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Section News (cont. from page 355) 

de Marsily Receives

1994 Horton Award 

The Robert E. Horton Award !or outstand
ing contributions to the geophysical aspects 
of hydrology was presented to Ghislain de 
Marsily at the 1995 AGU Spring Meeting Hon
ors Ceremony in Baltimore on May 30, 1995. 
The award citation and de Marsily's response 
are given here. 

Citation 

"By conferring the Horton Award on Ghis
\2.in de Marsily, the Hydrology Section of 
AGU and the larger hydrological community 
i1.onors one of its distinguished members. 
Though primarily a recognition ol the 
achievements of an individual, the prize also 
acknowledges the school of thought and the 

-,,ific environment in which the recipient

?� (,.,..b� 
� pvl;,/;_r.Jocf, I 

"Due to Ghislain, Fontainebleau has be
come a place of pilgrimage for groundwater 







"R'statts," well diggers since the tenth century in the R'hir wadi, Algeria. At the begin
of this century these men were still able to dig and maintain the wells, diving in the dark
than 80 m down to find the water, "this marvellous element which can bring life to all

(the Koran). (Photo by Roger Viollet.)
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Foreword

Understanding the factors that control the flow ofwater through soils and
rocks has led to the development of one of the most important fields in the
earth sciences: groundwater hydrology. Over the years, an impressive
of theory and practice has been developed. Itwas recognized very early
although the basic concepts offluid mechanics must still hold, the nature of
underground flowpaths must be understood in order to develop meaningful
solutions to groundwater problems. This is not an easy task because the
complexities of the geologic process cause many variations in natural
systems.

Early treatises on the subject of groundwater hydrology usually started
with the simplest flowsystems: isotropic and homogeneous porous media. In
this way, it was possible to develop analytic solutions through the application
of rigorous mathematical methods. These have provided valuable insights
into what to expect in the field, but as the groundwater hydrologists gained
experience, it became clear that these solutions were often inadequate.

Groundwater systems are not often very homogeneous over distances of
any practical significance. In the case of an aquifer in a porous medium
(sandstone or limestone), variability ofthe flow properties in both the hori
zontal and vertical directions is a result ofthe vagaries ofsedimentation. And
there is another problem that the groundwater hydrologist has had to face.
Discontinuities of one kind or another are commonly present in rock sys
tems. These may create boundaries that limit the flow regime or produce
unusual flow conditions internal to the system. The presence offractures or
joints in the rock mass can have a profound effect on the flow regime. The
groundwater hydrologist has thus been forced to develop methods ofanalyz
ing fluid flow in rock systems with very complex geometries.

The spatial variability of the flow regime due to the geologic processes at
work has led to another problem that must be treated in the field ofhydro
geology. The flow field will usually extend for significant distances outside
the area where a detailed record ofhydraulic properties has been developed
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X Foreword

through drilling and testing. Thus, the flowregime will be adequately known
in one part of the total flow system and less and less well known as distances
extend to more remote regions.

In general, the spatial variability of the controlling parameters of a
groundwater system (aquifer thickness, hydraulic head, permeability, trans
missivity, storage, etc.) is not purely random; it can often be shown that some
kind ofcorrelation exists in the spatial distribution ofthese parameters. The
problem then is to develop through the methods ofgeostatistics an appropri
ate expression for the spatial correlations that exist. Kriging can be used as a
method for optimizing the estimation of a regionalized variable, i.e., a hy
draulic property that is distributed in space and measured at a network of
points. When the uncertainties associated with these estimates are too high,
the problem should be considered as a stochastic rather than a deterministic
process. Stochastic partial differential equations can then be used to analyze
the problem.

The widespread pollution of groundwater with various chemicals and
toxic wastes has necessitated the study of chemical transport. Solutes are
diffused and advected during this process, and the dissolved (or suspended)
species mayor may not react with the rock matrix through which the
groundwater solutions flow. Considerable variation in the microscopic and
macroscopic velocities within the complex flow paths of the rock mass
results in dispersion of the dissolved species.

It is not surprising that numerical solutions to groundwater problems are
often necessary to solve the complex problems that can be encountered in
the field. A tremendous effort has been expended in developing accurate
numerical methods of handling both the flow and transport equations.
Sometimes the semianalytical approach is used when it is possible to first
obtain a solution in the Laplace transform domain and then apply numerical
methods ofinversion to obtain the final solution. Numerical methods have
been developed using either finite differences or finite elements. More re
cently, boundary elements of boundary integral methods have been pro
posed for solving the flow equations.

As the application of fluid mechanics to the problems of water moving
through rock systems has progressed, the science of groundwater hydrology
has slowlyemerged. The complications ofthe geologicenvironment indicate
the need for care in the application of established theories and an awareness
of the validity of the assumptions that one must make. Realistic solutions to
groundwater problems must involve a combination ofthe right application
ofphysical principles with a mature insight developed through experience in
the laboratory and field.

This approach is very well demonstrated in this book. Emphasis is placed
on the fundamental properties ofporous and fractured rocks that control the



Foreword

flow regime. The basic equations and methods of their solution for single
and multiphase floware presented in detail. An extension ofthe treatment of
flow equations to include transport is included. The author was one of the
first to recognize the value ofthe geostatistical and stochastic approaches in
hydrogeology and he has developed a thorough treatment of these topics.
Numerical methods of solving the flow and transport equations are also
reviewed. The reader will find this a very comprehensive treatment. The
appearance of Quantitative Hydrogeology represents a significant step for
ward for this field.

Berkeley, California PAUL A. WITHERSPOON





Preface

This book attempts to combine two separate themes: a description of one
of the links in the chain of the water cycle inside the earth's crust, i.e., the
subsurface flow, and the quantification of the various types of this
obtained by applying the principles offluid mechanics in porous media. The
first part is the more descriptive and geological of the two. It deals with the
concept ofwater resources, which then leads us on to other links in the cycle:
rainfall, infiltration, evaporation, runoff, and surface water resources. The
second part is necessary in order to quantify groundwater resources.
points the way to other applications, such as solutions to civil engineering
problems, including drainage and compaction, and solutions to transport
problems in porous media, including aquifer pollution by miscible fluids,
multiphase flow ofimmiscible fluids, and heat transfer in porous media,
geothermal problems. However, the qualitative and the quantitative aspects
are not treated separately but are combined and" blended together, just as
geology and hydrology are woven together in hydrogeology;

This book is intended for engineers with a mathematical background.
Theywill find a fairly detailed description ofthe physical processes occurring
in porous and fractured media followed by the development ofthe basic
and transport equations for both steady and transient states. Outlines are
given of the methods for solving these basic equations as well as the most
common analytic expressions used in handling practical problems. Basic
geologic structures containing groundwater and the hydrologic processes
occurring within them are described together with practical methods for
measuring the relevant physical parameters ofthe media. We normally give
orders of magnitude of these parameters for various rock types in order to
provide an initial data base for solving practical problems. The International
System ofunits (SI, i.e., metric) is used throughout. The appendix contains
complete definitions and conversion factors for nonmetric units.

Geologists who do not want to burden themselves with the mathematics
will find a complete description, given in simple terms, of the assumptions

xiii



xiv Preface

and conditions required for applying the equations and formulas, which is
not always found in other treatises.

Apart from the classical basic flow equations, the main chapters concern
(i) transport phenomena and pollution problems, (ii) the stochastic defini
tion ofmedium parameters for addressing the problem ofspatial variability,
which includes a chapter on kriging as applied to hydrology, and (iii) the
principle ofnumerical techniques, finite differences, integrated finite differ
ences, and finite elements, which nowadays are prerequisites for solving
practical groundwater problems.

A great effort was made to keep the book short. As in a quote from Goethe
in a letter to a friend, "If I had had more time, the letter would have been
shorter." The developments have been kept as briefas possible and the strict
selection ofthe material is guided by the criterion ofpractical applicability.

This book was originally written in French as lecture notes for the students
in engineering at the Paris School of Mines. It was later extended during a
sabbatical that the author spent at the Department ofHydrology and Water
Resources at the University of Arizona, Tucson. The help and advice of
colleagues both at the Paris School of Mines (M. Armstrong, J. P. Del
homme, A. Dieulin, P. Goblet, P. Hubert, P. Iris, E. Ledoux, G. Matheron,
and H. Pelissonnier) and at the University of Arizona (S. N. Davis, L.
Duckstein, T. Maddock, D. E. Myers, S. P. Neuman, and E. Simpson) were
greatly appreciated. Professor James Philip O'Kane of University College,
Dublin, kindly reviewed the manuscript and helped to improve it im
mensely. Professor Paul A. Witherspoon (University ofCalifornia, Berkeley)
has often acted as a guide for the author's own research and has contributed
the foreword. Professor Daniel F. Merriam (Wichita State University,
Kansas) has provided constant encouragement from the earliest stages ofthe
book. Professors Lynn W. Gelhar (Massachusetts Institute of Technology,
Cambridge) and Alan L. Guijahr (New Mexico Institute of Mining and
Technology, Socorro, New Mexico) were very helpful guides to the new
stochastic theories during their sabbaticals in Fontainebleau and later as
well.

This book is dedicated to Dr. Richard E. Jackson (Environment Canada,
Ottawa), who strongly urged its translation from the French and with whom
the author believes he shares the irresistible fascination for the magic ofa lost
paradise: the Arizona desert.
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Precipitation (rainfall and snow) falling on the surface of the earth accounts
for almost all of the water entering into the soil. We shall study the case of
rainfall and snow separately and follow up with other types of recharge.

When rain falls on the ground, three processes are set in motion: (1)wetting
of the soil and infiltration, (2) surface runoff, and (3) evaporation.

:1..1. Wetting and Infiltration

In most countries where it rains, the ground contains a significant amount
of water in normal conditions. A usual profile of the quantity of water versus
the elevation is given in Fig. 1.1.

This moisture content is obviously dependent on the porosity and the
permeability of the soil. Below a certain elevation N, the water content no
longer increases with depth. The soil is said to be saturated: all the
spaces (pores) in the soil contain water. This water is said to belong to the
water table aquifer, or phreatic aquifer. The term aquifer will be further
defined in Chapter 6. The water table is the surface, at elevation N, constituting
the upper limit of the aquifer.

Above the elevation N, the soil is said to be unsaturated, as the empty spaces
in the soil contain both water and air simultaneously. The relationship

1



2 1. The Water Cycle

Elevation z
o ------------------------ Soil surface

Unsaturated zone

N ---------- - ---------------

Saturated zone

Fig. 1.1. Typical moisture profile in a soil.

Aquifer surface
(water table)

Moisture content

between the two is discussed in Chapter 2. It is sufficient to note here that the
water is, on the whole, subjected to the forces of gravity in the saturated zone
and, furthermore, to the capillary forces (which very soon become the most
influential) in the unsaturated zone.

Water falling on the soil surface begins by moistening its upper layer (a few
centimeters). The resulting moisture profile is shown in Fig. 1.2. This increase
in moisture on the surface does not necessarily cause an immediate significant
vertical flow. The water is retained as in a sponge.

As the water content continues to increase, the water spreads downward
and moistens a deeper zone. If rain continues long enough, the moistening will
be progressively greater and eventually cause infiltration, i.e., an inflow into
the aquifer. However, this process is very slow: depending on the depth at
which the aquifer is situated and the permeability of the soil, it may take a
week, a month, or several months for the water to reach the aquifer.

In the case of a continuous and large flux of water at the surface (e.g.,
extremely long rainfall, or artificial recharge), a decrease in the infiltration rate
can be observed: from an initially large value, the infiltration flux decreases to
a much smaller value. The mathematics of infiltration will be described in
more detail in Chapters 2 and 9.

In temperate zones, a first-order estimation of the height of water naturally
infiltrated into the aquifer is about 300 mm/yr, i.e., 10 liters S-1 km >'.

z
o

Soil surface

Aquifer surface
"'---, (water table)

N --------

Moisture content

Fig. 1.2. Typical moisture profile during a storm.
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Elevation z
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between the two is discussed in Chapter 2. It is sufficient to note here that the
water is, on the whole, subjected to the forces of gravity in the saturated zone
and, furthermore, to the capillary forces (which very soon become the most
influential) in the unsaturated zone.

Water falling on the soil surface begins by moistening its upper layer (a few
centimeters). The resulting moisture profile is shown in Fig. 1.2. This increase
in moisture on the surface does not necessarily cause an immediate significant
vertical flow. The water is retained as in a sponge.

As the water content continues to increase, the water spreads downward
and moistens a deeper zone. If rain continues long enough, the moistening will
be progressively greater and eventually cause infiltration, i.e., an inflow into
the aquifer. However, this process is very slow: depending on the depth at
which the aquifer is situated and the permeability of the soil, it may take a
week, a month, or several months for the water to reach the aquifer.

In the case of a continuous and large flux of water at the surface (e.g.,
extremely long rainfall, or artificial recharge), a decrease in the infiltration rate
can be observed: from an initially large value, the infiltration flux decreases to
a much smaller value. The mathematics of infiltration will be described in
more detail in Chapters 2 and 9.

In temperate zones, a first-order estimation of the height of water naturally
infiltrated into the aquifer is about 300 mm/yr, i.e., 10 liters S-l km '".

z
Soil surface

o

Aquifer surface

---. (water table)
N --------

Moisture content

Fig. 1.2. Typical moisture profile during a storm.
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1.2. Surface Runoff

If the rain is heavy, the soil is unable to absorb the water. After the first
moments, when the uppermost layer of the soil is moistened, an excess of
water appears on the surface (Fig. 1.3).

The upper layer of the soil is saturated in a zone of no great depth, and the
moisture does not spread fast enough for the falling rain to be absorbed. Thus
a film of water may move around on the ground surface. This is what we call
runoff. One even distinguishes, somewhat artificially, between pure surface
runoff and "hypodermic flow," which takes place in the first few centimeters of
thesoil or the vegetation. This runoff moves along the line of the steepest slope
of the ground and feeds the natural drainage network of the soil: UH''-UC;'',

brooks, rivers, etc. It gathers up solid particles through erosion, which gives
rise to the transport of solids in streams.

In cases where the ground is almost completely impermeable (urban areas
or zones with outcrops of rocks of very low permeability) the runoff appears
almost instantaneously, as soon as the water has filled the first hollows in the
ground (e.g., puddles).

Finally, it is worth noting that the vegetation creates a screen for the above
mentioned mechanisms: the first of the rain is caught up by the trees and grass,
and this may prevent a slight rainfall from starting the wetting process.

1.3. Evaporation

Even during the rainfall a large portion of the water immediately
evaporates. Indeed, the moisture in the atmosphere is rarely at the saturation
point even during a thunderstorm. Once the rain stops, this evaporation
continues and gradually dries the water caught up by the vegetation or
remaining on the surface. It does, of course, continue on the surface waters
(streams, lakes) and on the ground surface.

Soil surface

Z Film of water

o~~~~~

Moistu re content

Fig. 1.3. Appearance of surface runoff.
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Evaporation also continues inside the ground itself. Because of the existence
of an air phase in the unsaturated zone, this evaporation might occur
simultaneously over the entire profile and even extend nearly as far as the
water table itself: however, because the mechanism by which this moisture is
extracted into the air phase is so slow (diffusion toward the surface), the
evaporation at the soil surface is the dominant phenomenon when the soil is
not extremely dry. The water in the soil is "sucked up" and ascends by
capillarity to the surface, where it evaporates.

The power of the atmosphere to extract water from the soil decreases with
the moisture content of the soil: the smaller this is, the more the water is bound
to the ground by capillarity and the more energy is needed to extract it. The
effect also depends on the power of the atmosphere to cause evaporation, i.e.,
on the temperature, the wind, and the exposure to the sun. In the summer,
when this evaporation is intensive, the atmosphere generally takes back all the
moisture received by the profile during a storm. Eventually there is no
infiltration into the aquifer. Figure 1.4 shows a succession of characteristic
moisture profiles in the soil in summer and Winter, illustrating the seasonal
differences. In summer, when there is no rainfall, evaporation at the surface
causes water to move upwards from the water table to the surface by
capillarity, but the deeper the water table, the smaller the flux.

In practice, it is accepted that the loss through evaporation from the aquifer
becomes negligible, even in tropical or arid zones, when the aquifer is situated
at a depth of 10-15 m below the ground surface. We shall explain this
capillary rise in Chapter 2.

Another phenomenon plays a role similar to that of the evaporation on the
ground: plant transpiration. The roots of the plants are able to take up water
from the soil in the unsaturated zone, or even in the saturated zone, if it is near
(some trees have roots lO-m long or longer).

This transpiration thus gradually reduces the moisture content of the soil.
Below a certain border-line value of moisture content, the plants are not able
to extract water from the soil: this is the wilting point, which varies from one
species to another. This is generally expressed as suction or tension in bars,
rather than in moisture content (see the study of the unsaturated zone in
Chapter 2).

The two phenomena, evaporation and transpiration, are generally treated
together without distinction under the term "evapotranspiration," and it is
this quantity which one tries, with difficulty, to estimate or measure.

1.3.1. Empirical Estimation

Several empirical formulas that give the evapotranspiration have been
developed. They are based on climatological measurements (temperature,
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Fig. 1.4. Changes in the moisture profile of the ground after a rainfall.
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sunshine, wind velocity, etc.). We give, in Appendix 1, as an example, the
formulas of Thornthwaite, Turc, and Penman. They estimate a monthly
"potential" evapotranspiration (called ETp) that represents the evaporating
power of the atmosphere observed on the ground in a plant-covered area
where there is at all times sufficient water in the soil for the needs of the
vegetation. If there were a shortage of water, the real evapotranspiration
(called ET R) would be a function of the ETp and the quantity of available
water.

As a first approximation, one imagines that the upper layer of the soil (the
first meter, for example) constitutes a reservoir, the readily available supply in
the soil (RAS), the maximum capacity of which is estimated (usually 100 mm).
In this reservoir, evapotranspiration may occur freely at the potential ETp

rate. When it is empty, the evapotranspiration can only feed on the
precipitations of the given month. When it is full, the excess moisture generates
infiltration towards the aquifer. During a given month, one calculates the
balance of the rainfall, the ETp , and the reserve in the RAS, which makes it
possible to compute the ETR and the infiltration into the aquifer.

Table 1.1 gives an example, for a given year, from the Camlibel (Turkey)
plateau region, using the Thornthwaite formula to calculate the ETr- Thus we
can estimate, as a first approximation, that infiltration is 37 mm/yr and the
real evapotranspiration 392 mm/yr.

1.3.2. Measurements

There are also direct methods for measuring the evapotranspiration on a
portion of the ground, based on measurements of its energy balance (radiative,
convective, and conductive heat flux). The term for latent heat of evaporation
given by the balance is converted into water mass [see, in particular, Choisnel
(1977)]. But this method is painstaking and, at the moment, it is applicable
only to very small surfaces of the order of 1 m '. Projects are underway for
extending its use by means of remote sensing [see Seguin (1980)].

Another method is the use of a lysimeter. This is a large barrel (e.g. diameter
1 m, depth 2 m) filled with soil and buried in the ground so that its top is at the
same elevation as the ground surface. Vegetation can be grown on and around
the Iysimeter. One can either measure the infiltration flux seeping out of the
bottom of the barrel (which can be reached by a tunnel) or weigh the barrel
regularly, thus determining rainfall and daily evapotranspiration. Lysimeters
are very expensive and not very precise: when the soil dries up, voids can
develop where the soil is in contact with the barrel, creating short-cuts for
infiltration that do not exist in nature. Furthermore, the limited depth of the
barrel causes a discontinuity in the pressure and moisture profile of the soil,
which is not present in nature (see Chapter 2).



Table 1.1

Estimation of Evapotranspiration and Infiltration

Jan. Feb. March Apr. May June July Aug. Sept. Oct. Nov. Dec. Annual

Mean temp. (0C) 6 8.2 13.1 18.3 23.1 27.6 29 29.9 26.7 21 14.7 8.7 18.9
ETp(mm) 5.2 9.6 30.8 65.8 118.3 171.5 189.5 190.6 133.2 75.4 31.4 10.5 1031.8
Rainfall (mm) 49.9 38.1 48.7 47.9 58.3 38.1 8.7 5.7 17.6 28.4 36.4 51.1 428.9
RAS(mm) 90 100 100 82.1 22.1 5 45.6
Infiltration (mm) 18.5 17.9 36.4
ETR(mm) 5.2 9.6 30.8 65.8 118.3 60.2 8.7 5.7 17.6 28.4 31.4 10.5 392.2
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Evaporation is a very important phenomenon in hydrology. Indeed, if we
try to assess the entire hydrologic cycle on the planet, we find the mean figures
in the accompanying tabulation (Budiko et al., 1962).

Depth of water fallen on dry land
Evapotranspiration
Stream and groundwater flow toward oceans
Direct evaporation from oceans
Depth of water fallen on oceans

720mm
410 mm (57%)
310 mm (43%)

1250mm
1120mm

The figures nearly balance, if one takes into consideration that the oceans
take up 70% of the surface of the earth and the continents 30%:

Excess of precipitation on land in relation to evapotranspiration: 310 x
0.3 = 93 mm;

Deficit in precipitation on the oceans as compared to the evaporation:
130 x 0.7 = 91 mm.

The infiltrated water circulating in the aquifers (which is our main concern
in this book) flows out and is eventually found in the streams, which it feeds
even when there is no rainfall; this recharge from the underground medium to
the surface flow net is called baseflow, as opposed to stormflow, which includes
a component of surface runoff.

This is the reason that engineers working in surface hydrology often call the
real evapotranspiration "the flow deficit": it is indeed that part of the
precipitation that does not eventually find its way into the streams.

In spite of the great variations in the rainfall, which depends on the
geographic location, the altitude, the year, etc., and the large variety of runoff,
infiltration, and evapotranspiration mechanisms, this deficit, strangely
enough, does not vary a great deal; in temperate climates, it is, on the average,
on the order of 470 mm/yr.

1.4. Snow

The precipitation that falls in the form of snow has a fate similar to that of
rain, but with a time lag. At the outset, there is no wetting, infiltration, or
runoff. Evaporation occurs as sublimation of the snow. When the snow melts,
infiltration and runoff begin.

The infiltration rate is generally higher because the recharge of water into
the soil is slower than in the case of rain. However, if the soil is constantly
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frozen at a certain depth (permafrost), a large portion of the water becomes
runoff and may carry away the top layer of the soil, which is not frozen
slide).

1.5. Schematization of the Hydrologic Cycle

In Fig. 1.5, the elements of the hydrologic cycle described above are
schematically summarized, based on Eagleson (1970). Some figures should be
added, as follows.

1.5.1. Statics

Estimation of the volumes of water available in the world is given in the
accompanying tabulation.

Oceans
Snow and ice
Groundwater at a depth of

less than 800 m
Groundwater at a depth of

more than 800 m
Unsaturated zone
Fresh water lakes
Salt water lakes
Rivers
Atmosphere

1.5.2. Dynamics

1320 million km'
30 million km 3

4 million km 3

4 million km 3

0.07 million km 3

0.12 million km '
0.10 million km '
0.001 million km '
0.013 million km '

97.20%
2.15%

0.31%

0.31%
0.005%
0.009%
0.008%
0.0001%
0.001%

The annual volume of precipitation in the world may be estimated at 0.5
million krn 3

, i.e., about 0.04% of the volume of water on the earth, or, again, 40
times the volume of water vapor in the atmosphere. This implies a very fast
renewal of this atmospheric moisture: the average time the water vapor
"spends" in the atmosphere is only 9 days.

1.6. Different Branches of Hydrology

The study of the water cycle or hydrology in its wider sense is usually
divided into three separate disciplines: meteorology, surface hydrology, and
hydrogeology.
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Meteorology or climatology comes first in the study of the water cycle. It has
several aspects: (1)composition and general circulation of the atmosphere; (2)
energy balance of the atmosphere; (3) precipitation, rainfall and snow,
snowmelt, artificial rain; and (4) evaporation and evapotranspiration.

The random nature of the climate results in a great variability, on different
levels of time and space, of the precipitation, which is the first link in the chain
of the hydrologic cycle. This precipitation is consequently studied from a
statistical viewpoint, which is also used in the following links in the chain.

Surface hydrology is concerned with flow in the hydrographic network. It
may be studied with several aims in mind:

(1) Evaluation of available resources, either in their natural state or after
development (dam), and the calculation of the reservoir volume necessary to
ensure a given flow.

(2) Forecasting of flood risks and the works required to control them
(drainage network, retarding basin). Very often the works (dams) have to fulfill
several simultaneous and often contradictory needs: a reservoir to control
floods must be emptied as fast as possible, and this is directly antagonistic to
the objective of a reservoir meant to increase flow at low water. Hence the
difficult management problems attached to multipurpose installations.

In hydrology, two methods are commonly used:

(1) The stochastic method: because of the variability of rainfall, stream
flow is studied as a random variable.

(2) The deterministic method: the process of runoff and infiltration is
studied from a physical deterministic viewpoint (flow equations) based on an
impulse assumed to be known, rainfall, on which the entire variability is
concentrated.

The basin may be represented as a black box in which its components are
lumped together, which one studies according to the theory of systems
analysis (Fig. 1.6).

On the other hand, one may study the watershed from a physical point of
view by considering all the physiographic parameters of the medium.
Groundwater hydrology or hydrogeology is our main concern in this book.

Input

(rainfall)

Black

box
Output

(flow)

Fig. 1.6. Black box system.
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Concrete

Fig. 1.7. Condensation of atmospheric water vapor.

1.7. Other Possible Origins of Groundwater

Most of our groundwater is part of the hydrologic cycle described above
and is called cyclic water. However, there are other ways in which the ground
may be recharged with water:

Condensation of atmospheric water vapor in the empty spaces of the
ground. This is the equivalent of morning dew on the surface. This
phenomenon can be of some importance and is usually called "occult
precipitation." In ancient times, it was reported that the city of Theodosia in
Crimea was supplied with water from a huge pile of rocks linked to seven
fountains. Experiments made in Montpellier (France) have given (based on
Geze, 1967) a flow of 2 liters/day for a pile of 5 m ' of rocks (see Fig. 1.7). This
is also cyclic water.

Juvenile water. This water has its origin deep down. A granitic magma
expells a small amount of water when it cools. It has been calculated that a
magma of 1000 m thickness, containing 5% water in weight, gives rise to a flow
of the order of 25 liters min -1 km - 2 a figure that should be compared to 10
liters S-1 km- 2 (the order of magnitude of infiltration in temperate climates
of cyclic waters). It is therefore usually negligible (Geze, 1967).

Fossil water. This is cyclic water dating from a more humid period in the
Quaternary period. A good example is the Sahara desert, which contains large
amounts of fresh water infiltrated a fewthousand years ago. However, a minor
recharge still occurs during exceptional storms (about once every 30 yr).
Another case of fossil water is connate water, generally saline, which dates
back to the formation of the sediments.

Thermal water. This is mostly cyclic water which follows complicated
paths, is heated at depth and then ascends toward the surface by way of
thermal springs.
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Most rocks and soils naturally contain a certain percentage of empty
spaces, which may be occupied by water or fluids. This is what is known as
their porosity. These voids must be distinguished from their interconnecting
pathways, which allow fluids to circulate through them: this second property,
the permeability, is examined in Chapter 4. Sufficeit to say that porosity is a
necessary, but in itself insufficient, condition for permeability.

In the study of porosity, we distinguish between (1) the existence of voids
and their geometry proper, defining the total porosity, and (2) the manner in
which the fluid is distributed in these voids and the ensuing fluid-solid rela
tions, which enable us to define the kinematic (or effective) porosity.

Finally, we describe how to measure the porosity and the fluid pressure in
the pores.

13
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2.1. Total Porosity

(a) Granulated rocks. Most rocks are constituted by solid mineral
particles, more or less tightly stuck together, forming a skeleton around which
empty spaces remain. These are porous media in terms of fluid mechanics. For
example, sand and sandstone have a total porosity that may reach 30%.
However, even rocks that are generally thought to be solid have a certain
porosity; examples are limestone, dolomite (particularly secondary), and even
crystalline and metamorphic rocks (from 1 to 5%).

Clays belong to a separate category. Their constituent elements resemble
thin shavings and are organized into "sheets," which are stacked in parallel
layers separated by variable intervals where a fluid might lodge. This gives the
clays, in particular, the property of swelling in the presence of water.
Furthermore, we shall see that this water is strongly linked to the solid clay
particles. All the same, the percentage of voids may be very high, on the order
of 40% and even up to 90%, in unconsolidated marine red clays.

(b) Fractured rocks. Fracturing is a special case of voids in solid rocks.
Because of tectonic movements, e.g., faults, fissures, joints, cracks, openings
along bedding planes almost all rocks in the earth's crust are fractured. These
fractures are generally oriented in at least two (generally three or four) main
directions, which cut up the rock into blocks (Fig. 2.1).

We then have a network of fractures, more or less interconnected, which
may create voids in the rock, if the fractures are not sealed by some kind of
deposit (clay, calcite, quartz, etc.). In this case, we talk about fracture porosity,
as opposed to the interstitial porosity already mentioned. Moreover, these two
types of porosity may coexist (sandstone, limestone, etc.).

(c) Definition.

I
. volume of the voids

Tota porosity w = --,--,-------,----:----:
total volume of the rock

Soil mechanics also uses

id rati volume of the voids
VOl ratio e = .

volume of the sohd

Fig. 2.1. Typical fracture network.
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Both are of course dimensionless. We shall always use OJ, but one may pass
from one to the other by

eOJ = e - OJ
i.e.

e
OJ=e+I'

OJ
e=--

OJ-I

(d) Representative elementary volume or randomfunctions: Definition of the
local properties of a porous medium. The notion of porosity is easy enough to
understand but, on reflection, it poses some problems if we want to define it
with precision. We shall discuss them here while keeping in mind that the
following applies to other properties of the porous medium as well, such as
permeability.

There are two accepted ways of defining the local properties of a porous
medium: the notion of the representative elementary volume (REV) and that
of the random functions (RF, which is also expressed as "ensemble average").
We shall see that these two notions implicitly influence any description of the
spatial variations of the hydrogeological parameters.

The whole problem stems from the fact that the notions of porosity and
permeability, which are notions concerning points in an equation with partial
derivatives, for instance, cannot be defined or measured at single points, since a
porous medium is a conglomeration of solid grains and voids. Below a certain
scale of volume, porosity and permeability have no physical significance.

