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Preface

useful to engineers for making quantitative evaluations of ground water flow. Because, in

irrigated country at any rate, transients will be the rule, the main emphasis will be on transient
phenomena. The Dupuit-Forchheimer idealization will be the basis for most of these developments.
This idealization, which is described in the text, leads to partial differential equations which are
nonlinear in form. To be freed from the difficulties imposed by this nonlinearity "the basic
differential equations will generally be linearized by neglecting the changes of saturated thickness
which accompany transient flow conditions. This procedure will produce formulas that are, to some
degree, approximations. However, if these are used skillfully with aquifer properties obtained from
field tests and with awareness of their limitations they will yield results as good as can generally be
obtained when application has to be made to aquifers where irregularities and nonuniformity are the
rule rather than the exception. When this simplification can be used, and this will include the
majority of field cases, the computations are freed of the burdensome details which appear when
more elaborate treatments are made. It can be pointed out, in addition, that if the criticisms leveled at
these useful approximations were to be taken seriously we should find ourselves obligated to discard
the great bulk of engineering formulas used so successfully over the past 200 years since a close
scrutiny of their bases will reveal short-comings as bad or worse than those outlined above.
Sometimes conditions will require that a closer evaluation be obtained than can be realized by the
formulas derived from the linearized equations. For such cases second approximations or formulas
derived by special methods will be supplied.

Even though the task of developing working formulas will be adhered to, parallel or alternative
procedures' will be described when it appears that useful results will be obtained.

While the treatment of steady state cases will, in general, be confined to those which represent
the terminal state to which a transient state being considered converges, some attention will be given
to historical developments and to the steady state flow patterns which were obtained by the early
workers. It would be impossible to include all of the developments obtained by previous workers in
a text of the size of this one but, where material must be omitted, sufficient references will be
included to indicate to the user of this text where this other material can be found.

The chapter is made the basis for organization of the material presented herein. A thumb index
is provided so that the chapters may be readily located. Figure, formula and table numbers are
identified by a chapter number followed by a sequence number. In this fashion Figure 3-2 is the
second figure in Chapter 3.

The tables 1 to 15 inclusive have been machine computed and the reproduction has been made
directly from the machine readout sheets to insure accuracy. Checks have been made, where needed,
to show that the machine program was working as intended.

Data are seldom available which would permit a determination of a probable error and the
number of places which would be appropriate for expressing the final result of a computation of
ground water movement. In the material presented, the number of places retained has often been
chosen to make the development more easily followed or to clarify comparisons. In the final results
figures have been retained on the basis of judgment.

This book has been written to present developments, formulas and methods which will be

Editor’s Note to the Third Printing

ransient Ground Water Hydraulics makes quantitative evaluations of ground water flow in

regards to irrigation. This book has been cited and referenced in numerous papers, journals, and

books continuously for over 30 years. It is still an important addition to any library that is concerned

with quantitative ground water flow. WRP is pleased to re-release this book as part of our Classic
Resource Edition.

Branka McLaughlin
Publisher/Editor
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Chap. 1

Chapter 1

Development of ground water use

The knowledge that water could be obtained from the earth and that the
water so obtained was generally cool, clear and sweet seems to be very
ancient. Wells are mentioned frequently in Genesis indicating that the pos-
sibility of obtaining water from the ground was well understood perhaps 3500
years ago. Before modern times, wells appear to have been commonly used to
supply domestic and stock water since these important uses could be sup-
plied by muscle power which was then the only means available for raising
water from them. In early day America there were many dug wells from which
water was lifted by means of a bucket and windlass arrangement. These were
followed by hand operated pumps. Windmills were later developed which
could operate these pumps by harnessing the force of the winds. Many of
these were installed not only at farmsteads but in remote locations to
provide water for stock. All of these developments had for their purpose
the providing of water for the important domestic and stock water uses.
Development of gasoline engines gave a more reliable source of power for
farm pumps and eliminated the recurring arduous task of pumping water by
hand to fill stock tanks during windless periods. The old 'Hit and Miss'"
farm engine became a common sight on farms and continued in use for many
years.

Development of more effective well drilling methods, the use of casings,
the extension of power lines through rural areas and the development of
improved types of pumps opened up the possibility of pumping for irrigation
and other heavy uses such as for municipal water supplies.

These developments went almost unnoticed for some time and then problems

began to arise. In the river valleys of the arid west where the practice
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2 Chap. 1

of diverting stream flows for irrigation had long been established it came
to be realized that pumps could deplete the flow of the stream to the detri-
ment of the surface diverters operations.

Where replenishment of the ground water reservoir comes from infiltra-
tion from precipitation, falling water tables were generally observed as
pumping for irrigation developed. Whereas something like one acre foot per
year would supply the domestic and stock water needs for a farmstead and the
infiltration supply could sustain this demand forever, an economically
viable irrigation well would need to lift this much, or more, in a day and
the possibility of depletion of the resource came to be recognized. If
pump irrigation develops in an area and replenishment is from precipitation
a sinking of the water table is to be expected. If ithe comsumptive use is
held within the limits imposed by the supply then the changing water table
levels represent only a readjustment toward a new stable configuration but
if the supply is overencumbered they have a much more serious portent.

Where municipal supplies come from ground water, the increasing demands
caused by population increases can threaten a failure of the supply and
cause problems of the most serious kind.

To add to the difficulties outlined above a quantitative assessment of
ground water flows cannot be made by the simple procedures which suffice
for surface water. An operations study for an irrigation system utilizing
surface supplies will, for example, make few mathematical demands beyond
the ability to add and subtract. To deal with ground water flows in a
similar quantitative way will require much more specialized mathematical
techniques. Here the hydraulic and geometric properties of the aquifer
must be accounted for and partial differential equations of the second

order may need to be solved. Fortunately, the results of these
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3 Chap. 1

operations can generally be reduced to graphical or tabular form

so that the user does not need to deal with the basic mathematical
difficulties. It is the purpose of this text to provide such graphs

and tables so that the quantitative assessment of ground water flows

can be facilitated. It is hoped that these developments will contribute
to solutions of some of the serious problems which growing uses of

ground water have brought with them.
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4 Chap. 1

Occurrence of ground water

Rain and, in some areas, melting snow and ice has supplied over
geologic times, percolating waters to build up a body of underground water
which exists almost everywhere. Even desert areas receive occasional rains
which will contribute deep percolating water to a ground water body. In the
more well watered areas of the globe the ground water mound between stream
valleys is never completely drained away but, instead, sustains the base
flow of the streams so that they continue to flow even though the rains
may cease for considerable periods of time.

For those interested in recovering ground water for useful purposes
the principal question is not generally the presence of ground water but
the presence of sufficient porosity in the formation to sustain a useful
flow. For the small quantities of water needed to supply domestic and
stock water uses there are vast areas where a well of this capacity can be
obtained almost anywhere.

Anything like an exhaustive treatment of productive water bearing
formations would be beyond the scope of this work but it will be useful to
identify some of the important aquifers of the United States so that some
knowledge is acquired concerning the types of formations which may contain
water in recoverable amounts (McGuimness).

Coastal sands often yield important supplies of fresh water in spite
of being in contact with sea water. The outward flowing fresh water,
often replenished from an ample rainfall, holds the saline ocean waters
in check (Glover, 1959). The Ghyben-Herzberg rule applies in such cases.
This rule holds that for every foot the water table is above sea level
there will be 40 feet of fresh water underneath. Extensive aquifers of

this type occur along the Atlantic and Gulf coasts.
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5 Chap. 1

The Biscayne limestone extends inland from the east coast of Florida.
Although it is strong enough to yield drill cores it is nevertheless
extremely permeable and is an important source for water supply in the
Miami area. Other limestones also yield water in important amounts.

The Dakota sandstone is an extensive and important water bearing
formation composed, generally, of a fine sand loosely cemented by iron
carbonate. This formation provides an example of a sandstone aquifer.

The Snake Plain aquifer is composed of a series of lava flows. The lavas
are extensively cracked presumably due to cooling shrinkage. Permeabilities
are surprisingly high. It is an important ground water source in southern
and eastern Idaho. The water carrying capabilities of this aquifer are
dramatically demonstrated in the "Thousand Springs" area. Here the ground
water issues from a cliff in such volumes as to create waterfalls.

The Rathdrum Prairie area in Washington is underlain with an aquifer
of exceptional permeability composed of glacial drift.

Many productive aquifers are to be found in alluvial deposits. Perhaps
the most extensive of these is the Ogallala formation which extends across
parts of Nebraska, Wyoming, Colorado, Kansas, New Mexico and Texas. It is
an important source of irrigation water. Alluvial sediments are also widely
distributed in river valleys.

Similar to the alluvial deposits are deposits of wind blown sands.

Some of these, as the Navajo sandstone in the Utah, Arizona area have be-
come cemented but in other cases they are represented by the sand dune
areas in some of the western states. These sand dune areas possess except-
ional infiltration capacities. In some areas infiltration rates are so
great that no water erosion forms are to be found since even the heaviest

rains produce no runoff. Some of the Nebraska rivers originating in the
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6 Chap. 1

Sand Hill area are notable for the uniformity of their flows. This is
explainable on the basis that almost none of their flow comes from surface
runoff while the bulk of it is base flow coming from ground water.
Crystalline rocks are generally unproductive not because water is absent
but largely because permeabilities are so low that no useful flow to a well
can be maintained. If the rock is fractured, however, as in a fault zone,
then productive wells may sometimes be obtained even in formations of this
type. Wells yielding around one gallon per minute can often be obtained

in rock if a deep hole is drilled and the rock is fractured by pressures.
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7 Chap. 2

Chapter 2

Basic differential equations

The differential equations applicable to the flow of ground water are
expressions, in mathematical form, of the budgetary requirement that water
volumes must be conserved.

For an element of volume dx dy dz below the water table, for example,
there can be no accumulation of water volume and it is then necessary to
express the requirement that the net flow of water into the element must be

and remain zero.

Y
Zdu”*f

T z
oz
4

Fig. 2-1 Volume element.

Flows are computed on the basis of Darcy's law which can be expressed in

the form

where q represents the flow through the area A in an aquifer of perme-

ability K wunder the influence of the gradient i. If hl represents

the departure of the pressure from a hydrostatic state the flow through
oh
the area dy dz in the direction of x will be -K dy dz §;l and a

similar expression will apply to the flows in the y and 2z directions.
The minus sign is needed because the flow is considered positive in the

oh
direction of positive x and if 3x1 is positive the pressure gradient

is such as to cause flow in the direction of negative x. The accumulation
oh

of flow into the glement due to flows in the x direction 1is %;—(—K dy dz 5319 dx
o¢h

or -K dx dy dz —-7}. The condition that there be no accumulation of flow in
ox
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8 Chap. 2

the element then takes the form

2°h, 2%, 2%h,
- K dx dy dz - K dx dy dz - K dx dy dz =0
2 2 2
ox dy 9z
or, simply,
o’h; o, %,
5 + > + 5 =0 : (2-1)
ax ay 9z

This is known as the Laplace formulation, not because Laplace considered
the movement of ground water but because the differential equation obtained
is the one which bears his name. Many steady-state solutions have been
obtained for it but its use for transient cases has been limited due to the
difficulty of dealing with a moving boundary. The formulation is basically
sound, however, for both transient and steady state ground water flows. If
the moving boundary difficulties could be overcome it would afford a means
for overcoming the difficulties caused by nonlinearities which afflict some
of the other formulations. Some progress has been made in this direction
and more may be expected.

