for which the boundaries change with time is
unsteady flow in an open channel.  Similarity with respect to a geometric
variable in this case implies the system is geometrically similar at any
particular scaled time.  However, spaces enclosed by boundaries at some
particular clock time are not similar unless the systems are identical.  For
example, geometries of two similar flow systems in open channels (in which
traveling waves exist) are not similar when compared at a common clock
time unless they are identical channels with identical boundaries and
identical conditions.  Otherwise, the geometries will be similar only at a
common scaled time.

6.2.2. Similarity of Non-geometric Variables

Similarity in respect to a non-geometric variable implies the scaled
values of the variable are equal at corresponding points at corresponding
times.  This definition applies only for systems remaining geometrically
similar at any scaled time, because the definition is in reference to
conditions at corresponding points, which exist only in geometrically similar
spaces.

Corresponding times are times having equal scaled values. Similarity in
respect to time means equal values of other scaled variables occur at
corresponding points at equal scaled times. However, scale factors used for
variables must be characteristic parameters of the system.

6.2.3. Characteristic Parameters

As explained in Section 6.2.1, a characteristic length parameter is the
length of a line segment connecting any two corresponding points in a
corresponding frame of reference.  An infinite set of suitable scale factors
exist for length.  However, if a particular length scale factor is a
characteristic parameter of the system, other suitable scale factors for length
differ only by a common multiplier.  For example, the radius of a pipe is a
characteristic length dimension for pipes and the internal diameter is also a
characteristic length dimension for pipes, because it is always twice the
radius. However, the outer diameter of a pipe does not characterize the fluid
system because its magnitude is not related by a common multiplier to the
radius of the flowing column of fluid.  Use of the latter quantity for scaling
merely changes the unit of measurement and serves no useful purpose.
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Vectors differ from scalars such as length in that they are assigned
directions as well as magnitude.  For example, position, velocity and
acceleration are quantities characterized by direction as well as magnitude.
However, only magnitudes are scaled.  Two scaled vectors are equal if their
directions as well as their scaled magnitudes are equal.

Variables may be classified also according to whether or not they are
assigned values at particular points.  A variable which varies with respect to
position in a system is called an intensive variable.  The vectors mentioned
above are examples of intensive variables. Pressure and temperature are
examples of intensive variables that are scalar quantities.

Similarity with respect to intensive variables requires distributions of the
variable in both space and time to be similar. Any non-zero magnitude of an
intensive variable at a corresponding point at a corresponding time is a
suitable scale factor.  For example, if velocity vectors during steady flow in
a tube with circular cross sections are scaled with the magnitude of the
velocities at the centerline, the scaled velocity vectors are equal at equal
radii in all tubes undergoing laminar flow.  This is because the direction of
flow at all radii is parallel to the axis, and scaled magnitudes of velocities
are equal at corresponding points.  Average velocities Q/A in tubes can also
be used as velocity scale factors because they are directly proportional to
velocities at the centerline for all tubes with similar velocity distributions.
Velocity at any corresponding radius, except at boundaries, could also be
used as scale factors.  Velocity at boundaries can not be used, because it has
a zero magnitude.

6.2.4. Explicit and Derived Scale Factors

If xo is a characteristic length and uo is a characteristic velocity, xo/uo is a
characteristic time parameter for a system.  Furthermore, any length
parameter directly proportional to xo/uo also is a valid time scale factor.
Parameters xo and uo are examples of "explicit" scale factors whereas xo/uo
is an example of a "derived" scale factor. Derived scale factors are
combinations of other scale factors and constant system parameters having
appropriate dimensions.

The number of explicit scale factors required is not greater than the
number of basic dimensions needed to express all variables in a given set.
For most flow systems, the number of basic dimensions is not more than
three, i.e., force, length and time.  Often the number is less than this.
Explicit scale factors are used to scale variables for which valid scale factors
are clearly indicated.  For example, the depth of water in an open channel or
the diameter of a pipe is selected to scale lengths, and the maximum
permeability of a porous medium is selected as an explicit scale factor for
effective permeabilities.  Variables for which no obvious characteristic
parameter exists are scaled with derived scale factors.
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6.3. CRITERIA OF SIMILARITY

6.3.1. Selection of Variables

Establishing criteria of similarity for any system begins with the
identification of a set of variables describing aspects of the system  of
interest to the investigator.  Systems often can be viewed from more than
one perspective, depending on the kind of reference elements to which the
variables refer, and consequently alternative sets of variables may be
selected.  Normally, sets are selected for which criteria of similarity are least
restrictive and for which criteria can most easily be established.

For example, flow of two fluids in a porous matrix may be considered
from either a "microscopic" or a "macroscopic" viewpoint.  With the former
viewpoint, it is necessary to consider force and material balances on
microscopic reference elements of each individual fluid.  Moreover,
boundaries of each fluid consist partly of internal solid surfaces and partly of
changing interfaces between the two fluids.

With a macroscopic viewpoint, reference elements are macroscopic
volume elements of porous matrix, so force and material balances refer to
volume averages over macroscopic elements.  Characteristics of internal
geometry are accounted for implicitly, through functional relationships
between fluid content, permeability and pressure difference across
interfaces.

Inevitably, a macroscopic viewpoint results in a shorter list of variables
and system parameters and a more easily established set of similarity
requirements.  Describing a particular process in greater detail, or in greater
generality than required usually results in criteria of similarity more
restrictive than necessary.

6.3.2. Inspectional Analysis

Criteria of similarity can be developed from a set of variables by
dimensional considerations alone [Buckingham (1914)].  The process is
called "dimensional analysis."  However, criteria can be developed more
directly, and usually in a more useful form, by scaling the governing
equations.

Similar systems are those for which scaled governing equations and
conditions yield identical particular solutions.  It is usually possible to
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determine (by inspection of the scaled equations) conditions that yield
identical particular solutions. The procedure is often called "inspectional
analysis."

6.3.3. Similarity for Steady Flow of a Single Fluid in Porous Media

Steady flow of a single liquid in a fully saturated porous material is
considered to illustrate the method of inspectional analysis.  The first step is
choosing an appropriate set of variables. In this case a macroscopic
viewpoint is indicated and the variables are qi, p, h and xi.  Elevation, h, is a
function of xi and is not an independent variable.  The relationship among
the variables is assumed to be given by a form of Darcy's equation, i.e.,
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In this equation k is the permeability to the fully saturated liquid and µ  is
the liquid viscosity.  Specific weight of the liquid is designated by γ .

This form of Darcy's equation assumes media to be isotropic and fully
saturated so k is a constant scalar.  The equation applies only to a region
where p pe> −  so pe is an obvious choice as a scale factor for p.  Flux
variables qi apply to reference volumes of porous matrix rather than to fluid
particles, but have dimensions of velocity.  Since scale factors for flux and
space are not immediately apparent, qo and xo are derived.  The first version
of the scaled equation is
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where scaled variables are indicated by a hat.

Each variable scaled in an equation requires the scale factor to be
introduced in a constant coefficient of the operator, in which the variable
appears, to avoid altering the equation.  Derived scale factors are defined to
set as many constant coefficients as possible equal to unity to minimize
requirements for similarity.  Each constant coefficient not set equal to unity
introduces a criterion of similarity, i.e., each corresponding coefficient must
be equal for equations to yield identical particular solutions for different
systems.
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The constant coefficients can be removed from the brackets on the right
side of Equation 6.2 by defining

x
p

o
e≡≡ ⋅⋅
γγ

This scale factor represents the maximum height of a column that could
remain fully saturated with a static liquid when the top and bottom are
exposed to a common ambient gas pressure.  The remaining constant
coefficient is set equal to unity by defining

q
k

o ≡≡








 ⋅⋅

γγ
µµ

This scale factor represents the flux rate corresponding to a hydraulic
gradient of unity.  The final scaled version of Darcy's equation is
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Equation 6.3 is identical to Equation 6.1 although constant parameters in
Equation 6.1 have been incorporated in the scaled variables.  Both are valid
for the same range of physical conditions and are subject to the same
limitations.  For example, they are valid only for isotropic media, and media
in which p̂ > −1.  Smaller values of pressure allow ambient gas to enter and
desaturate the media.

Equation 6.3 refers to small reference elements of porous matrix and
does not assume homogeneous media.  However, if media properties vary
from point to point Equation 6.3 is insufficient to describe the flow and
additional relationships, describing the variation of media properties in
space, are required.

Equation 6.3 is inspected to determine criteria of similarity for steady
flow in media that are homogeneous as well as isotropic and contain a single
homogeneous liquid.  Conditions are deduced permitting the equation to
yield identical particular solutions in terms of scaled variables.  Since all
constant coefficients have been set equal to unity, the criteria of similarity
are minimized. They are:

1. Boundary conditions in terms of scaled variables must be the same.
Boundary conditions include the size and shape of space occupied
by the porous matrix.
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2. The orientation of matrix boundaries with the gravitational field
must be the same.

If the variables had not been scaled, identical solutions would require
porous systems to be identical in size as well as similar in shape.  Equal
permeabilities, viscosities and specific weights also would be required.
Clearly generality is enhanced by scaling, and the class of systems to which
one can apply results of a laboratory experiment or data from a numerical
model is expanded.  Moreover, the basis upon which data from a model can
be related to behavior of a prototype is identified.