The REV method consists in saying that we give to one mathematical point
in space the porosity or permeability of a certain volume of material
surrounding this point, the REV, which will be used to define and possibly
measure the "mean" property of the volume in question. Consequently, this
concept involves an integration in space. It is obviously the first method that
comes to mind. Behind it lies the idea of a sample, which is collected and from
which the relevant property is estimated by measurement. More exactly, the
size of the REV is defined by saying that it is

(1) sufficiently large to contain a great number of pores so as to allow us to
define a mean global property, while ensuring that the effectof the fluctuations
from one pore to another are negligible. One may take, for example, 1 cm' or
1 dm'.

(2) sufficiently small so that the parameter variations from one domain to
the next may be approximated by continuous functions, in order that we may
use the infinitesimal calculus, without in this way introducing any error that
may be picked up by the measuring instruments at the macroscopic scale,
where meters and hectometers are the usual dimensions.

This is, incidentally, a bit like the problem in fluid mechanics of passing
from the "corpuscular" scale to that of the "particle of matter." It should be
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p
Size of the REV

Fig. 2.2. Definition of the REV.

noted that in a fractured medium, the size of the REV may be quite
astonishingly large so as not to satisfy the second hypothesis of "continuous
functions" on the scale of the measuring instruments.

The size of the REV (measured, for example, by one of its characteristic
dimensions 1, such as the radius of the sphere or the side of the cube) is
generally linked to the existence of a flattening of the curve that connects the
studied integral property P with the dimension 1(Fig. 2.2). However, nothing
allows us to assert that such a flattening always exists. The size of the REV thus
stays quite arbitrary.

Other important objections that can be made to this conception of the
porous medium are of two kinds. First, it is very badly suited to the treatment
of discontinuities in the medium. When, in a thought experiment, the REV is
moved across a discontinuity, the studied property is subjected to a
continuous variation (Fig. 2.3). This sometimes poses problems of how to
correctly represent boundaries or limits between two media. Second, the most
important objection is that it gives no basis for studying the structure of the
property in space. The most that can be said is that the spatial variations of the
studied property must be smooth in accordance with the same thought process
as above concerning the discontinuities.

MarIe (1967) has suggested a more rigorous conception of spatial integra
tion. In order to achieve this, he proposes the use of an integrable nonnegative
weighting function m(x) such that its integral, when extended over the whole
space, is equal to 1; this weighting function would not necessarily have a
bounded support. The macroscopic magnitude <a)(x) will then be defined

Medium 1

Medium 2

REV

Line of

discontinuity

z

Fig. 2.3. Definition of the properties of a discontinuous medium using the REV.
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from the local microscopic magnitude a(x) by a convolution extended over the
whole space of a by m:

<a)(x) = fa(x + x')m(x') dx'

where x stands for the coordinates in three-dimensional space (Xl' X 2, x 3 ) . For
the study of porosity, we choose an indicator a(x). If the point x is in a pore,
a(x) = 1; if it is in a grain, a(x) = O.

Furthermore, Marle suggests that this definition be generalized to the
properties "a" that are not continuous in the whole space* and that can be
described by distributions. The convolution is then taken in the sense of
distributions.

This method has the advantage of making the function <a) continuous and
indefinitely differentiable, even if a is not, by a suitable choice of m. If the
problem of the size of the REV is eliminated, that of the choice of the
weighting function still remains arbitrary. However, with the help of this
weighting function it is possible to establish the connection between this
method and the second, which we examine in the following.

The random functions (RF) method is a more powerful concept. It consists
in saying that the studied porous medium is a realization of a random process.
Let us try to visualize the concept. Suppose that we create in the laboratory
several sand columns, each filled with the same type of sand. Each column
represents the same porous medium but is somehow different from the others.
Each column is a "realization" of the same porous medium, defined as the
ensemble of all possible realizations (infinite in number) of the same process.

A property like porosity can then be defined, at a given geometrical point in
space, as the average over all possible realizations of its point value (defined as
oin a grain and 1 in a pore). One speaks of "ensemble averages" instead of
"space averages." For the sand columns just described, it is obvious that the
ensemble average (or expected value) of these point porosities will be identical
to the space average defined by taking the column itself as the REV.
Furthermore, this ensemble average will be the same for any point of the
column. We will define later the conditions necessary for this to be true.

In more general terms, a property Z will be called a random function (RF)
Z(x,~) if it varies both with the spatial coordinate system x and with the "state
variable" ~ in the ensemble of realizations. Then Z(x, ~l) is a realization of Z;
Z(x o, ~) is a random variable, i.e.,the ensemble of the realizations of the RF Z
at Xo; and Z(xo, ~d is the single value of Z at Xo for realization ~I' To simplify
the notations, the variable ~ is generally omitted.

* For example, a surface density of the adsorbed matter on the fluid-solid interface.
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If we want to find a less abstract example of a random porous medium, we
can recall the countless alluvial plains and fans (debris cones) descending over
several thousands of kilometers from the Andes to the coasts of Peru and
Chile, which are created by erosion of the same materials under the same
conditions and consequently constituted by the same kind of deposits. There,
we have a very large number of realizations of the "same" medium.

The immense advantage of the stochastic approach is that one can study
other statistical properties of the porous medium in the ensemble of
realizations than just the expected value. One very often uses the variance
(called dispersion variance, see Chapter 11) of the property, which character
izes the magnitude of the fluctuations with respect to the mean, and the
autocovariance (or simply covariance), which characterizes the correlation
between the values taken by the property at two neighboring points in space.

However, when studying a given porous medium, there will be only one
realization of the conceptual random medium. Some assumptions are
necessary to make this concept useful. The most common are stationarity and
ergodicity.

Stationarity assumes that any statistical property of the medium (mean,
variance, covariance, a higher-order moment) is stationary in space, i.e., does
not vary with a translation. It will be the same at any point of the medium.
Weak stationarity refers to a medium where only the first two moments are
stationary: if Z(x) is the studied property, x being the coordinates in one, two, .
or three dimensions, then the random function (RF) Z(x) satisfies:

(1) expected value

E[Z(x)J = m

(2) Covariance:

E[(Z(x) - m)(Z(x + h) - mJ

not a function of x

not a function of x,
but a function only of the lag h,
a vector in two or three dimensions.

By developing, and labeling this covariance C(h),

C(h) = E[Z(x) • Z(x + h)J - m2

By definition,

C(O) = E[(Z(x) - m?J = lTi

(2.1.1)

is the variance of Z.
In more rigorous terms, strong stationarity means that all the probability

distribution functions (pdf) of the random function Z(x) are invariant under
translation, whether we consider one point p(Z(x)) or n points p(Z(x1 ), ... ,

Z(xn) ) ·
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Ergodicity implies that the unique realization available behaves in space
with the same pdf as the ensemble of possible realizations. In other words, by
observing the variation in space of the property, it is possible to determine the
pdf of the random function for all realizations. This is called the "statistical
inference" of the pdf of the RF Z(x). We will see in Chapter 11 how it can be
done.

In the vocabulary of stochastic processes, a phenomenon that is "station
ary" and "ergodic" is called homogeneous. We would then use "uniform" to
describe a medium in which some property does not vary in space. Geologists
traditionally call it "homogeneous."

Other less stringent hypotheses can also be defined, e.g., stationarity of
increments of Z. These will be defined in Chapter 11.

Marle (1967)compares this method to the one based on spatial integration
and shows that the stochastic definition may be regarded as the limiting case
of an integral definition when the porous medium is assumed to be infinite,
ergodic, and stationary and the weighting function does not have a bounded
support. As a matter of fact, spatial integration in an infinite volume
reproduces the mathematical expectation over all possible realizations, if the
medium is indeed stationary and ergodic. We shall use, in turn, these two
methods for defining the properties of porous media.

Other approaches can also be used to define the properties of porous media.
One is that of composite materials (Beran, 1968) and, has been applied to
porous media by Dagan (1979, 1981, 1982b).

(e) Porosity and grain size. If one studies conceptual porous media, which
consist of a cluster of spheres with the same diameter, one can show that there
are six possible ways of packing the spheres, resulting in porosities of 26%,
30%, 40%, and 48%. These are, of course, independent of the size of the
spheres.

In the case of spheres of different sizes, the porosity is always lower because,
as Houpeurt (1974) states, if one reasons on the basis of the large grains, one
can say that the small ones take up part of the pores that may exist between
them. Conversely, if one reasons on the basis of the small grains, one can say
that any large grain gives a greater compactness by its mere presence.

In the case of nonspherical grains, this tendency to lower the porosity is to a
certain extent compensated by the irregularities in the shape of the grains,
which prevent them from being tightly pressed together.

For unconsolidated media (e.g., sands), one tries to establish the size
distribution of the grains in the medium. In general, the wider this distribution
is, the smaller the porosity.

A grain-size analysis of the medium, by sieving for example, is represented
by the grain-size curve, which gives the percentage (by volume or usually by
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Fig. 2.4. Grain-size curve of an unconsolidated medium.
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weight) of the elements passing through a sieve, with holes of a given size
(Fig. 2.4). Effective grain-size d1 0 is the sieve-dimension at which 10% of the
elements of the medium are smaller than d10 ' It is accepted that d1 0 is the most
important parameter among those governing the permeability properties of a
porous medium (see Chapter 4).

However, it is always necessary to measure the porosity of the medium
without destroying the arrangement of its grains (see Section 2.3). We know
that the porosity varies with the arrangement of the grains from the study of
packed spheres and that this arrangement is a function of the consolidation, or
compression, of the medium.

Figure 2.5 (from Bear, 1972)gives a few examples of grain-size curves and a
classification of the terms used, according to the International Society of Soil
Sciences: gravel, sands, silts, clays.

(f) Surface porosity. Using a section of the porous medium, we can
define the total surface porosity

surface area of the voids on the section
W=

S total surface area of the section

If the size and distribution of the voids are entirely random, the surface
porosity is independent of the orientation of the studied section. Furthermore,
it has the same value as the volume porosity. To be certain of this, one only
needs to integrate the surface porosity on an elementary length at right angles
to the section plane. It is, of course, necessary to choose volumes and surfaces
of the order of the REV.

The situation is, however, not at all the same if the distribution of the voids
is not random, but follows a law of organization resulting from the deposition
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process when the medium was formed. It would be possible to determine such
directional surface porosities using a "texture analyzer," a device that
determines geometrical properties of images. However, this is not usually
done, and the surface porosity is assumed isotropic and identical to the volume
porosity.

(g) Specific surface area. This is defined by

S = total surface area of the interstitial voids
sp total volume of the medium

with dimensions of (length)-l. It varies greatly from one medium to another.
The more divided the medium, the greater it is. For example, spheres of radius
R in a cubic arrangement exhibit

SSP = nj2R

Here are a few orders of magnitude for Ssp:

1.5 x 104 m 2jm 3 for sand

1.5 x 105 m2jm3 for fine sandstone

1.5 x 109 m2jm3 for montmorillonite (clay)

This parameter is of great importance for the phenomena of fluid-solid
relations that we shall now discuss.

2.2. Fluid-Solid Relations in Porous Media

2.2.1. Water-Saturated Media

First, we shall discuss two-phase media: solid and water. Apart from the
water that is a constituent part of rock minerals (which will not be discussed),
one must distinguish between adhesive water and free water.

(a) Adhesive water. This is attached to the surface of the grains through
the influence of the forces of molecular attraction. These forces decrease with
the distance of the water molecule to the grain:

(1) A first adsorbed layer, which is of the order of a few tens of molecules
thick (about 0.1 .um), corresponds to an orientation of the water molecules
with a bipolar H-OH perpendicular to the surface of the solid. The stress
created by these forces of attraction reaches several 1012 Pa, but decreases
rapidly with distance. In this adsorbed layer, the properties of the water are
greatly changed: strong viscosity, high density (around 1.5).Large numbers of
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Fig. 2.6. Structure of the adhesive water. [From Polubarinova-Kochina (1962).]

ions, mainly cations, may be retained (adsorbed) by joint attraction of the
water and solid molecules. We shall return to this in Chapter 10.

(2) A transition zone, between 0.1 and 0.5 /lm, contains water molecules
that are still subjected to a nonnegligible attraction and stay immobile.

(3) Beyond this, the forces of attraction are negligible, and the water is
said to be free.

It is obvious that this limit of 0.5/lm is somewhat arbitrary and varies from
one medium to another. Figure 2.6 illustrates the variation of the forces of
attraction of the water molecules and their orientation in the vicinity of a solid
grain. For the adsorbed water layer in contact with a solid particle, the curve
shows the variation of the force of attraction on particles along the radial
section AB.

This phenomenon of adsorption of water molecules and ions is linked to the
specific surface area of the medium and is especially strong in clay media,
where it greatly reduces the possibility of water and ions circulating; this leads
us to the definition of the kinematic porosity of a porous medium.
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(b) Free water. We have already defined this. It is the water that is
outside the field of attraction of the solid particles and that can be displaced
as opposed to the adhesive water-by gravity or pressure gradients (see
Chapter 4).

(c) Kinematic porosity of a saturated medium. From the point of view of
fluid displacement, the adhesive water may be viewed as part of the solid. The
empty volume, where the water can circulate, is smaller than the total porosity:
it defines the kinematic or effectiveporosity of a saturated medium. It must be
understood, however, that this definition of porosity is already linked to the
concept of fluid circulation and not to the percentage of the volume taken up
by the fluid phase.

Other phenomena besides adhesion have a limiting effect on the kinematic
porosity.

(1) The existence of unconnected pores. These are "bubbles" of liquid
occurring in the solid phase. As their liquid cannot circulate, these voids are of
no account in the kinematic porosity. In Section 2.3, we shall see that certain
methods for measuring the porosity, based on the impregnation of the porous
medium by a fluid, exclude the unconnected pores.

The most common example is that of secondary dolomite, i.e., dolomite
formed after the deposition by diagenetic transformation of calcite into
dolomite. This transformation is accompanied by a shrinking with angular
crystallization of the dolomite. The total porosity is high, 20-30%, but the
kinematic porosity is low, because the pores are often not interconnected.

(2) The existence of dead-end pores, as in Fig. 2.7. The water contained in
the cul-de-sac is almost motionless. Only the water in the "pipes" of the
medium circulates. Thus, these pores are excluded from the kinematic
porosity, but they do play a role when we study the mechanisms of
compressibility or of solute transport in porous media.

(3) On an even larger scale, a fractured rock in which water circulates only
in the fractures has a kinematic porosity linked to the volume of these
fractures, even if the unfractured rock matrix is porous. Hence, a fractured
granite, which has a total matrix porosity of 1-2%, may have a kinematic
porosity of less than 1%, because the matrix itself has very low permeability.

Fig. 2.7. Dead-end pore.
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Thus, we define kinematic porosity as

volume of water able to circulate
W =

C total volume of rock

(d) Comments: Consequences for the tracing of water. We shall see later
that one can link the kinematic porosity to the velocity of water circulating in
the ground, hence the idea of adding a tracer to the water to measure its
velocity by in situ experiments.

This gives rise to a number of problems, because it is necessary to choose a
tracer that will not be adsorbed by the layer of adhesive water or onto the
grain surface. However, even if this problem is solved (e.g., by using a tracer of
the water molecule, such as tritium, 3H), there remains another mechanism of
interaction between the tracer and the immobile water. Indeed, our de
scription of circulating water phase/immobile water phase corresponds to a
certain microscopic scale of observation of the phenomena, that of fluid layers
and flow.

On a molecular scale, things change. There may be a continual exchange of
molecules from one phase to the other through molecular Brownian motion: for
example, a circulating molecule may become immobilized in the course of its
progress, while another one that was originally immobile, may be set in
motion. From the point of view of fluid circulation, nothing is visible, but the
idea of tracing the route taken by an individual water molecule is bereft of
meaning. Are we right to distinguish between two water molecules that we
have no physical means of telling apart? Hence, a molecule which was in the
position A at the instant to, and in position B at the instant t1 may very well
have progressed along the route ACB (Fig. 2.8) and been "exchanged" in C for
a molecule which was initially adhesive, and to which it has communicated its
energy. Is there any meaning to the question "Is the molecule in B the one that
was originally in A?"

In a porous medium, the progress of a water molecule may be much
more complex than the microscopic image leads us to suppose and may
make the concept of tracing useful only in ascertaining the circulation
velocity of a substance dissolved in the water. This problem will be discussed
in Chapter 10.

e
A

c
B

•
Fig. 2.8. Water molecule trajectory in a

porous medium.
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2.2.2. Unsaturated Media

This problem is complicated by the existence of a third phase, air, as well as
the water and solid phases.

(a) Moisture content and volumetric saturation. The moisture content () in
a REV is defined by the ratio

() = volume of water
total volume of the REV

and the volumetric saturation by the ratio

volume of water
s = -----=-----:---

total pore volume

where () may vary from 0 to the total porosity 0), and s from 0 to 1 or from 0 to
100%. .

(b) Air-water relationships for different moisture contents. We observe
that in a soil containing both air and water the free water "wets" the solid
grains, i.e., surrounds them, whereas the air tends to stay in the middle of the
voids. Thus, we have the following descriptions for various moisture contents.

(1) Soil close to maximum water saturation (Fig. 2.9).

(a) The water phase is continuous and may circulate under the
influence of gravity. This is called "funicular" or gravitational water.

(b) The air phase is discontinuous and does not circulate. It may
reach 10-15% of the porosity, even in a medium said to be saturated,
close to the water table of the aquifer. The imprisoned air bubbles can
only pass through the contractions in the small channels connecting the
pores with each other if there is a sufficientlystrong pressure gradient in
the water phase.

(2) Soil at "equilibrium water saturation" or at its "capillary retention
capacity" (Fig. 2.10).

Fig. 2.9. Wet soil.

fG:7i'7,1~J Grains

[Z22J Water

c::::J Air
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rzzzJ Water
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Fig. 2.10. Soil at its retention capacity.

(a) The water phase is still continuous, but it no longer circulates
under the sole influence of gravity. In agronomy, one says that the
ground has reached its "field capacity" a few days after a rainfall when
the water that can percolate by gravity has left the soil profile. The term
specific yield or drainage porosity (wd) is used to describe the part of the
porosity that can be drained by gravity, i.e., the difference between the
moisture content of the saturated medium and that attained at the
equilibrium saturation. Note that pressure is transmitted through the
continuous water phase and that, as a consequence, the equilibrium
saturation varies, in principle, with the elevation above the water table of
the point being considered (to be discussed further).

(b) The air phase is also continuous, but does not generally circulate.

(3) Weakly saturated soil (Fig. 2.11).

(a) The water forms a thin film around each grain (adhesive water) as
well as rings surrounding each point of contact between the grains.
These are called "pendular rings" or pendular water. The water phase is
still continuous, the pressures are in principle transmitted, but the
movement of water is very slow because the water film is so thin.

(b) The air phase is continuous but usually immobile. In this case,
the evaporation inside the porous medium may become considerable as .
compared to the other modes of water movement. However, in order to
leave the medium, the evaporated water must migrate by molecular
diffusion toward the exterior, which is a very slow process. A migration

ll'i':;;;:'''1~4 Grains

rzzzJ Water

c:::::::J Air

Fig. 2.11. Dry soil.



28 2. Rock Porosity and Fluid-Solid Relations in Porous Media

by density convection cells is also conceivable, but such a phenomenon
has never been observed.

(4) Irreducible saturation. In order to get below the equilibrium satu
ration, we have already made use of phenomena other than circulation by
gravity, i.e., evaporation and plant transpiration. If the moisture content
continues to decrease, we are' eventually left with only the adhesive water,
which is sometimes called hygroscopic moisture. This irreducible saturation
depends, in reality, on the drying methods that have been applied.

(a) Irreducible saturation in a natural medium when the drying-out
is caused by natural phenomena.

(b) Irreducible saturation at lO5°e. A soil sample is generally dried
by heating it to lO5°e. This temperature is chosen arbitrarily because
beyond it there is a risk of decomposing certain minerals and extracting
the water that is a constituent part of the solid phase. However, it is
certain that a small fraction of the adhesive water is still present in the
medium. Thus, a clay has to be heated to 9000 e for all the water to be
extracted. Indeed, the film of adhesive water creates a continuous layer
that surrounds the grains, whatever the degree of saturation.

(c) Capillary pressure. Let us analyze the balance of pressures between
the air phase and water phase in an unsaturated medium.

Between two fluids in contact with each other, or a fluid in contact with a
solid, there is a free interfacial energy, created by the difference between the
forces which attract the molecules toward the interior of each phase and those
which attract them through the contact surface. The interfacial energy is
characterized by the interfacial tension (Jib defined by the quantity of work
needed to separate a surface of unit area of the substances i and k. The tension
(Jik is constant for two given substances, and varies only with the temperature.
The interfacial tension a, between a liquid and its own vapor is called vapor
tension or surface tension.

For two fluids in contact with each other, Young's equation gives the
connecting angle of the interface as in Fig. 2.12. Then e, measured from 0 to

Solid S

Fig. 2.12. Interface between air, water, and a solid.
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180° in the denser fluid (here, the water), is given at equilibrium by

where the subscript sa stands for solid-air, sw stands for solid-water, and aw
stands for air-water. There is no equilibrium possible if this ratio is larger than
1; in that case, one of the fluids (here, water) spreads indefinitely over the solid.
If e< 90°, the fluid is said to be wetting. This is the case for the water here. If e
> 90°, the fluid is said to be nonwetting. This is the case of the air here. The
term (Jaw cos eis called the adhesion tension.

In the fluids, on either side of the air-water interface the pressure is not the
same. This difference in pressure is called the capillary pressure,

Pc = Pair - Pwater

If r is the mean radius of the interface curvature,

2 1 1
-=-+
r r' r"

where r' and r" are the principal curvature radii (Fig. 2.13). Then the Laplace
equation gives the capillary pressure,

2(Jaw
P =-

c r

This pressure may be very high if the curvatures are small.
In a capillary tube, interfacial tension causes the water to rise and to form a

meniscus above the level of the tank. The height of this rise is a function of the
radius of the tube and measures the capillary pressure across the air-water
interface in the tube.

r '

r" Fig. 2.13. Air-water interface curvature.
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In porous media the shape of the interface is very complex, but there is also a
capillary pressure, i.e., a difference in pressure between the air phase and the
water phase. As the air phase, if it is continuous, is usually at atmospheric
pressure, the water phase is at a negative pressure, which may reach several
bars. One then speaks of positive suction or tension. For instance, the wilting
point of certain plants is reached at a tension of the order of 15 bars if
standard atmospheric pressure is the reference zero. As the air-water
interfacial tension is of the order of 0.076 N/m at 20oe, this gives a mean
curvature radius of the water menisci in the unsaturated medium of 0.1 /lm,
i.e., close to the dimension of the adhesive water layer.

To each value of the moisture content of a porous medium corresponds a
certain distribution of the air and water phases. As the water phase is always
continuous, the pressure at equilibrium must be uniform at a given elevation.
As long as the air phase is also continuous, it stays at atmospheric pressure,
and the capillary pressure must therefore be uniform at that elevation. On the
average, the interfaces must thus take on a unique curvature radius. If the
moisture content varies, this radius must change, and so must the capillary
pressure. Hence, this capillary pressure is a function of the moisture content or
the degree of saturation. Assuming that the air pressure is zero, it is usual to
plot the pressure in the water versus the degree of saturation by defining the
suction potential pF:

pF = log ( - ~;ater )

where p is the mass per unit volume of the water, g is the acceleration due to
gravity, and Pwater/pg is in centimeters. For example, we find curves such as in
Fig. 2.14.

a O'--'~O-,2:-':O-3~O-4-0'--:=5~O-,6~O-,7::':O:-::-8':""O-=90-=-C'~OO

Saturation

Fig. 2.14. Variation in the suction potential pF with the degree of saturation for different
media. --, Sands, grains of less than 500 J.lm; ---, Ramona sands; _ ... -, Placentia clay loam;
-'-, Hanford sandy loam; ... , Yolo clay loam; ... Chino silty clay loam. [From Bear (1972).
Reprinted by permission of the publisher from Dynamics of Fluids in Porous Media, by J. Bear.
Copyright 1972 by Elsevier Science Publishing Co., Inc.].
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Fig. 2.15. Hysteresis of the suction potential.

However, this capillary pressure shows hysteresis with the saturation
according to whether the soil is dried out or wetted. Indeed, the shape assumed
by the interface at a given saturation is not the same if we soak a dry soil or
drain a wet one: fluid "bubbles" remain imprisoned, the contact angles of the
interfaces are not exactly the same, there are phenomena of dilation or
compression, etc. Thus, we observe two suctions in Fig. 2.15. There is a whole
series of intermediary cycles such as the one drawn between the two enclosing
curves.

Finally, it must be said that if a sufficiently long time is allowed to elapse, in
the end the trapped air is dissolved by the circulating water and the
representative point moves frome one curve toward the other.

(d) Moisture-content profiles. Table 2.1 summarizes the main intervals
that have been defined in the soil-water-air continuum. All these zones are
also found on a soil profile such as the one in Chapter 1. This is illustrated in
Fig. 2.16.

Above the level of the water table, there is first a zone with 100% saturation
or nearly that, which is called the capillary fringe, where the water pressure is
inferior to that of the atmosphere. This is the equivalent of the capillary rise in
tubes. Indeed, there has to be a certain capillary pressure (threshold pressure)
for air at atmospheric pressure and water to reach an equilibrium through the
interface. However, there may be trapped air inside this zone (whence a
saturation of less than 100%, e.g., 85-90%).

Above this zone, the capillary pressure increases and the saturation
decreases until it reaches the equilibrium saturation and the profile is static.

On the ground surface we have shown a dried-out soil and a wet soil, both of
which are in a transient state. In the case of the wet soil, the gravitational water
is infiltrated and descends along the profile. In the dried-out soil, the drying
out of the ground surface causes an ascending circulation, which we shall
study together with the circulation in unsaturated media in Chapter 9.

Next to the saturation profile in Fig. 2.16 we have shown the pressure
profile. According to the laws of hydrostatics, a profile in equilibrium should
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Fig. 2.16. Profiles of saturation and pressure in a soil.
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exhibit a linear variation of the pressure with the elevation. By definition, the
pressure is zero (i.e., equal to the atmospheric pressure) at the water table.
Below it, the pressure grows linearly with the depth; above it, it decreases with
the elevation and becomes a suction. This is evident if we consider that, as
as the water phase is continuous, two points at hydrostatic equilibrium at a
vertical distance 11.2 from each other have a pressure difference of pg 11.2. AU
representative points situated to the left of the line of pressure equilibrium
show that an ascending flow is occurring, and vice versa.

Note that the existence of the zone AB, where the saturation is approx
imately constant although the pressure varies, is related to the shape of the
suction-moisture content curves shown in Fig. 2.15. On these graphs, the
suction is marked on a logarithmic scale. Below a certain saturation, the
profiles are almost vertical, i.e., a pressure variation by a factor of 10 only
causes a very small variation of the saturation.

In practice, a medium is hardly ever in hydrostatic equilibrium and the real
pressure profile nearly always deviates from the equilibrium line, but the
orientation of this deviation actually gives the flow direction since inertial
effects are negligible.

These high negative pressures (less than absolute zero) to which the water
in an unsaturated medium may be subjected should not surprise us;
measure, in reality, a state of energy of the water in the soil, i.e.,the quantity of
energy needed to extract a molecule that is bound to the soil by electrostatic
forces.

2.3. Porosity Measurements

2.3.1. Direct Methods on Samples

These methods are rather sophisticated and should be used in a specialized
laboratory.

(1) The total volume of the sample is measured, either by its dimensions (in
particular the dimensions of a core sample of unconsolidated soil taken before
the structure is destroyed), or by the volume of liquid it displaces after its
surface has been made impermeable.

(2) One can measure the volume of the solid phase by immersing it in a
wetting liquid (saturation in vacuum, with boiling water or with
subsequently dissolved in water, etc.) and determining the buoyancy force by
weight. Thus, we obtain the porosity of the interconnected voids. The sample
has to be crushed, if one wants to find the porosity of all the voids including
the unconnected ones.

(3) One can also measure directly the volume of the connected pores by
injecting mercury at high pressure into the rock while creating a vacuum in the
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sample to expell the air it contains, by weighing the sample when it is dry and
when it is saturated with water, etc.

2.3.2. Indirect Methods in Situ

(a) Resistivity of the soil. With the exception of clays, the minerals
commonly found in the ground are insulators, and electricity circulates in the
ground in the liquid phase. The resistivity is therefore dependent on the
porosity. A formation factor F is defined by

resistivity of a rock
F = resistivity of the water contained in the rock

Using F, geophysicists suggest the use of Archie's empirical formula for
finding the total porosity w:

C~1

where m is the cementing factor, which varies from 1.3 for unconsolidated
rocks to 2 for limestones. The formula may be corrected if there are known
quantities of clay particles in the rock. The porosity obtained by measuring
these two resistivities is close to the total porosity. These formulas are useful in
interpreting electric logs in exploratory borings.

(b) Neutron logging. The ground is bombarded with fast neutrons,
usually from sources containing americium, then one counts the number of
slow neutrons produced by the deceleration of the fast neutrons on the
hydrogen atoms, which are mainly present in the water phase.

In this way, we can determine the porosity of saturated media and especially
the moisture content of unsaturated media. It is, however, preferable to
evaluate the method on a sample of dry soil in order to deduct the fraction of
the hydrogen atoms that are not related to the porosity. Water that is a
constituent part of the minerals, clays, etc., will contain these atoms of
hydrogen.

(c) Density measurement (gamma-gamma method). The ground is bom
barded with gamma rays. We identify the part of the radiation which is not
absorbed at a fixed distance from the source. This quantity is inversely
proportionate to the mass per unit volume of the medium penetrated by the
radiation. In turn, this mass per unit volume is linked to the porosity through
the expression

Pr = wpw + (1 - w)Ps

where P" Pw' and Ps are, respectively, the mass per unit volume of the rock at
hand, the water and the solid grains of which it is made up.
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Table 2.2

Drainage of Homogeneous Sands

Seepage: quantity of water collected (%)

Grain size Calculated total First Next 9 Subse-
(mm) porosity (%) 0.5 hr 0.5 hr quent days

10 Day to
2.5 yr Total

Capillary retention
after 2.5 yr

0.475
0.083

38.86
39.73

10.68 4.88
1.26 0.90

8.72
11.29

2.60
2.01

26.88
15.46

6.87
18.87

(d) Sonic velocity. This quantity is linked to a number of parameters and
especially to the porosity by the quantity of fluid contained in the rock.
However, the method is seldom used.