A mathematically advantageous formulation was proposed by Dupuit (1863).
He considered an element penetrating the full depth of the aquifer, as shown

in the figure below, for flow in the direction of x only

T Wotker oble

~ .

.
&

= | .. . Permeability K.© - -
Y i

Fig. 2-2 Cross section.
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Chap. 2

Here the symbol h2 is used to represent the saturated depth above a level
impermeable lower boundary. The flow f through the depth h2 for a unit

width is, if the surface gradient can be considered effective throughout the

entire saturated depth, f = K h 332—. The accumulation of flow in the element
during the time dt is -f-dt or K — 3 (h zhz) dx dt. The condition that
the accumulation of flow in the element must be consistent with the rate of

rise of the water table is

8h 8h2

( 2 5% ) dx dt = V — T dx dt

K & 8

where V represents the effective voids ratio appropriate for the aquifer.

After simplification the relation becomes:

3h oh
3 2, 2
Kax (hy 5500 = Vg

It will be noted at once that this is a differential equation of nonlinear
form. If a steady state exists the right hand member will be zero and the

formulation will then assume the form:

Even though this is nonlinear, solutions are readily obtained. The early
workers in the ground water field generally limited their researches to
*

steady state cases.

Linearization by neglect of small terms

If the transient case be again considered the known intractable nature

of nonlinear differential equations will make it desirable to find some way

*
Boussinesq, 1904 treated the case of ground water flow to streams on a
transient basis.

WRP Classic Resource Edition



10
Chap. 2

of linearizing them. The simplest way of doing this is to consider small

departures h from an initial saturated depth, as shown in the figure below.

ﬁround Surface 7

rar RN S . - v

Woter toble 1 . ' S .3

~

N ;\,‘:,' il '.'1,; . T R ] .
s e or - d Perrﬂeabllﬁq K.

Q;—————a— h(— chg

- < -

(

~

/64/7647964796/764/?6479447764/966/9647C/36/?447?4/?4/9f/§7
e Impermeab\e

Fig. 2-3 Parallel flow.
By following the reasoning previously used the differential equation for the

transient case will take the form:

oh

? oh _

Linearization can now be obtained, at the expense of approximation, by
neglecting h in the term (d + h). This means that the use of any solu-
tions obtained must be restricted to cases where, in fact, h is small compared
to d. Experience indicates that this will be a permissible simplificatica in
the great majority of field applications. If the simplification is acceptable

the differential equation can be put into the form:

2
9"h _ dh
L T3 (2-2)
ox :
Where o = 5% is the aquifer constant. It is a factor which must be deter-

mined by test. Methods of evaluation will be described later in the text.
When this simplification is used an important tactical advantage is secured.
The differential equation becomes of the type which has been so extensively
studied in relation to the conduction of heat in solids. Not only is the

differential equation of the same form but the boundary conditions are also
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analogous. This means that the wealth of material found in this older
discipline becomes immediately available for application in the new field.
It will be found that this parallelism extends to the important radially
symmetrical cases also. It will appear later that the formulas obtained
with this linearization are of simpler form and better adapted to engineer-
ing applications than those obtained by any other approach. The many ad-
vantages offered by this linearization will support a decision to adopt it
as the source of the basic system of formulas presented in this text. In
the rare cases, where their limitations hinder their use, other more appropri-
ate solutions will be presented to take their place. When this happens
complexities may be expected to appear. In some cases these will take the
form of new parameters which must be evaluated and applied. In all cases

water quantities will be accounted for without approximation.

The linearization of Werner

In the differential equation
oh,

is introduced (Werner 1957).

The differential equation is reduced by this means to the form:

K vu_ 2 su

o u
Vv ax2 t

Linearization is now accomplished by replacing vu = h, by some carefully

chosen constant representative value H.

WRP Classic Resource Edition



12

If we now set

a =

KH
W \'4

The differential equation becomes:

[» ﬁ-:
2

W ox

3u
at

Radial symmetry - Laplace type of formulation

Chap. 2

(2-3)

Operation of a well can produce a flow of ground water with radial

symmetry as shown in the figure below

_ WaTc':_r" fab\e' q -fw Q

Ground surface )

'r. O

dr'

R

Fermeablll g
Vonols mho

Impermeable

Fig. 2-4 Radial flow.
The flow of ground water into a submerged ring shaped element of volume

of the aquifer of cross section dr dz

9 3h ] oh
az(anKdrsz-)dz + 5;{aerdz§;9dr

and radius r will be

0

In this expression h represents the departure of the pressure from hydro-

static. The continuity condition which prohibits the accumulation of water

in the element dictates the requirement that the sum of these two flows

must be zero. After the indicated differentiations are performed and the

expression is simplified by dividing out common terms it takes the form:

5°h 1 3h . 3°h
—2—+-1:--§+—2=0
or 9z

(2-4)
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13 Chap. 2

This is the Laplace type of formulation where radial symmetry is present.

Radial symmetry - Dupuit-Forchheimer formulation

The flow F through the cylindrical surface of radius r and height

(D - s) will be, under the Dupuit-Forchheimer idealization:
F = -2mrK(D-s) 3s
or

The accumulation of flow in the annulus of dr thickness will be:

oF _ ] 9s
3;-dr = -27K ar[r(D-s) s;idr

If, to avoid nonlinearity, s 1is neglected as being small compared to D

then approximately:

3F ,  _ d ds
if- dr = -27KD a—r- (1‘ '5?) dr

The condition of continuity is then expressible in the form:

oF . 3s
T dr = -27rVdr T

or after substitution and rearrangement with:

a:EB
\')
it becomes
] 9s as
O —) = —
3 T30 =Tt
or
azs 1 3s 9s
ol 2 4 =82y - 93 -
(arz * T ar) it (2-5)

This is the linearized differential equation obtained, for radial symmetry

conditions, when s is neglected as being small compared to D.

WRP Classic Resource Edition



14 Chap. 2
A similar procedure-is described in Chapter XTII of the text by Polubarinova-
Kochina.
Comparisons of results obtained by these alternative methods will be

found later in the text.
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15 Chap. 2

Chapter 2.

Problems
(2-1) For steady state conditions (3s/dt) = 0 and formula 2-5 takes the
form:

dzs
dr2

n
(=]

or (r dr) =0

A

+ L ds
T

derive from this a formula for the draw down s, as a function of r, due<to
pumping of a well, of radius a, at the rate Q when the water table is
maintained at the level D when r =b. Consider s as negligibl& small
as compared to D.

Answer:

s anD 1°g (—9

(2-2) Compare this result with that obtained by Dupuit (Rouse and Ince, 1963)
and comment on differences or similarities. | 7

(2-3) In the relation F = -2nkr(D-s)3>

H

presented in the account of the Dupuit-Forchheimer formulation set F = Q

and h2 = (D-s) to obtain

dh2

Q = ZTTKth

Treat this as a nonlinear differential equation and derive a formula for
the variation of saturated depth hz with r when the water table is
maintained at the depth h2 =D at r =b,.

Answer:

2 2_Q
D™~ h2 = K log (—9
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16 Chap. 2

(2-4) Compare this result with the second form obtained by Dupuit (Rouse

and Ince, 1963) and comment on differences or similarities.

(2-5) By using an idealization of the Dupuit-Forchheimer type, as shown in
figure 2-3, derive an expression for the steady state form of the water table
where a uniform infiltration rate 1 is applied to a strip drained by parallel

drains spaced a distance L apart. Note that the continuity condition will

require that, if h is considered negligibly small compared to d.

dh - L
Kd‘d—x-= 1(7-X)
Answer:
'2 . 02
_ 1L 1 L 2 _ L _ 1L
h=g@-2@ G- At x=3 b =33

(2-6) With the conditions shown on figure 2-2 and with £ = i(3 - %)

express the continuity condition and solve the resulting nonlinear dif-
ferential equation to obtain the variation of h2 with respect to x, if

h,=d when x =0 and when x = L.

2
Answer:
2
i B G
2 2 2K L
At x = %—
er2
L
(h, -d) =4d|p + 21— -1
2 c 4Kd2

Approximately, at x = L/2:

| 1.2 o2
-d) = if
(h-d)  *= agx 1

is small compared to unity.
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17 Chap. 2

(2-7) Compare the value obtained from (2-5) for (h+d) with the value
obtained from (2r6) for h2 at the point x = L/2, which is the point
midway between drains. (Suggestion: Develop the radical into a series

by use of the binomial theorem on the basis that ({L2/4Kd2) is small

compared to unity).

Answer:

To a first approximation the results of (2-5) and (2-6) agree.
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18 Chap. 3

Chapter 3

Well drawing water at the constant rate Q from an aquifer with a free
water table

To treat this case it will be sufficient to solve the linearized
differential equation:

1 9s 9s

325
o (—-— + _) = ——
arz T or ot

Subject to the initial and boundary conditions

s =0 when t=0 for r>0

s
- 27wrKD T Q as r->90

The solution, so obtained, will serve as an effective approximation so long
as s 1is small compared to D .
The Boltzman variable, used in the form:

T
4at
may be applied to obtain the desired solution. With:

3s _8s 1 9s _ _3s _ 2ar
ar _ oz Vat ot | 9z (4at)3/2
825 - 325 1
arz 822 4at

Substitution and simplification will produce the ordinary differential

equation

2
d's 1 ds _
d—2+(—z-+22)—d—z—0.
z
Let p = %% . Then the equation may be reduced to one of thefirst order.

d 1
E% + ( E—+ 2z) p = 0.

An integrating factor is:

1 2 2
eI(E'+ 2z)dz _ Jlogz +z" |2
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19 Chap. 3

Then a solution is:

z2 = C
pze
And _22
QE - Ce
dz z

1
o
=
=
o
=
ct

n
(=]

By integration, if s

7]

I
(@]
—

2]

The flow toward the well is:

as - _rf.
F = -ZTTKDI‘—a? = + 2nKDCe 4ot
Q
If F>Q as r~»0 C ~» (ZnKD)

Then, finally, the solution sought is; with the variable of integration

changed to u to correspond to the usage of Table 1,

2
_ _Q S _
s = -2_11'-1_(_])—( f —_— (3 1)

o/ /ASE)

An example to illustrate the use of this formula can be made to serve

two purposes. A computation of drawdowns produced by pumping a well can
first be made. Then, by considering the computed drawdowns to be observed
values, the process of determining aquifer properties from pump test data
can be presented. An advantage is conferred by going about the presenta-
tion in this way because we will already know what the outcome should be
and we will thus be in position to evaluate the effectiveness of the method.