Fluid mechanics textbooks provide an example of similarity analysis for
flow of a single incompressible Newtonian viscous fluid in enclosed
conduits.  For such cases, a microscopic viewpoint is indicated and reference
elements are "fluid particles."  The Navier-Stokes equation is assumed to
describe relationships among the variables.  Three constant coefficients
appear in the scaled equation which can not be set equal to unity, i.e., the
Froude, Euler, and Reynolds numbers raised to some power. Equality of
these numbers are included in the requirements for similarity.

The validity of Darcy's equation requires viscous force to predominate
over both fluid inertia and gravity in determining the scaled velocity
distribution at the pore scale.  Consequently, none of the coefficients
mentioned appear in the scaled version of Darcy's equation.

Texts dealing with open channel flow show how criteria of similarity for
fully developed turbulent flow can be minimized by considering reference
elements consisting of sections of channels rather than fluid particles.  In
this case one is not concerned with the distribution of velocities at the
microscopic scale, but gravity and varying depth of flow are significant
factors.  The scaled version of the open channel flow equation does not have
coefficients involving Euler or Reynolds numbers but does have coefficients
involving the Froude number.

6.4. SIMILARITY FOR FLOW OF TWO FLUIDS IN POROUS
MEDIA

Since flow in porous media involves Newtonian viscous fluids
undergoing negligible divergence, the criteria of similarity deduced from the
Navier-Stokes equation theoretically should be applicable in this case.  In
applying these criteria, however, several complexities of 2-phase flow must
be considered.  One complication is that the Navier-Stokes equation must be
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applied separately to each of the fluid phases so the criteria of similarity
deduced from it for each phase must be combined.

Furthermore, boundaries of flow systems pertinent to solutions of the
Navier-Stokes equation are internal solid surfaces of pore spaces and
interfaces between two fluids.  Microscopic boundaries, therefore, vary with
saturation.  Saturation varies with capillary pressure and is influenced by
surface tension and by wettability as well as by pore geometry.

Microscopic analyses result in criteria which are very difficult to satisfy
and may, in fact, be mutually incompatible. However, many early
investigators of similarity for porous media included microscopic variables
in their analyses [Leverett et al. (1942)]. Furthermore, most early
investigators deduced criteria of similarity by "dimensional" rather than
"inspectional" analyses, and consequently did not arrive at criteria of
similarity in the most useful form.

The Navier-Stokes equation can be simplified by dropping the
acceleration term.  This is a reasonable simplification since fluid inertia is
rarely a significant factor in 2-phase flow in porous media.  Dropping the
acceleration term eliminates Reynolds number from similarity criteria.  A
further simplification can be made by noting that density occurs in the
remaining terms only as the product ρg so that the two variables can be
treated as one, as was pointed out by Loomis and Crowell (1964).

Miller and Miller (1956) were the first to investigate similarity
specifically for air-water systems in soils. Their approach leads to a concept
of "similar media" which requires the internal pore geometry to be similar,
i.e., to differ only by a constant scale factor.  When media are similar in this
sense they also have equal porosities.

Brooks and Corey (1966) presented a set of criteria without explicit
reference to any pore-scale variables. Their approach is entirely
macroscopic, proceeding directly from the Richards equation. This theory
was later extended by McWhorter and Corey (1967) to include systems for
which flow of nonwetting fluids cannot be ignored.  They scaled a 2-phase
flow equation obtained by combining a set of governing equations.
However, some of the variables appearing in the set of governing equations
do not appear explicitly in the combined equation.  As a result, one criterion
of similarity was overlooked by the McWhorter-Corey (1967) procedure,
i.e., equality of ratios of specific weights of the two fluids.
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6.4.1. Governing Equations

The governing equations for flow of two fluids in a porous matrix are:

1. Darcy's equation for a wetting fluid:
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2. Darcy's equation for a nonwetting fluid:
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3. Material balance equations:
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4. Functional relationships:
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5. From the definition of capillary pressure:
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6.4.2. Limitations of Governing Equations

The governing equations have the following limitations:

1. Convection processes only are described -- not diffusion.

2. Media are isotropic, so permeabilities can be treated as scalar
quantities.

3. Permeabilities are assumed to be functions of pc only, i.e.,
insensitive to flux rates or other variables.
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6.4.3. Scaling the Governing Equations for Flow of Two Fluids

Obvious explicit scale factors are:

k k p po o e≡≡ ≡≡ ⋅⋅;

Here k refers to the maximum permeability to the wetting fluid. The
wetting-fluid permeability is selected as a scale factor because the wetting
fluid may sometimes alter pore geometry, especially in cases where media
contain swelling clays.  Other scale factors are temporarily designated as:

x t qo o o, , ⋅⋅

Scaling Darcy's equation for the wetting fluid gives:

q q
kk p

x
p
x

h
xo wi

w

w

e

o

w

i
w

i

ˆ
ˆ ˆ

ˆ

ˆ

ˆ
,== −− ++









µµ

∂∂

∂∂
γγ

∂∂
∂∂

6.9

where the hats indicate scaled variables.  Constant coefficients inside the
bracket on the right of the scaled equation can be set equal to unity only by
defining
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The remaining constant coefficient is set equal to unity by defining
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The scaled equation for wetting fluid flux is
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The scaled equation for the nonwetting fluid with the same scale factors
is
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Equation 6.11 contains two constant coefficients, the ratios of viscosities
and specific weights, that cannot be set equal to unity with the scale factors
used.  Scale factors could be selected to eliminate the coefficients in this
equation, but in that case they would appear in the wetting fluid flux
equation.

All constant coefficients in the material balance equation can be set equal
to unity by defining
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The scaled versions of the material balance equations are
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Other scaled equations in the set are
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6.4.4. Criteria of Similarity for Flow of Two Fluids

An inspection of the set of scaled equations indicates that requirements
for similarity are:

1. geometric similarity, same scaled size, and same orientation,

2. same initial and boundary conditions in terms of scaled variables,

3. equal viscosity and density ratios for the two fluids occupying the
media,

4. same relationships among scaled values of capillary pressure,
saturation, and permeabilities.
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An additional criterion of similarity may be required for cases in which
the nonwetting fluid is a gas, e.g., water-air systems in fine-textured soils,
where gas slippage might be significant.  In the latter case, equal ratios of
maximum water permeability to maximum air permeability are also
required.

6.4.5. Comparison of Scale Factors for 2-phase Flow

Investigators, including both soil and petroleum scientists, have
presented scale factors more or less equivalent to those presented here.
However, soil scientists usually do not consider equality of viscosity ratios
as a requirement for similarity because they believe this ratio to be
negligible for air-water systems.  Because resistance to flow of air is
assumed to be negligible, knw is not one of the variables considered by soil
scientists.

Earlier investigators of similarity in the petroleum industry often
included a criterion evaluating inertial effects.  Later investigators [Rapoport
(1955), and Loomis and Crowell (1964)] in the petroleum field noted that
this is usually not necessary. Miller and Miller (1956) included a
requirement that porosities of media be equal, because they used volumetric
water content θ , rather than saturation S for characterizing fluid contents.

Although authors usually agree in respect to explicit statements of
similarity requirements, their criteria are in reference to different sets of
scaled variables.  An examination of scale factors employed by various
authors is needed for an adequate comparison of proposed similarity criteria.
Furthermore, the usefulness of a particular scheme depends upon how easily
and precisely scale factors can be identified and evaluated, as well as upon
how precisely the relationship among variables coalesce. Table 6.1
compares scale factors used by a petroleum scientist with those proposed by
Brooks and Corey (1966) and Miller and Miller (1956).  The symbols used
in the original papers have been replaced (where possible) by corresponding
symbols used elsewhere in this text.

The symbol L refers to a macroscopic length which characterizes the size
of the entire flow system, f(α ) is a function of the contact angle of the
interfaces and  ∆ γ  designates ∆ρg.
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Table 6.1.  Scale factors of three authors

Unit
Richardson

(1961)

Miller and
Miller

(1956)

Brooks and Corey

(1966)

Length σσ αα
γγ

φφ
f

k
( )

/ /
∆∆

σσ γγωω/ d pd / ∆∆γγ

Capillary pressure σσ αα φφf k( ) / / σσ / d pd

Time µµ φφ
γγ

L
k ∆∆

µµ

γγωω

L
d2

µµ φφ
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p

k
d e

( )∆∆ 2

Flux rate k ∆∆γγ
µµ

γγ

µµ
ωω d2

k ∆∆γγ
µµ

The scale factor for capillary pressure used by Brooks and Corey (1966)
is pd rather than the entry pressure pe. The two scale factors often have
values that are close but not identical, pe being slightly larger than pd.  Entry
pressure is defined as the capillary pressure at which the nonwetting fluid
first becomes continuous during a desaturation process, whereas pd is found
by an extrapolation process as explained in Section 2.3.6.

Scale factors shown in Table 6.1 for macroscopic length are, in every
case, equal to the scale factor for capillary pressure divided by the difference
in specific weights. Furthermore, the scale factors are inversely proportional
to a characteristic pore dimension. The characteristic pore dimension is
represented by ∆ρg pd/  in the scale factor of Brooks and Corey (1966) and
by a function of k / φ   in the petroleum literature.  Only Miller and Miller
(1956) have included the characteristic pore dimension d explicitly.