2.3.3. Some Porosity Values

We have defined a certain number of physical quantities: total porosity OJ;
specific yield or drainage porosity of an unsaturated soil COd and its
complement, the capillary retention capacity; and kinematic porosity of a
saturated medium COe and its complement, the saturated retention capacity.
These concepts are not always easy to distinguish and evaluate. Table 2.2 is an
example, using results obtained by King (as quoted by Geze, 1967) on the
drainage of homogeneous well-sorted sands. The difference that exists
between the calculated total porosity and the sum of specific yield and
capillary retention stems from errors made in measuring and calculating the
total porosity. Thus, we observe that the specific yield depends, in reality, on
the length of time during which the rock is allowed to drain. If the object is to
find out what quantity of water may be extracted from a rock by drainage, we
must try to determine the specificyield or drainage porosity. If the object is to
find out how much water flows through a saturated rock, for example for a
calculation of flow velocity, we have to look for the kinematic porosity.
Finally, if we are interested in the total quantity of water contained in a porous
medium-for example, in problems concerning the compressibility of the
fluid phase or the possible dilution of the ions in solution in the fluid phase
we must look for the total porosity.

It must be admitted that, in practice, one often speaks of porosity without
specifying which one. Drainage and kinematic porosities as defined above are
often lumped together under the term effective porosity. This is unfortunate.

The accompanying table gives a few orders of magnitude for interstitial
porosity leaving aside fracture porosity.
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Medium

Unaltered granite and gneiss
Quartzites
Shales, slates, mica-schists
Limestones, primary dolomites
Secondary dolomites
Chalk
Sandstones
Volcanic tuff
Sands
Clays
Swelling clays, silt
Tilled arable soils

Total porosity

0.02-1.8%
0.8%

0.5-7.5%
0.5-12.5%
10-30%
8-37%

3.5-38%
30-40%
15-48%
44-53%

Up to 90%
45-65%

As a general rule, the smaller the grains in a rock, the greater the decrease in
effective porosity and the increase in the retention capacity, as illustrated by
Fig. 2.17. However, this must be used with caution for determining the
porosity as a function of the grain size. (For instance, it hardly lends itself to
the interpretation of King's experiments.)

50%

40

30

20

10

o

I--- Total porosity-- .....,
<,

.- -,

\/ if"Effective ~":porosity ",I

/\ I ~- ---
",'

~Retention capacity

"'- --- Mean grain
diameter (rnm)

0.0001 0.001 0.01 0.1 10 100 1000 mm

"I <1l
>

"
C <1l E> 8l >co c E 01

U 8l
~ ~

on
01 ~

~I
> <1l <1l U

.."! .:>:: c co c co 00 0
U (/j LL U LL U en

Fig. 2.17. Porosity components as a function of grain size. [After Castany (1967)].



2.4. Measurements of the Water Pressure in the Ground 37

2.4. Measurements of the Water Pressure in the Ground

One must distinguish between the pressure in the saturated part of the
ground, where the pressure is positive, and the unsaturated part, where the
pressure is negative.

2.4.1. Measurement in the Saturated Medium

(a) Piezometer. If the medium is fairly permeable, a hole is simply drilled
in the ground and is fitted with a perforated tube if the sides of the hole are
likely to collapse. The water level in the tube gives the elevation of the water
table (or free surface), i.e.,the point where the pressure is zero (not counting the
atmospheric pressure). Under the free surface, the pressure increases linearly
with depth if the system is hydrostatic.

(b) Pressure gauge. If the medium has low permeability (clay or clay
sand, for instance), a tube with a porous point (fritter metal) is inserted into the
ground (e.g., by hammering). This is schematically illustrated in Fig. 2.18.Air is
injected using a foot pump or bottle through a small plastic tube at the surface,
and the pressure is monitored. The rubber membrane is opened, when the air
pressure is equal to that of the water, which causes a return of air to the
surface. This is visible if the return tube is immersed in a glass of water.

Electric pressure transducers can also be used.

2.4.2. Measurement in the Unsaturated Medium

To measure the suction in the unsaturated medium, one uses a porous cup
made of ceramics, inserted vertically (or horizontally, from a well or trench).
This is called a tensiometer (Fig. 2.19).

Detail

{cross section}

Open
position

Porous point
around 5 em
in diameter

Steel tube

Closed
position

No return
Pressure ~ i (plastic tube)

Air
injection ~---'::I:-""",

Fig. 2.18. Pressure gauge.
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TUbing
Cylindrical CUp made

of porous ceramics

c=*~========::==*=Water

Manometer
(Hg, or pressure

transducer)

Fig. 2.19. Tensiometer.

Length: 5 to 10 cm
Diameter: 1 to 2 cm

Through the porous ceramic cup, the water inside attains a pressure
equilibrium with the water in the soil (continuity of the water phase through
the unsaturated soil and the cup, which is a porous medium like any other).
Thus, the suction is measured with a manometer. However, this device is
limited to a suction of around 800-900 millibars; beyond that, water starts to
boil in the cup at the ordinary temperature, and the tensiometer "disconnects."
Each tensiometer is also defined by its air entry pressure (or threshold
pressure). As we have explained for the porous medium, the porous ceramic
cup always remains 100% saturated, and no air can enter into the tensiometer
if the suction is kept below this threshold value (generally between 1 and 10
bars for fine ceramics).

To get below 1 bar, we have to use indirect methods such as blocks of plaster
fitted with electrodes and buried in the ground. The water they contain will
then reach a pressure equilibrium with that of the soil. By quantitative analysis
of the relationship of pressure-moisture-content-resistivity of the plaster
block, we can then estimate the suction in the soil. However, this relation may
vary with time because of solutes contained in the water of the soil.

Note that in order to make these measurements in the laboratory (on real
soil samples or plaster blocks) of the suction-moisture-content relationship,
the atmospheric pressure is raised artificially in a pressurized closed circuit to
prevent the suction (difference in the water-air pressure) from causing the
water to boil.
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3.1. General Equations of Fluid Mechanics

In this chapter we are mainly concerned with establishing the form of the
continuity equation in porous media. This equation simply states that in a
fixed closed volume, the variation per unit time of the fluid mass it contains is
equal to the algebraic sum of the mass flux crossing the surface of the volume
in question. This is, consequently, the basic principle of mass balance as
expressed by Lavoisier: "nothing is lost, nothing is created."

To understand the development of this equation, the reader must have some
notions of general fluid mechanics. If this is not the case, it is sufficient to read
the beginning of Section 3.2.1, then Sections 3.2.2 and 3.3, before going on to
the next chapter.

In fluid mechanics and thermodynamics, we know that solving any flow
problem of a Newtonian" fluid means determining six unknowns:

The mass per unit volume p (mass length- 3
) , the pressure p (mass

length- 1 time- 2 ), the temperature e, and ux ' uy, u.; the components of the
velocity field u.

* A Newtonian fluid is an isotropic fluid with a pressure that only depends on the standard
state variables p and e, the viscosity tensor of which is a linear form of the velocity gradient with
coefficients depending only on the standard state variable.

39
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All these unknowns are functions of time t and the point in space.

We shall use Eulerian coordinates (i.e., a fixed point of reference in the
laboratory or medium) and try to express these six unknowns as functions of
the space-time variables Xi and t. To do this, we have:

(1) The equation of continuity, which expresses the mass conservation:

div(pu) + ~ = 0

established in an elementary volume that is fixed in space.
This may also be written p div u + dp/ dt = 0 in Lagrangian coordinates,

following the movement of the matter at its velocity u,
(2) The Navier-Stokes or dynamic equations, which .express the basic

principle of mechanics f = my for viscous fluids, of which the viscosity
coefficients are assumed constant:

op ( fl) O. 2 i (i dU
i
)-.- ,+- -.(dlVU)-flV U =p F--

OX' 3 ox' dt

where' is the coefficient of volume viscosity, negligible when compared with fl
(mass length"! time-l), fl the coefficient of dynamic viscosity (mass length- l

time- l )*, [with v = fl/p, kinematic viscosity (length? time- l )], V2 the Laplace
differential operator Ii 02 jO(X i)2, F;the components of body forces acting at a
distance per unit mass, e.g., gravity (length time").

There are three Navier-Stokes equations, one for each direction Xi in space.
This, then, gives us four equations. In general, the two remaining equations
are, on the one hand, the heat equation (conductive and convective heat
transport by the fluid), and on the other, the equation of state of the fluid
giving its mass per unit volume p as a function of the pressure and the
temperature. In a porous medium it is often possible to simplify the problem
by observing that the high degree of division in the porous medium and its
enormous heat capacity result in flows that are, in practice, mostly isothermal.
The unknown, which is the temperature, then disappears and we only need one
further equation.

(3) The equation of state of the fluid, which we take as

p = poeP(P-Po) (3.1.3)

where fJ is the compressibility coefficient of the fluid (mass"! length time"),

The case where the temperature varies in the medium will be examined in
Chapter 10.

We shall now examine how these laws may be transposed to the porous
medium.
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3.2. Continuity Equation in Porous Media

3.2.1. Mean Filtration Velocity
and Equations of Macroscopic Continuity

Let us start by setting out our objective. Let u be the real fluid velocity in
each of the pores of the porous medium (also called microscopic velocity). Let
p be the mass per unit volume at this scale and co the point porosity (co = 1 in a
pore, co = 0 in a grain). At this scale, the ordinary equation of continuity
already mentioned holds for the interior of the pores.

We then define the macroscopic quantities or "averages" in the porous
medium, which, for the time being, we shall call (u), (p), and (co). These
macroscopic quantities are defined either by spatial integration, as proposed
by Marie (1967) [see Chapter 2, Section 2.1.d], through convolution a
weighting function m or through a probabilistic definition, the mathematical
expectation of u, p, and co at the considered point x, for all possible realizations
of the medium.

We will then establish the equation of continuity in porous media,
equivalent to Eq. (3.1.1):

div[(p)(u)] + :/(P)(CO)] = 0

where ( ) designates the average taken, and (u) is the fictitious mean velocity,
sometimes called filtration velocity.

We shall call it U later. Note the appearance of the term (co) in the second
term.

It is important to completely understand the physical significance of the two
terms of this equation. The equation shows that in a closed volume, the sum of
the entering mass flux is equal to the variation of the mass contained in the
volume. Although it is expressed at a point, it is always established for an
elementary volume D which is fixed and completely rigid in space. (In Chapter
5, we shall discuss the case of a volume that is mobile in space.)

If we use Ostrogradski's formula,* we find that the divergence of (p)(u)
represents the mass flux of (p)(u) across the surface L of D. However, one
must keep in mind that (u), which we shall define, is a fictitious mean velocity,
i.e., the mean velocity of a fluid flowing through the entire space, pores

* Ostrogradski's formula is

Iv div V dv = - Lv. n do

where D is the closed volume with outer surface area 2:,n is the outer normal on 2:,V is the con
tinuous velocity in D and over 2:, and fJVi/fJx j is continuous in D and over 2:.



42 3. Basic Concepts in Hydraulics

grains, instead of only through the pores. Indeed, the term div «p)<u») means
that we integrate <p)<u) over the whole surface L of the volume D, and not
only over the pores. This is why <u) is called filtration velocity.

Finally, the fluid mass contained in D is not SD p dv, but SD pw dv, as there is
fluid only in the pores. It is therefore normal that the term <w) appears in the
second term.

Let us now establish this equation rigorously. The readers who do not want
to pursue the theory any further can skip to Section 3.2.2.,but should look at
the two definitions of the filtration velocity, compressible in Eq. (3.2.1.1) and
incompressible in Eq. (3.2.1.2).

(a) Establishing the equation of continuity in porous media. This develop
ment follows that of Made (1967). Let u be the local microscopic velocity
inside the pores of a porous medium. To move to a larger scale, we shall use the
notion of the representative elementary volume (REV), which we have defined
in Section 2.1. Let us agree to extend the field of definition of u to the entire
space with, of course, u = 0 in the grains.

Incompressible fluid and solid. The equation of continuity at the micro
scopic scale is reduced to

divu = 0

because p is constant. Furthermore, the velocity u is continuous in the entire
space, because u is zero at the walls in laminar flow and defined as zero in the
grams.

To define the mean macroscopic velocity <u) or filtration velocity, we shall
integrate in space the local property weighted by a weighting function m(x)
such as

fm(x)dx = 1

where x stands for the coordinates in three dimensions and the integral may be
extended either to a certain bounded domain D if m has a bounded support or
to the whole space.

Hence, for example,

m(x) = {3/4nr~ if

if

[x] s r

[x] > r

where m is the indicatrix of a sphere of radius r centered at the origin, or again

( ) _ 1 -1"'1 2/ 2 .,.2 '.-Ix
m x - (T3(2n)3/2 e v
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which is the normal probability distribution in three-dimensional space, (J

being the standard deviation.
If a is a local magnitude, the mean <a) of a at the point x in space is then

defined by

<a)(x) = fa(x + x')m(x') dx'

It is often advantageous to require m to be continuous and continuously
differentiable, so that <a) may have the same properties, even if a does
thus, for example,

if

if

[x] ~ r

[x] > r

(3.2.1.1)

where C is chosen in order that the integral of m indeed be 1.However, there is
a great deal of freedom in the choice of m.

As u is a vector, we can define a macroscopic velocity <u) by taking the
weighting by m of each of the components u; of u:

<u;) = fu;(x + x')m(x')dx'

The equation of microscopic continuity may be written

di OU! auz OU3 0
IVU=-+-+-=

ax! oXz oX3
We multiply by m and integrate in space:

~ f~u~ I m(x') dx' = 0
l UX 1 x+x'

Since u is continuous, and the domain of integration (or the entire space) is
immobile, the differentiation and integration commute, i.e.,

~1- fUi(X + x')m(x') dx' = 0
I uXi

i.e.,

or

div cu) = 0
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Let us consider for a moment the physical significance of (u), the filtration
velocity. The integral which defines (u) is extended to the entire space even if u
is, in reality, zero in the grains of the porous medium. Therefore, (u) is a
fictitious mean velocity calculated as if the entire space were accessible to the
flow (pore plus solid).

One must not confuse (u) with the mean flow velocity inside the pores,
which we shall define later.

Case where the fluid is compressible and the flow steady (not a function of
time). This means that 8pj8t = 0, i.e., that the equation of microscopic
continuity is reduced to div(pu) = 0 and, furthermore, that the porous medium
is immobile.

We shall start by defining a macroscopic mass per unit volume <p). As the
microscopic mass per unit volume p is defined only in the pores, we must
similarly extend its definition to the entire space by agreeing that p = 0 in the
grains. But remember that p is now discontinuous at the solid-liquid interface.

Furthermore, if we were simply to define (p) by convolution of p by the
weighting function m we would get a certain inconsistency, because the mean
(p) would be very different from the local p, even in the case where p is
uniform in the pores. The problem stems from the fact that, in the convolution,
p would be weighted by the porosity as well.

Therefore, it is preferable to define the mean porosity first as

<w) = fw(x + x')m(x')dx' where * w = {O in a grain
1 in a pore

Then, the macroscopic mass per unit volume is defined by

<p) = (~)fp(x + x')m(x')dx'

(If p = const, then <p) = p with this definition.)
Finally, we could keep the same definition for the filtration velocity as in

Eq. (3.2.1.1). However, this definition implies that the fluid is incompressible.
Indeed, if it is not, there is no physical significance in adding (or taking the
average of) the velocities. Mass is the only magnitude that can be added up, i.e.,
which satisfies an equation of continuity.

* Here we are talking about effective porosity-not in a kinematic sense, i.e., water that can
circulate, but in the sense of compressibility: when we make p vary, we want to identify that
fraction of the medium which contains compressible water. All that is excluded in the end is the
filmof adhesive water bound to the solids, which is itself already greatly compressed, and which
we shall assume to be part of the grain. In practice, we use the total porosity oi.
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(3.2.1.2)

Thus, we shall define the filtration velocity <u) from the mass flux pu and the
average mass per unit volume <p):

<u;) = <~)fp(x + X')Ui(X + x')m(x')dx'

If p is constant, this definition coincides with Eq. (3.2.1.1).
Although p is not continuous in space, the product of pu is, as long as the

porous medium is immobile. Therefore, we can also permute the signs of
summation and differentiation, and write the equation of macroscopic
continuity:

fdiv (pu)m(x') dx' = div[fPu m(x') dx'J= 0

or from Eq. (3.2.1.2),

dive<p)<u)] = 0

w ={O in a grain
1 in a pore

p = {O ~n a grain
p III a pore

u = {O ~n a grain
u III a pore

with

with

with

Case where the fluid is compressible, the flow a function of time, and the
medium elastic. We shall keep the same definition as above for <w), <p), and
(u), i.e.,

<w) = fw(x + x')m(x')dx'

.»: = <~) fp(x + x')m(x')dx'

<u) = <~) fp(x + x')u(x + x')m(x') dx'

We shall use the complete microscopic equation of continuity and integrate
it in space, with a weighting function m:

f[divtou) + ~JI"+,,, m(x')dx' = 0

This integral is indeed zero, because, by definition, the term in brackets must
be zero in the pores and the definition of p and u in the grains result in their
being zero in the grains as well. The fact that the spatial derivatives are not
defined on the interface 1:1 between the pores and the grain does not influence
the calculation of the integral of the volume, because 1:1 is a set of measure
zero.

Although the final result is simple, the calculation is trickier, because this
time the signs of differentiation and integration do not simply commute.



46 3. Basic Concepts in Hydraulics

The problem is caused by the fact that if the medium is compressed the mass
per unit volume of the water varies, but the porous medium itself subjected to
these pressures becomes deformed. Therefore, the porosity varies and the
liquid-solid boundary L1 moves at a velocity that we shall call U.,.. These
velocities are, of course, very small and, more often than not, negligible.
However, here we are endeavoring to rigorously establish the basic equations.

The consequence of this movement is that neither p nor pu is continuous in
space. One can then show that the summation and the differentiation only
commute if differentiation is defined according to the theory of distributions
and not in the usual sense (seeMade, 1967,and Schwartz, 1961). However, we
will not use this approach here.

Let us now examine the term

f aaP I m(x') dx'
t x+x'

Without referring to distribution theory, we shall use Leibnitz' rule" for the
derivative of an integral to evaluate our integral. From the definition of <p),
we can write

<p)<OJ) = fp(x + x')m(x')dx'

Let us assume that m has bounded support, and let V be the domain,
centered in x, in which m is not nil; the external surface of V is called L. As p is
nil in the grains, we can even limit the integration to the domain V 1 occupied
by the fluid and limited by the external surface L and by the fluid-solid
interface, which we call L1' We now take the derivative of the above
expression with respect to time:

a
a [<p)<OJ)] = aa [ r p(x + x')m(x') dX']
t t JX+X'EDl

* Leibnitz' rule: If

f
b (X)

f(x) = ljt(x,y)dy
a(x)

then

~ ~ ~ fbWO
- = -ljt[x,b(x)] - -ljt[x,a(x)] + "ljt(x,y)dy
ox dx dx a(x) ox

where ljt(x,y) is continuous in x and y, oljt/ox exists and is continuous, and a and bare
differentiable.
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As Di varies in time the porous medium is deformed continuously and
Leibnitz' rule gives us two terms in the differentiation: the time-dependence of
P, and the variation in time of the integration volume Di .

The first one is simply

r aa [p(x + x')]m(x')dx'JDl t

which is exactly the one we wanted to estimate at the beginning of this
paragraph.

The second term can be evaluated by noting that the volume swept by a
surface element da belonging to the fluid-solid interface Li during a time dt is
given by the scalar product

-u"o n dt

where u, is the velocity of the interface and n is the normal line at this interface
directed toward the fluid. The variation of the volume Di per unit time is
therefore the integral of this term on the surface L i (the external surface L of
Di is immobile):

-f p(x + x')uAx + x') 0 n(x + x')m(x') dx'
x+x'e:El

Observe that this term appears only because p is not continuous over L i : if
p were equal to zero on L i here, the integral would disappear. Thus, we can
write

f aap i m(x')dx'=~[<p><w>J +f pU"onm(x')dx'
t x-t x' at ~l

Now for the second term, f div(pu) m dx',
As the interface L 1 between fluid and solid moves, the velocity of the fluid at

this interface is only zero as a relative velocity, in relation to the interface
velocity*, i.e., for points on L i .

u - u" = 0, or u = u".

* III the most general case, the relation of the mass balance that exists at the interface in a
two-phase medium is described by

Pl(UI ·11- uu·lI) - P2(U2·11 - uu·lI) = 0

where 1 and 2 designate the two phases, II is the normal line at the interface E between 1and 2, and
u, is the velocity of :E.This rule assumes that the interface is a single surface and ignores interface
phenomena such as surface tension. It allows the exchange of matter at the interface (e.g.,fusion
of ice, chemical reaction). Here it is obvious that the velocity of the solid U 2 over :Eis equal to Illlu ;

thus, similarly, U 1 = Uu' See Slattery (1972).
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Thus, u is discontinuous on each side of L 1 making it necessary to introduce
one more term on Ll' We shall calculate a spatial derivative of <P )<u). We
integrate, as above, in a bounded volume D and let D1 be the domain occupied
by the fluid in D; L 1 is the fluid-solid interface.

From the definition of the filtration velocity in Eq. (3.2.1.2);

<p)<ui) = fPUil m(x')dx'
x+x'

We take the derivative:

-aa [<p)<u)] =-aa f PUil m(x')dx'
Xi Xi x+x'eD x+x'

=~f PUil m(x')dx' as PUi = 0 III (D - D1 )aXi x+x'eD, x+x'

If we make the change of variable, x" = x + x', we find

-aa [<p)<u;)] = -aa f PUil mix" - x)dx"
Xi Xi x"eDl x"

However, now only m is a function of x. If we observe that

then

am(x" - x)

aXi
am(x" - x)

ax;'

a f I am(x" - x) "-a [<p)<u;)] = - pu, a" ds:
Xi x"eDl x" Xi

=-f {~[pUil mix" - X)]
x"eD, aX i x"

- a~;' [pUilx..]m(x" - X)}dX"

Similarly, since the interface Ll is a set of measure zero, the fact that the
gradient is not defined on it is of no importance for the calculation of the
integral. If we transform the first term with Ostrogradski's formula, then

f ~[pUil m(x" - X)]dX" = -f PUil mix" - x)nidx"D,aX i ~' E, ~'

where n, is the component in the direction i of the normal line to Ll oriented
from the solid toward the fluid. Note that the integral is limited to Ll and not
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to the external surface of D1 , because if D is sufficiently large, then m is nil
there.

We can now go back to the initial variable x through the change of variables
x" = x + x':

:1

0
[<p)<u)] = f -J-[pu;1 ]m(X')dX' +f pu;! m(x')n;dx'

ox, D UX j x+x' ~1 x+x'

i.e., finally,

f diV(PU)! m(x')dx' = div[<p)<u)] - f pu· 01 m(x')dx'
D x+x' .I:1 X+X'

The fact that D is bounded does not influence the demonstration, which
remains general.

If we regroup the two terms of the equation of continuity, we get

div[<p)<u)] + ~ [<p)<w)] + f p(u,," - u). n m(x')dx' = 0
ut Ll

but on L1 we have shown that u = u,,"; there remains only

div[<p)<u)] + :t[<P)<W)] = 0 (3.2.1.3)

Observe that we could also define <w), <p), and <u) in the sense of random
functions as the mathematical expectations, at point x, of all the values
assumed by the infinite set of possible realizations of the medium. In that case,
the differentiation operator must be understood as in the theory of distribu
tions in order that it can be commuted with the expectation operator:

o [oa]ox [E(a(x, t))] = E ox (x, t)

3.2.2. Simplification of the Notation; Source Term

In order to avoid cumbersome expressions, we shall now dispense with the
sign <> for p and wand denote the filtration velocity U = <u), while
remembering that these magnitudes have been defined, in a porous me
dium, by the operation of taking averages, on which we have comment
ed abundantly.

However, we shall add one more term to the equation of continuity. Indeed,
this equation expresses the balance of matter inside a closed volume. However,
in hydrogeology, one often has to add a source or sink term, which accounts
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for the withdrawal (or recharge) of water that may be made in the medium (e.g.,
bore holes).

We shall define the source term q, which will represent the volumetric flow
rate of fluid withdrawn (or added, if it is negative) per unit volume at each
point. The withdrawn mass flow rate is therefore pq, with q defined on the
macroscopic scale. This term is added to the equation of continuity, which is
then

div(pD) + ~(pw) + pq = 0ot

3.2.3. Mean Microscopic Velocity

(3.2.2.1)

From the filtration velocity D, we can define a "mean microscopic velocity"
of the fluid simply by saying that u is nil in the grains. Let L be a section of the
porous medium and W es the kinematic surface porosity over L.

surface area of effective pores
W

es
= total surface area of the section

The mean microscopic velocity is defined by

D
U=

W es

However, this velocity does not have a great physical significance as opposed
to D, which, by definition, satisfies the equation of continuity.

In practice, it is generally assumed that the porous medium is isotropic in so
far as the distribution of the porosity over a section is concerned, and we admit
that Wes = We' although generally Wes < We' in reality. The mean microscopic
velocity (or mean actual velocity in the pores) is then

D
U=-

We

where We is the kinematic porosity.

3.3. Hydraulic and Piezometric Head

In courses in hydraulics, the hydraulic head at a point M of an in
compressible fluid subjected only to gravity is defined by the relationship

u2 p
h=-+-+z

2g pg
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where u is the real velocity of the fluid at the point M, the elevation of which is
Z (measured positively upwards). Each term can be interpreted in terms of
energy.

Furthermore, we know (Bernouilli's theorem) that the head can only
decrease in the direction of the flow and that, if the fluid is immobile, its head is
constant in space.

In porous media, the real velocities are always very slow, and we are justified
in omitting the term for the dynamic head u2/2g,which reduces the head to the
static or piezometric head:

h=L+ z
pg

Thus, the piezometric head merges with the hydraulic head, the value of which
is, of course, dependent on the origin chosen on the axis z. Hydraulic heads are
generally expressed in relation to the mean sea level in the same way as
topographic elevations.

If we want to measure this head at a point A of a saturated porous medium,
it is necessary to bore a hole and sink an open-ended tube. After stabilization,
the elevation ZB reached by the water in the tube is equal to the head h at the
point of the lower opening of the tube (Fig. 3.1). This kind of apparatus is
called a piezometer. The elevation ZB is equal to the head in the piezometer at
point B, which is the same as the one at point A, because the fluid is immobile
in the tube of the piezometer.

h _PA+ _PB+Pg(ZB-ZA)+ _PB+ -h
A - ZA - ZA - ZB - B

pg pg pg

As one always chooses the atmospheric pressure as the zero reference pressure,
indeed, hA = hB = ZB'

If the fluid were immobile in a water table aquifer that is directly recharged
by rainfall, the hydraulic head would be the same at all points of the porous
medium. Consequently, the head ZB in the piezometer would define the "free

~ .' .. ./;.;!~:~~ .. ~;I\_(__.F'" su ,I,,"

Fig. 3.1. Piezometer.
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surface" of the aquifer, i.e.,the boundary (where the water pressure is zero) that
separates the saturated porous medium from the unsaturated one.

If the aquifer flows horizontally in the saturated medium, the head varies in
the horizontal direction. However, the hydraulic head remains the same in the
vertical direction, and the elevation of the free surface is given by the one
measured by the piezometer independently of its depth. This is no longer the
case, if the flow is not horizontal; the hydraulic head then also varies with the
depth of the piezometer and the free surface is defined by the head obtained,
when the piezometer begins to enter the saturated medium.

In practice, the piezometer is often perforated along its entire length
(punctures or slots), and the "mean hydraulic head" in the aquifer is measured
in this way.

In order to account for the compressibility of the fluid, the hydraulic head is
sometimes defined by

fp dp
h=z+ --

pop(p)g

where Po is pressure at the origin of the axis z and p is pressure at the point of
elevation z (see Remson et al., 1971; Hubbert, 1940). We shall not use this
formulation.

3.4. Simplification and Integration of the Navier-Stokes Equations
for Schematic Porous Media

The Navier-Stokes equations are not in practice applicable as such in
porous media, because we do not know precisely what happens to pressures
and velocities in the pores on the microscopic scale. Therefore, one must find a
macroscopic law, which may be used on the scale of the elementary domain of
the porous medium, linking pressure, velocity, and external forces. This is an
experimental law, Darcy's law, which we shall study in Chapter 4.

We shall, however, simplify the Navier-Stokes equations by choosing the
case of slow (laminar) steady flow of an incompressible fluid. Once simplified,
they will be applied to two simple geometric cases: flow between two parallel
plates placed close together, and flow through a cylindrical tube as in the
example borrowed from Houpeurt (1974). We then obtain a macroscopic law
that can be compared with Darcy's experimental law.

Our purpose is not to prove Darcy's law, which is a phenomenological law
and has to be admitted, but to rely on theoretical reasoning as a basis for the
generalization of Darcy's law from the elementary experiment.

However, it is worth mentioning that there are works by Matheron (1967)
and MarIe (1967)that deal with the justification of Darcy's law by integration
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of Navier's equations in a real medium. In particular, Matheron shows that
Darcy's law is the result of the linearity of the Navier-Stokes equations, not of
their form.

Simplifications. For steady flow, we can write

ouijot = 0

and, by using the ordinary equation of continuity;

div(pu) = - opj at = 0

If, moreover, the fluid is incompressible, this equation reduces to

div u = 0

Then the Navier-Stokes equations reduce to

op 2 . .
-. - f1.V u' - pF' = 0
ax'

We shall integrate them in three simple cases.

(3.4.1)

(a) Parallel isothermal and steady movement of an incompressible viscous
fluid in a fracture of width e without any influence of external forces. The
fracture is assumed to extend indefinitely in the horizontal (x-y) plane and its
opening e is oriented along z.

The parallel flow runs in the direction x. The velocity has only one
component, Ux . It is evident that the velocity Ux then depends neither on x nor
on y, but only on z:

(3.4.2.)

(3.4.3.)

Then, without any influence of external forces (F i = 0), the Navier-Stokes
equations of Eq. (3.4.1) reduce to

op 02ux
-=f1.-ax OZ2

op = 0
oy

op = 0
oz

We isolate, in our mind, a length L of the fracture along x, a width b along y
(Fig. 3.2),and as p is independent of all but x, we can determine the boundary
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z

conditions:

L

x b

Fig. 3.2. Fracture geometry.

y

P = Pt

P = pz

for x = 0

for x = L, with pz < Pt

C', CIt constants

If we include gravity as an external force, the last equation of Navier-Stokes,
Eq. (3.4.4), would be

8p
-=-pg
8z

and P would also be a function of z. We ignore the gravity here in order to
simplify the analysis [see Section (c)].

The first of the Navier-Stokes equations Eq. (3.4.2), depends only on the
independent variables x on the left-hand side and z on the right-hand side. The
only means of ensuring the equality of these two quantities is to make each of
them, on its own side, equal to the same constant C.