The following conditions will be assumed to prevail:

Flow of well Q 750 gallons per minute

Permeability K

0.00384 ft/sec D - 66.6 feet

0.2557 ft’/sec V = 0.171

%?- = 1.50 ftz/sec

Transmissibility KD

Aquifer constant o
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20 Chap. 3

In consistent units of feet and seconds:

Q

Computations of the drawdowns s for various distances and times are made

1}

1.6710 £t3/sec (Q/27KD) = 1.0401

as shown below. Values of s/(Q/2nKD) are obtained from Table 1.

r (feet)

Time 10 50 100 S00 1000
1 day 86400 sec
r//4=<t 0.01389 0.06945 0.1389 0.6935 1.3890
s/ (Q/27KD) 3.988 2.381 1.695 0.2909 0.02697
s (feet) 4.148 2.476 1.763 0.302 0.028
1 week 604800 sec
r//4=t 0.005250 0.02625 0.05250 0.2625 0.5250
s/Q/2nKD) 4.9609 3.3518 2.6597 1.0828 0.4846
s (feet) 5.160 3.486 2.766 1.126 0.504
1 month 2628000 sec
r//d=t 0.002518 0.01259 0.02518 0.1259 .2518
s/ (Q/2wKD) 5.6957 4.0871 3.3935 1.7916 1.1217
s (feet) 5.924 4,251 3.530 1.863 1.167
4 months 10512000 sec
r/ =t 0.001259 0.006296 0.01259 0.06296 0.1259
s/ (Q/27KD) 6.3888 4.7793 4.0871 2.4786 1.7916
s (feet) 6.645 4.971 4.251 2.578 1.863

Attention may now be turned to the problem of determining aquifer
properties from field test data. The computed drawdowns from the above
tabulation may now be construed as data obtained from observation wells
from which aquifer data are to be derived. The first step is to prepare a
plot such as is shown on figure 3-1. To be suitable, the grid must be
logarithmic both ways. Such a chart is plotted from data obtained from
Table 1.

The test data are plotted on a similar sheet with the observed draw-
downs s as ordinates and the quantity (r//??) as abscissa. The fact
that use of the Boltzman variable succeeds in converting the partial dif-
ferential equation 2-5 to an ordinary differential equation will insure

that all of the plotted points will fall on a single line irrespective of
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22 Chap. 3

radius and time so long-as these two variables occur in the form (r//??) .
Such a plot is shown in figure 3-2.

The sheet of figure 3-1 is now placed over the plot of figure 3-2
and the two are adjusted, while keeping the axes parallel, until the ob-
served points of figure 3-2 coincide everywhere with the curve of figure 3-1.
The position of the cross, at the point 1.0 - 1.0 of figure 3-1 is now
marked on figure 3-2.

It may have been noted that, while the parameters of figure 3-1 are
pure numbers, the parameters of figure 3-2 are not. Since both scales are
logarithmic a shift will represent a multiplication and the missing units
can appear in the factor represented by the shift. The following relations

are now available:

s
—_—— = .00 = .
(Q/27KD) 1 [ 1.02
I - 1.00 X = 2.40 231(—5 = 1.04
Y4at /t i
From the first of these:
1.02 _ _ Q(0.981) _ (1.671)(0.981) _ 2
= 0.981 KD = (1.02) 21 = 409 = 0.2588 ft"/sec.

GrxD)

From the second pair of values, by substitution:

2.40
V4o,
The values obtained, 0.2558 and 1.499 should be, as is known, 0.256 and 1.50,

= 0.980 o 1.499 ftz/sec

respectively. The errors are less than one percent. The effective voids
ratio is:

KD _ 0.2558 _
V= & T = 0n

Q
—

This figure corresponds to V = 0.171 as used in the original computation.
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24 Chap. 3

Some justification for using the point 1.0 - 1.0 of figure 3-1 as a
match point needs to be made. The logic of the procedure would be more
readily understood if we used a selected one of the observsd points of
figure 3-2 as the basis of the computation. If the validity of such a pro-
cedure be granted, then it may be seen that so long as the observed points
of figure 3-2 are adjusted to agree with the curve of figure 3-1, the
match point can be shifted to the convenient position 1.0 - 1.0 because
the shift represents multiplication by the same factor on both charts. In
subsequent work this factor will divide out.

Some scatter is to be expected in a set of points representing field
observations because of aquifer irregularities. The presence of imperme-
able boundaries or of streams where the water level is maintained will also
cause irregularities. The "Theory of Aquifer Tests" as treated in U.S.G.S.
Water Supply Paper 1536-E of 1962, will supply additional details.

The case where the drawdown s is not everywhere small compared to
the initial saturated depth D has been treated by Glover and Bittinger.
They obtain a second approximation, based upon Dupuit-Forchheimer concepts,
by accounting, approximately, for the restriction of the area available for

flow of ground water as a result of drawdown. The relationship obtained is:

° 2

-u
2NN N ETR P e du -
Q =3 (1 1-20 [ " ) (3-2)
(ZHKD) T
V4ot
Where:
g = J—Z (3-3)
27KD

Table 2 has been prepared to facilitate the use of this relationship. An
example of its application will be given later in the section on the effect

of pumping over an area.
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A development of much interest is that of N. S. Boulton who attacks
the problem, of estimating drawdowns due to pumping a well, by utilizing
the Laplace type of formulation as a basis for deriving formulas.

Water table maintained at r = b.

Constant pumping rate Q .

For the ultimate steady state, the flow everywhere must be Q , then,

ds
-2nwrKD ar Q
or
ds _ Q1
dr 21KD r

By integration, if s =0 when r =b,

s 27wKD 1°ge(r)
To meet the initial condition that s =0 for t=0 for 0 <r <b use

a Fourier-Bessel series of the type
n=o (Bn ) %ot
s, = y AnJo(Bnr)e 12
n=1
Which is a solution of equation 2-5.

The A.rl values are to be obtained from the relation

> g b b
£ 50k 108,G) J (B x) rdr = A g I, (B.r) T dr .
or b
f ZﬂKD log (—J J (B r) r dr
An - b 2
[ 3 °@.1) radr
o 'n
0
Let
dw w
w=grT dr = — T = —
n B, Bn
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Then:
b B.b 8 22
i Joz(Snr) rdr=—ts [0 2w) waw = 2D (9,2 + 3 215
0 Bn 0 Bn 2 0
2 526y + 3 2]
T2 1 *"n o “'n
Ib—il—-log (PJ J(B.r) rdr = —il—-fblog (90 J (Br) rdr
0 27KD e'r’ o n 27KD 0 e'r’” o' n '
By parts, let:
u log (EJ dv, = r J (B r) dr
1 e'r 1 o n
du =_d_r V:fﬂlﬁ)
1 T 1 B

n

Then the last of these integrals is to be evaluated in the following way.

Note that the first term vanishes at both limits.

b rJ. (B_r)
_Q b. . _Q 1''n b.
27KD g log (D J,(B1) rdr = 505 B log, ()
. Q rJl(Bnr) dr b
27KD Bnr
-J (B.r)qDb 0
- _Q o' n =-Q 1 3
2mKD 8 2 ] ~ 2wKD 8 2 [1 Jo(Bnb)]
n 0 n
And
. Q 2[1 - J (8 b)]
n 2wKD

2.2 2
(8,2 [3,°(B,p) *J,°(8 )]

Since the boundary conditions will require that Jo(Bnb) = 0 this expression

reduces to:

=9 2
A= (3-4)
n  2mKD 2.2
(8,0)"J," (8 b)
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Then the final form of the solution is:

v 2 ot
-(B_b) " (—-
n=e 2J (B r)e ‘'n 2
S = 27KD [IOge(%) -1 —=* 2.2 2
n=1 '(Bnb) J1 (Bnb)

(3-5)

This function may be evaluated by use of Table 6.
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Impermeable outer boundary present

The developments described at the beginning of this chapter apply where
the outer boundary of the aquifer, or reservoir if the flow is of oil, is so
remote that the disturbance created by the well has not had time to reach the
outer boundary. All real aquifers are of finite extent, however, and if the
removal of water or oil continues long enough the effect of the outer boundary
must become apparent. If the actual case can be idealized as being circular,
of outer radius b , with a well at the center in the form of a line sink

flowing at the rate Q , then the required solution of the differential

equation;
2
a, (L 4 _.EX) = 9y
1 T dr ot
or
is;
> a_t
2,71
2 2a.t  n=w 2J (8.1)e Fp?) )
y b T 3 1 o' n b ]
R e e A R (8.b)%3 %(8.b)
(i) i n Yo Un
(3-6)
alt
Table 7 contains values of é for values of 0—§ﬂ . The postulates
=) b
27KD

used here are the same as for the flowing artesian well development. It is
assumed that the fluid occupies interstices in a porous bed sandwiched be-
tween impermeable members and that a pressure is originally present. Under

the original conditions the assumption is that a part of the weight of the
overburden is carried by this fluid pressure and that when this pressure is
relieved by operation of a well the load that it originally carried is shifted
to the grain structure which is compressed as a result. The quantity V1 then
represents the quantity of fluid squeezed out of the interstices of a column
of the permeable bed having a unit horizontal area and a height D when the
pressure on the column is increased by the pressure equivalent to that

exerted by a one foot depth of water.
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Example

A case of oil flow will be considered. Bottom hole 0il pressures will
be expressed in equivalent feet of water in conformity with the usages adopted
herein. Laboratory determinations of permeability will be expressed in terms
of the permeability for water and the permeabilities for other fluids ob-
tained by applying a ratio of viscosities. Then the permeability for oil

will be

In this manner the units required will be reduced to two; a length, which
will be expressed in feet and a time unit which will be expressed in days.
In the first part of the example pressure drawdowns will be computed
for a set of assumed well test conditions and in the second part the method
of estimating the reservoir properties from the test data will be shown.
As a basis for the computations assume that a = 7.5 feet , b = 750 feet ,
D = 11.0 feet , My = 1.25 centipoises. Bottom hole pressure with the well
shut in is 1500. 1b/in2. From laboratory tests on a sample of the oil sand
it has been determined that the porosity ¢ , representing the ratio of the
volume of 0il in the sample to the gross volume of the sample, is 0.12 and
that the compressibility Ct , expressed as the reduction in volume under a
pressure of one pound per square inch, to the initial volume is 18.5 x 10_6.

The permeability Kw for water at a temperature such that the viscosity v,

is 1.0 centipoise is found to be 0.150 ft/day. Then,

2
ft ft

= 0.120(+=) . = (0. .0) = 1.320(5=

(G KD = (0.120)(11.0) = 1.320(z)

_ (0.150) (1.00)

Ko 1.250

Bottom hole pressure is (1500) (2.307) = 3460. feet of water.

C, = 18.5(10)7%/2.307 = 8.0 x 10°° per foot of water.
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v, = (0.12)(8.0)(10)-6(11.0) = 10.560(10)‘6 (Dimensionless)
2
b N a0 a0’ - 12s000. (5
1 v, 10.560 y
b2 = 750 = 562500. ft

Flow rate; 400 barrels per day or 2246 cubic feet per day. A barrel, as used

here, is 42 gallons or 5.615 cubic feet.

Q 2246.
21K D~ (6.283)(1.520)

The effective radius is 7.5 feet. Then (EJ = 0.010 .

270.812 feet.

Computation of the pressure drawdown at the well is made in the manner

shown below. Note that:

o S L % 125000 _
< - 1. () = Zmog - 0-222222
a b~ a b
Table 1 Computation of pressure reduction at a = 7.5 ft.
* © * %
alt %- 4alt a e-uzd
Time  Time ) Gy ) G f —= y
(minutes) (Days) b () b 1 o (feet)
(/___J
4a1t
0 0 0 0 o 0 0
10 .00694 .001542 .006168 .1273 1.780 482.0
20 .01389 .003087 .012348 .0902 2.120 574.1
30 .02083 .004629 .018516 .0735 2.324 629.4
60 .04167 .009260 .037040 .0520 2.669 722.8
90 .06250 .013889 2.842 .055556 .0424 2.871 777.5
120 .08333 .018518 3.002 813.0
150 .10417 .023149 3.116 843.8
180 .12500 .027778 3.210 869.3
240 .16667 .037037 3.358 909.4
360 .25000 .055556 3.561 964.6
720 .50000 111111 3.910 1058.9
1080 . 75000 .166667 4.115 1143.4
1440 1.00000 .222222 4,266 1155.3
1800 1.25000 277778 4.395 1190.2
2160 1.50000 .333333 4.515 1222.7
2520 1.75000 . 388889 4.628 1253.3
2880 2.00000 .444444 4.742 1284.2

*
From Table 7.