The scale factor for length presented in this chapter is different from the
Brooks-Corey factor in that capillary pressure is divided by the specific
weight of wetting fluid rather than the difference in specific weights.  This is
not a significant difference since the ratios of specific weights must be equal
for similarity, so the specific weight of wetting fluid differs from the
difference in specific weights by a common multiplier.

According to theory presented in Section 2.4 leading to Equation 2.13, if
d is assumed to be proportional to a maximum value of A/wp, it is also
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proportional to σ  cosα  / pd.  If α  is a constant, σ / d is proportional to pd.
Furthermore, according to the theory presented in Section 3.6.1, pd is
inversely proportional to k / φ , provided the parameters σ,  α , T, ks and Sr
are approximately equal.  To the extent this theory is valid, all the scale
factors presented in Table 6.1 for both capillary pressure and length are
equally valid because they are mutually proportional.  However, pd should
be an appropriate scale factor for pc regardless of the validity of the theory
involving the microscopic variables.

Entry pressure pe is suggested here as an alternative to pd as a scale factor
for capillary pressure.  Any capillary pressure characterizing the scale of
capillary pressure-saturation functions is suitable for this purpose, provided
its value can be determined with adequate precision.

The scale factor for macroscopic length should be inversely proportional
to the entry pressure.  The reason becomes clear if one considers a simple
1−dimensional static case where two fluids (say air and water) exist as
continuous phases in a column of soil with a water table (pc = 0) at the
bottom of the column.  The soil column, remains nearly fully saturated with
water above the water table for a height that depends on the magnitude of
pe / ∆ γ . Clearly, if two such columns are to have similar distributions of
water content along their length, the ratio of overall length L of the column
to pe /∆ γ  must be the same.

Although pe is inversely related to the size of the largest pores that form
a continuous channel within the matrix, the relationship depends upon some
variables not easily measured as they exist within the pore space, e.g., σ,  α,
and A/wp.  Consequently, the entry pressure seems to be a more appropriate
scale factor for length since it directly characterizes the scale of the capillary
pressure-saturation function.

Leverett et al. (1942) were the first to employ the parameter σ φ/ /k  as
a scale factor for capillary pressure.  This results in

J S
p

kc( ) /≡≡
σσ

φφ

being one of the variables often used to describe flow in petroleum
reservoirs.  The variable J(S) is often called the "J" function in petroleum
literature.

The only difference between the scale factor J(S) and that used by
Richardson (1961) is the contact angle introduced by the latter.  Perkins and
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Collins (1960), whose scale factors are not shown in Table 6.1, proposed
essentially the same set of scale factors except that they replaced k with km,
permeability with entrapped nonwetting fluid.

Scale factors for time, with the exception of that of Miller and Miller
(1956), are essentially the same.  The time scale factor of Brooks and Corey
(1966) includes pd /∆ γ  rather than L but this is not a significant difference,
since their theory requires L to be proportional to pd /∆ γ  for similar
systems.  Miller and Miller (1956) are the only authors in this group who
have not included porosity in the time scale factor, since they have used the
volumetric water content θ, rather than the saturation S, as a measure of
wetting fluid content.

The scale factors for flux rate shown in Table 6.1 also are identical,
except for that of Miller and Miller (1956) who have introduced the
parameter d in this scale factor rather than the permeability k.  The validity
of the use of d in the scale factors for both flux rate and time depends upon
the validity of the theory presented in Section 3.6.1.  The scale factors for
flux rate and time in terms of k and φ  should be appropriate in any case.
Earlier investigators in the petroleum industry [Leverett et al. (1942)], like
Miller and Miller, considered similar pore geometry to be necessary for
similar flow behavior.

6.4.6. Similarity for Special Cases

Requirements for similarity in the most general case are very difficult to
satisfy.  However, not all of the governing equations for flow of two fluids
apply in every case, and some of the criteria listed for the general case are
not always required.  Rather than guessing which criteria to drop from the
more general set, it is usually safer to write the simplest equations that
adequately describe flow for the special case and derive similarity criteria
specific for the system under consideration.

A special case involving flow of a wetting liquid only was described in
Section 6.3.3.  In that case, one might have guessed that the last two criteria
on the list could be dropped and the others retained.  However, the best way
of stating criteria of similarity for a special case may not be obvious a priori.

Another example of how criteria of similarity can be simplified for
special cases has been presented by Brooks and Corey (1966).  The cases for
which their simplification applies are those for which the saturation of the
wetting fluid is never reduced below residual saturation.  This condition is
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satisfied where the wetting fluid is removed by fluid flow only and not by
diffusion or evaporation.  In this case there is typically a portion of the pore
space always occupied by adsorbed (or other practically immobile fluid)
which contributes negligibly to permeability of the media.

Where the Brooks-Corey simplification applies, it is possible to
normalize the porosity appearing in the material balance equation as

φφ φφ φφe r≡≡ −− ⋅⋅

The parameter φe  is called "effective porosity," and φr  is called the
"residual porosity," which represents a portion of the pore space contributing
negligibly to permeability.  The variable S is likewise normalized as
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and is called "effective saturation."

The left side of the material balance equation is expressed in terms of the
normalized quantities as
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The latter substitution represents the same quantity expressed in different
variables, but the equation is otherwise unchanged.

Much of the variability characteristic of functional relationships among
the scaled variables presented in Section 6.4.3 is removed by the
substitution. Moreover, Brooks and Corey found they could express
functional relationships among the normalized variables in a satisfactory
manner by empirical and semi-empirical relationships as follows:

S p k pe c w c== ==−− −− ++ˆ ; ˆ ˆ ,( )λλ λλ2 3 6.15

and

ˆ ˆ ˆ ,( )k p pnw c c== −−[[ ]] −−[[ ]]−− −− ++1 1
2 2λλ λλ 6.16

where ˆ . .pc ≥1 0
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S kw, ˆ ,  and  ˆ .knw == 1 0   , 6.17

 where ˆ . .pc ≤1 0

As explained in Section 2.3.6, λ  is a positive exponent with a typical value
of about 2 for porous rocks.  It usually has a value less than 2 for structured
soils and greater than 2 for clean sands.

To the extent that the Brooks-Corey relationships are valid, the
requirement for identical relationships among scaled variables of capillary
pressure, saturation, and permeabilities is satisfied by media having equal
values of λ .  As explained in Section 2.3.6, the value of this exponent can
be found from the slope of a log-log plot of a capillary pressure-saturation
curve.  It can be found more conveniently by determining a best-fit exponent
directly from desaturation data using a computer.  When determining values
of the exponent, data for wetting fluid saturations greater than about 0.85
should be excluded.  This is because the Brooks-Corey theory does not
apply where the nonwetting fluid is discontinuous.

Brooks and Corey originally expected their simplified criterion of
similarity to be valid only for drainage of soils where hysteresis does not
occur.  Corey and Corey (1967), and McWhorter and Corey (1967) verified
the Brooks-Corey theory experimentally for 1-dimensional drainage of soil
columns.  It was verified for 2-dimensional drainage by Hedstrom et al.
(1971).  However, the problems of identifying similarity requirements for
media undergoing hysteresis, non-isotropic media, and media undergoing
shrinking or swelling, need more research.

 Linear imbibition of a liquid into a horizontal tube of homogeneous soil
at some initial liquid content (see Section 5.2.1) is an example of a case
where geometric similarity with respect to three dimensions is not necessary.
The source of the liquid is at one end of the tube and the pressure of the
liquid at the source is equal to or slightly greater than atmospheric.  The
other end of the tube is open to the atmosphere so resistance to the escape of
air ahead of the advancing liquid is expected to be negligible.

In choosing a specific equation to describe this case, it is important to
note that the source pressure is such that a portion of the tube of soil is fully
saturated after a finite interval of time following the start of the imbibition
process.  Equation 5.5 does not apply in the fully saturated region since θ is
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not a single-valued function of ψ .  The appropriate equations are simplified
versions of Equations 5.1 - 5.4.

Another case for which a two-fluid flow system is often idealized as a
linear flow problem occurs when brine is injected from a line of wells at a
constant rate and fluids are removed from a line of wells at a distance L
from the injection wells.  It is assumed that the initial saturation of brine in
the rock formation is uniform and is equal to or greater than the residual
saturation. The displacement takes place under a very large pressure gradient
and the slope of the formation is very small.  Equation 5.41 is an appropriate
equation for this case, but since the displacement process does not violate
the conditions under which the Brooks-Corey simplifications are valid, the
variables S and φ can be normalized.  As explained in Section 5.4.1, the
equation can be further simplified for this particular case by writing it in the
form of the Buckley-Leverett equation.

Evidently, a number of specific equations involving different sets of
variables may have to be tried to find the least restrictive set of similarity
requirements.  Furthermore, the least restrictive set may not always be
apparent from an inspection of the set applicable to the most general case of
2-phase flow.