Consequently, Eq. (3.4.2) is replaced by

8p = dp = C and
8x dx

The integration of these two equations leads to

P=Pt+Pz~Ptx ]

1 Zz
u =-C-+C'z+C"

x /1 2

For z = 0 and z = e, one should have u = 0; thus we get

1 pz - Pt ( z )u =- z -ez
x 2/1 L

(parabolic velocity profile)
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We calculate the flow q across the fracture for the width b:

q = I: buxdz

2
_ b _e_Pl P2

q - e 12,u L

If there are n parallel fractures over a depth of I of an otherwise
impermeable rock, its porosity is then

ne
w=-

I

The total section of the medium A is bl and gives the flow Q = nq:

Q = A we
2
~ Pl - P2 :;:"

12,u L

Thus, the Navier--Stokes equations lead to the following conclusions: the
flow Q is proportional to the total section A of the rock and to the pressure
gradient (Pl - P2)/L and inversely proportional to the viscosity u. The
coefficient of proportionality for the medium in question is here we 2/12.

(b) Flow through a circular tube of radius r (Poiseuille's formula). If we
use radial symmetry and introduce polar coordinates with the flow direction x
as their axis, the first of the Navier-Stokes equations, Eq. (3.4.2),given for the
case of the fracture, becomes

dp d2u 1 du
-=,u-+-
dx dr? r dr

The integration leads to

ttr" Pl - P2
q=S;; L

Let us consider a porous medium composed of an impermeable matrix
pierced by n circular ducts of radius r, all parallel to each other. If A is the total
surface area of the medium, perpendicular to the direction of the ducts, it has a
porosity of

w = nnr 2 /A

Then the total flow through the porous medium is Q = nq, i.e.,

Q = A wr
2

1 Pl P2
8,u L

(3.4.6)
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and this expression is similar in all points to the expression of Eq. (3.4.5)for the
flow in the fractured medium, but the proportionality coefficient here is cor?/8
instead of wez/12.

These two calculations suggest-but do not prove-that the flow Q of an
incompressible fluid with viscosity p, through a cross-section of area A of a
porous medium under a pressure gradient dpldx has the form

k dp
Q = -A-;; dx

where k is the coefficient of proportionality of the porous medium in question.
We shall see that this is indeed the result found experimentally by Darcy.

(c) Introduction of external forces. If we want to include external forces
in the Navier-Stokes equations, for example the gravity, we orient the parallel
fracture vertically along the y-z plane. Then, the Navier-Stokes equations are

op = °ox op = °oy

(3.4.7)

(3.4.8)

which, when similarly integrated, lead to

Pz - Pi
P = Pi + L z

1 (PZ - Pi )uz = 2p, L + pg (xz - ex)

The conclusion is that the force of gravity pg plays the same role as the
pressure gradient dpld», to which it should be added. The flow through the
fractured medium becomes

Q _ A
wez 1 (Pi - PZ )- -- -pg
12 u L

If we calculate the filtration velocity, defined above as that of a fluid, which
might flow through the entire cross section A of the fractured medium, we get

U = Q = we
z
~ (Pi - Pz _ pg)

A 12 u L

and generalizing for all directions in space,

wez 1
U = ---(gradp + pg grad z)

12 p,

where grad z is a vector of coordinates (0,0,1) and the axis z is vertical and
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oriented upward. The minus sign is due to the fact that the fluids flow from
high pressure toward low pressure or from above downward.

As the fluid is assumed incompressible, we can write

grad p + pg grad z = pg[grad(pjpg + z)J

= pggradh

where h = pjpg + z is the hydraulic head, which we have defined in Eq. (3.3.1),
Le.,

me2 pg
U= ---gradh

12 f.l

The role of the pressure is taken over by that of the hydraulic head h if the fluid
is incompressible.

However, we must remember that in the Navier-Stokes equations as such,
we can associate pressure gradients and external forces:

That is, if the forces Fi derive from a potential such as gravity, then
grad p + pg grad z, but the definition of a unique potential pjpg + z assumes
that the fluid is incompressible, which is not always the case in a porous
medium. We shall use the two forms alternately.
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4.1. Darcy's Experiment, Hydraulic Conductivity, Permeability,
and Transmissivity

Henri Darcy, while studying the fountains in the city of Dijon, France,
around 1856, established empirically that the flux of water through a sandy
formation (Fig. 4.1) may be calculated by

Q = KAl1h/L (4.1.1)

where A is the area of the cross-section of the sandy formation, I1h the
differencein hydraulic head in the water between the top and the bottom of the
sandy formation, K a constant that depends on the porous medium, called
hydraulic conductivity in hydrogeology, or sometimes coefficient of permea
bility, and L the thickness of the sandy formation.

By dividing both sides by A, we obtain the fictitious velocity U of the fluid at
the outlet of the formation, bearing in mind that this definition of the velocity
U considers the entire section to be open to the flow. This is what we have
called the filtration velocity:

U=Q/A

Furthermore, if the difference in hydraulic head per unit length of porous
medium traveled by the flow is denoted i = I1h/L, also called hydraulic

58
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- Water-

Ah
" ... . . ' .. '"· ..... " '.· " . " . '.· " ..
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L

(4.1.3)
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Fig. 4.1. Darcy's experiment.

gradient, we get

U=Ki

which is the simplest expression of Darcy's law.

(a) Intrinsic permeability. If we take Eq. (3.4.8) using dimensional
analysis and experimental verification, we find that the constant K actually
varies inversely with the dynamic viscosity p,of the fluid. Moreover, we know
from the calculations based on the Navier-Stokes equations that the real
reasons for fluid displacement in a porous medium are, on the one hand, the
pressure gradients and, on the other, the external gravity forces as in Eq. (3.4.8).

Consequently, Darcy's law should be expressed in the generalized form

k
U = --(gradp + pggradz)

p,

which we admit for steady and unsteady flow of compressible fluids. Note that
since U is a macroscopic magnitude, this is also true for p" p, and p, regarding
the averages (given in angle brackets) defined in Chapter 3.*

* In particular, one can show that Darcy's law applies to the gradient of average pressure,
grad <p>, and not to the average gradient of pressure, <grad p>. See Marie (1967).
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The intrinsic or specific permeability k relates to the porous medium
regardless of the characteristics of the fluid. It is only defined on the
macroscopic scale. Its dimension, from Eq. (4.1.3), is that of a surface area,

[kJ = [QJ[,uJ = (length 3time-1)(mass length-
1time-1) = (length")

[AJ[pL 1J (length/jfmass length 2time 2)

However, it is often expressed in darcys. One darcy is equal to 0.987 x 10-12

m', and is defined by a medium for which a flow of 1cm3jsis obtained through
a section of 1 em", for a fluid of viscosity 1 cP, and a pressure gradient of 1
atmjcm (760 mm Hgjcm).

In practice, the petroleum industry uses the millidarcy (md 10-3 darcy)
because the most common permeabilities usually lie between one and a few
thousands of millidarcies.

(b) The hydrogeologist's hydraulic conductivity. The relation between the
intrinsic permeability k and the hydraulic conductivity K used by hydrogeolo
gists is established by treating the flow as a function of the hydraulic head
gradient I1hjL = -gradh.

If we assume that the fluid is incompressible, we can write Eq. (4.1.3) as
follows:

k
U = - - grad(p + pgz)

,u

or yet, remembering that the hydraulic head h is defined by h = pjpg + z, and
taking pg out of the gradient,

kpgu= --gradh
,u

When Eq. (4.1.2) is compared to Eq. (4.1.4), we see that

K = kpgj,u

Note that the two forms of Darcy's law,

(4.1.4)

k
U = --[gradp + pg grad z] = -Kgradh

,u

are strictly equivalent even for compressible fluids, if the definition of the
hydraulic head is taken to be

fPdP
h=z+ -

o pg

which we have already mentioned above. However, we shall not use it here.
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The dimension of K is that of a velocity:

_ (length 2)(mass length- 3)(length time- 2
) _ (1 h ti -1)

[K] - (1 hi' 1) - engt timemass engt time

It is usually expressed in meters per second (see the conversion factor
in Appendix 2 for U.S. non-Sf units). The hydraulic conductivity of
layers range from 10-9 to 10- 2 m/s.

The hydraulic conductivity depends not only on the fluid, which is not very
disturbing since we are always dealing with water, but also on its viscosity, and
the viscosity varies a great deal according to the temperature. The following
figure gives the variations in the viscosity of the water with temperature,
compared to the viscosity measured at 20°C, which is equal to 1.002 x
10-3pa s (or 1.002 cP) (Fig. 4.2).

In spite of the hypothesis of an isothermal porous medium, which we have
formulated, we must be careful when dealing with very superficial aquifers
where the climatic variations between summer and winter result in con
siderable variations in hydraulic conductivity: it is reduced by 40% if the water
temperature drops from 25 to 5°C. This will be discussed later in relation to
geothermal problems.

In order to compare the intrinsic permeability and the hydraulic conductiv
ity, it is useful to keep the following relation in mind: for water at 20oe,
1 millidarcy gives

O.98710-;.~O~ ~031;_?·81 = 0.966 10-8 m/s

Thus, 1 millidarcy is close to 10-8 m/s for water at 20°e. (For air at 15°e and
normal pressure, f1 = 1.8 X 10-5 Pa sand p = 1.25 kg m-3.)
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Fig. 4.2. Water viscosity as a function of temperature.
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(c) Permeability and porosity. From the analogy of flow in a fractured
medium or through a circular tube, attempts have been made at linking
permeability to the porosity or to the dimension of the pores.

U = _ kpg gradh
/1

OJe2pg

U= ---gradh
12/1

OJr2pg

Tubular medium: U = ---gradh
8/1

One could therefore consider linking k to OJe 2 / 12 or OJr 2 / 8 but, un
fortunately, all attempts to do this have yielded mediocre results. The best
known empirical formulas are that of Koseny-Carman,

OJ3

k = 5S6(1 _ OJ)2

where So is the surface area exposed to the fluid per unit volume of the solid
(and not porous) medium and OJ is the total porosity; that of Hazen,

logk = 210gdl o - 3

where dl o is the "effective diameter" of the grains in the soil (see Section 2.I.e),
and k is in em? and dl o in cm; and that of Bretjinski (for sands), with K in
m/day,

OJ = 0.117 (K)lf7

(d) Permeability tensor. The experiment with Darcy's permeameter is
made by observing a flow in one direction. When we went from U = Ki to
U = - K grad h, we already admitted that it was possible to generalize the law
to three-dimensional space. Moreover, in doing this, we admitted implicitly
that the hydraulic conductivity K, or yet, the intrinsic permeability k, are
isotropic properties of the porous medium, independent of the orientation in
space.

However, we know a priori that this is not so. For instance, sedimentary
layers of sand or clay-sand have, because of the very fact that they are
stratified, a horizontal permeability that is much higher than the vertical one.
This is also true for alluvial media, usually constituted by alternating layers or
lenses of sands and gravels and occasional clays. For these media the
orientation of the hydraulic head gradients and the flow velocity do not
usually coincide any longer: the flow has a tendency to follow the directions of
the highest permeabilities (Fig. 4.3).

This leads us to consider the permeability as a tensorial property, which is
simply the mathematical translation of this observation. To do this, one

kenne
Subrayado
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..
Direction of the hydraulic head gradient

Fig. 4.3. Evidence of the anisotropy of a layered medium.

defines a permeability tensor k, which we take to be a second order"
symmetrical! tensor (i.e., k is a matrix of nine coefficients, symmetrical with
respect to the diagonal):

kx x kx y kx z kx y = kyx

k= kyx kyy ky z with kx z = kzx

»: kzy kzz kyz = kzy

Some authors have tried to prove this on the basis of models representing the
porous medium (models of capillary tubes, fractures, etc.). These demon
strations justify the generalization by analogy but do not prove it. However,
Matheron (1967) has established the symmetry of the permeability tensor
through integration of the Navier-Stokes equations.

Thus, we write

U = -Kgradh

k
U = --[gradp + pg grad z]

11

" A tensor of the second order is defined by the rule of transformation of the tensor components
in a rotation of the cartesian coordinate system: if in one coordinate (X

"X
2,X3), the components

of the tensor are K ij , then the components K;/ in a coordinate (Xl" xz',x/) are

Kij' = LLCOS (Xli COSmj Kim
1 m

where C1.li is the angle of the axis OXl with the axis Ox,'. We can easily establish that this is indeed
how the components of the permeability tensor are transformed by writing a flow balance
equation.

t One can show macroscopically that the symmetry of this tensor is a sufficient condition, at
least for describing the observations. In a stratified medium, it is obvious that the directions
parallel and perpendicular to the stratification are special directions of the flow, for which the
hydraulic head gradient and the flow velocity again coincide, i.e., that the components of the
tensor are reduced to its diagonal component. We know that a symmetric matrix is a sufficient
condition for its eigenvalues to be distinct and its eigenvectors orthogonal. However, to prove
that this condition is necessary, one has to make use of the first and second principle of
thermodynamics.
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Develop, for example, this last relationship by calculating the three
components of the velocity U in the most general manner:

U; = _ k xx op _ k x y op _ k xz (op + pg)
Jl ox Jl oY Jl OZ

U = _ k xy op _ k yy op _ k yz (op + pg)
y Jl ox Jl oY Jl OZ

U, = _ k xz op _ k yz op _ k zz (op + pg)
Jl ox Jl oY Jl OZ

Indeed, it is clear that if k is defined as a tensor, it is possible for a gradient in
a given direction x to generate components of the flow in the perpendicular
directions Y and z, which tallies with the experiment. This relationship is
written with six different permeability coefficients and takes the symmetry into
account.

This rather cumbersome expression may be simplified by using a new set of
orthogonal axes X, Y, and Z, deduced from the former by a rotation such that
the permeability tensor is reduced to its diagonal components. Math
ematically, X, Y, and Z are the directions of the eigenvectors of the matrix k,
Physically, X, Y, and Z are the directions in which the flow is actually parallel
to the hydraulic head gradient (in practice, one direction at right angles to the
stratification and two directions parallel to it). These directions are called the
principal axes of anisotropy of the medium. In these axes, the tensor k is
reduced to three diagonal components

kxx 0 0
k = 0 kyy 0

o 0 k zz

and the Eq. (4.1..7) becomes

U = _ kxx op
x Jl ox

u = _ kyy op
y Jl oY

kzz (op )Uz = -- -+pg
Jl OZ (if Z is still the vertical direction)

(4.1.9)

In practice, there are two distinct permeabilities in sedimentary media with
more or less horizontal stratification: a vertical permeability kzz and a
horizontal permeability k xx = k yy. The anisotropy ratio kzz/kxx generally
ranges between 1 and 100.

kenne
Subrayado



4.1. Darcy's Experiment, Hydraulic Conductivity, Permeability, and Transmissivity 65

As the hydraulic conductivity K is equal to the intrinsic permeability k,
except for one scalar factor, the anisotropy concept already developed for Ii{
applies to K as wen. In the rest of the analysis, we shan always assume that the
cartesian coordinates are the principal axes of the permeability tensor, while z
remains the vertical axis. [Otherwise the term pg grad z in Eq. (4.1.6) will be
distributed on the three equations in X, Y, Z of Eq. (4.1.9), making the writing
cumbersome. This difficulty disappears if the fluid is incompressible because
the hydraulic head h may then be used.]

Note that if the anisotropy of the medium is uniform (the same at an
in space) we can turn it into an equivalent isotropic medium by anamorphosis
on the coordinates (see Section 7.1.6).*

(e) Thefractured medium. At present, there are two methods for tackling
flow in a fractured medium: modeling of the flow, accounting for the fractures
one by one, or modeling with an equivalent continuous medium. In an
elementary fracture, the laws governing the flow are (summarizing
1974) for laminar flow V = KrJr and for turbulent flow V = K/n, where V is
the mean velocity of the flow in the fracture, i.e., a velocity assumed uniform
over the total aperture of the fracture and producing the same flow t as the real
one; K, the hydraulic conductivity of the fracture (length time -1); K/ the
turbulent conductivity of the fracture (length time-I); Jr the right-angle
projection of the hydraulic head gradient on the fracture plane; and Q( the
degree of nonlinearity of the flow (0.5 ~ Q( ~ 1).

The transition from laminar to turbulent flow is governed by the values of
the Reynolds number R; on the one hand and of the relative roughness on
the other.

The Reynolds number (dimensionless) is defined, for a cylindrical pipe, by

R = Vdp
e J1

where V is the mean velocity of the fluid, d the diameter of the pipe, J1/p the
kinematic viscosity.

In classical hydraulics, the flow regime is laminar for R; < 2000 and
turbulent for R; > 2000.

* It is also possible to define directional hydraulic conductivities either in the direction of the
flow (ratio between U and the component of the head gradient along U) or in the direction of the
gradient (ratio between the component of U along the gradient and the head gradient itself).
See Bear (1972).

t We have shown in Section 3.4 that the real profile of the velocity, in laminar flow, is parabolic
if the fracture is smooth.
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For a plane fracture, the diameter of the pipe is replaced by the "hydraulic
diameter" defined by

Dh = 4Sjp (4.1.11)

where S is the cross-section area of the flow in the fracture and p is the outside
perimeter of this cross-section area of the flow. For a very long fracture, Dh is
equal to twice its aperture.

The relative roughness (dimensionless) is defined by

(4.1.12)

where B is the mean height of the irregularities in the fractures and Dh is the
hydraulic diameter of Eq. (4.1.11).

Depending on the values of R; and Rp Louis (1974) defines empirically five
flow regimes and their domains of validity, which are represented on Fig. 4.4.

The laws of the steady-state flow in each regime depend on the aperture e,
the kinematic viscosity p,jp, the relative roughness R p and the hydraulic head
gradient in the fracture plane Jf :

Type 1; smooth laminar:

Type 2; smooth turbulent:

(
pg

e
2

)V = - 12p, J,

= _ [_g (2pe
S)1/4 J417

V 0.079 p, Jf

(4.1.13)

(4.1.14)
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Fig. 4.4. Definition of the flow regime in a fracture.
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Type 3; rough turbulent: (4.1.15)

(4.1.16)

(4.1.17)

Type 4; rough laminar: [
pge2 J

V = - 12/l(1 + 8.8R;'S) J f

V= -(4~ln~~)A
(In these expressions, In is the natural logarithm.)

Finally, if the fracture is not completely open (the two edges touch in places),
we have to multiply the right-hand side of Eqs. (4.1.13)-(4.1.17)by the "degree
of separation of the fracture" F:

Type 5; very rough turbulent:

open fracture surface area
F = --=---------

total fracture surface area

For a system of parallel and continuous fractures, in laminar flow, the
equivalent hydraulic conductivity of the medium can be calculated from

where b is the mean distance between fractures, K, the hydraulic conductivity
of fractures, Eq. (4.1.13) or (4.1.16), and K m the hydraulic conductivity of the
rock matrix (length time-1), if not zero.

The term K is a directional permeability, i.e., defined for a hydraulic
gradient parallel to the fracture plane.

If the fracture system is discontinuous (the fractures are of finite length and
unconnected), the largest part of the transfer happens in the matrix and the
fractures work as "short cuts." For the equivalent directional conductivity,
Louis proposes

K = K [1 +~(_I -i)J
m 2 L-I L

(4.1.20)

where 1 is the mean extension of the fractures and L is the mean distance
between two unconnected fractures.

These conductivities are the directional conductivities of the equivalent
continuous medium. In the case of continuous fractures, the continuous
directional conductivity of the equivalent medium is therefore dependent on
the cube of the fracture aperture:

3 Fgp
K = e 12/lbC
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where F = degree of fracture separation, Eq. (4.1.18), C = 1, regime of type 1,
and C = 1 + 8.8R;·s, regime of type 4.

Maini and Hocking (1977) give the equivalence between the hydraulic
conductivity in a fractured medium and that of a porous medium in Fig. 4.5.
For example, the flow through a 100-m-thick cross-section of a porous
medium with a hydraulic conductivity of 10-7 ta]» could also come from one
single fracture with an opening not wider than 0.2 mm in a fractured medium
with an impervious rock matrix! This shows the immense importance for the
flow of one single fracture that is not even wide. Figure 4.5 gives the relation
between the aperture of the single studied fracture, the hydraulic conductiv
ities of the equivalent medium, and the thickness of the section of the
continuous medium equivalent to this fracture.

Consequently, there are two possible ways of modeling the flow in a
medium constituted by several conducting fractures. The first is the method of
the continuous medium: each family of fractures defines a directional
conductivity, thus constituting a hydraulic conductivity tensor. As we know
the intensity and the direction of these conductivities, we can calculate the
principal axes of anisotropy of the tensor and the conductivities in these
directions.
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Fig. 4.5. Comparison between the hydraulic conductivity of the porous medium and the
fractured medium versus the aperture. [From Maini and Hocking (1977). Reproduced with
permission from the Geological Society of America.]
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Fig. 4.6. Principal axes of anisotropy of a fractured medium.

For example, in two dimensions, two fracture systems with the same
directional conductivity give the principal axes of anisotropy shown in
Fig. 4.6. Maini and Hocking (1977) give the following expressions for
calculating the directions of anisotropy and the principal hydraulic conductiv
ities of the equivalent medium:

t/Ji = -2
1

arctan ( ;i; 28/ )
cos K a tc;

K = KaKb sin 2 8
, K; sin? t/Ji + K b sin (8 - t/JJ

where K; and K b are the equivalent directional hydraulic conductivities of the
fracture networks a and b, as shown in Fig. 4.7.

In three dimensions, Feuga (1981) gives the following expressions for
determining the hydraulic conductivity tensor of a fractured medium with
several fracture directions:

1 N
K. = - " e·k·R·

I L. 1 1 ,

i= 1

where I is the arbitrary dimension of the side of a square block of the fractured
medium, large enough to statistically sample all the families of fractures, N the

Fracture b, hydraulic conductivity K
b

Fig. 4.7. Orientation of the principal axes of anisotropy in a fractured medium in two
dimensions. [From Maini and Hocking (1977).Reproduced with permission from the Geological
Society of America.]
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number of fractures in the block of side 1, e, the aperture of each individual
fracture, and k i the hydraulic conductivity of each individual fracture

[

1-cos1disin1pi tsin2disin1pi -tsin2Picosdi]
1"1 '1'1 l' .Ri = 2sm2dism Pi 1 - sin dism Pi 2sm2Pismdi

-tsin 2 Picos d, tsin 2 Pisin d, sin? Pi

In the matrix Ri , the direction d,and the dip Piof each fracture are defined as
in Fig. 4.8.

Once the tensor K has been determined, the principal axes of anisotropy
and the diagonal components of K in these directions can be determined by
calculating the eigenvalues and the eigenvectors of the matrix K.

This method of the continuous medium approximation is valid for a certain
scale of observation: the flow velocities or the hydraulic heads in each fracture
are not described with precision, but a mean value of these magnitudes is taken
over all the fractures.

The definition of the hydraulic conductivities of each family of fractures
may be approached in two ways: either (1) by measuring (or estimating) the
mean geometric properties of the fractures (aperture, distance from each other,
roughness, etc.) and using the expressions given above, or (2) through in situ
tests by injecting water and measuring the hydraulic conductivities K, of the
elementary fractures directly.

The drawback of both methods is that they assume the fractures to be
infinite and to have the same properties everywhere. Their results must be
taken with caution. The directions of the principal axes of the conductivity
tensor are probably more accurate than the value of the conductivities; these

z

_~,.;;;;;;::::._...,.--- x (East)

Fig. 4.8. Direction and dip of a fracture in three dimensions.
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are better defined by large-scale flow and pressure head measurements (e.g.,
pumping tests; see Section 8.2).

Research is at present being done on systems of fractures of finite length
using the theory of percolation: see Clerc et al. (1983), Hammersley and Welsh
(1980), Kirkpatrick (1973), Long et al. (1982), Shante and Kirkpatrick (1971),
Wilke et al. (1985), Engelman et al. (1983), and Rouleau and Gale (1985).

The second method of modeling the flow in a fractured medium, the
method of the "discontinuous medium," takes into account either the
elementary fractures of the system or equivalent fractures representing several
elementary fractures of the same family. This contrasts with the first method.

The model is composed of "nodes," where the fractures cross each other,
joined by planes, where the fluids flow according to the directional laws given
above. The hydraulic head is calculated at the nodes, and the velocities are
calculated in the planes. Louis (1974)showed that in laminar flow a potential r
may be defined by

r = Kf(pjpg + z)

The velocity is then given by gradients of this potential.
Although this method enables us to represent the flows with more precision

on the small scale, it requires precise knowledge of the position in space and
the properties of each of the fractures, taken one by one or grouped into
families.

Remark: unsteadyflow infractured media. So far, we have assumed that the
water flow is steady, i.e., does not vary with time. If we introduce transient
flows, one of the fundamental properties of fractured media appears: double
porosity.

Indeed, in the general case, the fractured medium may be looked upon as
two coexisting systems of voids: the apertures of the fractures and the porosity
between the grains of the blocks of rock separating the fractures. The
definition of the equivalent permeability of the medium, given in Eq. (4.1.19),
really points to this double system, since it adds the hydraulic conductivity
of the fractures to the conductivity K m of the blocks.

In the steady state, this double porosity and the double conductivity are
accounted for by the notion of equivalent hydraulic conductivity. However, it
is easily understood that in a transient state the transmission of the pressure
variations is much faster in the fractures than in the matrix of the blocks if
K, » K m • It therefore becomes necessary to define, in a representative elemen
tary volume, two different pressures, one in the fractures and the other in the
matrix, as well as a term for the exchange of mass between the intergranular
porosity and the porosity of the fracture.
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These problems have been studied by, among others, Warren and Root
(1963), Barenblatt et al. (1960), Braester (1972), and Lefebvre du Prey and Weill
(1974). Barrenblatt suggests a law of movement as follows:

.[kr a ] aPrdiv -;gradpr + 11130 otgradpr = f30fit

where k, is the intrinsic permeability of the fracture (kr = Kr /11pg), Pr is the
pressure in the fractures, 11 = krla is a characteristic parameter of the degree of
fracturing, where a is the intensity of transfer between the blocks and the
fractures, and 130 is the usual coefficient of elastic compressibility of the
complex water plus porous medium (see Chapter 5).

This leads us in fact to adopt a special darcian law for fractured media,
which is dependent on time and is written

kr au = --gradpr -11f3o-;-gradPr
/1 ot

(f) Transmissivity. If the aquifer is a layer of thickness e, as in Fig. 4.9,
and we want to calculate the flow Qin the direction x through the layer over a
unit length in the direction perpendicular to the figure, we get

Q= J:uondZ= J:UxdZ
where n is the normal line to the axis Oz and U; is the velocity component in the
direction x.

Assuming that Z is a principal direction of anisotropy [i.e., that the two
other directions are in the same plane as the layer (x, y)] then at all points M of
Oz,

u = -KMgradh

where KMis the hydraulic conductivity tensor in the plane x-y and grad his
the hydraulic head gradient in this plane. If we further assume that this
gradient is constant on the transverse line Oz, then

Q = -gradh f: KMdz

Fig. 4.9. Aquifer layer.
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This integral has been named the transmissivity;

T = f: Kdz

If K is isotropic and constant along Oz,

T=Ke

where T is expressed in meters squared per second and is very often used in the
case of groundwater aquifers, whether they are horizontal or not.

4.2. Limitations on the Validity of Darcy's Law

The various generalizations of Darcy's elementary experimental law are in
fact validated by practice: we find that the calculations made with the help of
this generalized law tally with what we observe. However, at the extremes,
toward the weak as well as toward the strong hydraulic gradients, there are
distortions of the law, which, in truth, are not encountered very often.

(a) Where the hydraulic gradients have low values. In compact clays, the
most general law of variation for the low values of the gradient is given by
Fig. 4.10 (Jacquin, 1965a, b): below a value io, the permeability is zero; between
io and it, the relation is not linear; and the proportionality corresponding to
Darcy's law only applies for i > it and is expressed by a formula such as
U = K(i - i2 ) .

The values of io, iu and i2 vary a great deal according to the type of clay and
its structure; the mineral content of the water also plays a part. As an example,
montmorillonite often has reported i2 values on the order of several tens.
However, these concepts are still controversial.

(b) Where the hydraulic gradients have high values. When the hydraulic
gradient is increased, we observe experimentally that there is no longer any

u

Fig. 4.10. Darcy's law for small hydraulic
gradients.
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proportionality between the gradient and the filtration velocity:

grad h = «U + pU 2

where a U is the loss due to the viscuous friction against the walls of the matrix
and pU 2 the loss due to the inertia of the fluid (dissipation of kinetic energy in
the pores, where the flow lines converge and then diverge again rapidly; these
losses are similar to those in bends or narrowing sections of a pipe).

The borderline hydraulic gradient, beyond which Darcy's linear law is no
longer valid, depends largely on the medium. In order to make this borderline
gradient an intrinsic property of the medium, we sometimes define a
"Reynolds number in porous media" (dimensionless) by

s, = Upfilll
or

R~ = U'dpl u.

where U is the filtration velocity (length time -1), Jk the square root of the
intrinsic permeability (length), pill the kinematic viscosity (length? time- 1

) ,

and d the mean diameter of the grains (length) or effective diameter d1 0 (see
Section 2.1.e).

Note that the exact definition of the Reynolds number in a circular pipe is
udplll (u is mean velocity of the fluid in a pipe of diameter d). In view of
the difference between the definitions, one must not try to compare these
numbers to each other.

In practice, we admit that Darcy's law is valid if the Reynolds number in a
porous medium (taking the mean diameter of the grains) is below a limit
somewhere between 1 and 10. In this case, the flow is purely laminar inside the
pores (Chauveteau and Thirriot, 1967). From 10 to 100 there is the beginning
of transient flow, where the forces of inertia are no longer negligible and
Darcy's law no longer holds. Beyond 100, the state of flow is turbulent inside
the pores and Darcy's law applies even less.

In practice, with the exceptions of karstic systems and the immediate
vicinity of wells, the critical Reynolds number is not reached and the flow stays
laminar. The result is that, even in the vicinity of a well, the quadratic terms
appear only in a limited zone, usually within the gravel pack (gravel
introduced as a filter around the well), and is of little importance.

Sichardt's empirical formula for the borderline gradient is worth noting:

i = 1/1SJK
where K is expressed in sxi]».

(c) Darcy's law in the transient state. Darcy's law is established for
steady-state flow (independent of time) both experimentally and theoretically.
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We have already said, in Section 4.1.e, that in fractured media the phe
nomenon of double porosity causes a transient term to appear, which is new
to Darcy's law. It is also possible to prove theoretically that, in a porous
medium, an additional term appears in Darcy's law in the transient state.