* %
From Table 1.
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A reference to Table 7 will show that the disturbance caused by
production does not reach the outer boundary at (r/b) =1 until (ult/bz)
= 0.02 . For values of (alt/bz) smaller than this the appropriate values
of y/(Q/ZnKOD) can be obtained from Table 1, as shown above. Note that

in this case

o 2
y _ I eV du
22 u
27K D T
o W
¢4alt

Determination of reservoir properties from drawdown test data.

As a first step, prepare a master chart from Tables 7 and 1 showing
curves for y/(Q/ZnKoD) versus (alt/bz) for a series of ratios of (r/b)
as shown on figure 3-3. Plot the drawdowns y from the above table versus
t , treating them as test values, as shown on figure 3-4. Then match the
observed y versus t curve against one of the curves of the master chart.
It will be found to fit with the curve for (r/b) = 0.01. A selected data
point and the corresponding match point on the master chart are indicated by

crosses. Corresponding to the selected data point y = 1058.9 is the point

y
2
ZnKoD

= 4.0 .

Since y and Q are both known quantities this can be solved for KoD then

4.0Q _  (4.0)(2246) _ 2
KD ?ﬂﬁg' = T16.283)(1058.9) - 1-350 (ft'/day)

This should be 1.320 ftz/day as this is the value we began with,

KD 6
_ _o _ (@.30)00)" _ 2
a = v, = 10,560 = 127840. (ft"/day)

We know this should be 125000 ft2/day.

WRP Classic Resource Edition



32

10000

Io

o ey

=
| et

ooy

SEagee
:
t

1

:

e RS ST

i , e
T e 1 3Lt e s g
kil i 2= b e ¢
Qe i Ea23uea 5325
A = 5 v
paE
Sl H _ i S
HHHE IR o
HHH B EEERT i B
= L
= = 8
Lo BT 5 = gess 6
- - € =i lWTl.I.. ; 1
I
ANl i gl 1
B[ AT
i i

~N

o

v
5
L
[
o
™ >
H I HH : fi ol EHHH ! w
i ] EXE ; === S
i3 BE Zb a0 il ESSE= i SR TRSEES ST ez niinaiads ..,f.ul!, i H ==1€ .Dplm
f ; GO Hhil } i i O
: ...,L i 3 |! S i ,. = = mw e = e i = ” W
7 3 EEREER &) atdisdl (BRca=xa E i =221 . i 1 -o—
T il i
: b8 it : : i
e m _ 1 72
R wv.ﬂ..uwru.- T LK ~ AR AT e i “mu " si2zasg i m.m.m B SES=== & —F—
HEFFHAL B . . 2
L haopunod Aojno s|quauLiadw] -Laoyd JDJSul G-C 2unbly || v
SRt N ’ S
. wuﬁmmn_ AasHE N fmay R g e i IR e : 382858 1w
i S I B i HEESSESE : ESERE S Il B 8
: ; Ee—— = :

v € ¢ 16829 § v € [4 168L9 § ¢v ¢ (4 168L9 § v ¢ [4 1



(shop) 1 0l 10 10 |00

Chap. 3

. | I
.. il g i
it it . : ¢
H H umu<w mmmwm" S5 : = €
i 4
; I e : s
: sEEts . 9
L
g 5
=
- o)
8
T mmm E N m
i o o
HH # : T L
S HHH 77}
uuv 22 =2 H ﬂ nlnmv
. | . v ©
_ e £ : : it S iz
5! = 3 = S
HE : = = i H = it 9 =
5 : ; L
8
= m ' .
11l g ' __ . 1) Qoo —
: ! ‘
n# =
T _ “"m HHH HHH HHH ¢
H S HH = HHH HHH : & :.uumn € ﬁﬁmﬁv
1 H it H] Z3ils v m
i i 445 s s
: : = i == e o w
! L
8
[
1

168L9 & ¥ € (4 168L9 § ¥ € 4 168L9 S v € (4 1689 S ¥ € [4 168L9 S v §€ (4



34 Chap. 3

From the corresponding abscissas;

t = 0.500 days and (alt/bz) = 0.113 . Then,

ot
2 1Y (127840) (0.500) _
b = a1t 0.113 = 565663 .
b = 752, feet

We know this should be 750 feet. Since the (r/b) ratio was found to be

.01 the effective well radius is
a = (752)(.01) = 7.52 feet

Then by this process of curve matching we have recovered the reservoir
properties.
Based upon the recovered properties we can infer that the whole volume

of 0il in the reservoir is

anD¢ = w(565663)(11.0)(0.12) = 2346053 ft3

or 418000 barrels
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ChaEter 3

Problems

(3-1) Farmers A and B 1live on adjoining farms and both have wells used
to supply irrigation water. Their wells are 2500 feet apart and fully pene-
trate a saturated thickness of 60 feet. The aquifer constant is

a=0.75 ftz/sec . How much lowering of the water table will A's well
cause at B's well if he 1lifts 1.2 ft3/sec for a period of four months?

The permeability is .0025 ft/sec and the effective voids ratio is 0.2.
Answer: 0.783 feet.

(3-2) If A's well is gravel packed out to a radius of 1.25 feet what will
be drawdown at the outside of the gravel pack after four months of pumping
under the conditions described in (1)?

Answer: 11.46 feet.

(3-3) For purposes of checking an analog design a supplemental panel is set
up with analog components to represent a circular area of five mile radius.
The outer components are connected to the ground wire to represent a main-
tained water table elevation there. An input lead is connected to the node
point at the center of the panel to represent a well pumped at a constant
rate of 10.0 fts/sec. The analog is designed to represent the conditions

D =200 ft , K = 0.001 ft/sec , v = 0.20 . By using Table 6 compute the
drawdowns which should be shown by the analog test panel at the end of one

year of continuous pumping. Node points are at 0.5 mile intervals.

Answer:

Radius Drawdown

(Miles) (feet)
0 ————
0.5 9.421
1.0 4.528
1.5 2.233
2.0 1.063
2.5 0.478
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Answer: (3-3) continued

Radius Drawdown

(Miles) (feet)
3.0 0.201
3.5 0.078
4.0 0.028
4.5 0.009
5.0 0

(3-4) The Fox Hills formation in the Denver area is a sandstone member
confined between the Pierre Shale below and the Laramie formation above.
It outcrops in a roughly elliptical zone which is about 110 miles across in
the North-South direction and 70 miles across in the East-West direction.
The Fox Hills sandstone within the outcrop has the form of a synclinal
fold and at Denver the top of this member is about 1500 feet below ground
level. The bed is filled with water under pressure and in an earlier era
flowing artesian wells were obtained from it. If it be assumed that the
total flow of the early wells was 10,000 gallons per minute and that the
pressure was originally 200 feet of water at Denver estimate how long would
be required for the wells to cease to flow if the wells were distributed
over a circle nine miles in diameter. Assume that the aquifer properties
are KD = 0.002 ft2/sec, V =0.0004, a = 5.0 ftz/sec and that the re-
charge rate is small compared to the well flow.
Answer: 0.910 years.
Suggestion: If Table 7 does not have the needed value, but does show that
there would have been no drawdown at the outer boundary for greater times,
then the case can be considered as an infinitely extended aquifer and a
solution can be obtained by use of Table 1.
(3-5) Convert the data of Problem (3-1) to units of meters and seconds and
solve for a drawdown in meters. Convert this drawdown back to feet and com-
pare with the result obtained for Problem (3-1).

Answer: 0.239 meters or 0.784 feet.
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Chapter 4.
The flowiggﬁartesian well

The processes of uplift, erosion and deposition have been important
factors in producing the sedimentary formations which are prominent features
of the earth as we know it today. Operation of the geologic forces which
produced these changes was often erratic and it has happened that a permeable
bed, such as a sandstone, has been sandwiched in betweem impermeable strata
such as shale. If subsequent changes warp these strata into a synclinal fold
with the permeable bed exposed at the surface along an outcrop then the

conditions shown in figure 4-1 can become a reality. Recharge then occurs

o i
/| surface.y «7% ., ;=

L Qverburden 4 . .

RS-

Fig. 4-1 Section showing an artesian stratum.

as a result of precipitation along the outcrop and the permeable member
contains water under pressure. If a well is now sunk to the permeable bed,
as shown, a flowing well can be obtained.

The combination of conditions needed to produce such a flowing well
are not of common occurrence but erratic geologic processes have sometimes
produced them. The Fox Hills formation below the Denver area is an example.
Here the formation occupies an elongated saucer shaped depression confined
between the Laramie formation above and the Pierre Shale below. Outcrops are

to be found in the Greeley area to the north, in the plains area to the east
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and in the Colorado Springs area to the south. To the west of Denver the
Fox Hills formation outcrops along the eastern face of the foothills. In
earlier times flowing wells could be obtained but the replenishment rate is
slow and now wells tapping this formation commonly must be pumped if water is
to be obtained. Another example is to be found in the Artesia area of New
Mexico.

Because recharge rates are typically low it is easy to overencumber the
supply and some areas which once produced flowing wells must now be pumped
if water is to be obtained. So long, however, as artesian wells are obtain-
able it will be important to have an analytical treatment by which the changes
of pressure they produce and the rates of flow they can maintain can be esti-
mated.

A treatment can be based upon the idealization that the hydraulic prop-
erties of a water bearing stratum can be specified by a permeability K, a
thickness D and a yield factor Vl' This latter factor will be much smaller
than would be found for a free water table case because under artesian condi-
tions there is no unwatering of the aquifer. The water which flows from the
well comes from an expansion of the water due to relief of pressure and from
compression of the granular material of the aquifer. It may be noted in
passing that the compression possible in a granular material, by application
of pressure, is much greater than could be produced in an equal volume of
solid material of the same kind. Before the pressures are disturbed, much of
the weight of the overburden is sustained by them. When the water pressures
are relieved this load is transferred to the grain structure and compression
follows.

If we let y represent the pressure reduction in the aquifer, expressed

in equivalent feet of water, then the flow toward the well at the radius r
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will be:

F = -2mrkp &L .
or

The continuity condition is:

oF _ 3y

T drdt = -Zwrdrvl T dt.
oY

oF _ dy

3¢ - - 2™V 3%

Then, by substitution and rearrangement

27K 2%y, 3y . oy
-2m D(I‘ — + 517) = —ZTI'I'VI 3t
ar

If

The relation can be put into the form:

2
a(.a__x.q-.];?l):_a.).'.
1 arZ T or ot

This relation is of the same form as was obtained for the case of the well
drawing water from an aquifer with a free water table but, in the present
case, no concession needs to be made to avoid nonlinearities and the treat-
ment is exact.