6.4.7. Tests of Similarity Criteria

Several experiments have been conducted by soil scientists to test the
similarity theory of Miller and Miller (1956).  These include experiments by
Klute and Wilkinson (1958), Elrick et al. (1959) and Wilkinson and Klute
(1959).  The tests compared results (in terms of transformed variables) of
flow experiments with two or more media having contrasting permeabilities
and textures but satisfying the criteria for "similar" media.  In one case,
Elrick et al. (1959) ran hysteresis loops of pc(S) functions using two
different fluids (water and butyl alcohol) on the same media.  The agreement
was good when an inert medium was used but not as good with a medium
containing clay.  The varying reaction of the clay to the two fluids
undoubtedly prevented the retention functions from behaving in a similar
way with each of the fluids.  In other cases, however, tests have shown the
theory of Miller and Miller (1956) to be valid.
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Corey and Corey (1967) reported tests of the Brooks-Corey similarity
theory for linear drainage of initially fully saturated soil columns with a zero
pc maintained at the base of the columns.  Outflow as a function of time was
recorded in terms of scaled as well as standard variables.  To obtain
maximum precision and reproducibility of measured parameters, Soltrol was
used instead of water as the wetting fluid.  The lengths of the columns were
adjusted to be the same multiple of pd / γ  for each of the two materials
having the same value of λ .  The results are shown in Figures 6.1 and 6.2.

Hedstrom et al. (1971) conducted 2-dimensional drainage experiments in
two soil flumes, the larger flume being 12.2 meters long and 1.22 meters
high and the smaller flume having dimensions about 1/3 as large.  Soltrol
was used rather than water in this experiment to improve the stability of the
soil structure and to permit maximum precision in measurement of the soil
parameters. Examples of data obtained for discharge as a function of time in
terms of standard units and scaled variables are shown in Figures 6.3 and
6.4, respectively.  Data obtained for the elevation, of the water table as a
function of time also coalesce very closely.  From such experiments,
Hedstrom et al. (1971) concluded that the Brooks-Corey similarity criterion
is probably valid for 2-dimensional drainage, and that results from the small
flume could be extrapolated to apply to larger systems.

Figure 6.1. Outflow as a function of time (in terms of standard
units) from columns of equal scaled height containing
media of identical λλ . [After Corey and Corey (1967)].
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Figure 6.2. Outflow as a function of time (in terms of scaled
variables) from columns of equal scaled height
containing media of identical λλ . [After Corey and
Corey (1967)].

The experiments of Corey and Corey (1967), and Hedstrom et al. (1971)
represent cases in which the resistance to flow of a nonwetting phase is
undoubtedly negligible.  McWhorter and Corey (1967) reported results of a
test for a case where resistance to flow of nonwetting fluid (air) is
significant.  Details of this experiment have been presented in a thesis by
McWhorter (1966), a brief description of which is given below.

Three columns of porous media were first fully saturated with Soltrol
and then drained under the influence of gravity for a period corresponding to
a scaled time of 1.0.  At that time, a scaled air pressure of 1.2 was applied at
the top of each column. The cumulative outflow from each column was
measured as a function of time for the entire period.  One of the columns
was a core of Berea sandstone, 114 cm in length.  The other two were
shorter columns of unconsolidated sand, all of them, however, having the
same height relative to respective values of pd /∆ γ .  The sandstone core was
3.6 times as long as the shorter of the two unconsolidated sand columns (in
terms of standard units) and required 108 times as long to drain to an
equivalent saturation.
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Figure 6.3. Cumulative outflow from 2-dimensional drainage
models with similar media.  [Hedstrom et al. (1971)].

Figure 6.4. Cumulative outflow from 2-dimensional drainage
models with similar media (in terms of transformed
variables).  [Hedstrom et al. (1971)].
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The experimental results are presented in Figures 6.5 and 6.6. A sharp
increase in liquid discharge occurred at a scaled time of 1.0, as would be
expected, because this is when an elevated air pressure was applied.
Although the data in terms of standard units are very different for the three
columns, they coalesce closely when expressed in terms of scaled variables.

The three media in the McWhorter experiment had λ  values that were
not greatly different, being about 2.6 for two of the columns and 2.1 for the
third.  Evidently, 1−dimensional drainage of sands is not extremely
sensitive to small differences in λ .  A similar observation was made by
Corey and Corey (1967) for media with large values of λ , i.e., greater than
2.0.

The columns did not satisfy criteria for "similar media" as described by
Miller and Miller (1956) because the porosity of the sandstone was less than
half that of the unconsolidated sands. Moreover, the ratio of length of the
sandstone column to that of the volcanic sand was 3.6 rather than 5.86 as
would have been required using the Leverett length scale.  Evidently, the
Brooks-Corey normalized variables adequately account for porosity
differences, and the Brooks-Corey length scale seems to be more
satisfactory for scaling dimensions of porous media models than the
Leverett length scale.

Figure 6.5. Discharge as a function of time for the wetting phase
driven by air pressure for three columns of porous
media with nearly equal values of λλ .
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Figure 6.6. Discharge as a function of time (in terms of scaled
variables) for the wetting phase driven by air pressure
for three columns of porous media with nearly equal
values of λλ .

PROBLEMS AND STUDY QUESTIONS

l. For model studies involving flow in open channels, the Froude number
is an important criterion of similarity.  This number includes a
characteristic length L.  What is the only logical dimension to use for
this purpose?  Explain.  Is it necessary to use this dimension in a
Froude number if similarity between two systems with complete
geometric similarity is under consideration?  Explain.

2. Consider the problem of building a model to study the effect of soil
properties on distribution of soil water under furrows used in irrigation.
Would complete geometric similarity be necessary?  Explain.

3. Explain why the criteria of similarity used by Brooks and Corey for
drainage situations would have to be modified for imbibition into dry
soil.
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4. Consider the distribution of water in a homogeneous soil profile that
has been drained to a static condition with a water table at some depth.
Describe a simple laboratory system that would be effective as a model
for the prototype system.  Develop similarity criteria for the variables h
and S from the equation of statics and the Brooks-Corey relationship
for S(Pc). Show what criteria could be eliminated if the variables are
ĥ and Se.

5. Consider a case of 1-dimensional steady flow of liquid through small
diameter horizontal tubes of soil that contain a static interconnected gas
phase.  Derive the least restrictive similarity criteria for a set of
variables that will describe flux rate and the capillary pressure
distribution.

6. Derive the least restrictive similarity {for tubes of soil as described in
problem 5} if the wetting phase is static and the gas is flowing.

7. What is the purpose of φ in the scale factor for pc used by petroleum
scientists?  Does φ in the J-function, make the similarity criteria less
restrictive if it is required that φ be equal?  Does it make the criteria of
Richardson less restrictive?  Explain.



237

REFERENCES

Adam, N. K. (1968).  The Physics and Chemistry of Surfaces.  Dover Publications,
New York, N.Y., "Unabridged and corrected republication of the third (1941)
edition." pp. 1-16.

Adams, K. M., Bloomsburg, G. L. and Corey, A. T. (1969).  Diffusion of trapped
gas from porous media.  Water Resources Research, Vol. 5, No. 4, August, pp.
840-849.

Ahmad, N. and Sunada, D. K. (1969).  Nonlinear flow in porous media. J. of Hyd.
Div., ASCE, Vol. 05, No. Hy6, Proc. Paper 6883, November, pp. 1847-1857.

Ames, W. F. (1965).  Nonlinear Partial Differential Equations in Engineering,
Academic Press, New York, N.Y., Vol. 18, Chapter 5, pp. 195-267.

Anat, A., Duke, H. R., and Corey, A. T. (1965).  Steady upward flow from water
tables.  Colorado State University Hydrology Paper No. 7, June, 34 p.

Arbhabhirama, A. and Kridakorn, C. (1968).  Steady downward flow to a water
table.  Water Resources Research, Vol. 4, pp. 1249-1257.

Averjanov, S. F. (1950).  About permeability of subsurface soils in case of
incomplete saturation.  Engineering Collection, VoI. VII, as quoted by P. Ya.
Polubarinova Kochina, The Theory of Ground Water Movement, English
translation by J. M. Roger De Wiest, 1962, Princeton University Press.

Bear, Jacob (1972).  Dynamics of Fluids in Porous Media. American  Elsevier
Publishing Co., Inc. New York. p. 483.

Bear, J. (1972).  Dynamics of Fluids in Porous Media.  American Elsevier
Publishing Co., Inc., New York, N.Y., p. 499.

Bolt, G. H. and Groenevelt, P. H. (1969).  Coupling phenomena as a possible cause
for non-Darcian behavior of water in soil. Bull. I.A.S.H., No. 2, Vol. 14, No. 2,
pp. 17-26.

Bouwer, H. (1964).  Unsaturated flow in groundwater hydraulics. J. of Hydr. Div.,
ASCE, HY5: pp. 121-144.

Bower, C. A. and Goertzen, J. O. (1959).  Surface area of soils and clays by an
equilibrium ethylene glycol method.  Soil Science, Vol. 87, No. 5, May, pp.
289-292.

Briggs, L. J., and McLane, J. W. (1907).  The moisture equivalent of soils.  U.S.
Dept. Agr. Bur. Soils, Bulletin 45, 23 p.



Mechanics of Immiscible Fluids in. . .

238

Brooks, R. H. (1980). Water retention measurement for soils. J. Irrig. and Drainage
Div., ASCE, Vol. 106, No. IR2, pp. 105-112.

Brooks, R. H. and Corey, A. T. (1964).  Hydraulic properties of porous media.
Colorado State University Hydrology Paper No. 3, March, 27 p.

Brooks, R. H. and Corey, A. T. (1966).  Properties of porous media affecting fluid
flow. J. Irrig. and Drainage Div., Proc. ASCE, Vol. 92, IR 2, pp. 61-88.