We shall return for a moment to the Navier-Stokes equations. We have
seen, in Section 3.4,how in artificial media in a steady state we move from the
case where the external forces are nil to that where they exist by simply adding
the term pF, to the pressure gradient ap/ax;. Going back to the complete
Navier-Stokes equations Eq. (3.1.2), we see that the transient terms pau;/ot
have the same role in the equations as the external forces. In the steady state if
we write

k
U = --(gradp + pggradz)

Jl

then in the transient state we write

k ( p au)u = --,; gradp + pggradz - w at

The factor l/w for the transient term originates in the integration, in the
REV, of the microscopic transient term* p au/at. However, this additional
term is in practice always disregarded, because, as U is small in porous media,
au/atis negligible versus the other terms, except maybe during a time of the
order of a second, when the flow gets underway in a porous medium.

4.3. Permeability Measurements on Samples

(a) Medium with high hydraulic conductivity. If the hydraulic conductiv
ity of the medium is not too low, we can use a difference in hydraulic head
generated solely by gravity.

Constant-head permeameter. We return to Darcy's experiment (Fig. 4.1
If A is the cross-sectional area of the sample of porous medium, Darcy's law
takes the form

i.e.Q = -KAgradh K= QL
(hi + L - hz)A

Falling-head permeameter. If the hydraulic conductivity is less than
10-5 ta]« the constant-head permeameter must be replaced by the falling

* The theoretical demonstration is made by first rewriting the Navier-Stokes equations as a
partial derivative of time instead of a total derivative.
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Fig. 4.11. Constant-head permeameter.

head permeameter (Fig. 4.12),where a larger head gradient is created through
a long pipe with a small section a. If Q is the flow through the sample of
cross-sectional area A, we can write

Q = KAh/L (Darcy's law)

Q = <a dhldt

and thus

dh A dt
-=---

haL

h AK
In- = --(t - to)

ho aL

If we trace In h on a graph versus time, we obtain a straight line, the slope of
which is proportional to K.



4.3. Permeability Measurements lin Samples 77

h

Fig. 4.12. Falling-head permeameter.

Q

o L-____________ Fig. 4.13. Flow versus head losses in a
.6h porous medium.

(b) Medium with low hydraulic conductivity. If we want to measure lower
hydraulic conductivities, we apply larger pressure differences with the help of
pumps and measure the pressures upstream and downstream for different
values of the flow Q.The slope of the line that gives Q versus /).h (see Fig. 4.13)
makes it possible to calculate the permeability. Quite often, the permeability to
a gas is measured, since it is easier to obtain. The knowledge of p and J1 enables
us to pass from permeability to hydraulic conductivity.

The various measurements carried out in the laboratory do not reflect the in
situ hydraulic conductivity, which may be quite different.* In order to measure
the latter, the reaction of the terrain to pumping or injection is used, depending
on whether we are dealing with a permeable or impermeable terrain. This
reaction is examined in detail in Sections 8.2 and 8.6.

Hydraulic conductivity could also conceivably be determined indirectly in
an aquifer by measuring the mean pore velocity of water in the medium, using
tracers, as u" = Vim. If the kinematic porosity and the head gradient are

* If the rock is not compact, the sample is often modified by the sampling technique; moreover,
the permeability usually varies a great deal in space, and one sample may not be representative.
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known, K can thus be obtained. Hanshaw and Back (1974)used natural P'C as
a tracer for this purpose in a limestone aquifer in Florida. However, the
mechanisms of diffusion and dispersion in the medium (see Chapter 10)make
the determination of the mean velocity very imprecise [see also Pearson et al.
(1983)].

(c) Hydraulic conductivity values. The permeability of a rock is, of course,
due to its effective porosity, i.e., to the existence of interconnected voids.

In the same way as we have defined an interstitial porosity and a fracture
porosity, it would be possible to define two types of permeability (interstitial
and fracture), which were formerly described as small-scale permeability and
large-scale permeability, because the REV used to define them was not the
same. In practice, it is difficult to distinguish between the two types of
permeability that may coexist in the field.

For unconsolidated detrital rocks with interstices, the hydraulic conductivity
depends on the size of the grains, as in the accompanying table.

Medium

Coarse gravels
Sands and gravels
Fine sands, silts, loess
Clay, shale, glacial till

K (approximate) (m/s)

10- 1-10- 2

10- 2-10- 5

10- 5_10-9

10- 9_10- 1 3

The limit separating permeable rocks from impermeable ones is arbitrarily
set at 10- 9 m/s, The clays are impermeable in spite of their great total
porosity, because their small pores give them a very low effective
porosity.

For hard rocks, hydraulic conductivity depends on the permeability of the
matrix and that of the fractures. The following table of ranges is given for
unfractured rocks.

Medium

Dolomitic limestones
Weathered chalk
Unweathered chalk
Limestone
Sandstone
Granite, gneiss, compact basalt

K(m/s)

10- 3_10- 5

10- 3_10-5

10- 6_10-9

10- 5_10-9

10- 4_10- 1 0

10- 9_10- 1 3
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For fractured rocks, the hydraulic conductivity depends very much on the
density and aperture of the joints. However, fractures may either seal with time
or, on the contrary, increase in aperture. In limestones, CO 2 is dissolved
water in the atmosphere and in the superficial soil; H 2C03 then dissolves
limestone deep in the aquifer, thus enlarging the fissures. This may evolve into
a karstic system, where some of the fractures may locally become very large
and form an underground system of chambers, tunnels, pipes, and siphons,
through which most of the water flows. The concept of hydraulic conductivity
no longer applies in such cases. However, all limestone aquifers are not
necessarily pure karstic systems: the dissolution of limestone may create a
network of open fractures with hydraulic conductivities in the range 10- 3 to
10- 1 ra]«

In crystalline rocks, on the other hand, fractures are very often sealed
(partially or totally) by deposits of calcite, silica, or clay. Fractured crystalline
rocks have hydraulic conductivities in the range 10-4 to 10- 8 ta]«.

Fractured basalt can be highly permeable. In some circumstances, the
cooling of a basalt layer creates a dense network of vertical joints, which
divide the layer into contiguous pillars or prisms of basalt (diameter in the
order of 0.5 m with around six facets). The hydraulic conductivity may reach
10- 1 m/s.

In fractured rocks, the hydraulic conductivity generally decreases with
depth due to the increase in the mechanical stress, causing the fractures to
close. In crystalline rocks, Snow (1968) and Carlsson and Olsson (1977) have
suggested the following empirical laws:

K(z) = (Ks)(10-
z/l )

K(z) = (Ks)(Z- 2.S)

K(z) = (K s)(Z- 1.6)

where 1is in the range of 100-500 m, z is in meters with origin at the surface,
positive downward, and K; is hydraulic conductivity at the surface.

These laws may apply in the average, i.e., for a large number of
measurements of hydraulic conductivity as a function of depth in boreholes
(see also Section 8.6). Occasionally, in a given borehole, an open fracture or a
crushed zone with high hydraulic conductivity may be encountered, even at
great depth.

In a given network of fractures, high fluid pressure may locally increase the
aperture of the fractures and thus the conductivity (e.g., near an injecting wen);
see Gale (1975) or Witherspoon et al. (1973). At even higher pressures, an
injected fluid may create a new fracture in the rock. This is known as hydraulic
fracturing, and is often used for increasing the permeability of an oil reservoir.
[See Cornet (1979,1980), Fairhurst and Cornet (1981),and Cornet and Valette
(1984).]



80 4. Darcy's Law

4.4. Probabilistic Approach to Permeability and Spatial
Variability

We have seen in Section 2.1.d that a probabilistic definition of a property
like porosity can be given in porous media. However, the definition of the
permeability as a random function requires a change of scale, which was
proposed by Matheron in 1967 referring to the works of Schwydler (1962). As
a matter of fact, point permeability cannot be used in the same way as point
porosity, because, on the microscopic scale, Darcy's law implied by the notion
of permeability does not apply to the flow: it is the Navier-Stokes law that
governs the relationship between the hydraulic head and the velocity.

Matheron (1967) has shown that Darcy's law is simply a consequence of the
linearity of Navier's equations, not of their form. It is, however, the spatial
integration of Navier's equation in the very complex geometry of a porous
medium that leads to Darcy's law and the definition of permeability. We can
thus, conceptually at least, link permeability to the geometric description of a
porous medium. Such a geometric description of a medium (e.g., size and
shape of pores) can be made stochastically, exactly as we have done in Section
2.1.d for porosity. For instance, we have seen in Section 3.4 that the
permeability of simple geometrical media (fractures, tubes) depends on the
aperture of the fractures or the diameter of the tubes. These can be given a
stochastic definition at a point in space (probability distribution function,
expected value, spatial covariance, etc.). In a more complex medium, the
number of descriptors of the geometry increases, but conceptually, each of
them can be given a stochastic definition on the microscopic scale.

As a consequence, permeability on the macroscopic scale, depending on
stochastic microscopic quantities, can be regarded as a stochastic property
and can be defined conceptually as a random function. This will have a
probability distribution function, expected values, spatial covariance, etc.

Quite a number of authors have studied the pdf of permeability, hydraulic
conductivity or transmissivity (see Section 4.l.f) in a given aquifer. Their
analysis is biased most of the time because they assume that the measurements
taken at different locations are statistically independent, whereas, in reality,
permeability usually displays a strong spatial correlation. Nevertheless,
following Law (1944), Walton and Neill (1963), Krumbein (1936), Farengolts
and Kolyada (1969), Ilyin et al. (1971), Jetel (1974), and Rousselot (1976), we
can admit that permeability usually has a log-normal probability distribution
function, whatever the nature of the rock. The variance of this spatial
variability of permeability is quite high: if Y = In k, (T~ is generally in the range
between 1 and 2 but can reach 10 in some cases.

The spatial correlation of transmissivity has also been studied, e.g., by
Delhomme (1974, 1978a,b, 1979). He found that, in general, the stationarity
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hypothesis did not hold, and that stationarity on the first increments (called
the intrinsic hypothesis) should be used. Instead of the covariance
(Section 2.1.1), one must then use the variogram y(h), which we will define in
Chapter 11. The spatial correlation is important over distances that can be
short (e.g., 10 m) or very long (up to 100 km), depending on the type of aquifer.
There is, however, very often a strong erratic component (spatially uncorre
lated) in the transmissivity, which may cause two wells not very far apart to
have quite different transmissivities,

This spatial variability of permeability (or hydraulic conductivity, or
transmissivity) leads us to the question of how to compose local permeability
values in order to obtain an average permeability. In a deterministic approach,
it is easy to show that the composition of uniform "blocks," placed side by side
. .
m space, gives:

(1) A law of harmonic composition, if the blocks are in series (Fig.

(2) A law of arithmetic composition, if the blocks are in parallel (Fig. 4.15):

Here, we recognize the same law as that of the composition of resistances
derived from Ohm's law in electricity.

In a probabilistic approach, where the permeability may vary in all
directions of space, Matheron (1967) has obtained the following results:

(1) If the flow is uniform (parallel flow lines), whatever the spatial
correlation of the permeability and whatever the number of dimensions of the

I.-- L L- I- Flow

Fig. 4.14. Blocks in series.

e2 K2 Flow

-------

Fig. 4.15. Blocks in parallel.
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space, the average permeability always ranges between the harmonic* mean
and the arithmetic* mean of the local permeabilities.

(2) If the probability distribution function of the permeability is log
normal and if the flow is two-dimensional, the average permeability is exactly
equal to the geometric* mean of the local permeabilities in uniform flow.

(3) If the flow is not uniform (converging radial, for example), there is no
law of composition, constant in time, that makes it possible to define a mean
darcian permeability. This problem is quite worrying from the conceptual
viewpoint in so far as it is precisely through pumping tests in wells that the
permeability (or transmissivity) of an aquifer is measured in situ (see Chapter
8). On this point, research continues.

Gelhar (1976), Bakr et al. (1978), and Gutjahr et al. (1978) also give
linearized approximations of the average permeability in uniform flow, for a
normal probability distribution function of permeability:

I-D: kM = kG (1 - (Ti /2)

2-D: kM = kG

3-D: kM = kG (1 + (Ti /6)

where kM is average permeability, kG is geometric mean permeability, and (Ti
is the variance of Y = In k.

4.5. Movement of Water due to the Influence of Other Forces

The hydraulic head gradient is the main force influencing the movement of
water in the ground. It is, however, not the only one. Indeed, experiments show
that the flow of water through porous media is caused by other gradients as
well, of which the following are the most important:

(1) Gradient of electric potential: water moves from high voltage towards
low voltage. This principle has been used for electrokinetic drainage of soils
with weak permeability; see Terzaghi and Peck (1967),Casagrande ( 1952),and
Rocheman, in Filliat (1981).

* Harmonic mean:

Arithmetic mean:

Geometric mean:

l/KM = E(l/K)

K M =E(K)

InKM = E(lnK)
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(2) Gradient of chemical concentration: water moves from zones with high
concentrations towards those with low concentrations. This effect is also part
of the osmotic effect, which generates a selective filtration of the ions in
solution.

(3) Thermal gradient: flow from zones of high temperature to zones oflow
temperatures. This phenomenon is important in the formation of ice lenses in
the soil (Harlan, 1973).

We can then write a generalized darcian law as follows:

U = - K1 gradh - K2 gradE - K3 grad C - K4 grade

The coefficients K, may be scalar or tonsorial." Similarly, the other flows in
porous media (electricity, solutes, heat) are linked to the same gradients by
other series of coefficients:

i = -K/ gradh - K2 ' gradE - K3 ' grad C - ...

A hydraulic head gradient therefore causes flow of electricity, of solutes, of
heat, etc.

In thermodynamics, we therefore need to study all the flows and gradients
simultaneously according to what are called coupled transport processes.

Table 4.1

Coupled-Process Terminology

Gradients

Hydraulic Electric
Flow head potential Temperature Concentration

Fluid Darcy Electro-osmosis, Thermal Chemical
Casagrande osmosis osmosis

Electricity Rouss Ohm Seebeck or Sedimentation
Thompson current

Heat Thermal Peltier Fourier Dufour
filtration

Solutes Ultra- Electrophoresis Soret Fick
filtration

* Casagrande has found that the "electro-osmotic permeability" K 2 does not vary a great
deal for disturbed or loose soils and is of the order of 5 x 10- 9 m ' V-I S-1 [Rocheman, in Filliat
(1981)].
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Refer to the works of Onsager (1931) or Casimir (1945) quoted by Bear (1972)
on the subject of the thermodynamics of irreversible processes. The coeffi
cients K are called "phenomenological coefficients" and must be measured
experimentally. In certain cases, we find relations of symmetry and non
negativity in the matrix of these coefficients. In practice, however, the
nondiagonal coefficients (i,e., those that are different from the coefficient of
the hydraulic head for the velocity, from that of the electric potential for the
current, from that of the temperature for the heat flow) are relatively small and
negligible versus the diagonal terms.

Table 4.1 briefly reviews the main names given to the mechanisms of
coupling. The word "law" is used for the diagonal terms, and "effect" for the
nondiagonal ones (Fourier's law, Darcy's law; Soret's effect, Dufour's effect).
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The three equations for the circulation of a fluid in a porous medium,
established in the two preceding chapters, are significant only for elementary
volumes of a porous medium. The first is the continuity (or mass balance)
equation:

div(pU) + :t (pw) + pq = 0 (3.2.3)

where p is mass per unit volume of fluid (mass length-3), U is filtration velocity
of the fluid (length time -1) (as if the whole section were accessible to the
w is the total porosity of the porous mediumt (dimensionless), and q is
volumetric flow rate of fluid per unit volume of rock withdrawn (or added if it
is negative) in the porous medium (time"), to which is added a term for the
displacement of the fluid-solid interface if the medium is deformed.

The second equation is Darcy's law:

k
U = --(grad p + pg grad z) (4.1.6)

fl

where k is the intrinsic permeability tensor (length"), fl is dynamic viscosity of
the fluid (mass length"! time- 1) , p is fluid pressure (mass length"! time"], 9 is
acceleration due to gravity (length time v"), z is the vertical axis directed

t See footnote to Section 3.2.1, p. 44.

85
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upward, and grad z is a vector with components (0,0,1). This law can be
simplified for incompressible fluids as follows:

kpg
U = --gradh = -Kgradh (4.1.5)

J1

where h is the hydraulic head or piezometric head (length),

h=L+ z (3.3.1)
pg

and K is the permeability tensor (length time- 1
) . The law is also expressed by

Eq. (4.1.5) for compressible fluids if we agree to define the hydraulic head as

fp dp
h = z + pop(p)g

where Po is pressure at the origin of the axis z.
The third is the isothermal equation of state of the fluid,

p = poeP(P-Po)

(3.3.2)

(3.1.3)

where f3 is the coefficient of fluid compressibility (mass"! length time-Z) .

We shall combine these laws in what is called the diffusion equation, the
integration of which allows us to calculate the evolution of the fluid in porous
media, retaining only one unknown: the pressure p or the hydraulic head h,
from. which we can deduce the other four unknowns, p and the velocity U
(three components). This equation is equivalent to what is called "the heat
equation" in thermal problems,

V Z8 = pC 08
A ot

where 8 is the temperature, pC the heat capacity, Athe conductivity, and VZ the
Laplacian operator.

It is easier to establish this equation separately in two special cases
according to the hypotheses concerning the behavior of the porous medium
before establishing its more general form. We shall look at (1) the unconfined
aquifer (incompressible water, incompressible medium), (2) the theory of
consolidation (incompressible water, compressible porous medium), and
(3) the general case (compressible water and porous medium).

5.1. Diffusion Equation in Unconfined Aquifers

A water table aquifer is a porous medium that is only saturated up to a
certain elevation and overlaid by a dry or unsaturated porous medium. The
aquifer is generally limited at the bottom by impermeable bedrock.
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In this case, we can disregard the compressibility of the water (p constant),
as well as that of the porous medium (w constant). All variations in hydraulic
head cause a movement of the free surface, which increases or decreases the
amount of stored water by saturating or draining the porous medium; in the
continuity equation, one must consider an elementary volume that includes a
section of mobile free surface. Consequently, we take a vertical prism, of
thickness, e, which penetrates the aquifer between the impermeable bedrock
and the free surface.

We now assume that in this water table aquifer, all the velocities are
horizontal and parallel to each other along the same vertical line. This
hypothesis, called Dupuit's hypothesis, is quite well borne out in reality at
some distance from the outlets or from the water divide.

We assume that the permeability tensor allows the vertical axis to be one of
its principal directions. Then, according to Darcy's law, if there is no vertical
velocity component, there is no vertical hydraulic gradient (oh/oz = 0). We
then take the hydraulic head h(x, y) as the unknown, thus making it a two
dimensional problem, since h is independent of z; h then represents the hy
draulic head at any point on the vertical axis and is, in particular, equal to the
elevation of the free surface of the aquifer (Fig. 5.1).

We choose the axes x and y along the two principal directions of anisotropy
in the plane. Here, we reestablish the three terms of the continuity equation for
the prism dx, dy, (h - 0-).

Mass flux per unit time entering the two faces perpendicular to Oz.

r; = P dy[fh(X,Y) Ux(x,y,z)dz - fh(x+dX,Y) UAx + dx,y,Z)dZ]
l1(X,y) l1(x+dx,Y)

U; is the component of the filtration velocity along x. This yields

t; = -pdy:x[fUxdZ]dX

e

h (x, y): Free surface

a(x, y): Impermeable bedrock
dx

Fig. 5.1. Elementary prism in an unconfined aquifer.
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Darcy's law allows us to calculate U;

oh
U; = -KxAx,y,z) ax

If we substitute, we notice that ohjax does not depend on z. If the term
corresponding to the flux entering through the face perpendicular to Oy is
added, we get

F = +PdXdY{:x[fKxxdz :~J + :y[fKyydz :~J}
It is assumed that no flux enters or exits through the upper and lower faces

(see below).
Variation in the elemental mass. The water mass that can be moved by

gravity (specific yield, or drainage porosity, Wd) contained in the element is
pwih - (7) dx dy, and its variation per unit time is

The variation of the elevation h in the free surface indeed causes the specific
yield Wd to come into play and not the total porosity co.

The volumetric flow rate of fluid withdrawn from the element. This is found
by integration; q is positive if withdrawn and negative if injected.

f qdzdxdy = Qdxdy

where Q is now the flow rate per unit surface area withdrawn from the aquifer.
The mass flux is then pQ dx dy. This term for the flux per unit surface area
makes it possible to take into account the exchanges between the aquifer and
its surroundings (withdrawal, infiltration, etc.), assuming that they take place
over the whole thickness of the aquifer. This hypothesis means that the vertical
component of the velocity of the fluid is negligible compared to the horizontal
one: it is again the Dupuit hypothesis.

Balance. When we write the mass balance, adding together these three
quantities and dividing by p, which is constant, and by dx dy, which is the
elementary area of the aquifer, we get

:x [f Kxxdz:~J + :y[fKyydz~~J = Wd~~ + Q

This is the diffusion equation in a water table aquifer. It is nonlinear in h.
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If Kxxand Kyyare constant along the entire vertical axis, we can make the
integral on z disappear

(5.1.2)

It is still nonlinear in h. However, it can, in some cases, be linearized by
considering the quantities

and

(5.1.3)

(5.1.4)

which have already been defined as the anisotropic transmissivities of the
aquifer (integral of the permeability over the thickness of the aquifer). This
transmissivity may sometimes be assumed to vary little with the hydraulic
head-i.e., the variations of h are negligible compared to (h - a), for example,
less than 10%. Alternatively, the vertical distribution of K can be assumed to
be such that the variations in h do not cause a variation in T of more than
(this is the case when the permeability is higher at depth than on the surface,
e.g., a deep layer of gravel overlayed with fine sands). It then becomes

a ( ah) a (ah) ahax 4x ax + ay Tyy ay = OJdai + Q

Finally, if the transmissivity is isotropic and constant in the entire aquifer,

V2h = a2h
+ a2h

= OJd ah + Q
ax 2 ay2 T at T

which is a partial differential equation of the second order and parabolic type,
similar to the heat equation. The symbol "11 2 is the Laplace operator, already
defined for two dimensions.

As will be seen later, the expressions Eqs. (5.1.3) and (5.1.4) are very often
used in practice.

Yet another solution may be suggested in the case where the bedrock (J

is horizontal. If a = 0 is chosen as the reference plane for the elevation z,
h - a = h is the thickness of the aquifer and Eq. (5.1.2) becomes

a [ ahJ a [ ahJ ahax Kxxh ax + ay Kyyh ay = OJd at + Q

If we can assume that Kxx= Kyy= K is constant in space (isotropic and
uniform medium), we find:
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i.e., an equation in h2
• In steady state (ohjot = 0), the equation is linear in h2

. It
will be used for studying the flow around a well.

5.2. Terzaghi's Theory of Consolidation. Effect of
Interstitial Water on Porous Media

First, we shall examine the interactions between solid and liquid as
developed by Schneebeli (1966). This paragraph mainly concerns civil
engineering in relatively shallow layers. The medium is assumed to be made up
of grains without cohesion (sand, silt, clay).

(a) Effective stress and fluid pressure. The porous medium is assumed to
be saturated and to contain only grains (solid phase) and a liquid phase filling
all the interstices.

What is the effect of an external load acting on such a medium? Terzaghi's
experiment can be described as in Fig. 5.2 (Terzaghi and Peck, 1967).

In case b (external load = column of water), the pressure at the surface of
the porous medium is pl. It does not cause any compaction. In case c (external
load = lead pellets), the same pressure on the porous medium causes a
compaction be.

Conclusion. Only the loads applied directly to the solid skeleton have
mechanical effects on the porous medium. The effect of a load of water is
simply that the pressure increases in the liquid that fills the pores, and since the
solid grains are virtually incompressible in the range of pressure of interest
here, there is no apparent effect on the medium.

Definition. Terzaghi uses the term "effective stress" if to describe the stress
that is transmitted directly from grain to grain as in the case of the lead pellets.
It is the only one that influences the solid phase, as opposed to the pressure p of
the fluid filling the interstices. The total stress (J applied to the liquid-solid
complex is thus composed of effective stress and fluid pressure. We get

(J=if+p

f water

Satu rated sand e

Lead
pellets

a b c

Fig. 5.2. Terzaghi's experiment of compaction.
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This is the equation on which this section is based. In the most general case, (J

and ii are tensors with three normal stresses and three tangential stresses.
Hypotheses. For Section 5.2, the following are assumed: (1) the liquid is

incompressible, i.e., P is constant; (2) the solid grains of the medium are
incompressible; and (3)the porous medium is compressible by reduction of the
porosity co.

(b) Buoyancy. Take a column of dry soil (Fig. 5.3)and let us conceptually
divide it into two parts with a section at elevation zo. Let 1be the height of the
column above zoo The lower part of the column is subjected to a stress
corresponding to the weight of the upper part (overburden). By definition, this
is an effective stress, since it is transmitted by the grains.

where iiz is the effective stress in the vertical direction, Pd the mass per unit
volume of the dry soil, Ps the mass per unit volume of the solid grains in the
soil, and ca the total porosity.

Note that in soil mechanics one usually works with specific weight y = pg,
but we shall keep the usual notation of mass per unit volume (sometimes
called mass density or density). Here, the total stress is equal to the effective
stress C1z = iizo

If the column is now saturated with immobile water up to the top, the total
stress at the section Zo of the column becomes (weight of the soil + weight of
the water):

C1z = Ps(l - w)gl + pcoql = Pwg1

where Pw = Ps(l - co) + pw = mass per unit volume of saturated soil, and p is
the mass per unit volume of water.

Fig. 5.3. Stress in a soil column.
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According to its definition, the effective stress is

Uz = Uz - P = Pwgl - pgl = (Pw - p)gl

From the mechanical point of view, everything happens as if the mass per
unit volume of the soil were now smaller than Pd and given by

Pa = Pw - P = (1 - w)(Ps - p)

where Pa is the buoyant mass per unit volume of the saturated soil.
The apparent decrease in the mass per unit volume of soil is in reality only

the effect of the buoyancy of the water (Archimedes' force).

(c) Seepage force. Let us consider an elementary volume dx dz x 1of a
saturated porous medium, where the interstitial water is now moving at a
filtration velocity U in the plane x-z.

Three types of forces act on the system: (1)forces due to the fluid pressure, (2)
forces of gravity, and (3) forces transmitted by grain-to-grain contact due to
the effective stress.

Fluid pressure. A normal force p dz acts on the face AD and a normal force
[p + (opjox)dx]dz on theface BC(Fig. 5.4).The sum of the two forces directed
along Ox is

op
--dxdzox

Similarly, the sum on AB and CD is

op
--dxdzoz

i.e., the sum of the pressure forces is - grad p per unit volume.

D c

p- dz

dx

BA •p
Fig. 5.4. Elementary volume of porous medium and pressure forces.
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Gravity. The sum of the forces of gravity on the element (weight of the
solid and water) gives

-Pwg grad z

Sum of fluid pressure and gravity. If we introduce the hydraulic head
instead of the pressure, namely h = pipg + z, we find

-gradp = -pg grad h + pggradz

whence the sum of the fluid pressure and gravity on the element:

R = -pg grad h + pggradz - pwggradz

= -pg grad h - Pag grad z

The second term - Pag grad z is again the buoyant weight of the saturated
soil. The first term - pg grad h is called the seepage force. It is a volumetric
force working in the opposite direction to the hydraulic gradient, i.e., in the
direction of the filtration velocity U if the medium is isotropic (for anisotropic
media, the seepage force is simply in the opposite direction of the hydraulic
gradient, not in the direction of the velocity U. It is very important to notice
that the seepage force is independent of the magnitude of the hydraulic
conductivity or of the velocity: it depends only on the magnitude of the
hydraulic gradient. Thus the seepage force can be identical in a medium of very
low hydraulic conductivity, where the velocity of the flow is almost negligible,
and in a coarse medium, where the velocity is very high. This must be kept in
mind when dealing with civil engineering problems.

The variation in effective stress balances these two forces in order to arrive at
an equilibrium in the element. In conclusion, the flow of water gives rise to
variations in the effective stress affecting the solid phase which sometimes have
to be taken into account in civil engineering.

Example: Quicksands. The following experiment (Fig. 5.5) is carried out on
ascending flow in a column of sand. The flow is uniform and the hydraulic
gradient is grad h = H]l directed upwards. The sum R of the seepage force and
the buoyant weight is the volume force:

(Pa - Pgrad h)g

If we gradually increase the hydraulic head H, there comes a moment when
this volume force vanishes. The sand appears to be freed from the influence of
gravity: it becomes "unstable" and "quick." A heavy object placed on the
column sinks into it. If H is increased even more, the entire sand column rises
up. The critical gradient at which all volume forces disappear in this particular
case of upward vertical flows is

gradh = Pa
P
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H

Flexible tube

Fig. 5.5. Experiment for obtaining
quicksands.

This is fundamental in soil mechanics. Take a dike of homogeneous soil
without any sealing curtain, i.e., through which a small amount of water can
leak. At first sight, it might seem as if the upstream face of the dike were
subjected to the uplift pressure of the water in the dam. This is completely
erroneous. As a matter of fact, the pressure acting on an element of the
upstream facing is afiuid pressure, not an effective stress, which is therefore not
transmitted by the solid grains. The force of the water is not transmitted on the
upstream facing of the dike but is decomposed into a system of volume forces
(seepage force) affecting the whole of the saturated volume. The solidity of the
dike depends essentially on the nature of the seepage flow through the dike,
which therefore has to be calculated.

When the seepage forces in a porous medium are able to initiate a movement
of the constituent grains (e.g.,at the outer wall of a dike) piping is said to occur.

(d) Theory of consolidation according to Terzaghi. When certain satu
rated low-permeability soils are loaded (e.g., buildings are constructed on
them), there is at first only a slight compaction. However, eventually,
sometimes after a long period of time, compaction may attain a considerable
degree. This phenomenon of compaction in the course of time is called
consolidation. It occurs especially in clay soils.
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Weight

Water

Pistons

C:"'f-i-- Springs

Weight

'l'///////: Porous sheet

Saturated clay

Fig. 5.6. Terzaghi's analogy for the consolidation of clay: cylinder with pierced pistons.

Terzaghi has shown that the phenomenon of consolidation is caused by the
slow outflow of the interstitial water contained in the soil as shown by the
analogy of the pierced pistons (Fig. 5.6).If there is no water in the container to
the left when the overload is applied, this overload is entirely absorbed by the
springs, which are shortened: the compaction is immediate and elastic.
However, if the container is filled with water and the holes in the pistons are
very small, the latter will not immediately move downward. The overload will
first cause a pressure in the water (without compaction if the water is taken to
be incompressible). The water will then gradually escape from the system and
leave the springs to react to the overload by contracting.