In the previous case the well flow was taken to be constant and the
drawdown at the well varied with time. In the present case the pressure
drawdown at the well is a constant amount Yo and the discharge of the well
varies with time. A similar idealization is often appropriate where a

flowing well is producing oil from an extensive oil sand. The differential
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equation 2-5 is then to be solved subject to the conditions

Y =Y, at r=a for t>0

0 when t=20 for r > a

y

The required solution has been obtained by a number of investigators. Among
them are Nicholson, Smith, Goldstein and Carslaw and Jaeger. A summary of
these investigations as well as references to original sources may be found
in Carslaw and Jaeger, 1947. The solution so obtained is in the form of an
infinite integral. Evaluation is difficult. An alternative approach to a
solution for the case where the outer boundary is infinitely remote is to
work in terms of a finite outer radius b. This solution will behave as an
infinitely remote outer boundary case until the disturbance produced by flow
from the well of radius a reaches the outer boundary b. By using a
sequence of increasingly remote outer boundaries it is possible to compute with
a limited number of terms of the series solution and to extend the outer
boundary to as remote a location as may be desired.

The required solution is:

2 2
n=w _ k (Bnb) (4at)
y=y,|1-1 AU (B r)e 4 22 (4-1)
n=1
This solution meets the condition that
A 0 when r = b.
or
The An values are to be computed from the expression:
2k !
iBnb) Uo (Bna)
A (4-2)

e 217 - K2u, (8, @)1
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Where

U, (8.x) = J (B a)Y (B ) - Y (8 a)J (B ) : (4-3)
and

k= (5 (4-4)

The (Bnb) values are to be obtained as roots of the equation:

Uo(Bnb) =0 (4-5)

In these expressions:

1 dUo(Bnr)
Uo(Bnr) = diBnr)

' dJOCBnr)
Jo(Bnr) = T—B-an = - Jl(Bnr)
dY (8 r)
o' n
YO(Bnr) = d(Bn_I')_ = - Yl(Bnr)

The flow toward the well at the radius r is:

kz(Bnb)z da.t

n=ec 1
- EX = ' = ( )
F = 2mrKD 52 = 27KDy nzl A (B T)U! (8 T)e 4 22
(4-6)
If the flow at the radius a 1is
V4a1t
Q= ZnKDyoG (4-7)
Then:
2 2
k“(B.
V4a1t n=o - (Bnb) (4a1t)
S5 Lo AGYEe a® (4-8)

Values of (y/yo) can be obtained from Table 3 and of G(v4at/a) from Table 4.
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Values outside the tables

It is quite possible that a need might arise to deal with values which
are beyond the scope of the tables. Approximate procedures can be outlined
to take care of such cases. For computation of pressure drawdowns the fol-

lowing expression will be useful:

-uz
J e du
u
( T
V4alt V4a1t
}’Eyo e if 3 ) > 1000. (4-9)
e ¥ du
u
( 2 ) or 2 < .001
4a1t 4a1t

This expression is based upon the concept that the flow from an artesian well
becomes almost steady after the well has been flowing for some time. The for-
mula for drawdowns produced by a well of constant flow is then used and the
pressure drawdown y at the radius r is estimated by applying the ratio of
the drawdown at the radius r to the drawdown at the radius a to the known
drawdown Yo at the radius a.

A comparison of approximate and tabular values is shown in the following

table:

Table 4-1 Comparison of approximate and tabular values of (y/yo) for an
artesian well.

r r Tabular e—uzd Approx. V4a1t
=) ( values of I £ U values of ( )

2 4ot (y/y ) " (y/y) 2

1 (o} ( by ) o
V4a1t
1.00 0.001 1.0000 6.6192 1.0000 1000
10.00 0.010 0.6557 4.3166 0.6521 1000
100.00 0.10 0.3118 2.0190 0.3050 1000
1000.00 1.00 0.0188 0.1097 0.0165 1000
Note that (—= = 0——iLj(EJ (For this table) ( a = ,001
4a1t V4a1t a 4a1t
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Values in the third and fifth columns should be compared. It should be
expected that the approximation would improve as times grow longer.

Since it can be shown that, on the basis used for development of for-

mula 4-9,
V4a1t . e-uzdu V4a1t
y & yo G( Y ) [ N if 5 ) > 1000. (4-10)
( T
Y4a.t

1

a comparison of formulas 4-9 and 4-10 would indicate that an approximation of

the following type could be obtained:

V4a1t 1 ¢4a1t
G( 2 ) & —3 > if 2 ) > 1000. (4-11)
J e-u du
u

a

fiae

1

(

A comparison is shown below. In this table only the last two values would

be admissable under the restriction imposed on formula 4-11.

Table 4-2 Comparison of approximate and tabular values for G( )
(/Z;IE; G(VZEIE; ( a J e-uzdu 1/ J e_uzdu)
: (tabu?ar) 40‘lt ( a N ( a :
100 .22585 0.010000 4.3166 0.2317
200 .19593 0.005000 5.0097 0.1996
300 .18177 0.003333 5.4151 0.1846
400 .17288 0.002500 5.7029 0.1753
500 .16655 0 .002000 5.9260 0.1687
600 .16171 0.001667 6.1086 0.1637
700 .15783 0.001428 6.2630 0.1596
800 .15461 0 .001250 6.3960 0.1563
900 .15188 0.001111 6.5137 0.1535
1000 .14952 0 .001000 6.6192 0.1510

0 .000100 8.9217 0.1121

10000 .11146

WRP Classic Resource Edition



44 Chap. 4

Values in the second and fifth columns should be compared. At the limit of
tabular values the error is about one-half percent. The approximation should
improve for values of (JEE;EYa) greater than 1000.
Example

Data furnished through the courtesy of Mr. Stan Lohman, of the U.S.
Geological Survey, will first be used to make a determination of aquifer
properties. The aquifer properties so obtained will then be used to make an
estimate of the drawdowns produced by flows at the test well on pressures at
an adjacent well. A description of these well tests will be found in the paper
by Jacob and Lohman.

Vda.t

1 ) function is first made on logarithmic

A plot of a portion of the G¢ S

cross section paper as shown on figure 4-2. The test data are reduced as
shown in table 4-3, and a plot of Q vs (/?/a) is then made on logarithmic
paper, as shown on figure 4-3. The observed data are then matched to the
type curve data by superimposing the plots and shifting them while keeping
the axes parallel. When a satisfactory match is obtained the point 0.1 - 1000
of the type curve is marked on the test data plot. These points are marked

on the charts.
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Table 4-3 Artesian well test.

47

Rate of
flow

3
)

sec

.01622
.01546
.01533
.01400
.01386
.01386
.01326
.01303
.01261
.01225
.01190
.01190
.01163
.01145
.01138
.01125
01114
.01096
.01087

Time of Rate of Time
observation flow since
flow
began
G.P.M. minutes
10:29 A.M. - 0
10:30 7.28 1.
10:31 6.94 2.
10:32 6.88 3.
10:33 6.28 4,
10:34 6.22 5.
10:35 6.22 6.
10:37 5.95 8.
10:40 5.85 11
10.45 5.66 16.
10:50 5.50 21.
10:55 5.34 26.
11:00 5.34 31.
11:10% 5.22 41.5
11:20 5.14 51.
11:30 5.11 61.
11:45 5.05 76.
12:00N 5.00 91
12:12 P.M. 4.92 103
12:22 4.88 113
Shutoff pressure, Yo = 92.33 feet of water.
Well radius 0.276 feet.

Penetration 60 feet.

Thickness of aquifer,

Time
since
flow
began

(seconds)

0

60
120
180
240
300
360
480
660
960
1260
1560
1860
2490
3060
3660
4560
5460
6180
6780

Chap. 4

(/)

0
28.07
39.69
48.61
56.13
62.76
68.75
79.38
93.08

112.26
128.61
143.10
156.26
180.80
200.42
219.20
244 .66
267.72
284.83
298.34

D = 100 feet (Estimated from thicknesses at the loca-

tion of nearby fully penetrating wells).

From chart matching, on the basis that the well is fully penetrating.
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(ZWé%y ) = 0.100 Q = 0.007400 ft>/sec. KD = 0.00012755 ft>/sec.,
o]

4o.t
ST -
(—5) =1000. (D =285 a=35.07 £ft/sec = ()
1
Then
K = 0.0000012755 ft/sec.
KD = (0.00012755) (86400) = 11.04 feet> per day.

Lohman's value is 11.7 f’eet2 per day.

Total production volume

If the pressure reduction is:

kz(Bnb)z 4ot

e - (—5
Yy =Y, 1-, AnUO(Bnr)e 4 a2
n=1
\
The whole production volume out to time t is:
b b
P = V1 J 2nrydr = 2nv1 I rydr
a a
For the first term, with k = (%9
b 2 2 2 2 2
b"-a™, _ a b -a
21TV1}'0 Jardr = 21TYOV1(———2‘—) = 8 yOKDt(ZE—l?) (—'—zaz )

Since

b 1 t
I rU (8 x)dr = - Elf [(8 b)U_ (8.b) - (8 &)U (B )] and

a n

(8,2)U, " (8,2)

because, in this case, UO'(Bnb) = 0 this integral reduces to

2
Bn
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Then for the second term:

2 (B a) 4a_t
b -k (Bnb) (40. t) az n=cw A UI (B a) 4 ( ; )
2'rryoV1 I Aano(Bnr)e 4 2 dr = STTKDY t(4at) Zl —Ta-:)—
a n= n
Since k = ( 2) and V1 = (529
o
Finally, the whole production volume is:
(B a) 4alt
2 2 2, n== A U (B a)e” Z ( )
P = 87KDy t () b2 ) (0]
o 4a 2a n=1 n
or if
(B a) 4ot
2 l nwAU(Ba)eT(l)
H( a - ( (b -a )
4o, t 4a t n 1 (Bna)
= 87KDy t - H. (4-12)

Values of the function H may be found in Table 5. These values have

been computed from the relations shown in equations 4-12 above. Values are

V4a1t

given for the range of from 3 to 10,000. When an application

requires values of H beyond the range of this table the approximate
formulas described in the following paragraphs may be used. The graph of

figure 4-4 has been prepared using these approximate formulas to extend the

range to

V4ot

( al ) = 1,000,000.
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Extension of the H function table

Beyond the argument (¢4a1t/a) = 1000 , the approximate expression

V4alt
~ 1
G(a)" 0 2
-u
J e du
u

a

has been shown to hold with an error of one percent or less. In this range

(

the quantity (a/V4a1t) will have a value of 0.001 or less. A series

development is given in USBR Monograph 31 of the form:

°°e-uzdu | 2t x°
J m = -0.288608 - logex + > " 717 * I e
X
In the region: 2 < 0.001 the approximation
4(!11:
© -u2 ‘
I e du = - 0.288608 - logex. (Approximate for x < 0.001)
u

would represent the integral with an accuracy of less than one unit in the

sixth decimal place. Then

J4a1t N
a ) = a
-0.288608 - log ( )

e V4a1t

Ma t
G( 1 . (Approximate for ( ;‘) > 1000 .