Bruce, R. R. and Klute (1956).  The measurement of soil moisture diffusivity.
SSSA Proceedings, Vol. 20, No. 4, pp. 459-462.

Buckingham, E. (1914).  On physically similar systems. Illustrations of the use of
dimensional equations.  Physics Review,  Vol. IV,  No. 4,  p. 345.

Buckley, S. E. and Leverett, M. C. (1942).  Mechanism of fluid displacement in
sands. Trans. AlME, Vol. 146, p. 107.

Burdine, N. T. (1952). Relative permeability calculations from pore-size
distribution data.  Trans. AIME, Vol. 198, pp. 71-77.

Carman, P. C. (1937).  Fluid flow through a granular bed. Trans. Inst. Chem. Eng.,
London, Vol. 15, pp. 150-166.

Chen, Z.-X., Bodvarsson, G.S., and Witherspoon, P.A. (1990).  One-dimensional
horizontal two-phase infiltration under an applied pressure.  Lawerence
Berkely Laboratory, Report No. 28638, Feb.

Childs, E. C. and Collis-George, N. (1948). Soil geometry and soil-water
equilibria.  Disc., Faraday Society, No. 3, pp. 78-85.

Childs, E. C. and Collis-George, N. (1950).  The permeability of porous materials.
Proc. Royal Society, London, Vol. 201, pp. 392-405.

Cole, D. W. (1968).  A system for measuring conductivity, acidity and rate of
water flow in a forest soil.  Water Resources Research, Vol. 4, pp. 1127-1136.

Collins, R. E. (1961). Flow of Fluids Through Porous Materials. Reinhold
Publishing Corporation, New York, 270 p.

Collins, R. E. (1961). Flow of Fluids through Porous Materials. Reinhold
Publishing Corporation, New York, Section 6.20, pp. 142-149.

Corey, A. T. (1954).  The interrelation between gas and oil relative permeabilities.
Producer's Monthly, Vol. XlX, No. l, November, pp. 38-44.

Corey, A. T. and Brooks, R. H. (1975).  Drainage characteristics of soils. Soil
Science Society of American Proceedings, Vol. 39, No. 2, pp. 251-255.

Corey, A. T. and Kemper, W. D. (1961).  Concept of total potential in water and its
limitations.  Soil Science, Vol. 91, No. 5, May, pp. 299-302.



References

239

Corey, A. T. and Klute, A. (1985).  Application of the potential concept to soil
water equilibrium and transport.  SSSA Journal, Vol. 49, No. 1, pp. 3-11.

Corey, A. T. and Rathjens, C. H. (1956).  Effect of stratification on relative
permeability. Journal of Petroleum Technology, Trans.  AIME, Technical Note
393, December, pp. 69-71.

Corey, G.L. and Corey, A.T. (1967).  Similitude for drainage of soils.  J. Irrig. and
Drain. Div., Proc. ASCE, IR3, Vol. 93, pp. 3-23.

Corey, P. R., Duke, H. R., and Corey, A. T. (1982).  Monitoring soil water
leachate.  Trans. ASAE, Vol. 25, No. l, pp. 96-99 and 104.

Darcy, H. (1856).  Les fontaines publiques de la ville de Dijon. Victor Dalmint,
Paris.

Davidson, J. M., Nielsen, D. R. and Biggar, G. W. (1963).  The measurement and
description of water flow through Columbia Silt Loan and Hesperia Sandy
Loam.  Hilgardia, Vol. 34, pp. 601-617.

Dixon, R. M. and Linden, D. R. (1972).  Soil-air pressure and water infiltration
under border irrigation.  SSSA Proceedings, Vol 36, No. 5, pp. 948-953.

Doering, E. J. (1965).  Soil water diffusivity by the one-step method.  Soil Science,
Vol. 99, pp. 322-326.

Donaldson, E. C., Kendall, R. F. and Baker, B. A. (1975). Surface-area
measurement of geologic materials.  Society of Petroleum Engineers Journal,
April, pp. 111-116.

Duke, H. R. (1972).  Capillary properties of soils - influence upon specific yield.
Transactions, ASAE, Vol. 15, No. 4, pp. 688-691.

Duke, H. R. (1973).  Drainage design based upon aeration.  Colorado State
University Hydrology Paper No. 61, June, 59 p.

Duke, H. R., Kruse, E. G., and Hutchinson, G. L. (1970).  An automatic vacuum
lysimeter for monitoring percolation rates.  United State Department of
Agriculture, ARS 41-165, September, 12 p.

Dumm, L. D. (1964).  Transient-flow concept in subsurface drainage.  Trans.
ASAE, Vol. 7, pp. 142-146.

Dumm, L. D. (1967).  The transient flow theory and its use in subsurface drainage
of irrigated land.  ASCE, Irrig. Drain. Div., Water Resources Conference, New
York, N.Y., 38 p.

Edlefsen, N. E., and Anderson, A. B. C. (1943). Thermodynamics of soil moisture.
Hilgardia, Vol. 15, 298 p.

Elrick, D.E., Scandrett, J.H., and Miller, E.E. (1959).  Tests of capillary flow
scaling.  Proceedings, SSSA, Vol. 23,  No. 5,  Sept.-Oct.,  pp. 329-332.



Mechanics of Immiscible Fluids in. . .

240

Encyclopaedia Britannica Inc. (1964 ed.).  Surface tension, Vol. 21, pp. 595-604.

Fair, G. M. and Hatch, L. P. (1933).  Fundamental factors governing the streamline
flow of water through sand.  J. Amer. Water Works Assoc., Vol. 25, pp. 1551-
1565.

Forchheimer, P. (1901).  Wasserbewegung durch boden.  Zeitschrift Des Verines
Deutsch Ing., No. 49, pp. 1736-1749, continued in No. 50, pp. 1781-1788.

Gardner, W., Israelsen, O. W, Edlefsen, N. E., and Clyde, H. (1922).  The capillary
potential function and its relation to irrigation practice.  Physical Review,
second series, July-December, p 196.

Gardner, W. R. (1956).  Calculation of capillary conductivity from pressure plate
outflow data, SSSA Proc., Vol. 20, No. 3, pp. 317-320.

Gardner, W. R. (1958).  Some steady state solutions of the unsaturated moisture
flow equation with application to evaporation from a water table.  Soil Science,
Vol. 85, No. 4, pp. 228-232.

Gardner, W. R. (1962).  Approximate solutions of a non-steady state drainage
problem.  SSSA Proceedings, Vol. 26, pp. 129-132.

Gibbs, J. W. (1876). On the equilibrium of heterogeneous substances.
Transactions of the Connecticut Academy of Sciences, Vol. 3, pp. 228-391.

Green, W. H. and Ampt, C. A. (1911).  Studies on soil physics I.  Flow of air and
water through soils. Jour. Agr. Sci., Vol. 4, May, pp. 1-24.

Hanks, R. J. and Bowers, S. A. (1962).  Numerical solution of moisture flow
equation for infiltration into layered soils.  SSSA Proceedings, Vol. 26, pp.
530-534.

Hassler, G. L., Brunner, E. and Deahl, T. J. (1944).  Role of capillarity in oil
production. Trans. AIME, Vol. 155, pp. 153-172.

Hauzenberg, l. and Zaslavsky, D. (1963).  The effect of size of water stable
aggregates on field capacity.  Department of Civil Engineering, Technion,
Haifa, P.H., Vol. 35 as quoted by Bear (1972), pp. 483-487.

Hedstrom, W. E., Corey, A. T., and Duke, H. R. (1971).  Models for subsurface
drainage.  Colorado State University, Hydrology Paper No. 48, April, 56 p.

Hubbert, M. K. (1940).  The theory of groundwater motion.  J. Geol. Vol. 48,
No. 8, Part I, pp. 785-943.

Irmay, S. (1954).  On the hydraulic conductivity of unsaturated soils.  Trans.
Amer. Geophys. Union, Vol. 35, pp. 463-467.

Jensen, M. E. and Hanks, J. R. (1967).  Nonsteady-state drainage from porous
media.  J. of Irrig. and Drain. Div., Proceedings ASCE, 1R3, September, pp.
209-231.



References

241

Johnson, E. F., Gassler, D. P., and Nauman, Y. 0. (1959).  Calculation of relative
permeability from displacement experiments.  Petroleum Trans., AIME, Vol.
216, p. 370.

Jones, S. C., and Roszelle, W. O. (1978).  Graphical techniques for determining
relative permeability from displacement experiments. Journal of Petroleum
Technology, Vol. XXX, May, pp. 807-817.

Klinkenberg, L. J. (1941).  The permeability of porous media to liquid and gases.
Amer. Petrol. Inst. Drilling Prod. Pract, pp. 200-212.

Klute, A. (1972).  The determination of the hydraulic conductivity and diffusivity
of unsaturated soils. Soil Science, Vol. 113, No. 4, pp. 264-276.

Klute, A. and Wilkinson, G. E. (1958).  Some tests of the similar media concept of
capillary flow: I, Reduced capillary conductivity and moisture characteristics
data.  Proceedings, SSSA, Vol. 22,  July-Aug., pp. 278-281.

King, L. G. (1964).  Imbibition of fluids by porous solids.  A Ph.D. dissertation,
Colorado State University, Fort Collins, Colorado, September, 231 p.