Similarly, the compaction of saturated clays is obtained by expelling water,
which has to be drained by means of a porous sheet. This can be demonstrated
with an oedometer, which is an apparatus for measuring the consolidation of
clay by draining it while it is under compressive stress, as shown in the right
hand side of Fig. 5.6.

The theory of consolidation assumes that:

(1) The outflow of the interstitial water obeys Darcy's law.
(2) The permeability K of the soil does not vary during the consolidation

process (which is only an approximation of reality).
(3) The water and the solid elements in the soil are incompressible;

compression then means decrease in porosity.
(4) The compressibility of the soil (decrease in porosity) is "elastic," i.e.,

there is a linear relation between the effectivecompression stress and decrease
in soil volume. This is also an approximation of reality (see Section 5.3).

The mechanism of consolidation assumes that an external overload applied
to the soil is absorbed in part by the solid phase (increase in effectivestress) and
in part by the interstitial water (increase in fluid pressure). As a result of this
increase in pressure, a transient flow is started, the water is drained, and the
effective stress gradually increases, causing compaction.
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We shall try to establish the state equation of the soil. During consolidation,
the external loads remain constant as well as the resulting total stress.

(J = ii + P = constant
Thus

dii + dp = 0 (5.2.1)

At the beginning of the consolidation process, the excess load is entirely
absorbed by p but is gradually transformed into increased effectivestress until
the pressure reaches a hydrostatic equilibrium (no outflow).

According to hypothesis (4), the relative variation in volume of a soil
element should become

-dV/V = a dii (5.2.2)

with a the compressibility coefficient of the soil (mass- 1 length time ') and ii
the effective stress.

According to hypothesis (3), the variation in volume of the element is
altogether due to the variation of its porosity. If V is the total volume of the
soil element, J). is the volume of the pores and liS is the volume of the solid
phase:

V=liS+J). and dV = dVp

(5.2.3)

According to this assumption, when we calculate dV/V as a function of the
total porosity co we get

Vp
w = -----,------=_::_

liS + Vp

dco = liS + V~ - J). dJ). = 1 - w dJ). = (1 _ w)dV
V V V

That is, taking into account Eqs. (5.2.1) and (5.2.2),

do: = (1 - w)adp

Further, if we consider the local derivatives of these magnitudes (in an
Eulerian coordinates system), we have

ow op
at = (1 - w)a ot

which we use to describe the behavior of the porous medium.
The compaction is given directly by Eq. (5.2.2) if the variation of effective

stress is known. The latter can be calculated by Eq. (5.2.1) if the evolution of
the pressure is known. Therefore, the transient evolution of the pressure in the
soil must be calculated.
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We choose the pressure as the principal unknown and write the con
solidation equation using:

(1) the equation of continuity:

div(pU) + :t (pw) + pq = 0

(2) Darcy's law:

K
U = --(gradp + pg grad z)

pg

(3) the state equation of water:

p = constant (incompressible fluid) (5.2.4)

(4) the equation of state of the porous medium:

ow op
7ft = (1 - w)()( ot

These equations are easily combined to yield

Eq. (3.2.3)+ Eq. (5.2.4) -+ div U + ~~ + q = 0

same + Eq. (5.2.3)-+ - div U = (1 - w)()( ~~ + q

same + Eq. (4.1.6) -+ div(Kgradp) = pg(1 - w)()( ~~ + pgq

(5.2.3)

(5.2.5)

because when pg is constant, divtgrad z) = O.
This is the consolidation equation. Remember that q represents the

withdrawn (or added, if it is negative) flow rate per unit volume in the porous
medium. Here it is usually zero, unless drains (e.g., well points) are set into the
soil to accelerate the consolidation.

If the permeability K is isotropic and constant, the equation is simplified as
follows:

2 (1 - w)()(pg op
V p = K ot (5.2.6)

where V2 is the Laplace operator and the flow q is assumed to be zero.
The coefficient C, = (1 - w)()(pgjK is called the consolidation coefficient

(length f time). One sometimes disregards the term (1 - w) if it is dose
to 1.



98 5. Integration of Equations, Consolidation

Freeze and Cherry (1979) give the following ranges of values for soil
compressibility (0() in m 2 j N or Pa-1 :

Clay
Sand
Gravel
Jointed rock
Sound rock

10- 6-10-8

10- 7_10-9

10- 8_10- 1 0

10-8_10- 1 0

10- 9_10- 11

Having calculated the evolution of the pressure p, we know that of the
effective stress (j because (j + P = constant. The compactions are deduced
from

0( A(j = - AVjV = - Aljl

where l is the thickness of the consolidating layer if the compaction occurs
only in the vertical direction.

Remember that in clay media the compression is, as a rule, elastic only in the
very first approximation. In particular, the compaction is almost irreversible
(for the same IA(jI, expansion would be '" lo of compaction). Clay subjected to
successivecyclesof compression shows a change in the slope of its compaction
when the stress reaches or exceeds the maximum stress which it has previously
undergone. This is caned consolidation stress (Fig. 5.7).

The same behavior is found for clay sands, but with a smaller compressi
bility. Clean sands and gravel, which do not contain interbedded clay layers,
tend indeed to have an elastic behavior, and compressibility is almost
reversible. Jointed or sound rocks generally follow the elastic hypothesis, but
their compressibility is very small.

In hydrogeology, consolidation is generally referred to as subsidence. The
problem is not that of an additional external load on a soil but of a decrease of

Compaction

Loading ....--T
cycle

Stress
Consol idation
stress

Fig. 5.7. Compaction of clay showing the consolidation stress.
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the pressure in the aquifer caused by heavy withdrawals. Because of the
relation dii + dp = 0, the result is identical to compaction: the effectivestress (j

increases, the aquifer is compacted, and the land surface subsides. Inside the
aquifer layer, subsidence is instantaneous (i.e., a variation of pressure -lip
instantly gives a variation of effective stress + liii, which instantly causes a
compaction lilll = -aliii: the delay in the consolidation due to an external
load is caused by the time necessary to drain the water, as already explained in
the analogy with the pierced pistons). However, the layers of material above
and below the aquifer that is pumped may be slowly drained by this pressure
variation lip (seeSection 8.3 on leakage). As they drain they also compact, and
this delay in drainage causes a delay in the additional compaction of the
system.

Subsidence due to heavy withdrawals can be very important: several tens of
centimeters in Venice, several meters in Mexico City! When it is high, it means
that a is large, that the aquifer or its overlaying and underlying beds are rich in
clay, and the subsidence is almost irreversible, even if the withdrawals are
stopped and the pressure recovered. This is what is observed in Venice at
present [see Gambolati and Freeze (1973) and Gambolati et al. (1974).]

Finally, it must be pointed out that in a few rare cases, where there are
unconnected pores between which the pressures are not transmitted, the
relation (J = ii + P does not hold: an increase in the total stress (J may be
sustained almost immediately by the effective stress ii.

(e) Effective stress in an unsaturated medium. In a saturated medium with
constant total stress, there is a linear relation of slope -1 between p and ii.
However, in an unsaturated one, when the pressure descends below the
atmospheric pressure, this relation becomes more complex. It is described in
Fig. 5.8 (Freeze and Cherry, 1979).

Indeed, we observe empirically that as a first approximation the unsatu
rated soil only sustains the total stress through the effective stress (curve
The pressure plays no role.

In reality, the actual behavior is closer to curve 2, which is dependent on the
structure of the soil and its history of saturation and drainage.

2------_ .....
1-------,

'If
Suction

p
atm.

Fig. 5.8. Effective stress in an unsaturated

medium.
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5.3. General Diffusion Equation: Confined Aquifers

The complete theory is not very easy to establish, which is the reason why we
have left it to the end. It must be assumed that the fluid is compressible as well
as both the pores and solid grains of the porous medium, but rigorously, if the
porous medium is compressible, we must take into account its displacement in
the equation of continuity: in the fixed elementary volume in Euler
coordinates in which the mass balance is written, there will be a flux of solid
grains as well as of fluid.

The porous medium is assumed to be totally saturated with fluid, since the
complete equation including the three compressibilities only applies to deep,
confined aquifers, i.e. aquifers trapped between two impermeable layers
(Fig. 5.9).We shall use the following relationships.

(a) The equation of continuity for the fluid in an elementary volumefixed in
space.

div(pU) + :t (pw) + pq = 0 (3.2.3)

Fig. 5.9. Confined aquifer layer.

(b) The equation of continuity for the flux of solid grains in the same
elementary volume in space. If we define the same mean quantities for the
solid as for the fluid,

1 f f<Ps> = 1- <w> psmdx

where Ps is the mass per unit volume of the soil, equal to 0 in the pores and to
that of the solid in the grains; and

<us> =~> fpsusmdxf
<Ps

where Us is the real velocity of the solid, equal to 0 in the pores and to that of
each point of the solids in the grains.

It can be shown by exactly the same reasoning as for the fluid (Section 3.2.1)
that the equation of continuity for the solid is

div«ps><us»+ :t[(l - <w»<Ps>J = 0

Li //!I«{(((( (~~.:~~
co.co:.· : :.::: .:. ~ :.: :.: 0. Co : : .

f;);j'jJ);/ii i'Jiij7T!
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If the angles for averages are omitted in order to simplify the notation, the
equation becomes

(5.3.1)

(5.3.2)

where Us = <us> is the fictitious displacement velocity of the solid as if the
whole section were open to the flow of solid.

In the same way as for the fluid, a "mean microscopic velocity" is defined for
the solid by saying that Us is zero in the pores:

* _ Us
Us - 1 - OJ

(c) Darcy's law. In its classical form, this law applies in effect to the real
mean velocity of the liquid (u* = U IOJ) in relation to that of the solid
[u~ = Us/(1 - OJ)] and not in relation to stationary space", Therefore, it is
necessary to geometrically add the velocities u* and uj to obtain an exact
expression of Darcy's law: it is (u" - un which is proportionate to the
pressure gradient and to the gravity, or alternatively (U - OJu~) [see Riot
(1955, 1956), Cooper (1966), Remson et al. (1971)].

From the general expression, Eq. (4.1.6), of Darcy's law, we obtain

k
U - OJu~ = --(gradp + pggradz)

J1

(d) Combining the equation of continuity (3.2.3) with Eqs. (5.3.1) and
(5.3.2). We assume that all the magnitudes p, Ps, p, OJ, U, and Us are Euler
functions, i.e., defined in relation to a fixed point in space. We get

Eq. (3.2.3) + Eq. (5.3.2) --t div[p~(gradP+ pggradZ)]

= div(pOJu~) + :t (POJ) + pq

but

div(pOJu~) = POJ div u~ + u~ grad(pOJ)

and
o d

u~ grad(pOJ) + ot (POJ) = dt (POJ)

t Rigorously, the kinematic porosity «i, should be used here and not the total porosity co.



102 5. Integration of Equations, Consolidation

which is the material dericatioe' of peafollowing the mean displacement of the
solid at the velocity u:. Therefore, we look for the variations of m and p inside
the elementary domain formed by the solid during its deformation, i.e.,while it
contains a constant quantity of solid.

Furthermore, if we substitute (1 - m)u: for Us in Eq. (5.3.1), we get

(1 - m)psdivu: + u: grad[(1 - m)psJ + :t [(1 - m)psJ = 0

Similarly,

(1 - m)psdivu: + ~[(1 - m)psJ = 0
dt

Finally, by combining these,

[
Pk J dp p do: pm dps

div -(gradp + pggradz) = m-
d

+-1- d ---d + pq (5.3.3)
J..l t - ca t Ps t

(e) The state equations of the liquid and the solid. We choose the pressure
p as our only unknown. Thus, we have to estimate dpldt, dcoldt, dPs/dt in an
element of the deforming porous medium, which is mobile but contains a
constant quantity of solid.

For the liquid, we know the result: it is the equation of isothermal
compressibility, Eq. (3.1.3):

p = poePz(P-Po)

or alternatively:
dp dp
dt = PPI dt (5.3.4)

where PI may easily be measured. For water, PI = 5 X 10- 10 Pa- 1
.

For the solid, things become more complicated. The calculations fill several
pages, and an army of coefficientshave to be defined in order to find a solution.
Let us begin, keeping in mind that our purpose is to express dcoldt and dPs/dt
as a function of dpldt".

t The material or substantial derivative: it is the variation in the unit time interval of a property
(here pro) at a point which moves with the solid grain in a Lagrangian coordinate system. It is
denoted as a total derivative dj dt. The material derivative of a quantity "a", daj dt in a Lagrangian
coordinate system with a velocity u, is related to the ordinary derivative in an Eulerian coordinate
system, aajat, by

da aa
dt = at + ugrad a

t The reader may be interested only in the results of the following laborious calculations. In this
case, he should simply look at the definition of the coefficients of compressibility in Eq. (5.3.6),
note the resulting values of drojdt and dPsjdt, and proceed directly to Subsection f.
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Unlike what happens in the theory of consolidation, presented above, the
volumes of pores and solids depend not only on the effectivestress ii but also
on the pressure p. We note that V is the total volume of the element of mobile
porous medium, lIS the volume of the solid, and Vp the volume of the pores
(V = lIS + Vp ) .

We define:

(1) The compressibility coefficient of the solid grains

dllS dps
-= --= -f3sdplIS Ps

such that the product PslIS = mass of solids is a constant in the element of the
mobile porous medium, and f3s is measurable on pure minerals or with a
triaxial cell. For quartz, f3s c:::: 2 X 10- 11 Pa- 1 •

(2) Compressibility of the porous matrix: The theory of elasticity of
continuous media, applicable also to porous media, expresses a linear
relationship between the deformation tensor and the tensor of effective stress
increment. We usually choose the case of a medium which is isotropic as far as
the mechanical properties are concerned, i.e., defined by only two coefficients,
Young's modulus E and Poisson's ratio v. This hypothesis is not imperative,
however.

If /1ii; are the three increments in normal effective stress in the three
principal directions (i,j, k) of the tensor of stress increments, and if 13; are the
relative deformations in these directions (13; = /1ljl;, 1 length element), the
theory of elasticity provides that

1 v
-e· = -/1ii· - -(/1ii. + /1iik )

1 E 1 E J

The volumetric expansion is the sum of the three relative deformations

/1V 1 2v
- V = - L 13; = E (L /1ii;) - E (L /1ii;)

If /1ii is the mean stress increment, /1ii =tL /1ii;, then

/1V 3(1-2v)/1_
V E (J

The minus sign means that the volume V decreases if the effective stress ii
increases (compression).

Thus it is shown that the possible anisotropy of the stress increment is
unimportant; it is the average increase in effective stress that is significant.
When we speak of increase in stress, this will always mean average stress in an
isotropic medium.
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3(1 - 2v)
rx=----

E
whence

Thus, there is a linear relation between dVIV and dd. It is the one we have
written from Eq. (5.2.2) as

dV
- = -rxdii
V

(5.3.6)

in the theory of consolidation. We must realize that, in this theory, we assume
that the total stress o is a constant: the coefficient rx is defined for a particular
transformation of the state of stress in the rock, whence dd + dp = 0. It may be
found by direct measurements on a sample with a triaxial cell.

We will assume that V, lIS, and ~ are functions of both ii and p and that
these functions are linear, as in the theory of linear elasticity described already.
Actually, V, lIS, and ~ are usually given as functions of a and p, total stress and
fluid pressure, which simplifies the calculations. We can always come back to ii
instead of a by using a = ii + p. We write

dVV = - C do + a dp

d~
~ = -Cpdu + rxpdp

dllSJf = -Csdu + rxsdp

These six coefficients of compressibility are positive. The coefficient rx of
Eq. (5.3.6) is really the same as that of Eq. (5.2.2), because if we transform
the state of stress with do = 0, i.e., dp = -dii, the first part of Eq. (5.3.6) gives
dVIV = -i a dii.

These coefficients are not independent; it will be shown that the following
relations may be established between them:

C = rx + f3s

rx
Cp = 

OJ

rx
rxp = - - f3s

OJ
(5.3.7)

OJ
rxs = 1 _ OJ f3s

Cs=~
1 - OJ

Proof: The equations (5.3.6) are general. During this demonstration, we
disregard the real conditions of stress variations encountered in hydrogeology
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and draw up the five relations (5.3.7) between the six coefficients by imagining
that the porous medium is subjected to three special transformations. The
relations, which are made to appear between the coefficients in this way, will be
general as, by definition, these coefficients are constant.

First transformation: Assuming that do = 0 (constant total stress),

dV
- = «dp
V '

Moreover, we have

and their differentials

dVp
V

p
= apdp,

V=~+Vs

dVs
-= asdp

Vs

dV = dVp + dVs

or

dV = ~ d~ + Vs dVs = w dVp + (1 _ w) dVs
V VVp VVs Vp Vs

Thus, the first relation is written

a = wap + (1 - w)as

Second transformation: Assume that diJ= 0 (constant effectivestress).
The arrangement of the grains in the porous matrix is in reality only
dependent on the effective stress: if it is increased, the medium is
compacted and vice versa. Therefore, if dd = 0, the arrangement is
unchanged. The variation in volume of the porous medium, which may
occur, can only be caused by the expansion or contraction of the grains
themselves, and the medium will be similarly deformed. Consequently,
the porosity to of the medium should not vary. From w = ~/V, we
deduce

d _ 0 _ V d~ - ~ dV
w- - V 2

whence

keeping in mind that

d~ dV

~ V
dV-d~

V-~

V=Vp+Vs

If diJ = 0, we have do = dp, and therefore

d~ dV
Cs)dp and - = (ap - Cp) dp and -V = (a - C)

Vp
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However, we have already defined the compressibility coefficient for
the solid:

dllS
-= -f3sdp

lIS

defined on an isolated mineral, i.e., in fact, when dii = O. The following
three relations are then deduced:

f3s = Cs - as = Cp - ap = C - a

Third transformation: Geertsma (1957) suggests the use of the
Maxwell-Betti theorem (also called Betti and Rayleigh), which states:

Given two imposed elementary hydrostatic loads do and dp, the
action of the forces due to the first load in the displacement due to
the second is equal to the action of the forces due to the second in
the displacement due to the first.

The parentheses and subscripts remind us that the derivatives are taken
with either ii or p constant.

In this expression, the action of the total stress concerns indeed the
entire volume V, (giving the product LlVdO"), whereas the pressure only
acts on the volume of the pores in which it occurs, giving the product
LlVp dp.

This theorem is a direct consequence of the linearity of the com
pression equation, which we have admitted (elasticity). It is proved from
the calculation of the potential elastic energy:

which is a quadratic form of the deformations 8;. See textbooks on the
mechanics of continuous media for details.

a = mCpori.e.
oV ovp
op 00"

Thus, we have established the five relations (5.3.7) by reordering.
We now return to our unknowns dcoldt and dPs/dt. In order to study the

elementary volume of the mobile porous medium, we make the assumption
that the total stress 0" does not vary, which is generally well borne out in the
field, where deep confined aquifers are being exploited: the total stress due to
the weight of overlying material does not vary.
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(1) First we consider dioldt. We can write

lIS = (1 - wW
whence by differentiation

i.e,

or

dllS = (1 - w) dV - V dco

lIS dllS dV
-=(l-w)--dw

V lIS V

(
dV dllS)dw=(l-w) ---
V lIS

According to Eq. (5.3.6), when we take da = 0, we get

dco = (1 - W)(iX - iXs)dp

We can take the material derivative of wand p in a Lagrangian coordinate
system moving with the deforming solid. We finally get

dw dp
dt = (1 - W)(iX - ixS) dt

(2) Next we consider dps/ dt. The mass balance of the solid III the
elementary mobile volume is written as

i.e.d(psllS) = 0 dps + dllS = °
Ps lIS

Similarly, according to Eq. (5.3.6) with da = 0, and using the material
derivatives of Ps and p in the same Lagrangian system moving with the
deforming solid,

dps dp
at = -Psixs dt

We now have all the state equations of the porous medium.

(f) Synthesis: diffusion equation and simplifications. When we introduce
these three state equations into Eq. (5.3.3) while taking into account the value
of ixS obtained from Eq. (5.3.7), we get

diV[~ (gradp + pg gradZ)] = pW[f3z - f3s + ~] ~~ + pq

and multiplying by g yields

div[K(gradp + pg grad z)] = pwg[f3z - f3s + ~J dp + pgq (5.3.8)
w dt
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s, = PWg(PI - Ps + :)

is called the specific storage coefficient of the aquifer (its dimension is length-1).
In Section 5.2.d, we have given the ranges of values of a, between 10- 6 and
10- 11 Pa-l, depending on the aquifer type; PI ~ 5 X 10-1 0 Pa- 1 ; and finally,
Ps ~ 2 X 10-11 Pa- 1 for quartz and most minerals: in practice, Ps is often
neglected. Values of S, thus range between 10-2 m"! (highly compressible
clays) to 10-7 m- 1 (low porosity hard rocks); in the former case, PI is negligible
with respect to a, in the latter case, PI can playa major role.

Simplifications. Although theoretically correct, Eq. (5.3.8) is impractical. It
is usual to make the following simplifications, which are not theoretically very
"elegant."

First, the hydraulic head h is substituted for the pressure p in Eq. (5.3.8) by
making the assumption, acceptable in reality, that p is variable in time
(compressibility) but less so in space. We can then remove the term pg from the
divergence operator:

div[K(gradp + pg grad z)] ~ pgdiv[Kgrad(;g + z)]= pgdiv(Kgradh)

Moreover, as the velocity of the solid u~ is very small, the term u~ grad p is
disregarded when compared with op/ot in the definition of the material
derivative, and we can write

pg div(K grad h) = s, ~~ + pgq

The same result may be obtained by keeping the equation with a material
derivative because, since the measurement instruments (i.e., piezometers) are
connected to the solid, it is actually dpl dt and not op/ot that can be measured.
Furthermore, when the expression p = pg(h - z) is differentiated, we get

op oh op
ot = pgat + g(h - z)at

That is, when we take Eq. (5.3.4) into account,

op op
at = PPl at

oh op
pg ot = at [1 + pg(z - h)Pl]

where pg(z - h)PI may be disregarded in comparison with 1. Indeed, for
g = 10 m/s', P1 = 5 X 10- 1 0

, and p = 103 kg/m ', this term is less than 10-2
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Fig. 5.10. Confined aquifer.

as long as (h - z) is less than 2000 mt. Hence

oh op
pgat ~ ot

If we substitute in Eq. (5.3.8) and simplify, dividing by pg, we get

oh
div(K grad h) = S, at + q (5.3.9)

This is the diffusion equation in use for confined aquifers.

(g) Integration of the diffusion equation taking the confining beds into
account. Take a confined aquifer with two confining beds (Fig. 5.10). We
shall neither assume these beds to be necessarily horizontal nor completely
impermeable. We shall try to reduce Eq. (5.3.9) to two dimensions, assuming
that the flow is parallel to the confining beds. In order to do so, we integrate
without approximation the diffusion equation along the X3 axis perpendicular
to the confining beds. The following assumptions must then be made.

(1) The beds are plane and parallel; the thickness e of the aquifer is
constant.

(2) One of the principal directions of anisotropy is orthogonal to the
confining beds (X3 on the figure);we shall use the two other principal directions
of anisotropy, Xl and X 2, which are parallel to the plane of the confining beds,
as the coordinate system in two dimensions.

(3) We assume that the hydraulic head gradient in the plane XIX2 does not
depend on X3:

o2h
---=0
OX2 0 X3

t The term z is the elevation of a point in the aquifer; h is the hydraulic head at that point. A
difference of 2000 m would be found, for instance, for an aquifer 2000 m deep with a head close to
the ground surface (e.g., artesian). This situation is not uncommon. But even (h - z) = 4000 rn
would only give an error of 2%.
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(4) Finally, we assume that the variation of the hydraulic head per unit
time, oh/ot, is not a function of x 3 • In other words, the head may vary with X 3
between the top and bottom of the aquifer, but at every moment, the gradient
and the variation of the hydraulic head are the same at all points in the aquifer
on the same transverse line Ox3 . With these assumptions, the integration is
simple:

f e {~[Kl~J +-O [K ~J+_o [K ~J}dX
o OXl oX1 OX2 2 OX2 OX3 3 OX3 3

f
e oh fe

= 0 Ssiit dX3+ 0 q dX3

For the left-hand side, we know that (Leibnitz' rule):

a fb(U) fb(U) a ob oa
-;- F(u, v)dv= -;- F(u, v) dv +-;-F[u, b(u)J - -;- F[u,a(u)J
ou a(u) a(u) ou ou ou

Here, according to assumption (1), the third and the fourth terms vanish.
Therefore, we can write

Left-hand side:

According to assumption (3), we can take out oh/ox1 and oh/ox2 from the
first two integrals. Hence, the transmissivity of the aquifer, defined in Section
4.1.f, is shown:

T1 = I: K 1 dx 3 T2 = I: K 2dx3

The third integral can be integrated immediately and gives

According to Darcy's law, this may be interpreted in terms of flux: it is the
flow per unit surface area entering the aquifer, through its upper and lower
limits respectively. If the orthogonal line to the confining beds is directed
inward, these terms are F = - (K 8h/on) at the interface with the confining
beds.

These fluxes exchanged between the confined aquifer and its confining beds
are called leakage fluxes. They will be denoted by F, and Fb (top and bottom),
and appear on the right-hand side as positive terms, if they are incoming.
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Fig. 5.11. Hydraulic head profile in a confined aquifer.

For the right-hand side, ah/at comes out of the integral, according to
assumption (4), and we can define a new quantity:

S = I: Ssdx3= pwge(f31- f3s +~)

As S; is in length -1, this new quantity S is dimensionless. It is called the storage
coefficient of the aquifer and varies roughly between 5 x 10- 2 and 10- 5

.

The integration of the source term has already been defined for the
unconfined aquifer in Section 5.1.c:

I: qdx3 = Q

where Q is now the withdrawn flow rate per unit surface area of the aquifer.
Eventually we get (see Fig. 5.11)t

a ( ah) a ( ah) ahaX
1

T1 aX
1

+ aX
2

T2 aX
2

= Sat - (Ft + Fb) + Q

If the leakage flux is nil (totally impervious confining beds; see also

t If Q, Ft , and Fb are given, we can try to integrate this equation and calculate h. For example,
a solution of the following form may be found:

The general solution as a function of X 1,X2,X3 according to assumptions (3) and (4) becomes

where !(x3 ) is a function independent of Xl' x 2 , and t. In other words, the hydraulic head profile at
one point as a function of X3 is not defined, but it is the same at all points and all dates: if it is
known at one point, it is known everywhere. As a rule, this profile (e.g.,as shown in Fig. 5.11)is not
considered important, and the assumption is made that h varies little with X3'
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Section 8.3), we write

ah
div(T grad h) = Sat + Q (5.3.10)

This is an equation that we shall use continuously.
Finally, if T is isotropic and constant in space, Eq. (5.3.10) becomes

n2h = a
2h + a

2h
= ~ ah + Q

v a 2 a 2 a (5.3.11)x y T t T

The ratio TIS is called the aquifer diffusivity. Equations (5.3.10)and (5.3.11)
are identical to those of the unconfined aquifer, Eqs. (5.1.3)and (5.1.4), but here
S replaces the specific yield Wd. However, we must remember that even though
the two equations for the unconfined-confined aquifer are identical, the
mechanisms coming into play (movement of the free surface on the one hand,
and compressibility of water, grains, and soil, on the other) are different as are
the ways of establishing the equations and the approximations used.

5.4. Highly Compressible Soils

Gambolati (1973), while studying the compaction in Venice due to the
pumping at Mestre, has established a slightly different expression for the
storage coefficient of highly compressible soils (e.g., clay, mud).

The expression assumes that the grains are incompressible (Ps = constant)
but that the compressibility coefficient of the porous medium, 1)(, is important.
Furthermore, the analysis is limited to a one-dimensional vertical flow,
defining the linear dilation instead of the volumetric one:

/).(j = 0if
/).[

8z = T = -I)(/).(i = + I)(/).p

Moreover, this dilation may be explained as the differential in Lagrangian
coordinates of the position vector of the point under examination (Fig. 5.12).

/).r

8z = /).(

linked to the velocity 0.; of the deforming solid.
Finally, the analysis expresses the velocity u; by

u* = ar
s at
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z

Departure r
point ~

+r (t t) ....- Position
, (Lagrange)

Fig. 5.12. Movement of an "average point" with time.

which implies that r designates an "average point" of the porous medium,
since u; is an average velocity.

Then, the analysis combines, as shown above, the equations of continuity
of the liquid and of the moving solid. However, instead of giving the result in
Eq. (5.3.3) as dp[dt and doildt (with dPs/dt = 0), the analysis chooses
and div u; as the unknowns.

As the compaction is one-dimensional along z, the component in z, oU;s/oz,
is expressed in Eulerian coordinates from

(Euler)

Finally,

arzs _ *-ar- uzs

Z = , + r((, t)

(in Lagrangian coordinates)

(Lagrange)

au;s a dp

oz 1 + a(p - Po) dt

In the storage coefficient, ex must therefore be replaced by a/[l + ex(p - Po)].
It becomes important to take this term into account if a(p - Po) > 0.5, which
thus represents a compaction 8z of more than 5%. Consequently, this effect is
negligible except for special cases of large subsidence.

From the theoretical point of view, this difference in the results is caused by
the change from the system of Eq. (5.3.6)with the three compressibilities of the
total volume, the solid, and the pores to the linear relations in terms of
material derivatives dcoldt and dpf dt, functions of dpjdt that are not wholly
satisfactory. However, Gambolati's more rigorous result cannot be trans
posed to three dimensions.

Gambolati also shows that the variation in the hydraulic conductivity with
p (in the term grad pg), which we disregarded in order to arrive at Eq. (5.3.9),is
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actually negligible, when the aquifer thickness is less than 10,000 m and the
pressure variation less than 500 bars, which greatly exceeds the usual ranges.

However, in highly compressible soils, it would probably be necessary to
take into account the variation of K during the compaction (when the pores
dose), which is a phenomenon that has not been studied a great deal.

5.5. Other Diffusion Equations

We have discussed the three most important cases. However, there are other
cases where different equations are used:

(1) Movement of the water in the unsaturated zone: see Section 9.1.2.
(2) Exact equations of the movement of the free surface: see Section 6.3.d,

and Schneebeli (1966) and Bear (1972).
(3) Multiphase flow of immiscible fluids: see Section 9.1.1.
(4) Flow of miscible fluids of different density: see Chapter 10.