If the constant term is treated as a logarithm -~0,.288608 = 1oge0.749306,

then the approximate expression for G can be put in the form

/4a t 40.. T
1 1 1 2
G( ) —————— or G( ) -
a 4a1t) a . m2(4a t)
log m(— 8¢ a2’

n

m
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Where m = 0.749307 and m% = 0.561461. (1/m%) = 1.78107. The total pro-

duction can then be expressed as:

t V4a1t
P = ZﬂKDYO I G( 5 )dt
0
or:
t
- dt
0 log m"(—; )
a
Let
4a_t m24a dt 2
x = nP(—y  dx=—32— qr =2
2 2 2
a a 4o, m
1
Then, by substitution:
47KDy a2 X V4ot
PO dx_, ¢ if (—2) > 1000
2 log x 2 a :
m 4o, e
1 0
and:
2
b a 4ﬂKDyot ( a ) X dx .
2 4ot Tog x 2
m 1 e
0
a2 * dx
£ 7.124290 WKDyot (4a1t) J logex *C,
Where C1 and C2 represent constants of integration.
This can be put in the form:
az X dx
P = 8nKDy t  0.890536 (I&l—t) J Tog % + €, (4-13)
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so that

(4-14)

a2 X g
H = 0.890536 ( )[I X _ 4 C,]

4a1t logex
0
The integral which appears here is known as the logarithmic integral. Its
value in terms of the exponential integral is given below in the example.

Examgle

To show the method used for evaluating the logarithmic integral.

suppose  (125%) = 1000. 22L - 1000000,
a a
2 4ot
x = n’(135) = 561460. log_ 561460. = 13.238293
a
X
dx _ ps -
JTEE_E—'_ E1(logex) = 46270.
e
0
Where:
Z+U
Ei(z) = J E—GQE .

[e ]

is a tabulate& function (Jahnke and Emde, 1945--Dwight, 1958, Department
of Commerce, 1966).

An evaluation of the constant C2 now needs to be made. When (JZEI??a)
= 1000 the tabular value of H is 0.040671 and the value obtained from the
approximation is 0.041205. Based upon these values C, = -0.000534. When
(/ZEIE7a) = 10000 the tabular value is H = 0.029616 and the corresponding
value obtained from the approximate expression based upon the logarithmic
integral is H = 0.029794. On this basis C2 = -0.000178. A comparison shows

that the approximation value is coming closer to the tabular value as (/4a1t/a)

increases and that there is only about 0.6 percent difference at the end of
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the table where (V4a1t/a)= 10 000. Then for values of (¢4a1t/a) beyond

the table it would be reasonable to take C2 = 0 and use the relation:

X

2

_ a dx

H = 0.890536(4a t) I Tog x (4-15)
1" 5 e

It should be realized that the production function H is based upon
developments which imply that the reservoir is of infinite extent. Ultimately
the disturbances caused by production of the well will reach the outer boundary
of any actual finite reservoir and the production will then fall below that
estimated by use of the H function.

Example of application

Estimate the total production of the Artesian test well of Table 4-3 if
it flowed unchecked for one year
KD = 0.00012756 ft/sec o = 3.078 ft>/sec t = 31536000 sec a = 0.276 £t

v4at 19698.

2 ) = 0276 - 71370.

(

This is beyond the H table range. From the graph of figure 4-4

H = .0240 8nKD = .003206 81rKDyo t = (003206) (92.33) (31536000) = 9335000.

P = 9335000(.0240) = 224000.ft3 or 5.14 acre feet.

As a rough check, the well would have produced

(5.00) (31536000) _

3
743.8 = 351300. ft

or 8.06 acre feet.

if the flow observed at noon of the day of the test had been sustained.
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ChaBter 4,

Problems.
(4-1) For the Fox Hills aquifer as described for Problem (3-4) compute the
pressure drawdown at (r/a) = 1000 to (r/a) = 10000 at the end of the first

day of operation if Yo = 200 feet and the diameter of the well casing is six

inches.
Answer:

T T pA y T r Y b4
(feet) a Yo (feet) a Yo (feet)
0.25 1 1.0000 200.0 1500 6000 .009006 1.80
250 1000 0.1725 34.5 1750 7000 .004547 91
500 2000 0.09444 18.9 2000 8000 .002178 .44
750 3000 0.05422 10.8 2250 9000 .000985 .20
1000 4000 0.03074 6.15 2500 10000 .000420 .08

1250 5000 0.01702 3.40

(4-2) Estimate the flow of the well at the end of each of the first twelve

hours of operation.

Answer:

Time /ZEIE /ZEIE. Q Time /ZE;E /ZEIF Q
(hours) ( a ) 6( a ) (£t3/sec) (hours) ( a ) G( a ) (ft3/sec)
0 mmmm mmmmm mmmmeee- 7 2840 0.1295 0.325
1 1073 0.1480 0.372 8 3036 0.1284 0.323
2 1518 0.1408 0.354 9 3220 0.1274 0.320
3 1859 0.1370 0.344 10 3394 0.1266 0.318
4 2149 0.1343 0.338 11 3560 0.1258 0.316
5 2497 0.1317 0.331 12 3718 0.1252 0.315

6 2629 0.1308 0.329

(4-3) Estimate the total flow of the well for the first 12 hours of operation.
Answer:

P = 14560 ft°
(4-4) Check the result obtained for (4-3) by use of formula 4-14.

Answer:

3
P = 14330 ft WRP Classic Resource Edition
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(4-5) Compare this total flow with what would have been produced if the well

had flowed for the full twelve hours at the rate it was flowing at the end of

the first hour.

Answer:

16070 ft°
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Chapter 5

Well with a semi-permeable bed overlying the aquifer

A cross section through the well is shown in figure 5-1.
AT e S +Q .§.r_'ound surface. Z
T e e S ~Wafcr Tab134 Lo

Férm eablh'rg b
////////////// ;\///

&
.-
.

. . o. -
Aqwfer /72 -’ l:r Pcrmeabuld'q K Y L
o lmpermep\ble 7 " Shrde coefficient V‘ il
/////////////////////////////,I’//////////////////////////

Fig. 5-1 Well drawing water from an aquifer overlain by a
semi-permeable bed.

To treat this case it will be needful to modify equation 2-5 of Chapter 2
to account for the seepage of water through the semi-permeable bed. It is
assumed that before pumping begins there is a hydrostatic pressure distribu-
tion which is continuous from the water table downward through the semi-
permeable bed and the aquifer to the impermeable barrier. When pumping begins,
withdrawal of water from the aquifer reduces the pressure at the bottom of the
semi-permeable bed and causes a downward seepage of water through it. The
pressure reduction at the bottom of the semi-permeable bed is represented by
y . The downward flow, per unit of horizontal area is then (py/\) since the
downward gradient is (y/A) . It is supposed that the water table is main-
tained at its original level above the semi-permeable bed and that movement
through the semi-permeable bed is in the vertical direction only. Unwatering
of the aquifer does not occur. The storage coefficient V1 is of the artesian
type since the yield of water from the aquifer is produced by expansion of the

water and compression of the aquifer by the pressure reduction y . In regard
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to the compression of the aquifer it may be noted that the weight of the
overburden is originally supported, in part, by the hydrostatic pressure and
the remainder by contact pressures between grains. When the pressure below
the semi-permeable bed is reduced the load originally carried by it is trans-
ferred to the aquifer grain structure to cause it to be compressed. This com-
pression causes the aquifer to yield water. The storage coefficient V1 is
given the subscript 1 to indicate that the yield of water is produced by
pressure change and not by drainage.

The flow through a cylindrical shell of radius r and height D is,
by Darcy's law F = -2mrKD %%-. The minus sign is appropriate where F is

considered positive if toward the well and y is taken to be positive for a

pressure reduction. The continuity condition is then:

3. 3y. |24 = - y
- ar(21rrKD ar) dr dt + 2mr 0y dr dt = 2nrv1 5t dr dt .

After simplification and rearrangement this becomes, with 4, = (KD/Vl)

2
Fy , lay | ¥y By -
0‘1(3r2 ) 3t V)X (-1

A solution of this differential equation which meets the conditions

y=0 when t=0 for r >0

-27rKD %%- +Q as r»+0 for t>0

is: 2
[~ —u2 _ mz— d
_ Q € u u 5-2)*
y 27KD " (5-2)
T
Y4at

*This probleg has been treated by Hantush and Jacob in terms of the integral

T
® Y- B2y
J e 4B y“11

y See Trans. Amer. Geophysical Union, Vol. 36, 1955.

128
4Tt

WRP Classic Resource Edition



59 Chap. 5

where

= X [ D_
m =3 JAKD

Values of the integral which appear in equation (5-2) may be found in

table 14.

Values outside the table

Since the table covers a finite range of values something needs to be
said about the procedure to be used when a poiﬁt falls outside the tabular
range.

In the integrand of formula 5-2 the factor e-u2 is unity when u =0
and decreases ag u increases reaching the value 0.0001234 when u = 3.0
the factor engi' is zero when u is zero and rises toward unity as u
increases. The factor 1/u reaches an infinite value when u = 0 and de-
creases toward zero as u increases. The integrand, however, always
approaches zero as u approaches zero if m > 0. The integral is, therefore,

always finite so long as m > 0. The integral from zero to infinity can be

evaluated and has the value

= K (2m). (5-3)

This case has an ultimate steady state which is realized when the
pressure reduction below the semi-permeable bed becomes great enough to pro-
duce a seepage through it sufficient to supply the flow of the well. When
the steady state is reached (3y/3t) becomes zero and the differential

equation 5-1 takes the form

d2y , 1dy _ _py _
Sreig- B - -5
171
Note that
(p/a)AV)) = (p/AKD)
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The substitutions:

= —L = r|B
H ( Q ) and P =T3%D
2wKD
will reduce the above differential equation to the form:
2 ,
dg, il oo, (5-5)
do p dp

A solution, subject to the requirement that w ~ 0 as p >« is:

o= K (p)
or
uo= Ko(Zm)
or
= (= -
y (ZnKD) K (2m) (5-6)

This is the ultimate steady state. The quantity Ko is the modified Bessel's
function of the second kind. It has been extensively tabulated. Approximate
values can be read from the chart of figure 5-2. This result is in complete
agreement with the value given for the integral in formula 5-2. A reference
to figure 5-2 will show that, for a given value of r, the plots become hori-
zontal when time increases sufficiently. This horizontal portion indicates
that the ultimate steady state has been attained. The value of u corre-
sponding to the horizontal portion of the plots will be found to be in agree-
ment with that given by formula 5-2. It will hold this value even though the
value of (r//Z&IE) is less than the smallest value shown on figure 5-2.
There will be some values in the region where (r//ZEI? < .001 and
m < .005, however, which cannot be treated in this way. In this region the
factor e-u2 is between 0.999999 and unity. .To a close approximation, there-

fore, it will be possible to replace the integral of formula 5-2 with
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62
2
m
a -
_ e Y7 du
p o= K0(2m) - f — (5-7)
0
Where a represents the limit ( L (Valid if ( L < 0.001).
4a1t 4a1t
The variable substitution (m/u) = v will put this into the form
e (5-8)
= _ (e __dv -
u = Ko(?-m) J 7
m (Valid if m < .005.
&)
T ) < .001).
4a1t
As an example suppose m = 0.001, a = 0.01, §-= 0.1, Ko(2m) = 6.3305
o 2 .
eV dv
[ 3 = 2.01896 (From Table 1)
0.1
Then
—L = B = 6.33055 - 2.01896 = 4.31159
(—L)
2wKD

The corresponding tabular value is 4.31158.

A similar approximation can be made where the (m/u) values are small
2
L
enough to make e uZ 2 1 . Here the approximation is:

-]

-u2
J e du
u:

u
a

Evaluation can be made with the help of Table 1. The open circles on figure
5-2 show approximations obtained in this way.
Example

The following example will illustrate the use of these formulas. An
aquifer of 125 feet thickness having a permeability K of 0.0004 ft/sec and

a storage coefficient of V1 = 0.0009 is overlain by a bed of glacial till
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having a thickness of 32 feet and a permeability p, for vertical flow, of
35(10)-9 ft/sec. A well penetrating the full thickness of the aquifer is
pumped at the rate of 0.25 ft3/sec. It is desired to compute the pressure
drawdown, as a functién of the ra&ius, at the end of 24 hours of pumping.