Kozeny, J. (1927).  Über kapillare leitung des wassers im boden, Sitzungsber.
akad. Wiss, Wien 136, 271-306. (Citation is from a translation by W. F.
Striedieck and C. M. Davis, Published by the Petroleum Branch of AIME.)

Kutilek, M. (1972). Non-Darcian flow of water in soils-laminar region.
Fundamentals of Transport Phenomena in Porous Media, IAHR, American
Elsevier, pp. 327-340.

Laliberte, G. E. (1969).  A mathematical function for describing capillary pressure-
desaturation data. Bulletin of the International Association of Scientific
Hydrology, Vol. XIV, 2, pp. 131-149.

Laliberte, G. E. and Brooks, R. H. (1967).  Hydraulic properties of disturbed soil
materials affected by porosity.  Proc. SSSA, Vol. 31, pp- 451-454.

Laliberte, G. E., Brooks, R. H. and Corey, A. T. (1968).  Permeability calculated
from desaturation data. Jour. of Irr. and Drain. Div., ASCE, Vol. 94, No. IR1,
Proc. Paper 5843, March, pp. 57-71.

Laliberte, G. E. and Corey, A. T. (1967).  Hydraulic properties of disturbed and
undisturbed soils.  ASTM, Permeability and Capillarity of Soils, Special
Technical Pub. No. 417, pp. 56-71.

Laliberte, G. E., Corey, A. T. and Brooks, R. H. (1966).  Properties of unsaturated
porous media.  Colorado State University Hydrology Paper No. 17, November,
40 p.

Leverett, M.D., Lewis, W.B. and True, M.E. (1942).  Dimensional-model studies
of oil-field behavior.  Petroleum Technology, T.P. 1413, January,  pp. 175-193.



Mechanics of Immiscible Fluids in. . .

242

Ligon, J. T., Johnson, H. P. and Kirkham, D. (1962).  Unsteady-state drainage of
fluid from a vertical column of porous material.  J. of Geophysical Research,
Vol. 16, pp. 5199- 5204.

Loomis, A.G., and Crowell, D.C. (1964).  Theory and application of dimensional
and inspectional analysis to model study displacements in petroleum
reservoirs. W. S. Bureau of Mines,  Report of Investigations,  6546,  37 p.

Lorenz, S. A, Durnford, D. S. and Corey, A.T. (1992). Liquid retention
measurement on porous media using a controlled outflow cell.  A manuscript
available from the Dept. of Agric. and Chem. Eng., Colorado State Univ., 17 p.

McWhorter, D.B. (1966).  Similitude for flow of two fluids in porous media.  M.S.
Thesis,  Colorado State University,  Fort Collins,  Colorado,  December,  91 p.

McWhorter, D. B. 1971).  Infiltration affected by flow of air.  Colorado State
University Hydrology Paper No. 49, May, Fort Collins Colorado, 43 p.

McWhorter, D. B. (1976).  Vertical flow of air and water with a flux boundary
condition. Trans. ASAE, Vol. 19, No. 2, pp. 259-261.

McWhorter, D.B. and Corey, A.T. (1967).  Similitude for flow of two fluids in
porous media.  International Hydrology Symposium, Fort Collins, Sept. 1967,
IAHR, pp. 136-140.

McWhorter, D. B. and Duke, H. R. (1976).  Transient drainage with non-linearity
and capillarity.  ASCE, J. Irrig. Drain. Div., IR-2, Vol. 102, No. 2, pp. 193 -
204.

McWhorter, D.B. and Sunada, D.K.(1990).  Exact integral solutions for two-phase
flow. WRR, v.26. n.3., p. 399-413.

McWhorter, D.B. and Sunada, D.K., (1992).  Reply to Chen, et al.  WRR, v.28,
n.5, p. 1479.

Mein, R. G. and Larson, C. L. (1973).  Modeling infiltration during a steady rain.
Water Resour. Res. Jour., Vol. 9, No. 2, April, pp. 384-394.

Miller, E. E. and Elrick, D. E. (1958). Dynamic determination of capillary
conductivity extended for non-negligible membrane impedance. SSSA
Proceedings, Vol. 22, pp. 483- 486.

Miller, E. E. and Klute, A. (1967).  The dynamics of soil water, Part I - Mechanical
forces, In Irrigation of Agricultural Lands, R. M. Hagan, et al. (eds.), Chapter
13, pp. 209-244.

Miller, E. E. and Miller, R.D. (1956).  Physical theory for capillary flow
phenomena.  J. of Applied Physics, Vol. 27, No. 4,  April,  pp. 324-332.

Morel-Seytoux, H. J. (1975).  Derivation of equations for rainfall infiltration.
CEP75-76HJM7, ERC, Colorado State University, Fort Collins, Colorado



References

243

80523, 26 p.

Mualem, Y. (1976).  A new model for predicting the hydraulic conductivity of
unsaturated porous media. Water Resources Research, Vol. 12, pages 513-522.

Osoba, J. S., Richardson, J. G., Kerver, J. K., Hafford, J. A., and Blair, P. M.
(1951).  Laboratory measurements of relative permeability.  Trans. AIME, Vol.
192, pp. 47-56.

Parlange, J. Y. (1972). Theory of water movement in soils: 8. One-dimensional
infiltration with constant flux at the surface.  Soil Science, Vol. 114, No. 1, pp.
1-4.

Parsons, R. W. and Jones, S. C. (1977).  Linear scaling in slug-type processes -
application to micellar flooding.  Society of Petroleum Engineers Journal, Vol.
17, No. 1, pp. 11-26.

Peck, A. J. (1965).  Moisture profile development and air compression during
water uptake by bounded porous bodies, 3: vertical columns. Soil Science, Vol.
100, No. 1, pp. 44-51.

Perkins, F. M. and Collins, R.E. (1960).  Scaling laws for laboratory flow models
of oil reservoirs.  J. of Petroleum Technology,  AIME, Technical Note 2063,
August,  pp. 69-71.

Peters, D. B. (1965).  Water availability. Chapter 19, Methods of soil analysis,
Agronomy, No. 9, Part 1, ASA, pp- 279-285.

Philip, J. R. (1957).  The theory of infiltration: 1. The infiltration equation and its
solution.  Soil Science, Vol. 83, pp. 345-357.

Purcell, W. R. (1949).  Capillary pressures--their measurement using mercury and
the calculation of permeability therefrom. Journal of Petroleum Technology,
Vol. 1, No. 2, pp. 39-46.

Rapoport, R. A. (1955).  Scaling laws for use in design and operation of water-oil
flow models. Petroleum Transactions, AlME, Vol. 204, pp. 143-150.

Richards, L. A. (1928).  The usefulness of capillary potential to soil-moisture and
plant investigators.  Journal of Agricultural Research, Vol. 37, No. 1, pp. 719-
742.

Richards, L. A. (1931).  Capillary conduction of liquids through porous mediums.
Physics, Vol. 1, pp. 318-333.

Richards, L. A., and Gardner, W. (1936). Tensiometers for measuring the
capillary tension of soil water.  Journal of the Amer. Soc. of Agronomy, Vol.
28, pp. 352-358.

Richardson, J. G. (1961).  Flow through porous media.  Handbook of Fluid
Dynamics, Section 16, edited by V. I. Streeter, McGraw-Hill Book Co., Inc.,



Mechanics of Immiscible Fluids in. . .

244

New York, pp. 16-3 through 16-112.
Rubin, J. and Steinhardt, R. (1963).  Soil water relations during rain infiltration: 1.

Theory.  SSSA Proceedings, Vol. 27, No. 3, pp. 246-251.

Schleusener, R. A. and Corey, A. T. (1959).  The role of hysteresis in reducing
evaporation from soils in contact with a water table. Journal of Geophysical
Research, Vol. 64, No. 4, April, pp. 469-475.

Scott, V. H. and Corey, A. T. (1961).  Pressure distribution during steady flow in
unsaturated sands.  SSSA Proceedings, Vol. 35, No. 4, July-August, pp. 270-
273.

Shaw, C. F. (1927).  The normal moisture capacity of soils.  Soil  Science, Vol. 23,
pp. 303-317.

Smith, R. E. (1972). The infiltration envelope: Results from a theoretical
infiltrometer.  Jour. of Hydrology, Vol. 117, pp. 1-21.

Su, Charles and Brooks, R. H. (1975).  Soil hydraulic properties from infiltration
tests, Watershed Management Proceedings, Irrig. and Drain. Div., ASCE,
Logan, Utah, August 11-13, pp. 516-542.

Sullivan, R. R. and Hertel, K. L. (1942). The permeability methods for
determining specific surface of fibers and powders. Advances in Colloid
Science, Vol. 1, Inter-science, New York, pp. 37-80.

Swartzendruber, D. (1962).  Non-Darcy flow behavior in liquid- saturated porous
media.  Journal of Geophysical Research, Vol. 67, No. 13, pp. 5205-5213.

Topp, G. C. (1969).  Soil-water hysteresis measured in a sandy loam and compared
with the hysteretic domain model. Proc. SSSA, Vol 33, No. 5, pp- 645-651.

Topp, G. C., Klute, A. and Peters, D. B. (1967). Comparison of water content-
pressure head data obtained by equilibrium, steady state and unsteady-state
methods.  SSSA Proc., Vol. 31, pp. 312-314.

van Genuchten, M. Th. (1980). A Closed-form equation for predicting the
hydraulic conductivity of unsaturated soils.  SSSA Journal, Vol. 44, pp. 892-
898.