In Chapter 7, solutions of the diffusion equation are given for the steady
state (ah/at = 0, the hydraulic head does not vary with time), and in Chapter 8
they are given for the transient state (ah/at =I- 0, the hydraulic head varies with
time).
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We shall examine briefly the main aquifer types encountered in nature, their
reserves, and, finally, their most common boundary conditions.

To begin at the beginning, what is an aquifer? It is a layer, formation, or
group of formations of permeable rocks, saturated with water and with a
degree of permeability that allows economically profitable amounts of water
to be withdrawn.

In practice, an aquifer is an abstraction; it is a more or less isolated "layer"
of rock saturated with water, limited in space at the top, at the bottom and on
the sides, rather like a thin layer of mist in a forest.

An aquifer is by no means equivalent to a single geologic, lithographic, or
stratigraphic unit; two contiguous layers of sand and limestone, for instance,
may form a single aquifer. What is important in the definition is that

(1) the part of the formation that constitutes the aquifer is saturated with
water. An unsaturated permeable layer does not constitute an aquifer.

(2) the variation of the permeability inside the formation, vertically or
laterally, is restricted, so that two zones of the formation may not be separated
by a zone of low permeability, through which the flow would be very small.
For instance, a sand and a limestone layer, separated by a clay or marl layer,
would constitute two aquifers. These two aquifers would communicate by
leakage (see Section 5.3.g) through the layer of low permeability. We shall
come back to that in Section 6.1.3.
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6.1. Aquifer Types

6.1.1. Unconfined Aquifers

The term "unconfined aquifer" as opposed to "confined aquifer" will be
defined in Section 6.1.2, but we shall begin by looking at a few examples of
unconfined aquifers.

(a) Valley aquifer. In temperate climates, if the soil is assumed to be
uniformly porous and permeable, we know (Chapter 1) that rainwater is
infiltrated and saturates the rock up to a certain level,called the free surface, or
water table. This saturated zone is called an aquifer from its free surface down
to its lower limit (e.g., impermeable bedrock, or layer of low permeability
separating it from the next aquifer). The overlying unsaturated zone, above the
water table, forms in fact a continuum with the aquifer (the pressure is
continuous through the water table, see Section 2.2.d) but is usually not
considered as part of the aquifer, strictly speaking.

In the aquifer, the water flows toward the outlets, which are the low points in
the topography (springs, streams in the surface flow network). Recharge occurs
over the whole surface of the aquifer.

The chalk aquifers in the North of France or South of England are
examples, as shown in Fig. 6.1.This cross-section shows the flow lines* and the
lines of equal hydraulic head, which are called equipotential lines (or
equipotential surfaces in three dimensions). If the permeability is isotropic, the
flow lines are at right angles to the equipotential lines, according to Darcy's
law. The slope of the free surface then indicates the flow direction of the
aquifer, but the water flows through the whole thickness of the aquifer. Only
the velocities are greater on the surface than at depth, since the distances are
shorter, while the hydraulic head differences remain the same.

Only the deepest valleys drain the aquifer; the others are called dry valleys.
The outlet is not a single point in space; it is a whole face of the aquifer from
which water emerges and wells up. It is called the seepage face.

In chalk there is, strictly speaking, no actual bedrock, because the chalk is
very thick (several hundred meters) in certain areas, and only the upper
portion (10-30 m, for example) is fractured, weathered, and permeable,

* The flow lines give the direction of the velocity in the aquifer at a given time t. If the flow is
steady, i.e.,does not vary with time, the flow lines are constant. A particle of water (or of a tracer)
would then follow a trajectory in the medium identical to the flow line that passes through the
initial position of that particle. Such a trajectory is called a streamline or a flow path.

However, in transient flow conditions, i.e., when the flow varies with time, the flow lines also
vary. At each time, they only show the direction of the velocity at each point. The trajectory of a
particle in such a system is still called a streamline., but is no longer identical to any of the flow
lines.
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Soil surface

whereas the undisturbed chalk at depth has a very low permeability. The top
of this undisturbed chalk is then taken as the lower limit of the aquifer.

Let us suppose that a piezometer, open only at the bottom, is installed in
such an aquifer, to measure the local hydraulic head (and not the average head
over the whole thickness of the aquifer). If the piezometer is drilled vertically
into the zone of the seepage face, the deeper the piezometer, the higher the
head: due to the upward direction of the flow, the head increases with depth, as
shown by the equipotential lines. The situation is reversed at the summits of
the free surface, where the flow is diverging: the head decreases with
Between these two limits, the head is more or less constant on a given vertical
line. However, even at these limits, the variations in head in the vertical
direction are very small, almost negligible.

The cross section of Fig. 6.1 is, in fact, greatly distorted: the vertical scale is
perhaps 10 to 100 times greater than the horizontal one. If this cross-section is
drawn with the same scale in both directions, it becomes Fig. 6.2.

The equipotential lines are, in fact, almost vertical. The assumption is often
made that, in practice, the velocities in aquifers are virtually parallel to the free
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Fig. 6.2. Unconfined valley aquifer without scale distortion.
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surface (i.e., close to horizontal), except in the vicinity of the outlets or of the
groundwater divide lines. This is what we call Dupuit's hypothesis in
Section 5.l.

The piezometric contour map (Fig. 6.3) shows such a valley aquifer in two
dimensions. It is called a valley aquifer precisely because it is only drained by
the valleys.On a larger scale, there is therefore a succession of small units, each
of which is drained by a stream.

Piezometric maps are drawn in two dimensions and in principle show the
lines where the equipotential surfaces intersect the free surface. However, since
the equipotential surfaces are in practice almost vertical, the piezometric map
gives approximately the hydraulic head at any depth in the aquifer.

The divide line between two valleys (dotted line on Fig. 6.3) separates the
aquifer into several units. Each unit is drained by a given river; i.e., all the
groundwater in that unit flows toward that river. This line is called the
groundwater divide line and is drawn by selecting a set of base points on the
river network (e.g., the tributaries of the rivers) and following from each of
them in the upstream direction the groundwater flow line that ends up at this
point. If the permeability is isotropic in the plane, which we shall assume most
of the time, these flow lines are simply orthogonal to the equipotential lines.
They eventually reach the summit of the aquifer, i.e.,the point with the highest
piezometric head. Each unit identified in this way is called an underground
watershed; it is often quite close to the topographical watershed for the surface
water. Like topographical watersheds, the position and number of the
underground watersheds can be modified by selecting a different set of base
points on the river network.

In the course of the year, the level of the water table of the aquifer varies by a
fewmeters because, as we have seen (Chapter 1),it is fed by rainfall only in the
winter: it decreases in summer and rises again after the autumn rains. If the
water table is far from the soil surface (e.g., 10-30 m), it takes quite a long time
for the infiltration to cross the unsaturated zone and the water table is at its
lowest in October and November, and at its highest in April and May, for
example. This kind of aquifer is also called phreatic aquifer (from the Greek
phreatos, well), which simply means that it is the first aquifer encountered
when a well is dug and therefore the most easily exploited. This type of valley
aquifer is quite common and can be found in many types of rocks, such as
sands, sandstone, limestone, tuffs, etc.

In the United States, the High Plains in the Great Plains are a good example
of such aquifers (Fetter, 1980). The rocks can be the Ogallala formation
(pliocene deposits eroded from the Rocky Mountains) or the Sand Hills
(aeolian sands). Recharge occurs through the surface, and drainage occurs by
the rivers, which sometimes cut the formation down to the bedrock, thus
isolating different units. These aquifers are heavily developed for irrigation.
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Fig. 6.3. Piezometric contour map of the chalk aquifer in Northern France. [From Cottez and
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The Atlantic and Gulf Coastal plains also contain such aquifers, in continental
or marine sediments or in glacial deposits towards the North.

Toth (1963)has studied the influence of the thickness of the aquifer and of
the position of the streams on the shape of the flowlines and equipotential
lines in a cross section. Freeze and Witherspoon (1967) have also studied
numerically the effect of topography and permeability variations on the flow
and equipotential lines. Freeze (1971)studied, in three-dimensions, the flow in
both the saturated and unsaturated zones of a small underground watershed.

(b) Valley aquifers in arid zones. In arid zones (Fig. 6.4) rainfall is much
lower than potential evapotranspiration, and surface recharge is almost zero.
However, in the valleys, rivers may carry water from the mountains or flash
floods may bring large quantities of water for a short time. This water usually
infiltrates through the river bed into the aquifer and constitutes the only
recharge mechanism. Therefore, the water table is higher beneath the valleys
than elsewhere, contrary to what happens in humid zones. This situation
occurs whenever the rainfall drops below 500 mmjyr in hot climates (e.g., in
Spain, North Africa, Arabian Peninsula, etc.). In the United States, the
sediment-filled basins Southwest of the Rocky Mountains are good examples
of such aquifers.

It is important that river beds remain permeable so that water can infiltrate;
if silt is deposited, the river beds could eventually become clogged. In natural
systems, this clogging is prevented by erosion during floods. When dams are
built, it is therefore important to create artificial floods in the stream, from time
to time, to erode the silt.

Seen on a map, the rivers in desert-type climates, called wadis in Arabic, may
never reach the sea. The flood water may be dispersed in the low plains,
infiltrate, and later evaporate. This evaporation leaves the dissolved salts,
giving some water in the low plains with very high salt content. Alternatively,
the flood water may reach a depression, called a chott or a sebkha in Arabic
(i.e., salt flat), creating a temporary lake, where the water eventually
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Fig. 6.4. Unconfined valley aquifer in arid region.
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evaporates, leaving a salty crust on the surface (e.g., the salt lakes in Utah).
These lakes are sometimes below sea level.

In both cases, the aquifers generally flow towards the same low plains or
lakes. The water also evaporates there and becomes brackish.

Some of the water infiltrated into the river bed during floods may be con
sumed by the vegetation growing along the streams. The proportion of water
consumed in this way may become very important in desert-type zones.
surprisingly enough, recharge to aquifers through streams can be larger in ex
treme types of desert climates, where there is not enough water for vegeta
tion to grow along the streams t One must remember that in desert climates,
rainfall is very erratic, and one big storm (e.g., 300 mm) every 30 years may
constitute the only recharge episode. The development of these aquifers must
make allowances for this variability in the recharge.

In tropical zones, the two types of recharge may alternate between surface
recharge during the rainy season and stream recharge in the dry season.

(c) Alluvial aquifer. This is an unconfined aquifer situated in the alluvial
deposits found along the course of a stream. The water in the aquifer is
generally in equilibrium with that of the stream, which alternately drains and
recharges it.

This is, for example, the case of the Rhine river plain (Fig. 6.5) between
France and Germany, which is a rift filled with recent alluvial deposits. The
alluvial deposits are around 100 m thick in some places and consist of coarse
sand, gravel, and pebbles with high permeability. These materials are
saturated with water almost all the way to the surface, and they form one of the
largest aquifers in France.

Virtually every stream has left fluvial deposits along its bed that link it to an
alluvial aquifer. In the United States, such alluvial aquifers are found, for
instance, on the Colorado plateau and in the Tennessee valley. The aquifer
may vary in size at different points, as in Fig. 6.6.At the entrance of an alluvial
plain, the water level in the stream is higher than that of the aquifer. The
stream feeds the aquifer; the equipotential lines are close together
diverging flow). In the middle of the plain, the flow is slower, and the river and
the aquifer are at equilibrium. Downstream the situation is reversed, as the
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Fig. 6.5. Cross section of the Rhine valley.
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Plan view
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Hydraulic head of the stream

Cross-section

Piezometric profile of the aquifer

Fig. 6.6. Map and cross section of alluvial aquifer.

narrowing of the plain causes the water of the aquifer to drain toward the
stream. This region is often marshy, as the aquifer surface is then very close to
that of the soil surface and above that of the river. The flow in the aquifer is
sometimes referred to as the "underflow" of the river.

Finally, it may happen that the stream bed is sealed by small particles, which
break this connection. This is often the case of rivers regulated by dams, as
already described. If the river is polluted, this silty layer may become
anaerobic and bacteria may cause ammonia to be formed. The quality of the
aquifer water may then deteriorate, even if only small amounts of water
percolate through the river bed. However, in this anaerobic zone, some
denitrification can simultaneously occur, which may sometimes be beneficial
if the river water is heavily loaded with nitrates. In general, alluvial aquifers are
very sensitive to the pollution of their rivers. Some pollutants carried by the
river may be filtered or adsorbed (seeChapter 10), but many others will move
with the water and reach the producing wells. Because of their high
permeability and good recharge by the streams, alluvial aquifers are often very
heavily developed. They generally produce better water than the streams
themselves by averaging the composition of the river water (plus filtration and
sorption). They also help to regulate the river flow regime: because of the
reserve stored in the aquifer, it is possible to exploit it intensively in summer at
low flows, while recharge will fill the reserves during the next winter. Such
methods are in frequent use in Colorado (see Illangasekare and Morel
Seytoux, 1982).

(d) Perched aquifers. These aquifers lie on an impermeable lower
formation, and they are not connected to a stream which feeds or drains them.
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Fontainebleau sands

Fig. 6.7. Cross section of a perched aquifer.

An example is the unconfined aquifer in the Oligocene Fontainebleau sands
(south of Paris, France), as in Fig. 6.7. On both sides of the formation, there are
lines of springs. Seen from above this gives, for example, the map of Fig. 6.8.
The largest springs are found in the valleys, at the lowest points of the
underlying impervious formation.

If, under the impermeable (or less permeable) layer, in this case the marls,
there is another unconfined aquifer (e.g.,in the limestone), the upper one is said
to have a "perched water table." The underlying aquifer is in fact recharged
vertically by leakage through the marls, which have a low permeability (see
Sections 5.3.g and 8.3.1).

Perched water tables can also be found in alluvial deposits, when a clay lens
creates a local layer of low permeability inside the unsaturated zone
overlaying an unconfined aquifer. The extent of the perched water table win be
limited to that of the clay lens, as shown in Fig. 6.9. It may drain by leakage
through the clay or laterally. These perched water tables may be permanent or
only form during recharge in winter. When drilling a well, it is important not to
confuse a local perched water table with the regional aquifer free surface.

Spring

Fig. 6.8. Piezometric map of a perched aquifer.
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Fig. 6.9. Perched water table above a clay lens in alluvial deposits.

When the bottom of the clay lens has been drilled through, the perched water
will generally drain through the drill hole toward the lower layer, and no water
level will be found in the well until the true water table is reached.

(e) Glacial deposits. During the Pleistocene, Northern Europe, the
Northern United States, and Canada were covered with glaciers, which
deposited large amounts of sediment on the surface.

The lacustrine sediments were deposited in meltwater lakes; they are formed
by silt and clay, and have a very low conductivity.

Glacial till, which is by far the most widespread sediment, was laid down
directly by the glaciers when they melted. This means that it contains particles
with a very wide range of size, from clay to large boulders. In general, glacial
tills have a high clay content and a low permeability, although sets of thin
vertical fractures may increase the regional hydraulic conductivity by a factor
of up to 1000 (Freeze and Cherry, 1979) compared to the values measured on
cores (in the range 10-1°_10-12 mjs). However, sandy tills may form local
aquifers here and there.

Glaciofluvial deposits were laid down by subglacial streams, and by rivers
during interglacial periods. They consist of sand and gravel and can be highly
permeable. They are often buried inside a thick till layer and difficult to locate.
Their shape can be that of a narrow valley, straight or meandering, or that of
an extended thin strip. The subglacial stream sediments deposited by the last
glacier sometimes lie on top of the general till surface; they form meandering
ridges in the topography, which are called eskers (from the Irish "eiscir"),
Because of their topographic position, they are largely unsaturated, being
drained on the sides, but they may contain some water in the middle.

Glacial outwash is formed by sediments brought by the subglacial streams
and the moraines in front of the glaciers. It forms interbedded layers of sand,
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gravel, occasional clay, and silts, and can contain good aquifers, generally
valley aquifers. They are often exploited as gravel pits. Cape Cod and Long
Island, in the United States, are good examples of glacial outwash.

(f) Permafrost. At northern latitudes (e.g., in Alaska, and the northern
territories in Canada, Northern Sweden, Siberia), the ground can be frozen
down to several hundred meters. This frozen ground is called the permafrost.
Depending on the salinity of the water and the nature of the soil, the mean
annual temperature may have to be significantly less than O°C to cause the
formation of permafrost. The permeability of the permafrost is almost
negligible, even in sands or coarse material. In the summer, the upper layer of
the permafrost (e.g., 1 m) may thaw (melt), but as the rest of the layer is
impervious, the drainage is poor, and the soil is marshy (tundra). In a
topography, this wet soil may start to flow, and create mud slides towards the
valleys.When the great pipeline from Alaska to Washington was built through
Canada, great care was taken that the pillars, on which the pipe is laid and
which are anchored in the permafrost, would not melt the ground, thus
jeopardizing its stability. To achieve this, heat exchangers were installed on
each pillar so that the heat brought by the pipe can radiate toward the
atmosphere.

Aquifers may sometimes be found beneath the permafrost if it is not too
thick, e.g., alluvial valleys, or alluvial fans, beneath lakes where the permafrost
is thinner or missing. Because of the permafrost, the recharge to these aquifers
may be poor. The aquifer layer can also become confined (Section 6.1.2)
beneath the permafrost. Wells can then be artesian. If this groundwater
discharges naturally at the surface, large cones of ice called pingos are formed
in the winter.

(g) Karstic systems, limestone aquifers. We have seen in Section 4.I,e
in fractured limestone, the dissolution of carbonates by carbonic acid present
in the atmosphere and in the top soil creates enlarged fractures, conduits,
caverns, or caves. This is called the karstic regime. Very often, the surface water
network communicates with the groundwater through numerous systems of
sinkholes, losses, and resurgences (i.e., outlets where the water reappears).
Under a limestone plateau, the karstic system is defined by its base level, i.e.,
the elevation of the downstream outlet(s). The groundwater flows through the
system (conduits, fractures) toward these outlets, which are generally limited in
number (springs). The elevation of the water (the head) in this system is, of
course, always higher than that of the outlets, but the gradient is usually very
small. In rainy seasons, karst can have floods very similar to surface-water
networks.

In the "blocks" between the conduits (or drains) of the network, recharge
water from the surface may percolate slowly through a finer network of joints
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or fractures. This brings a delayed flux to the main system, where flow is very
rapid. This secondary system of fractures builds up the reserves of the karst
and makes it possible for karstic springs to continue to deliver a decaying flow
in dry seasons. This base flow may, however, sometimes dry up. The water in
the blocks, above the water level in the drains, will saturate the smaller fissures,
while the larger ones will dry out. This is due to surface tension, as greater
capillary pressure is needed to drain a small fissure than a larger one. The low
permeability limestone matrix itself, between the fractures, can be saturated or
unsaturated.

Beneath the "base level" of the karst, all the fractures are filled with water
and form a continuous aquifer. The question is whether or not this zone has
open fractures. Generally, dissolution does not occur much below the base
level, because the water has already become saturated with carbonate;
therefore the answer is no. However, the base level may have changed during
geological time (e.g.,change in sea level, change in river level due to sediment
deposits, etc.). Thus, beneath the present base level, there may exist a
"paleokarst" where a real aquifer can be found.

Choosing a well site in a karstic system is very tricky: if a conduit is not
found, the water available (in the blocks) is negligible. The best location for the
well is on a fracture or, even better, at the intersection of two fractures. One
tries to detect the fractures with the help of aerial photographs or geophysical
measurements (electric resistivity, etc.).Before abandoning a dry well, one may
try to inject tons of acid (HCI) to open existing fractures, in the hope that they
will eventually connect the well with a drain. Alternatively, dynamite blasting
in the well may create such a fracture. One may also try to deepen the well
beneath the base level in the hope that an open network of fractures will be
found.

Karstic systems are very common all around the Mediterranean. Some of
the springs are even found off-shore, beneath the sea level. They were formed
during the ice age, when the sea level was lower, as was the base level. Attempts
are being made to exploit these submarine springs before they mix with sea
water [see for example, Potie (1973)]. In the United States, karstic systems are
found, for instance, in Kentucky, Florida, and the Dakotas.

Not all limestone layers are truly karstic. Dolomitic rocks, for instance, tend
to be naturally permeable without being fractured, and they are much less
soluble. Dissolution features occur along the fractures, and locally increase the
hydraulic conductivity, but they usually form continuous aquifers and not
networks of conduits. The same thing is true for chalk, or for marly limestone.
In valley aquifers in such terrains, the hydraulic conductivity is generally
higher near the valleys than beneath the plateaus, because the drainage in the
rivers has locally increased the conductivity by dissolution.

Karstic-type features can also be found in evaporites, when they are in
contact with water. However, the dissolution is much more rapid, and general
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subsidence or local collapses of caverns into sinkholes reaching the surface can
be observed after a few years (seeJohnson, 1981).Salt layers have themselves a
very low hydraulic conductivity (10- 12_10- 1 6 m/s) unless they contain
interbedded sediment layers (clay, silts, etc.).

(h) Volcanic rocks. Volcanic tuffs and ashes are generally highly porous,
but their permeability is quite low. In Nevada, for instance, very thick layers of
welded and nonwelded tuffs are found up to 600 m above the water table. They
form an unsaturated zone where water can slowly infiltrate (but the recharge is
very small in Nevada). The weathering of these tuffs produces clay, which
decreases their permeability even more.

Lava flows (e.g., basalts) tend, in general, to be more permeable. We have
already described, in Section 4.I.e, the basalt columns, which are highly
conductive. Gases escaping from lava create bubbles and pores. The cooling
also creates joints. Within successive lava flows sediment deposits can form
interbedded, highly permeable layers. Finally, during cooling, the upper
surface solidifies first and can form a "bridge" under which the lava continues
to flow. Openings are thus created in the direction of the lava flow. For an
these reasons, lava can be highly to moderately permeable.

In the volcanic Canary Islands (trachytes and basalts), the moderately
permeable rock is exploited by man-made blind tunnels several kilometers
long, which dip slightly towards the entrance so that the collected water flows
out by gravity. Flow rates per tunnel can reach several liters per second. The
same system is also used in the Hawaiian Islands (Fetter, 1980) and is called
Maui tunnels, but the reason for them is different: the basalt is much more
permeable, but conventional wells would produce salt water, because there is
only a thin lens of fresh water on top of salt water (see Section 9.4). On the
Columbia plateau, in the states of Washington, Oregon, and Idaho, the basalt
layers (which are up to 3000 m thick) can be very permeable and form good
aquifers. At the same time, very compact basalt layers are found at depth,
where the hydraulic conductivity, measured at a local scale, is in the range
10-8-10- 11 mls (Freeze, 1979). A shaft is being sunk in the Hanford,
Washington, area to study such layers in more detail, with a view to using
them as possible radioactive waste repositories. However, it is highly
debatable whether such thick layers have indeed, at a large scale, such a low
hydraulic conductivity.

(i) Crystalline rocks. Granitic and metamorphic rocks generally have a
very low permeability if they are not fractured or if their fractures are sealed.
Because fractures have a tendancy to close with depth (see Section 4.1.e), wens
are usually not drilled below 50 or 100 m, unless a crushed zone is known to
exist at depth. Here again, aerial photographs help locate the position of
fracture intersections, where the wells can be put down. Geophysical resis
tivity measurements are also useful. Flow rates per well are usually small



128 6. Aquifer Systems

(1-10 m 3/h, occasionally up to 30 m 3/h). Most of the Precambrian
shield of Central and West Africa contains such mediocre aquifers, as do the
northeastern United States and Canada.

Some localized aquifers may also be found in areas where weathering has
occurred (arena sands, laterite, etc.), not to mention alluvial deposits.

(j) Coastal aquifers. These aquifers bring terrestrial fresh water into
contact with marine salt water; we shall study the related mechanisms in
Section 9.4.

6.1.2. Confined Aquifers

An aquifer is said to be confined if it is overlaid by a formation with low (or
zero) permeability and if the hydraulic head of the water it contains is higher
than the elevation of the upper limit of the aquifer (Fig. 6.10).When a well or a
piezometer is drilled into such an aquifer, the water wells up suddenly in the
borehole as soon as the impermeable upper limit of the aquifer is broken
through. The water contained in the aquifer is in fact at a pressure higher than
that of the atmosphere: hence the term confined aquifer.

If this pressure is sufficient for the water to reach the ground surface and
well up (i.e., the piezometric head is higher than the elevation of the ground),
the confined aquifer is said to be "artesian" and the well "artesian" or
"flowing" (from the province of Artois, France, where the phenomenon was
first observed). An example of artesian conditions is shown in Fig. 6.11.

These artesian conditions may, however, disappear with time, if the aquifer
is exploited, because the hydraulic head in the aquifer decreases.

A water table or unconfined aquifer, as opposed to a confined aquifer, is one
where the piezometric surface coincides with the free surface of the aquifer,
which is overlaid by an unsaturated zone, as in Fig. 6.1 or 6.2.

The conceptual surface joining the water levels in all the piezometers is
called the piezometric level (or surface) or piezometric head. It has no physical
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Fig. 6.10. Cross section of a confined aquifer.
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Fig. 6.11. Example of a confined aquifer: cross section of the Gironde eocene sands (France).

significance. On the contrary, for unconfined aquifers, this piezometric surface
coincides with the water table.

(a) Multilayered systems. In the example of the Fontainebleau sands
given in Section 6.Ld, the aquifer in the underlying limestone is confined over
most of the area. Figure 6.12 illustrates this.

In large sedimentary basins (e.g., the Paris basin in France, the Gulf Coastal
Plain or the Illinois-Wisconsin basin in the United States, or the continental
formations in North Africa), successive layers of sands, sandstones, days,
marls, limestone, dolomites, evaporites, etc. can be found. Except for the first
layer, all others form confined aquifers and confining beds. They are referred to
as multilayered systems. They are generally very productive, and wells 2000 m
deep or more can be drilled. In general, the deeper the aquifer, the higher the
head, because deeper aquifers generally outcrop at a higher elevation on the
periphery of the basin, and therefore their initial head is higher. At great
the water is hot due to the geothermal gradient and can be used as a
geothermal resource. In the Paris basin, the Dogger aquifer at 1800 ill

Hydraulic head of the unconfined
aquifer in the Fontainebleau sands

Hydraulic head of the confined
aquifer in the limestone

Confined part of the limestone aquifer

Fig. 6.12. Cross section of a two-layer system, confined and unconfined.
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Cretaceous impermeable clayey sands

Bauxite

Jurassic dolomite limestone

Piezometric profile

Confined
aquifer

Unconfined
aquifer

Fig. 6.13. Cross section of a confined-unconfined aquifer.

produces water at 70°C; in the Sahara, the Albian aquifer at 2000 m produces
water at 60°C, which must be cooled in atmospheric towers, before it can be
used for irrigation. Deep aquifers, however, often contain brackish waters.

(b) Unconfined aquifers becoming confined. Figure 6.13 is a schematic
cross-section of the aquifer in the Jurassic dolomite near Brignoles (Var,
France), which contains a top layer of bauxite lenses. The extraction of this
bauxite poses serious problems of mine drainage. The aquifer is unconfined at
the dolomite outcrops but becomes confined as soon as the dolomite is
covered by the impermeable cretaceous clays.

A confined aquifer can be compared to a V-shaped permeameter as in
Fig. 6.14.The head is always above the upper limit of the permeable medium.

(c) Difference between confined and unconfined aquifers when the piezo
metric surface is lowered. It must be remembered that when there is a
drawdown in an aquifer (i.e., when its hydraulic head is decreased by

Fig. 6.14. Analogy between a confined aquifer and aU-shaped permeameter.
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withdrawals) (1) the saturated thickness decreases in an unconfined aquifer,
causing a reduction in the transmissivity (permeability x saturated thickness)
and of the area open to flow; and (2) none of this happens in the case of a
confined aquifer. The area open to flow stays the same as well as the
transmissivity, as long as the drawdown does not push the piezometric surface
down below the upper limit of the aquifer (in which case the aquifer becomes
unconfined).

Any of the different formations that we have considered in Section 6.1.1can
constitute confined aquifers if there exists a confining layer to cover it and if
the hydraulic head in the aquifer becomes higher than the lower limit of this
confining bed.

6.1.3. Media with Low Permeability

Strictly speaking, these media do not constitute aquifers as they cannot be
exploited. However, as a general rule, they contain water and form either an
unconfined system, if the layer in question outcrops, or a confined one, if the
layer lies at depth beneath a less permeable formation. Media with low or very
low permeability should never be taken to "have no water"; instead, one must
remember that the medium is probably saturated with water, which flows out
very slowly or scarcely at all owing to the low permeability of the medium.

When a mine is opened and air starts to circulate, the medium may well
out and any sign of flow may disappear. This is why salt mines, for example,
although pronounced completely dry, may in certain cases be considered as
water-saturated media, since the flow of water passing through is so small that
it evaporates when it enters the galleries.

This type of medium plays a significant role in numerous problems, where
water content is of importance:

(1) Civil engineering: consolidation, compaction, seepage force, and
stability.

(2) Hydrogeology: recharge of deep aquifers through aquitards by
leakage.

Generally, we distinguish between (1) aquitards, which are less permeable
beds from which water cannot be produced economically through wells, but
where the flow is significant enough to feed adjacent aquifers through vertical
leakage, and (2)aquicludes, which have very low permeability and cannot give
rise to any appreciable leakage, at least on a small scale (e.g., during a pumping
test). Leakage through them may, however, not be completely negligible over
very large areas.
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6.2. Aquifer Reserves

(a) Unconfined aquifers. If there is a drawdown Ah of the free surface (or
the piezometric surface) of an unconfined aquifer (Fig. 6.15), the liberated
volume of water is obviously the product of the volume comprised between
the two successive positions of the free surface and the specific yield W d of the
aquifer.

However, this volume is not immediately available as the moisture profile of
the unsaturated zone must have time to decline by Ah, as shown in Fig. 6.16. If
the final profile is a parallel shift of the initial profile, the liberated volume is
indeed W d /ih per unit surface area.

The time needed for the movement of the profile depends on the grain size of
the porous medium: see, for example, the table from King's experiment in
Section 2.3.c.

The reserve of an unconfined aquifer is therefore given by the differences
between the present piezometric surface and the piezometric surface to which
it is acceptable to lower the water level in the aquifer; this difference is then
multiplied by the area and the porosity. An example is shown in Fig. 6.17. One
could, however, decide on other piezometric surfaces of maximum drawdown
(e.g., the suitable depth of wells).

(b) Confined aquifers. Imagine an elementary volume of a confined
aquifer, the hydraulic head of which is lowered by Ah as shown in Fig. 6.18.