It is also desired to estimate the final steady state drawdowns and to esti-

mate the time required to establish this steady state.

Solution
With:
K = 0.00040 ft/sec
D =125 ft KD = 0.050 ftz/sec
V1 = 0.0009 (dimensionless) @ = 55.556 ftzlsqc
p = (35.0)(10)7° £t/sec
A o= 32, ft
Q = 0.250 fts/sec t = 86400 sec (24 hours)
Q . _ 0.250
G = T6.2832)(0.050) - 0798
s 35(10)"° / -8
%KD = (32) (.050) = (2.19) (10) = 0.0001480
The following radii will be used: - , n?
—u — —
2
Radius m ( X ) J Y 4u y
(feet) 4a1t T u :
( )
V4a1t
10 0.00074 0.002282 5.864 4.66
50 0.00370 0.011410 4.157 3.30
100 0.00740 0.022820 3.452 2.77
500 0.03700 0.114103 1.860 1.48
1000 0.07400 0.228206 1.171 0.93
5000 0.37000 1.141031 0.0623 0.0S
10000 0.74000 2.282062 0.0004 0.00
/halt = /(4)(5 5.555)(86400) = 4382
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Computations were made by use of Table 14 and double interpolation was
used to obtain the y values. The detail of the computations for the first
two radii are shown below. For m = 0 the table cannot be used the these
values were obtained by the methods described previously.

r

For m = 0.00074 = 0.002282
m 0.002 0.002282 0.003 u = 5.864
0 5.9260 5.5205 y = (5.864)(0.795) = 4.661
.00074 5.957 5.864 5.629
.001 6.0049 5.7932
For m = 0.00370 I = 0.01141
m 0.010 0.01141 0.020
.003 4.2726 3.6125 p = 4.157
.00370 4.249 4,157 3.605 y = (4.157)(0.795) = 3.304
.004 4.2398 3.6039
The ultimate steady state will be substantially attained when n = 4

and n 1is given by the relation:

= P
n tiGy)
then
4AV1 (4) (32) (.0009)
t = — = :9 3291400. sec or 38 days.
P 35(10)

*
An independent development is presented in Bureau of Reclamation Monograph 31.
This formula is obtained from this source.
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The ultimate steady state drawdowns may be computed by use of formula 5-6.

y = (5%%59 KO(Zm)

The computation can be made as follows:

Radius m K (2m) y
(feet) °

10 0.00074 6.632028 5.272
50 0.00370 5.022289 3.992
100 0.00740 4.329351 3.441
500 0.0370 2.724716 2.166
1000 0.0740 2.043074 1.624
5000 0.370 0.620173 0.492
10000 0.740 0.219434 0.174

As a second example we will estimate the pressure drawdown at the radii
10 , 100 , and 1000 feet for a succession of times. We will use readings
from the graph of figure 5-2 and make the computations with a slide rule.

The data for the example are as follows:

p = 125.(10)"° ft/sec K = 0.000625 ft/sec D = 40 ft
A = 20 ft KD = 0.025 ft2/sec v, = 0.005
o = XD . 50 £t%/sec Q =0.240  £t3/sec
1 Vv
1
-9
P - _125.(10) 7 _ -9
KD (20) (.025) 250. (10)
) /_E_ - -3 Q \ .
m > | %KD %KD (0.5000) (10) (ZTI’KD) = 1.528

The quantities (r/vt) are added for purposes to be described later.
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Table 5-1.
For r = 10 feet m = %g-(O.SOOO)(IO)-S = 0.00250
Time Time (/_r_) —X_f*_ y (—r )
(seconds) 4a1t (ZwKD) (feet) /t
1 min 60 0.09128 2.10 3.21 1.290
10 min 600 0.02887 3.28 5.01 0.408
1 hr 3600 0.01178 4.18 6.38 0.167
6 hr 21600 0.00482 5.02 7.66 0.068
12 hr 43200  0.00340 5.20 7.94 0.048
24 hr 86400 0.00240 5.40 8.25 0.034
5 days 432000 0.00108 5.46 8.33 0.015
10 days 864000 0 .00076 5.50 8.40 0.011
For r = 100 feet m = 0.0250
rne (sziggds) (vﬁgiij (_%;_;‘ (fg;t) (li
1 2wKD
1 min 60 0.9128 0.150 0.229 12.90
10 min 600 0.2889 1.00 1.528 4.08
1 hr 3600 0.1178 1.87 2.86 1.67
6 hr 21600 0.0482 2.70 4.13 0.680
12 hr 43200 0.0340 2.90 4.44 0.481
24 hr 86400 0.0240 3.10 4.74 0.340
5 days 432000 0.0108 3.30 5.04 0.152
10 days 864000 0.0076 3.30 5.04 0.108
For r = 1000 feet m = 0.250
Time Time ( L ) A 4 ()
(seconds) JZEIE (ihKD) (feet) t
1 min 60 9.128 -- -- --
10 min 600  2.887 -- -- --
1 hr 3600 1.178 0.060 0.092 16.67
6 hr 21600 0.482 0.470 0.718 6.680
12 hr 43200 0.340 0.710 1.085 4.82
24 hr 86400 0.240 0.830 1.270 3.40
5 days 432000 0.108 0.920 1.408 1.52
10 days 864000 0.076 0.920 1.408 1.08

*
Read from the chart of Fig. 5-2.
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Determination of aquifer properties

Aquifer properties can be determined from test data by a curve matching
procedure such as has been previously described. For this purpose the data
of Table 5-1 are plotted on a chart with logarithmic scales for both ordinate
and-abscissa. Such a chart is shown on figure 5-3. Observed pressure draw-
downs y from test data are then plotted against corresponding values of
(r//@} on an identical grid. This second chart is then placed over the
master chart of figure 5-2 and adjusted, while keeping the axes parallel,
until a fit is obtained. The position of the index of the master chart is
then marked on the test data chart. The aquifer properties can then be ob-
tained by the process described in the following example.

It will be advantageous to use the computed drawdowns of the second
example as test data because we will then know that results should be ob-
tained and thereby gain some insight as to the effectiveness of the method.
Plots of y versus (r/vt) are shown on figure 5-3. When this is superposed
on the master chart and adjusted to a satisfactory fit the position of the
master chart index is indicated by a cross.

For the master chart index

y Tr
= 1.00 ( ) = 1.00
_Q . /o,
STl 4ot

For the test data chart index

y = 1.58 ()= 14.0
vt

From the first of these

. (1.000(Q _ _(1.00)(0.24) _
KD Ty (6.2832) (1.58) 0.0242 (Should be 0.025)
K = (.0242)/(40) = 0.000605 (Should be 0.000625)
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69 Chap. 5

From the second set of values

Vaa. = (=) . Then, Vda, = 14.0
1 \/‘E 1
14 O2
@, = A = 49.0 (Should be 50)
For r = 100 ft m= 0.0250
T :E:_ P 4m2KD
m=73 JAKD or X 2
T
then
P _ (4)(000625) (.0243) _ -9
X (10000) 6.075(10)
-9 -9 -9
p = (6.075)(10) “(20) = 121.5(10) (Should be 125.(10) ) .

Then all of the aquifer properties have been recovered to an approximation
which is close enough for engineering purposes.
Comments

Because there is generally no way to maintain the water table level in

the upper bed, drawdowns must occur
semi-permeable bed and it is a fair
solution described can maintain its
solution has worked very well. The
drawdowns spread rapidly due to the

flow of the well is then drawn from

water table is very slow.

there to supply the leakage through the
question, therefore, as to how long the
validity. In actual applications the

explanation seems to be that the pressure

artesian type values of V. and the

1

a large area and the drawdown of the

Good correlation of test results is the rule

and it will be found that when a semi-permeable bed overlies the aquifer

this development will produce correlations while formulas ignoring the

presence of the semi-permeable member will not produce correlation.
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Applications can be made to situations where the upper member has a
low permeability as compared to the lower member and the water table is in
the upper member. In such cases A can represent the saturated thickness

of that part of the upper member which is below the water table.

WRP Classic Resource Edition



71 Chap. 5

Chapter S

Problems

(5-1) A permeable water bearing sand having a thickness of 40 feet is
overlain by a glacial till having a saturated thickness of 20 feet. A well
is sunk to the bottom of the water bearing sand and gravel packed to an
effective diameter of two feet. The aquifer properties are:

0.002 ft/sec KD = 0.080 ft2/sec vV, = 0.0005

K 1

180 x 10”2 ft/sec

p

If the well is pumped at the rate of 0.250 fts/sec what will be the
pressure drawdown y below the semi-permeable till bed, after 24 hours of

pumping, at the radii r = 1.0 ft, 10 ft, 100 ft and 1000 ft?

Answer:
radius y
(feet) (feet)
1.0 3.98
10.0 2.81
100.0 1.72
1000.0 0.61

(Suggestion: for m =0 revert to Table 1)
(5-2) What will be the ultimate steady state drawdown?

Answer: From formula 5-6

radius y
(feet) (feet)
1.0 4,04
10.0 2.89
100.0 1.75
1000.0 0.63
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(5-3) Approximately how long will it take to establish the ultimate steady

state?

Answer: About 5.7 days, based upon the point from Table 14 identified by

m= 0.200 — = 0.06 . This relation is solved for t wusing r = 1000 ft .
Y4at
This value must be accepted as an estimate because the point when stability

i$ reached is difficult to recognize.
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ChaEter 6
Bank storage

This chapter will be devoted to consideration of those cases where flow
is in one direction only. The first case to be treated will be that of a
reservoir, with permeable banks, which has remained filled for a long time and
is then drawn down as shown in the figure below. It is desired to determine
the configuration of the water table in the banks for any time subsequent to
the drawdown and to-estimate the rate of return flow from them and the total
amount of the return flow. To illustrate the various possible approaches this
case will be attacked by several methods and a final comparison of results will

be made. As a first approach a solution of the differential equation 2-2

) h1 i Bhl
sz ot

Subject to the requirements

hy

h1 =0 for x=0 for t >0

can be sought. The required solution is:

H0 for x>0 when t =o0

X

(VT2
hl = HO E—/ e du (6'1)
0

The flow of ground water at x = 0 is:

8h1
F=+KD(—ax—

x=0

But since, as will be shown later,

1 2 e (@at)
ox ° /7 Vit
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And
3h; 2 1
Gx ) x=0 HOE _’Z.Tt
Then
2 Ho KD
F = —x0ox— (6-2)
vdnot

The total amount of return flow is obtained by integrating this expression

with respect to t from 0 to t. The result is:

% = Hy V |/5E (6-3)
-7 [ -
Ground surface. y 77 Bid level 7
4 ‘s ". N " 7~ - r___;._.-
}e - LT ’
’ J Y - . L. ',
. 2 h\ . ¥1° :
New reservoir waler surfoce 4 A - .. oy v T
7" r- ;'. <! ) ‘.; ’ ). ) - . { Y
- . . .. . 'y 1" ' . N
s .:‘a"l-_ .-."_-... , .‘ . .'/~ . . . ““ - ‘. ) Permea-b““'?g K . . i
A " \Voids ratia’ V- . l‘ \

Fig. 6-1 Bank storage.