Ward, J. C. (1964). Turbulent flow in porous media.  Proc. ASCE, Vol. 90, No.
HY5, pp. 1-31.

Welge, H. J. (1952).  A simplified method for computing oil recovery by gas or
water drive.  Trans. AIME, Vol. 195, pp. 91-98.

Whisler, F. D. and Bouwer, H. (1970).  Comparison of methods for calculating
vertical drainage and infiltration for soils.  J. Hydrology, Vol. 10, No. l, pp. 1-
19.

White, N. F., Duke, H. R., Sunada, D. K., and Corey, A. T. (1970).  Physics of
desaturation in porous materials. Journal of the Irrig. and Drain. Div., Proc.



References

245

ASCE, IR 2, pp. 165-191.

White, N. F., Sunada, D. K., Duke, H. R., and Corey, A. T. (1972).  Boundary
effects in desaturation of porous media. Soil Science, VoI. 113, No. 1, pp. 7-
12.

Wilkinson, G.E. and Klute, A. (1959). Some tests of the similar media concept of
capillary flow: II. Flow systems data. Proceedings, SSSA, Vol. 23, No. 6,
Nov.-Dec., pp. 434-437.

Wygal, R. J. (1963).  Construction of models that simulate oil reservoirs.  Society
of Petroleum Engineers Journal, December, pp. 281-286.

Wyllie, M. R. J. and Gardner, G. H. F. (1958).  The generalized Kozeny-Carman
equation II.  A novel approach to problems of fluid flow, World Oil Prod. Sect.
210-228.

Wyllie, M. R. J. and Spangler, M. B. (1952).  Application of electrical resistivity
measurements to problems of fluid flow in porous media.  Bull. Amer. Assoc.
Petrol. Geol., Vol. 36, No. 2, pp. 359-403.

Youngs, E. G. (1960).  The drainage of liquids from porous materials. J. of
Geophysical Research, Vol. 65, pp. 4025- 4030.

Youngs, E. G. and Peck, A. J. (1964).  Moisture profile development and air
compression during water uptake by bounded porous bodies: 1. Theoretical
introduction.  Soil Science, Vol. 98, pp. 280-294.

Zemansky, M. W. (1943).  Heat and Thermodynamics, Chapter III, Section 3.2,
second edition.  McGraw-Hill, New York, pp. 21-25.





247

SUBJECT INDEX

A
Acceleration of fluid ........................... 72

convective .................................... 72
local .............................................. 72

Adsorptive force ................................. 32

Air-entry pressure ............................... 40

Air permeameter ............................... 117

Air relative permeability ..................... 97
measurement of .......................... 117

Analytical functions .............................. 9

Apparent pressure ............................... 34

Average velocity ................................. 84

B
Barotropic case ................................... 78

Boltzman transformation .................. 162

Brooks method .................................... 46

Brooks-Corey functions............ 104, 108

Buckley-Leverett equation ............... 194
integration of .............................. 194

C
Calculation of relative

permeability ............................... 198
from linear displacement............ 198
method of Johnson et al. ............. 198

Capillarity ........................................... 12
equation of .................................... 17
defined.......................................... 13

Capillary barrier.................................. 45

Capillary effects on drainage ............ 181

Capillary pressure ............................... 13
as a function of saturation ............ 36
bubbling pressure ......................... 40
defined.......................................... 13
desaturation curves ....................... 38
displacement pressure................... 40
empirical representation ............... 47

entry pressure ............................... 40
equation of ................................... 17
factors affecting ........................... 14
hysteresis ...................................... 38
measurement of ............................ 43
static distribution .......................... 35
terms for ....................................... 14

Capillary-pressure cell .................. 45, 64

Capillary pressure-saturation
curves ........................................... 37
critical value................................. 39
desaturation .................................. 37
empirical representation ............... 47
hysteresis ...................................... 38
measurement ................................ 43

Centrifuge ..................................... 44, 65

Centrifugal force................................. 66
balance of forces .......................... 66

Characteristic parameters ................. 214
length.......................................... 214
time ............................................ 215
velocity....................................... 215

Clay ...................................................... 6
dispersion ....................................... 7
flocculation .................................... 7
swelling .......................................... 7
types ............................................... 6

Co-current flow ................................ 188

Combined potential ............................ 80

Comparison of scale factors for
two-phase flow........................... 224

Conductivity ....................................... 99
hydraulic ...................................... 99

Connate water ..................................... 41

Conservative force .............................. 77

Conservative surface stress ................ 29

Contact angle ...................................... 16

Continuity for flow of two
immiscible fluids ........................ 128

Continuous functions ............................ 9



Subject Index

248

Continuum ............................................ 8

Control volume ................................... 30

Convective acceleration...................... 72

Countercurrent flow .......................... 188

Critical piezometric gradient............. 134

Critical saturation................................ 39

Critical velocity................................. 134

Curvature of interface ......................... 18

D
Darcy's equation ................................. 99

Darcy unit ......................................... 101

Desaturation curves ............................ 38

Diffusion ........................................... 111
function ...................................... 111
generalized ................................. 186
soil-water.................................... 111

Displacement pressure ........................ 40

Displacement processes .................... 160
of petroleum fluids ..................... 191
linear........................................... 192

Distribution of capillary
pressure ........................................ 35
during steady downward

flow........................................ 139
during steady upward flow ......... 142
in layered media ......................... 144
static ............................................. 35

Distribution of fluids in static
systems ......................................... 56
in capillary-pressure cell .............. 64
in centrifuge ................................. 65
petroleum reservoir....................... 61
soil-water system.......................... 56

DNAPL ............................................. 134

Dolomite ............................................... 2
integranular..................................... 2
vugular ........................................... 2

Drainable porosity............................... 42

Drainage............................................ 176
approximate solution for ............ 181
capillary effects on ..................... 181

defined........................................ 176
linear .......................................... 176
physical models.......................... 180
two-dimensional ......................... 180
toward parallel drains ................. 180

Dupuit-Forchheimer
approximations........................... 181

E
Effect of tube-size distribution ........... 88
Effective drainable porosity ............... 42
Effective permeable height............... 152
Effective porosity ............................... 42
Effective saturation............................. 42
Ellipse equation ................................ 152

Empirical relationships for
permeability ............................... 108
as a function of capillary

pressure ................................. 108
Arbhabhirama and

Kridakorn .............................. 108
Brooks-Corey ............................. 108
van Genuchten...........................  108

Empirical relationships for
krw(S) ......................................... 104
Averjanov................................... 105
Childs and Collis-George........... 104
Corey.......................................... 105
van Genuchten............................ 105

Empirical representations of
Pc(S) ............................................. 47
Brooks-Corey ............................... 47
Laliberte ....................................... 48
Su-Brooks .................................... 48
van Genuchten.............................. 48
White et al. ................................... 48

Entry pressure ..................................... 40

Equation of fluid flux ......................... 99

Equation of fluid motion .................... 71

Equilibrium......................................... 27
chemical ....................................... 27
mechanical ................................... 27
thermal ......................................... 27



Subject Indexs

249

Euler number..................................... 219

Explicit and derived scale
factors ......................................... 215

F
Field capacity...................................... 42

laboratory ..................................... 43

Flow
co-current and counter

current.................................... 188
of water and air in soils .............. 161
potential ...................................... 123
in films ......................................... 82
in slits ........................................... 84
in straight conduits ....................... 86
in tubes ......................................... 85
steady.......................................... 127
toward parallel drains ................. 150
unsteady...................................... 159
viscous flow ................................. 81

Flow meter ........................................ 118
soap film ..................................... 118

Fluid ...................................................... 8
acceleration................................... 72
defined............................................ 8
element ......................................... 10
flux ............................................... 96
immiscible .................................... 11
particle.......................................... 11
motion........................................... 71
Newtonian viscous ....................... 74
phase............................................. 11
shear ............................................. 73
velocity ......................................... 71

Fluid phase.......................................... 11
nonwetting .................................... 12
wetting.......................................... 12

Fluids in porous media.......................... 8
immiscible .................................... 11
in petroleum reservoirs................. 61
in a centrifuge ............................... 65
on a capillary barrier .................... 64
nonwetting .................................... 12
wetting.......................................... 12

Fluid pressure ..................................... 29

apparent ........................................ 34
piezometric ................................... 34

Fluid shear .......................................... 73
intensity of ................................... 73

Flux..................................................... 96
equation of ................................... 99
generalized ................................. 100
nonwetting.................................. 109
wetting........................................ 104
total ............................................ 185
units ............................................ 101

Force on fluids .................................... 28
body.............................................. 28
driving .......................................... 28
gravity .......................................... 29
in a control volume ...................... 30
pressure ........................................ 29
resisting ........................................ 28
surface .......................................... 29

Force potential .................................... 76

Forchheimer equation ....................... 122

Fractional flow equation................... 205

Fractional flow function ................... 205
normalized.................................. 186

G
Gas slippage ....................................... 98

Generalized flux equation................. 100

Gibbs equation.................................... 20

Governing equations for flow of
two fluids.................................... 221
limitations of .............................. 221

Grain size .............................................. 6
distribution ..................................... 6

Gravitational potential ........................ 79

Green and Ampt equation................. 168

Hooghoudt equation ......................... 152

Horizontal linear imbibition with
nonwetting phase resistance....... 185

Horizontal linear imbibition
without nonwetting phase
resistance .................................... 161

Hydraulic conductivity ....................... 99



Subject Index

250

Hydraulic radius ................................. 87
as a function of saturation ............ 90
related to pore size........................ 89
weighted mean value of................ 90

Hydrous alumina silicate ...................... 6

Hysteresis ............................................ 38

I
Illite ....................................................... 6

Imbibition............................................ 39
curves ........................................... 38
horizontal linear with

nonwetting phase
resistance .................................... 185
horizontal linear without

nonwetting phase
resistance .................................... 161

Infiltration ......................................... 166
constant head source .................. 166
constant rate ............................... 173
defined........................................ 166
Green and Ampt equation

for .......................................... 168
with air compression .................. 172
without air resistance.................. 161

Immiscible fluids ................................ 11

Inspectional analysis ......................... 216

Interface .............................................. 11
contact angle................................. 16
curvature of................................... 18
forces on ....................................... 16
mean curvature ............................. 18

Interfacial energy ................................ 13

Interfacial force ................................... 13

Intergranular limestone ......................... 2

Irreducible saturation .......................... 41

“J” function ....................................... 226

Kaolinite ............................................... 6

Klinkenberg effect .............................. 97

Kozeny-Carman equation ................... 93
generalized ................................... 94

Laplace equation of capillarity ..... 17, 18

Layered media .................................. 144

Limestone ............................................. 2
intergranular ................................... 2
vugular ........................................... 2

Linear displacement.......................... 192
in petroleum reservoirs .............. 191
in soils ........................................ 161

Linear drainage ................................. 176

Liquid content..................................... 11

LNAPL ............................................. 135

Long column method .......... 43, 116, 136

M
Matric suction..................................... 13

Maximum field saturation .................. 59

Mean curvature of interface................ 18

Measurement of capillary
pressure as a
function of saturation ................... 43
Brooks method ............................. 46
centrifuge method .................. 44, 65
Long column method ................... 43
pressure cell method .................... 45
vapor pressure method ................. 44

Measurement of relative
permeability ............................... 113
continuous drainage method ...... 121
linear scaling method ................. 201
long and short column

method................................... 116
Richards method ........................ 114
steady-state methods .................. 113
unsteady state methods .............. 120
Welge technique......................... 194

Macroscopic versus microscopic
analysis....................................... 213

Minimum saturation ........................... 41

Mobility ............................................ 203
relative........................................ 204
relative reciprocal ...................... 203
total ............................................ 204

Montmorillonite .................................... 6

Monitoring soil water solution . 140, 141



Subject Indexs

251

Motion, equation of ............................ 76

N
NAPL................................................ 134

Navier-Stokes equation of fluid
motion........................................... 76
simplified ..................................... 76

Newton's law of motion ...................... 71

Newtonian viscous fluid ..................... 74

Non-aqueous polluting liquid ........... 135

Non-Darcy flow ................................ 121

Non-homogeneity ............................. 102

Nonwetting phase ............................... 12

Normal moisture capacity ................... 43

P
Permanent wilting point...................... 58

Permeability ........................................ 96
as a function of capillary

pressure .................................. 105
as a function of saturation .......... 103
during drainage........................... 103
effective ........................................ 97
empirical relationship for ........... 104
factors affecting ............................ 97
intrinsic......................................... 99
measurement of .......................... 113
ratios ........................................... 205
relative........................................ 103
wetting phase .............................. 103
units for ...................................... 101

Phase ................................................... 11
nonwetting .................................... 12
wetting.......................................... 12

Piezometric pressure ........................... 34

Piezometric head................................. 80

Poiseuille's equation............................ 86

Ponding ............................................. 173
time for ....................................... 174

Pore size................................................ 6
at a point ......................................... 6
average ........................................... 6

distribution of ........................... 7, 49
distribution index of ..................... 54
of a section ................................... 51
stability of ...................................... 7

Pore size distribution .......................... 49
factors affecting ........................... 55

Pore space ............................................. 2
characterization of.......................... 2
primary ........................................... 3
secondary ....................................... 3

Porosity ................................................. 3
approximate values of .................... 5
at a point ......................................... 3
average ........................................... 3
factors affecting ............................. 4
primary ........................................... 3
secondary ....................................... 3

Porous media ........................................ 1
consolidated ................................... 2
defined............................................ 1
granular .......................................... 2
restrictions on ................................. 1
rocks ............................................... 2
stability of ...................................... 7
types and occurrence ...................... 2
unconsolidated ............................... 2

Potential .............................................. 76
combined ...................................... 80
defined.......................................... 76
flow ............................................ 123
force ............................................. 76
gravitational ................................. 79
piezometric ................................... 80
pressure ........................................ 77
total .............................................. 80

Porous rocks ......................................... 2

Practical units ................................... 101

Prediction of reservoir behavior
from permeability ratios ............. 205

Pressure............................................... 29
air entry ........................................ 40
apparent ........................................ 34
at a point ....................................... 29
capillary........................................ 13
defined.......................................... 13



Subject Index

252

piezometric ................................... 80
potential ........................................ 76
static distribution .......................... 35

Pressure cell ........................................ 45

Pressure membrane ............................. 45

Pressure plate ...................................... 45

Properties of porous media and
immiscible fluids ............................ 1

Prototype ........................................... 211

R
Reference point ..................................... 3

Reference volume ................................. 3

Relative injectivity............................ 200

Relative mobility .............................. 204

Relative permeability........................ 103
air relative permeability ............. 117
defined........................................ 103
measurement of .......................... 113

Relative reciprocal mobility.............. 204

Relief drains ...................................... 152

Reservoir ............................................. 61
behavior ...................................... 205
distribution of fluids in ................. 62
petroleum ..................................... 61

Residual saturation ............................. 41
defined.................................... 41, 47
determined .................................... 47

Restored State ................................... 192

Richards equation ............................. 111

S
Sample holder ................................... 119

pressurized sleeve....................... 119

Saturation ............................................ 11
critical ........................................... 39
Dependence on capillary

pressure .................................... 36
effective ........................................ 42

Scale factors ...................................... 215

comparison of............................. 224
explicit and derived .................... 215

Scaling the governing equations....... 222
Scaled variables ................................ 214
Seepage velocity ................................. 96
Selection of variables........................ 216
Shape factor ........................................ 86
Shear ................................................... 73

as a tensor..................................... 73
intensity of ................................... 73
force of ......................................... 73
resultant of ................................... 73

Short column method................ 116, 139

Similarity .......................................... 211
criteria of ............................ 212, 223
defined........................................ 212
for models .................................. 211
for non geometric variables........ 214
for a single fluid ......................... 217
for two fluids .............................. 219
for special cases ......................... 227
geometric.................................... 212
requirements for ................. 212, 219
tests for....................................... 230

Simultaneous flow of two
immiscible fluids ........................ 128

Soil water diffusion .......................... 111
Soil water system................................ 56
Soil water tension ............................... 14
Specific surface .................................... 5

defined............................................ 5
factors affecting ............................. 6
measurement of .............................. 5
typical values of ............................. 6

Specific yield ...................................... 59

Spreading ............................................ 22
speed of ........................................ 22

Square-root-of-time law ................... 163

Static fluid systems............................. 35
pseudo static................................. 56

Steady flow....................................... 127
continuity for.............................. 127
downward through

petroleum reservoir................ 130



Subject Indexs

253

downward through a
homogeneous soil profile ...... 136

downward through stratified
material .................................. 144

equation for two fluids ............... 129
of nonwetting fluid ..................... 148
of two phases .............................. 129
of water through aquifers

containing a NAPL ................ 134
of wetting fluid ........................... 129
to a high capillary pressure

sink......................................... 139
toward parallel drains ................. 150
upward flow from a water

table ....................................... 142

Structure................................................ 2

Suction ................................................ 13

Surface stress ...................................... 29
conservative surface stress ........... 29

Surface tension.................................... 13
factors affecting ............................ 19
values of ....................................... 21

Surfactants........................................... 19
types of ......................................... 20

T
Tension................................................ 13
Tests of similarity criteria ................. 230
Time of ponding ............................... 174
Tortuosity ............................................ 90

as a function of saturation ............ 92
defined.......................................... 92

Total flux .......................................... 185

Total mobility ................................... 204

Total potential ..................................... 80

Tube-size distribution ......................... 88
effect of ........................................ 88

U
Units in flux equation ....................... 101

practical ...................................... 101
system of .................................... 101

Unsteady flow of two
immiscible fluids ........................ 159

Upward flow from water table ......... 142
equation for ................................ 142

V

Velocity .............................................. 71
average ......................................... 84
seepage ......................................... 96

Viscous flow ....................................... 81

Volume flux........................................ 96

Volumetric water content ................... 12

Vugular limestone ................................ 2

W

Water characteristic curves ................ 38

Water content...................................... 12

Water retention curves........................ 38

Welge integration of Buckley
Leverett equation........................ 194

Welge method for determining
permeability ratios ..................... 194

Wettability .......................................... 21

oil wet........................................... 22

spreading ...................................... 22

water wet ...................................... 22

Wetting curves .................................... 38

Wetting phase ..................................... 12