Differentiation of the integral

In order to check the validity of the expression for h1 and to compute
the derivatives needed for flow determination it is necessary to differentiate
the integral which appears in the right hand member of the solution. To find

the derivative let the integral be represented by the area under the curve

shown below
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u
Z_ ~u2du
€ )
o 26

_uZ
_g_—
o 7T

w L—du

Fig. 6-2 Integral and derivative.

If

is represented by the singly shaded area then the increment of I as u

increases from u to u + du is

—u2
dI = i_e__._ du
Za
or,
aI _ 2e (6-4)
o

The upper limit of the integral is:

X
u, =¢ )
Vdat
ah1
To get 3% e note that:
X
ahl i ah1 u
X Ju 9x
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Then

2

- . X
EEl.: H I du _ H 2 e (4“t)
90X 0 du 93x o i Vaot

This is the derivative used for estimating the flow.

Check of the validity of the solution

By differentiation with respect to x

2

x> - &)

2%h " Gat) - ge Ot
1 _ H 2 e 2x _ o

2 Yo — ot 3

X /n Vet Jr (4(!1:)-2-

In the above work the partial derivative of u with respect to x has been

evaluated as:

Ju

_1__1
X Jaat
In a similar manner
2 2
...(_}S_ _(X )
ahl y 31 du _ ” fo.t du _ y 2 e Jot X _ 4 ™
9t o du 9t o 30t o 3 o
< a 2(4at)Z /r
Where
E_li_ -x4a
3t Haat)
5%h ah,
Then o —5 = 3¢ and the differential equation is satisfied.
ax

For the first boundary condition

h, =H for x>0 when t =20
1 o
2 2 g2
h+H~—feudu=H when x = o,
1 0'/— o
To
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Since

2 -u2
= [ e du=1.00
VA

For the second condition

h1 =0 for x=0 for t>0
We have
, 02
h) =H = [e  du=o0
° a0

Then the expression satisfies both the differential equation, and the boundary
and initial conditions. The solution we have is therefore unique (Cohen, 1933).
This means that although we might possibly find another solution differing

outwardly in form from this one it must, nevertheless, yield the same numerical

values as this one for a specified value of the parameter ¢ X ).
4ot

Application of Werner's idealization

A solution of Werner's differential equation 2-3 satisfying the

condition:
h2 =H for x>0 when t =0
o
h2 =0 for x=0 for t>0
is
X
(—
2 2 4ot -u2
u = Ho -= e du
/n 0
Then since u = h22
X
2 4ot _u2
h2 = Ho -75 e du (6-6)
0
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This solution is of limited application because the condition h, = 0 for

2

x = 0 1is one of complete drawdown at x = 0. Treatment of lesser drawdowns

runs into the difficulty of meeting the boundary condition:

h2 = constant for x =0 for t > 0.

For the complete drawdown case, however, the solution obtained is a close
approximation if a, = 55%9 . From this idealization we have obtained a
treatment of the extreme case where the water table is drawn down to the
barrier at the origin. This case can be considered to be out of reach for
the previous development since the drawdown is not small when compared to the
original saturated depth.

It will be of interest to compute the rate of ground water flow at the
origin.

The flow at x at the time t is:

But

Then
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or
_x%
K Hoz e 4ot
£ = (6-7)
T Vaot

As x approaches zero the flow approaches

K H 2
0

F2 = — (6-8)
V41Tozwt
A comparison with the previous result will show that this flow is one-half

what would have been computed on the basis of the first development but the

variation with respect to time remains the same.

Developments of Haushild and Kruse (1962)

These authors employed two methods for extending the range of the drawdown
conditions which could be treated. A second approximation development was made
by the method of Picard (Agnew, 1942) but a more satisfactory treatment was
obtained by utilizing physical concepts such as the following: The flows
obtained from the first approximation 6-1 must be a good approximation to the
true flows because it is only near the origin that drawdowns become large
enough to make the validity of the first approximation questionable. Even
in this area it can be expected that gross discrepancies will be absent
because the solution must show the right drawdown at the origin where the
drawdown is a maximum. Then it is to be expected that a much improved approxi-
mation could be obtained if the water table profile were computed on the basis
of the first approximation flows but with the true saturated thickness
accounted for. Theseé concepts lead to the following formulation

ah3 ah1

K (d+ hg) 555 = KD 32—
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Where d represents the saturated depth at the new water surface level. In
this expression the right hand member represents the flow, as obtained from
the first approximation. The left hand member represents the flow as computed
from the Dupuit-Forchheimer idealization in its nonlinear form.

By integration:

@ + hy?
2 =Dh +C
If
h3 =0 when x =0
e . &
17 72
Then
d + h3)2 =d® 42 Dh,
or, after rearrangement:
- 2 -
hy= [2Dh +d -d (6-9)
In their work they use:
Ho
D1 = (d+ - (6-10)

The development of Moody

In a discussion of Paper 3317 by Haushild and Kruse, ASCE Transactions,
Vol. 127, Part I, 1962, Mr. W. T. Moody developed a solution of the nonlinear
partial differential equation of ground water flow from bank storage when the
Dupuit-Forchheimer assumptions hold. He followed the general method
described by J. Crank, in "The Mathematics of Diffusion," Oxford, 1957,
pages 149-152., An iterative procedure was used to yield an essentially exact
solution of the differential equation:

2h adh,2 _ 3h oh 3

[s + —(-— - — —-l‘-
2 D*9x Tt D 2
9xX 9X
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This is Haushild and Kruse's equation (6). The solution thus developed
is included on figures 6-3 and 6-4 for comparison purposes.
Comparisons

When drawdown is complete, d = 0, and it will be found that the Werner
and Haushild and Kruse solutions becomeHidentical. Furthermore with the ’

Haushild and Kruse choice of D1 =d + 7§" when d = 0, reduces to D1

then the flow computed by formula 6-2 becomes identical with that obtained

= 2
5 -

from the Werner idealization. No choice has yet been made for the value of
D to use in the solution obtained from the Werner linearization but it would
be reasonable to make the same choice as Haushild and Kruse. If this is

done these developments are brought into complete accord. Haushild and Kruse
checked their formula for complete drawdown against laboratory test data and
found a very good agreement. Analytical developments and laboratory test
data are then brought into harmony.

Comparisons with Moody's results are shown on figures 6-3 and 6-4. It
is surprising how well the first approximation solution holds up even when
applied to drawdowns which could well be considered excessive as judged from
the approximations introduced to linearize the differential equation from
which it was derived.

Values of the function
x 2
J e % du

0

3l

can be found in Table 8.
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Chapter 6
Problems

(6-1) A reservoir built in a sandy area has an average length of 20,000 feet,
has been filled for some time, and is then drawn down 10 feet. What will be
the rate of return flow from 40,000 feet of bank, at the end of the first

month following drawdown, if the aquifer properties are?

KD 3,000,000 ftZ/year V =0.15

o 20,000,000 ftz/year

Answer: 16.6 fts/sec.

(6-2) What will be the total return when one month has elapsed since drawdown?
Answer: 2006 acre feet.

(6-3) If the water level in the reservoir stands, on the average, 40 feet
higher than it did before the reservoir was built what will be the leakage rate
five years after éonstruction?

Answer: 8.59 fts/sec.

(6-4) What would be the accumulated leakage loss‘at this time?

Answer: 62165 acre feet.

(6-5) 1If a severe drought caused the reservoir to be emptied, after this
ground water storage had been accumulated, would a part then return to the
reservoir to supplement the flow obtainable from surface storage?

Answer: Yes.
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ChaEter 7

Line source

Canal leakage penetrating to the water table can raise a ground water

ridge from which ground water can flow both ways as shown in the figure below

Ground surfoce. 7

-—
27T b i ',_-" Lottt \"v‘.; Ner AT,
p . . ‘. S )

‘e

L - . .o PAEEEA

Pl

D . A - ""f'Permeabih’tq,_K. |
R | ’Vc_)id_smﬂo.:,\/.-.

¢

Fig. 7-1 Line source

If it is assumed that conditions are sufficiently uniform to cause a parallel
flow the basic differential equation to be satisfied for a first approximation

treatment is:

52

o B
axz

3h
at

This is to be solved subject to the boundary conditions

q 2f at x=0 for t>0

h

0 when t=0 for x>0
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A solution satisfying the differential equation and the boundary conditions

is:

© 2
h = qvédmat X e-u du
= "Zmp ¢ 2 (7-1)
4ot X u
—
4at

Values of this integral may be obtained from Table 9. At x = 0 this becomes:

qv4mat

My = o (7-2)

It will be of interest to compute the flow f passing between planes a unit

distance apart. This flow is, to a first approximation:

2
X o 2
£=-gp 2. q/n |_ /Aot e 30t + _.e-uﬂ
9x 2T X 2
=
Vaat

To obtain this result the procedure for differentiating an integral has been
followed. This was described previously. In the present case, however, the
variation is in the lower limit which introduces a negative sign. An evalua-

tion of the integral is needed. To obtain this integrate by parts with

= o U = du

u =e dvl ==
u

-u? 1

du1 = -2ue du V1 e

Then since
Iuldv1 =uv, -Jvldu1
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® 2 2 2
[ e %du_ eV J 2ue” "~ du
2 - u
LX) u (=X )
V4ot
Vot x2 <
-(Gz) ( )
4at 2
_ Ydot e = '/1?_2_ Ydat eV du
X = .

In obtaining this result use has been made of the relation

Then by substitution

-(i_l(z_t) -(%1(%) ( 4xat) 2
£ = gi? _ Yaot e 4ot i } . /;_f% I oY 4y
"o
or ( )
f = 521 1 - -;—_ [ fat e“uzdu (7-3)
T 0

Values of the integral shown here may be obtained from Table 8. When

x>0 f-» %— as it should. It will appear later that a formula of this

general type will hold for a point source, a line source of finite length

or a line source of infinite length.
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ChaPter 7

Problems

(7-1) A canal constructed in alluvial sediments in a river valley leaks at
the rate of one cubic foot per second per mile of length. If water is run in
the canal during an irrigating season lasting six months how high a mound will
the leakage create under the canal?

Aquifer properties are: K = 0.0040 ft/sec D = 60 ft.

KD = 0.240 ftz/sec V = 0.160 o = 1,50 ftzlsec

Answer: 2.16 feet.

(7-2) What rise of the water table is to be expected, at this time, at a
distance of one quarter of a mile from the canal?

Answer: 1.68 feet.

(7-3) What will be the ground water flow, per mile of canal, at the quarter
mile distance at this time?

Answer: 0.424 cubic feet per second per mile.
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Chapter 8

Parallel drains

In areas where natural drainage is inadequate, irrigation will cause the
water table to rise progressively until the land becomes water logged. To
improve the drainage, parallel drains can be installed. These may take the
form of drainage canals or of tile drains laid in a trench and back filled.
The latter arrangement has the advantage that the installation of drains does
not take any land out of production.

First approximation solution

A solution of the differential equation 2-2

Subject to the conditions

h=0 when x=0 for t>0
h=0 when x=L for t>0
h=H when t =0 for 0<x< 1L
is
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h == y S———— sin (;{) (8-1)
n=1,3,5...

A cross section normal to the drains is shown in figure 8-1. When x =‘%

this expression takes the form

h, = y ~———sin (rzﬂ) (8-2)
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