Fig. 6.15. Drawdown in an unconfined aquifer.

z

(~)-----------f-~ flh

(2) Saturation

Wd

Fig. 6.16. Shift of the mositure profile by a drawdown I1h in an unconfined aquifer.
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A"" '- / '-" "-4~'!'I'tj,>o'" Maximum drawdown of the piezometric
surface (here it would be, for example, the
level at which the aquifer would stabilize
naturally, if it were no longer recharged)

Fig. 6.17. Reserve in an unconfined aquifer.

e

~----::::or-- Piezometric head 1

Piezometric head 2

Impermeable confining layer

Confined aquifer

Impermeable confining layer

Fig. 6.18. Drawdown Ah in a confined aquifer.

The variation in hydraulic head !1hproduces no dewatering of the confined
aquifer. However, we have seen in Chapter 5, when we established the diffusion
equation for a confined aquifer, that this decrease in hydraulic head
causes a "production" of water under the influence of two phenomena
Section 5.3):

(1) Decompression of the water: term Wf31 (compressibility coefficient of
water; i» = total porosity).

(2) Compaction of the porous medium: term a - wf3s (compressibility
coefficient of the porous matrix, minus to times the compressibility coefficient
of the solid grains).

Both these effects are combined in the definition of the storage coefficient,

S = pwge(f31 - f3s + a/w)

where e is the thickness of the aquifer, p is the mass per unit volume of water,
9 is the acceleration due to gravity, and S is dimensionless.

By definition, the volume of water produced by the variation in the
hydraulic head !1hper unit surface area (in the horizontal plane) of a confined
aquifer is V = S Sh. In other words, in the case of a confined aquifer, the
storage coefficient S plays the same role as the specific yield W d in the case of an
unconfined aquifer. The reserve of a confined aquifer is then the product of
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Present piezometric
surface

Fig. 6.19. Reserve of a confined aquifer.

Reserve

the storage coefficient S, the area of the aquifer, and the difference between the
present piezometric surface and that to which it is agreed to draw down the
head in the confined aquifer. However, this coefficient S is about 1000 to 10,000
times smaller than the specific yield COd.

Figure 6.19 illustrates the reserve for a confined aquifer. It should be pointed
out that the volume contained between the two successive positions of the
piezometric surface does not have any physical meaning. Here, for example, it
is located in part in the air (the aquifer was initially artesian) and in part in the
first few meters of the soiL

Furthermore, we must remember that if there is a drawdown of the
piezometric head in a confined aquifer below the upper limit of the aquifer, it
becomes unconfined; the additional reserve, which then becomes available, is
calculated in the same way as that of an ordinary unconfined aquifer. An
example is given in Fig. 6.20. If the piezometric surface in this aquifer is
lowered from (1) to (2), the volume withdrawn is the area A multiplied by the
specifie yield plus the area B multiplied by the storage coefficient.

Fig. 6.20. Reserve in a confined-unconfined aquifer.
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6.3. Usual Boundary Conditions and Initial Conditions

In Chapter 5 we established the diffusion equation, which is a partial
differential equation of elliptic type in steady flow (ohlot = 0) or of parabolic
type in transient flow (ohl in i= 0). We have now seen the different types of
aquifers encountered in the field, which are the domains in which we shall
to integrate the diffusion equation.

However, in order to do this, we must first define the boundary conditions of
these domains of integration. In mathematics, we have three types of
boundary conditions:

(1) Dirichlet's conditions, which concern the dependent variable: h is
prescribed on the boundary.

(2) Neumann's conditions, which concern the first derivative of the
dependent variable: ohlon is prescribed.

(3) Fourier's conditions, which concern hand ohlon such that h +
a(ohlon) is prescribed.

We shan add a fourth type: the conditions on a free surface or on a seepage
face, which are double boundary conditions. Then we shan examine the
problem of initial conditions.

(a) Prescribed head boundaries. Dirichlet's conditions are imposed on a
boundary if the hydraulic head on the boundary is independent of the flow
conditions in the aquifer. This is generally the case where there is contact
between the aquifer and a free expanse of water (sea, lake, river, etc.) Figure
6.21 illustrates this. Along the contact area (A) of the aquifer-river, the
potential (hydraulic head) is constant and imposed by the water level in the
river. The river may recharge or drain the aquifer.

Hence, on a map, a river may be a prescribed head boundary of an aquifer.
Of course, the hydraulic head in the river varies along its course and

Ground surface

~__~~ Water table

Fig. 6.21. A river as a prescribed head boundary condition.
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Piezometric head
--~--

Excess water runoff

• Rainfall

~

Fig. 6.22. An outcrop of an aquifer forming a prescribed head boundary condition.

sometimes with time as well, but these variations are controlled by the surface
conditions, not by the flow in the aquifer.

An outlet of an aquifer (line of springs) may also be considered as a
prescribed head boundary: i.e., that of the water level in the spring as long as
the aquifer flows outwards.

The outcrops of an aquifer layer (Fig. 6.22)can also, in certain cases, play the
part of a constant head boundary, as long as the infiltration rate of the rainfall
on the outcrops is higher than the flux of water flowing toward the center of
the aquifer. In other words, the aquifer layer on the outcrops is assumed to be
always "waterlogged," as the excess of infiltrated water is drained by the
surface stream network on the outcrop.

(b) Prescribed flux boundaries. This is a Neumann condition. If we
impose the value of the normal hydraulic head gradient oh]an, on the
boundary, this is, according to Darcy's law, equal to imposing the value of the
flux - K oh/an or - T oh]an on this boundary:

We distinguish between

(1) No-flow boundaries: oh/on = O. For example, the contact between an
aquifer formation and an impermeable layer, a fault*, or a confining bed as
shown in Fig. 6.23.

* A fault is not always a no-flow boundary. Some faults may let water flow through the
surrounding crushed zone or put the aquifer in contact with another permeable layer. Such faults
do not constitute boundaries.
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Fault

Fig. 6.23. A fault as a no-flow boundary
condition.

Rainfall

Fig. 6.24. An outcrop as a prescribed flux boundary condition.

(2) Boundaries with a prescribed nonzero flux, such as (a) an outcrop in a
zone where the rainfall infiltration rate is lower than the potential of the
aquifer to "soak" it up (Fig. 6.24) [the prescribed flux is equal to the infiltration
rate: it is the infiltration rate of the rainfall that determines the incoming
or (b) a withdrawal with a prescribed production rate in an exploitation
(wells, ditches, etc.), which also constitutes a boundary with a prescribed flux
(Fig. 6.25).

f Kaah do = Q
(F) n

The contact surface between two adjacent media cannot, in principle, be
regarded as a boundary for either medium. Indeed, if the hydraulic conductiv
ities K 1 and K z are isotropic, we can write two conditions at the interface:

(equality of hydraulic head)

(equality of flux)

Flow Q

/

Fig. 6.25. Prescribed flux in a well or ditch.
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m

n

Fig. 6.26. Boundary between two media of differing hydraulic conductivity.

Furthermore, it is possible to evaluate the angle of refraction of the velocity U
(Fig. 6.26). As h l = h2 all along the interface between 1 and 2, we can write:

oh1 oh2

am am
and as

we get

and

Hence

te«, tg rx2

x, K 2

In some cases, however, it is possible to consider the interface as a prescribed
flux or head boundary when the hydraulic conductivity contrast is large. As an
example, consider a highly permeable alluvial aquifer deposited in a much less
permeable bedrock. The bedrock receives recharge on the plateaux on each
side of the valley; this recharge flows through the bedrock toward the central
alluvial aquifer with high gradients and low velocities. The flux at the
bedrock-alluvium interface can then be considered as prescribed for the
alluvial aquifer since this flux depends very much on the flow conditions in the
bedrock and very little on the flow conditions in the alluvial aquifer. Inversely,
the interface could be considered as a prescribed head boundary for the
bedrock because the head in the alluvium will depend very little on the flow in
the bedrock.

(c) Fourier's conditions. Take a stream draining (or feeding) a water table
aquifer, but with a low permeability silt layer, deposited on the bottom of the
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Stream,
elevation hs

Aquifer,
hydraulic head h

I

Water table

Aquifer,
hydraulic conductivity K

Silt, hydraulic
conductivity K',
thickness e'

Fig. 6.27. Fourier's condition between an aquifer and a stream.

stream (Fig. 6.27). The difference in hydraulic head Ah = hstream - haquife,

across the silt layer (denoted by h; - h) creates the necessary gradient for a
certain flow q per unit surface area of contact between aquifer and stream, in
accordance with Darcy's law.

q = K,Ah = K,hs - h
e' e'

However, when evaluated in the aquifer according to Darcy's law, this flux is
given by

oh
q=-Kan

where Ii is the normal line to the contact surface oriented towards the stream.
By equating the two expressions, we get

oh K' K'
-K-+-h=-han e' e' 5

which is a Fourier condition definition. However, this condition is used much
less frequently than the two previous ones.

(d) Free surface. Two conditions define a free surface (see Fig. 6.28):
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in the aquifer

Fig. 6.28. Free-surface condition. The hydraulic
head in M is equal to the elevation of the water table in
M.

In transient states and for a homogeneous medium, the diffusion equation
in an aquifer bounded by a free surface becomes

82h 82h o2h
K; ox2 + K; 8y2+ K; 8z 2 = 0

oh
-=aon

oh = 0
on

Thus a second condition is imposed on the same surface.

However, sometimes the aquifer is recharged through its freesurface and the
flux that transits across it is prescribed (e.g., mean annual recharge), so that

Fig. 6.29. Seepage face condition.

(
Oh)2 (Oh)2 (Oh)2 oh oh

K; ox + K; oy + K; 8z = OJat + (Kz - q) 8z - q

on the free surface, where q is the flux (volume per unit horizontal surface area
per unit time) exchanged between the aquifer and the outside (evaporation,
infiltration) across the free surface, and q is positive if it is withdrawn.

(e) Seepage face. When the water in an aquifer seeps outward along an
outlet surface (Fig. 6.29), the contact surface (S) is called a seepage face. The
boundary conditions are (1) h = z, since the pressure is by definition equal to
the atmospheric pressure, and (2) oh/on < 0 where n is directed outward.
Indeed, the flow in the aquifer goes outward.

The seepage face poses the same kind of problems as the free surface: al
though the elevation z along the seepage face is known, it is necessary to
determine, by successive approximations, the points A and B where.theseep
age face begins and ends, respectively, and where the free surface starts.

Usually the position of the surface is imposed, and subsequently one checks
that the flow is.indeed outward.

Free-surface and seepage-face conditions can also be treated graphically or
analytically in two dimensions by the hodograph method, if the flow is in a
steady state. This consists of representing the flow in the hodograph plane, the
axes of which are the components of the filtration velocity U; and U; [see
Polubarinova-Kochina (1962), Bear (1972), and Strack (1985).]

(f) No boundary conditions. Finally, in certain cases, when the domain of
integration is assumed to be infinite, it is possible to disregard boundary

oh/on = aandh=z

where n is the normal line oriented outward. The situation is the same if
evaporation takes away water from the aquifer (a is then negative).

The whole problem with the free surface is that we do not a priori know its
position. We have to find by-successiveapproximations a surface in space that
simultaneously satisfies

Consequently, this problem is quite an intricate one. Usually an estimated
position of the free surface is chosen initially, which then determines the
boundary of the domain of integration. On this boundary the hydraulic head
(h = z) is prescribed, and after integrating the equation we verify that the
calculated flux K oh/on is correct. If it is not correct, the position of the free
surface is moved in the desired direction and the calculation is repeated.

Another way of solving the problem is to consider the free surface not as a
boundary of the flow but as part of a continuum comprising the saturated
aquifer and the overlying unsaturated zone up to the soil surface. The diffusion
equation of the unsaturated medium must now be solved (seeSection 9.2). The
free surface then becomes the area where the points of zero pressure are
located.

(1) The pressure p is equal to the atmospheric pressure at any point M of
the free surface (see Section 2.2.d). Expressed in hydraulic head, 0 is by
convention taken as the atmospheric pressure, and we write

h=z

(2) The free surface is a no-flow boundary, if the aquifer is not recharged
through its surface:
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in the aquifer

Fig. 6.28. Free-surface condition. The hydraulic
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on the free surface, where q is the flux (volume per unit horizontal surface area
per unit time) exchanged between the aquifer and the outside (evaporation,
infiltration) across the free surface, and q is positive if it is withdrawn.

(e) Seepage face. When the water in an aquifer seeps outward along an
outlet surface (Fig. 6.29), the contact surface (S) is called a seepage face. The
boundary conditions are (1) h = z, since the pressure is by definition equal to
the atmospheric pressure, and (2) oh/on < 0 where n is directed outward.
Indeed, the flow in the aquifer goes outward.

The seepage face poses the same kind of problems as the free surface: al
though the elevation z along the seepage face is known, it is necessary to
determine, by successive approximations, the points A and B where.theseep
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Usually the position of the surface is imposed, and subsequently one checks
that the flow is.indeed outward.

Free-surface and seepage-face conditions can also be treated graphically or
analytically in two dimensions by the hodograph method, if the flow is in a
steady state. This consists of representing the flow in the hodograph plane, the
axes of which are the components of the filtration velocity U; and U; [see
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(f) No boundary conditions. Finally, in certain cases, when the domain of
integration is assumed to be infinite, it is possible to disregard boundary
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where n is the normal line oriented outward. The situation is the same if
evaporation takes away water from the aquifer (a is then negative).

The whole problem with the free surface is that we do not a priori know its
position. We have to find by-successiveapproximations a surface in space that
simultaneously satisfies

Consequently, this problem is quite an intricate one. Usually an estimated
position of the free surface is chosen initially, which then determines the
boundary of the domain of integration. On this boundary the hydraulic head
(h = z) is prescribed, and after integrating the equation we verify that the
calculated flux K oh/on is correct. If it is not correct, the position of the free
surface is moved in the desired direction and the calculation is repeated.

Another way of solving the problem is to consider the free surface not as a
boundary of the flow but as part of a continuum comprising the saturated
aquifer and the overlying unsaturated zone up to the soil surface. The diffusion
equation of the unsaturated medium must now be solved (seeSection 9.2). The
free surface then becomes the area where the points of zero pressure are
located.

(1) The pressure p is equal to the atmospheric pressure at any point M of
the free surface (see Section 2.2.d). Expressed in hydraulic head, 0 is by
convention taken as the atmospheric pressure, and we write

h=z

(2) The free surface is a no-flow boundary, if the aquifer is not recharged
through its surface:



14 2 6. Aquifer Systems

conditions. The boundary conditions are then prescribed at infinity without 
any need to define their character. 

This kind of situation is very often created when one looks for analytical 
solutions to the diffusion equation, whereas numerical or analog methods are 
better suited to cases where the boundary conditions are known at finite 
distances. Examples will be given in other chapters. 

(g) Initial conditions. It is worth remembering that for transient-state
problems (oh/ot i= 0, parabolic equation), it is also necessary to define the 
initial conditions of the problem, i.e., the value of the hydraulic head h at all 
points of the domain for t = 0. 
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7.1. General Properties of the Diffusion Equation

(a) There is only one solution. Let D be a given domain of integration of
the diffusion equation equipped with its boundary and initial conditions. It
can be shown that, if h satisfies these boundary and initial conditions as well as
the diffusion equation

div(K grad h) = s, ~~ + q

then h is the unique solution to the problem. This is true in both a steady and
a transient state.

In this and the following chapter, we shall give a few analytical solutions to
the diffusion equation. As this equation is identical to the heat equation, many
other solutions can be found in books on heat conduction. (One of the most
widely used reference books in hydrogeology is therefore Conduction of Heat
in Solids, by Carslaw and Jaeger (1959, and its later editions). The current
analytical methods for integrating this equation in order to forge new
solutions are based on the use of Fourier and Laplace transforms and of
conformal mapping.

(b) Principle of superposition. A fundamental remark must be made
before we turn to the solution of the diffusion equation: this equation and its
boundary conditions are linear in h.

143
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Therefore, in a domain D with boundaries that are stable in space or at
infinity, the equation

div(K grad h) = s, ~~ + q

is linear in hand q. Consequently, if (h1,ql) and (hz,qz) are two special
solutions of the diffusion equation that satisfy the given boundary conditions,
then (Va, fJ) ah1 + fJh z is a solution of the same equation with the flows
aql + fJqz and their resulting boundary conditions (ah1 + fJh z) on the
prescribed head boundary condition, (aahdan + fJahz/an) on the prescribed
flux boundary condition.

Example. Assume that, in a domain D, an aquifer with steady-state flow
satisfies

div(T grad ho) = qo

where qo is the distribution of the source term in space. If this flow is disturbed,
for example by the installation of a well with a production rate q starting at
time t = 0 at a given point M, the distribution of the hydraulic heads h in the
aquifer is a solution of the equation"

ah
div(T grad h) = S an + qo + q

where h satisfies the same boundary conditions as ho and has as initial
condition h = ho for t = O.

Let us then define the drawdown in the aquifer by

s = ho - h

Substituting h = ho - s in the preceding equation, we get

div[T grad(ho - s)J = S :t (ho - s) + qo + q

Because of the linearity, we write

. aho as
dIV(Tgradho) - div(Tgrads) = Sat - S at + qo + q

or yet, taking into account the first relation that ho satisfies, and keeping in
mind that aho/at = 0 (steady state),

div(Tgrads) = S~~ - q

* Here, qo and q represent the spatial distribution of the algebraic source term in the aquifer; as
the new source term q is in fact a sink representing a single well located in M and zero elsewhere, it
should be written q<5(M) where <5(M) is the Dirac <5 function (zero everywhere but in M, where
<5 = 00, and with an integral over space equal to 1).We will keep the simplified notation q here.
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The drawdown s satisfies the diffusion equation with the following
conditions:

(1) Initial: s = °for t = O.
(2) Prescribed head boundaries: h = constant, so s = 0, since h =

s = constant.
(3) Prescribed flux boundaries: ah/an = constant, so as/an = 0; since

ah aho as
- = - - - = constant
an an an

In other words, the drawdown s due to the pumping q satisfies an equation
in the domain D, where the boundary and initial conditions are very much
simplified compared to those of the original problem. Moreover, a drawdown
as would correspond to the production of «q: by calculating only one solution
s of the drawdown for a given flow q, it is possible to give an infinite number of
solutions h = ho - as to the problem of pumping at any arbitrary rate «q.
Accordingly, it is possible to add together the influence (i.e., the drawdown) of
production in several different wells.

We shall use this property of linearity very often in order to superimpose
known solutions (the method of images, for example), or even to fashion a new
solution by integration of a given solution.

However, one must remember that, strictly speaking, the diffusion equation
in two or three dimensions is only linear for a confined aquifer; in an
unconfined aquifer, the transmissivity T may vary with the hydraulic head h,
causing the equation to become nonlinear and making it impossible to
rigorously apply the method of superposition.

Furthermore, in a vertical cross-section, this method cannot be applied to
an unconfined aquifer, because the position of the free surface varies and
the domain of integration is no longer stable.

The problems of the unconfined aquifer are therefore more intricate. We
shall see later on that the best way of treating them is sometimes to take the
overlying unsaturated zone into account. This does not mean, however, that
the problem of nonlinearity is solved.

Strack (1985) was however able to show that the method of superposition
can still be applied to unconfined flow conditions in steady state in two
dimensions by using as variable the "discharge potential" 4> = !Kh 2 + const,
where K is the hydraulic conductivity of the aquifer, and h the head measured
above the elevation of the impervious base of the aquifer (assumed to be
horizontal, as in Section 5.1,where we obtained a diffusion equation in h2

) . See
also Section 7.5.

(c) Anisotropy. We shall mainly study analytical solutions in homog
eneous isotropic media. The problems of anisotropic media may be expressed
as equivalent isotropic ones by stretching the coordinates.
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If K x , K y , and K; are the three diagonal components of the hydraulic
conductivity tensor in the principal directions of anisotropy, then Darcy's law
and the diffusion equation (assuming that these conductivities are uniform in
space) give

oh oh
U; = - K x ox U; = - K; oy

o2h o2h o2h oh
K; ox2 + K; oy2 + K; OZ2 = SSat

where S; is the specific storage coefficient of the aquifer.
A change of coordinates yields

x' = fKx y' = fKy z' = fK z..JK: ..JK; ..JK:
where K is an arbitrary coefficient with the dimensions of a hydraulic
conductivity:

~_ oh~_ (K: oh
ox' - ox dx' -..JK oX

and o2h _ ~(~) dx _ K x o2h
OX,2 - ox ox' dx' - K ox 2

Therefore, the diffusion equation becomes (in the new coordinate system):

o2h o2h o2h S oh
--+--+--=--!-
OX,2 oy,2 OZ,2 K at

which is an ordinary Laplace equation in the new axis system. It must be noted
that, with anisotropy, the equipotential lines and the flow lines are no longer at
right angles in the system of real coordinates x-y-z, while they are at right
angles in the system x'-y'-z'. The velocity components in the new system are

, oh , oh oh
U x = - K ox' U y = - K oy' U~ = - K oz'

Hence, we deduce that

u = (K: u:
x ..JK x

u = {K;u'
y ..JK y

u: = fKz u'
z ..JK z

If we calculate the flux Q' of the vector V' across an arbitrary surface k',

Q' = f V'· n da' = f (U~J~ + U~J~ + U~J~) du dv
:!:' :!:'

where J; is the direction cosine of the normal line to k' and u, v are arbitrary
parametric coordinates of the surface k'.
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J
1

= D(y,z)
D(u,v)

with

It is then clear that if we try to calculate the flux of the vector U in the
homologous surface 1:,defined by the same parametric coordinates u, v,we get
the following relations between the Jacobian functions (direction cosines) J1

and J'l of the two sufaces 1: and 1:':

, D(y', z') [K2
J 1= D(u,v) = v1QC/1

If U; is substituted for V'x in the above integral, we see that

Q' = ~Q or Q = JKxKK~Kz Q'
v~

which gives the relation between the flows in the anisotropic system and the
equivalent isotropic system. In order to make these flows identical, we only
have to take K = JKxKyKz. The same problem would arise for Ssif a different
value were chosen for K.

Using transmissivities in two dimensions, an identical development
would give T = -JTx1;, and we would define the change of coordinates to be
x' = -JT/T,.x and y' = ~T!1;,y.

7.2. Parallel Flow: First Solution in a Steady State

An aquifer with parallel (or uniform) flow is an aquifer where the velocity is a
constant (in intensity and direction) at all points. The hydraulic head satisfies

h = ax + by + cz + d

which is a solution of

and which indeed gives a constant velocity U; = - Ka, U; = - Kb, U, =
- Kc. The constants are identified using the boundary conditions. A
polynominal expression of the second degree is a solution of the problem
V 2h = q (constant infiltration). Of course, the velocity is no longer uniform.

7.3. Two-Dimensional Solutions in Radial Flow

(a) Dupuit's elementary solution. In polar coordinates (r,8) in two
dimensions, the Laplace operator is written
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Fig. 7.1. Radial flow toward the origin.

An elementary solution to the problem is the one that depends only on r:
ij2hio(p = O. Hence,

~~(rOh) = Q
r or or

This is easy to integrate, giving:

h=alnr+b

where r ohlor = a, a and b are constant, and In is the natural logarithm.
If we look at this solution in two dimensions, we find that it is a flow

converging radially on the origin (Fig. 7.1). The equipotentials (h constant) are
circles. If we calculate the flow crossing a given equipotential line at the
distance r from the origin, then, according to Darcy's law,

f
2 1< oh

Flow = 0 T or de = 2nTa = const = Q

This constant flow then represents the flow rate Q withdrawn from the
aquifer at the point of origin, for example in a borehole with a given radius r0'

as shown in Fig. 7.2. The elementary solution just given is therefore that of a
well in a confined aquifer. The constant a is given by the flow rate produced by

<i-- Boring, radius r0' flow Q

ii,."-,i/i·!!·/Ln",d,q""OC/!
Fig. 7.2. Cross section of a confined aquifer through a borehole.
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the well according to the integral of the flow:

Q
a=--

2nT

The constant b is given by the boundary conditions. The simplest boundary
condition is obtained by imposing the value h at a distance R from the point of
origin:

Then
i.-:n. r=R

Q
b=H--InR

2nT

Finally, the hydraulic head h in the vicinity of the borehole is given by

Q r
h(r) - H = 2nT ln R

which is Dupuit's or Thiem's formula.
This formula corresponds exactly to the problem of "the well on an island:"

the boundary condition h = H, r = R is only satisfied for a confined aquifer on
a circular island, as in Fig. 7.3.

However, in reality, the water level in a borehole in any aquifer often
stabilizes after some time (arriving at steady state) for a number of reasons,
which we shall examine later (recharge boundary, leakage). The profile of the
hydraulic head, depending on the distance from the boring, is then a
logarithmic function (Fig. 7.4),which allows us to define a "fictitious radius of
action" R corresponding to the distance from the borehole where the
drawdown (hinitial - h) would be zero. This is mostly quite far from the
physical reality, but it is often used in practice. It will be discussed again in
Section 8.1.3.

(b) Well in an unconfined aquifer. We have seen in Section 5.1 that, if the
bedrock is horizontal and the velocity is assumed to be always parallel to the

Borehole, flow Q
n- H

(sea or lake)

Fig. 7.3. The "well on an island" problem.
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h ------- -- - ----
Initial hydraulic head in the

- - aquifer (before pumping)

'--------------------+ log r

Fig. 7.4 Hydraulic head in an aquifer as a function of the distance to a well.Observations are
marked with xs,

diffusion equation for an unconfined aquifer in steady state may be written

V2h2 = 0

By repeating the above reasoning, we can immediately deduce that for the
radial problem, the square of the hydraulic head is a logarithmic function of
the radius. More precisely,

h6 - H 2 = ~lnfo
nK R

where R is the radius of action already defined, fO the radius of the well, K the
hydraulic conductivity, H the hydraulic head at the boundary, and ho the
hydraulic head in the aquifer around the well (Fig. 7.5.). This is known as the
Dupuit-Forchheimer formula.

Observe that, in reality, the surface of the water in the well does not exactly
correspond to the free surface in ho. There is a certain length of seepage face in
the borehole and head losses due to the well screen, which have not been taken
into account here. The piezometric profile in the aquifer is given by

h2 = H 2 +~ln~
nK R

H

...... :.

. . . ~:. : ":"~':.:'.:'"
. . ". ',':'.: .

. '.: ..
. ' . . . . .

"" :" ."" .: :" ">" ~'I'J'Jim'mi7i~-----.I.-

Fig. 7.5. Well in an unconfined aquifer.
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Fig. 7.6. A two-well system.

o

M

r '

0'

In fact, the Dupuit assumption that the velocities are always horizontal
becomes less and less acceptable closer to the well. The true piezometric profile
lies above the Dupuit approximation.

(c) Method of images. Take two different wells with centers 0 and 0',
each producing at a steady rate of Qand Q',respectively. We want to find the
hydraulic head at all points M of the domain (Fig. 7.6). According to the
principle of superposition, this could be done by adding up the elementary
logarithmic solutions of all these wells. At M, we can write

Q Q'
hM = --lnr +--lnr' + const

2reT 2reT

We identify the constant from the boundary conditions, if this is possible.
First special case: Prescribed head boundary. Assume that in the well 0' a

flow of - Q is produced; i.e., in fact, the flow Q is injected. The solution
becomes

Q r
hM = -2-ln, + const

reT r

If we study the points M where r = r' (i.e., on the mediator of 00'), as in
Fig. 7.7,we see that hM is constant. In other words, a constant hydraulic head is
prescribed on the mediator of 00' .

This means that we have found an exact solution to the following problem: a
single well 0, situated at a distance d from an infinite straightline boundary
with a prescribed head h = H (see Fig. 7.8):

h=~ln~+H
2reT r'

+0 0 o~ -0

r '

M
Fig.7.7. Mediator of the 00' segment.
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o d 0'
----1-------

Fig. 7.8. Prescribed head boundary, real well and image well.

where r is the distance to the real borehole 0 and r' is the distance to the
fictitious point 0' symmetrical to 0 with respect to the boundary.

This solution is indeed the unique solution of the present problem, because
it satisfies the boundary conditions and the diffusion equation.

The only reservation we make is that, at the well 0, the radius of the
borehole ro must be negligible compared to the distance 2d between 0 and 0',
so that the hydraulic head ho in the well 0 is really a constant around its
circumference. If this is not the case, 0 and 0' are no longer the centers of the
boreholes, but the poles of the pencils of circles, i.e., the positions of the points,
where the ratio rlr' is constant.

Usually, the fictitious point 0' is called the image well of the well 0, an
image that has an opposite sign, because the flow of the fictitious image well is
the opposite of that of the real well.

We must, however, remember that the above solution also describes the case
of two wells with the same flow rate but of opposite sign in an infinite medium.

Second special case: No flow boundary. In the initial expression with two
borings 0 and 0', we now let Q' = Q.

hM = 2
Q

In rr' + const
nT

It is immediately obvious from symmetry that on the mediator of 00',

oh =0
on

This may easily be demonstrated by switching to Cartesian coordinates
r2 = x 2 + y2 and calculating ohlox.

Thus we have found the analytical solution of the problem of a single well 0
situated at a distance d of an infinite straight-line boundary with a no-flow
boundary condition ohlon = 0 (Fig. 7.9):

h = J;L,In rr' + constant
2nT

where r' is the distance to the "fictitious image well" symmetrical to the well 0
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0'd
----1-------
o

Fig. 7.9. No-flow boundary, real well and
image well.

with respect to the boundary, but this time, the image well has the same sign
(flow + Q) as the well O.

The same remark applies to the relation between the radius roof the boring
compared to d and the description of the solution for two real boreholes in an
infinite medium.

Several boundaries. By this method of images (a well giving rise to an
image with respect to a boundary) it is therefore possible to describe a problem
with several boundaries.

First example. Alluvial half-aquifer: two parallel boundaries, one
with a prescribed head (the river) and the other with no flow (the hillside),
as shown in Fig. 7.10. However, each fictitious image well gives rise to
another fictitious image (of the same or opposite sign) with respect to the
other boundary, thus producing an infinite double series of images
farther and farther away. In practice, only a few terms are used.

Second example: Confluence of two rivers (prescribed head bound
aries). If the angle of the two boundaries is exactly 2n/n (n integer),
n fictitious images arranged in a circle are generated as in Fig. 7.11.

There are numerous examples of the use of the method of images.

(d) Well line. It is sometimes useful to imagine an infinite series of wens
separated from each other by a distance a and producing at the same rate Q in
an infinite aquifer. The solution is obviously found by adding an infinite
number of elementary solutions. However, the symmetry of the flow may also

-0 +0
No

_flow
,h=H

o -0 -0 +0

o o o

Real
well

Fig. 7.10. Infinite series of image wens for a two-boundary system.



154 7. Steady-State Solutions of the Diffusion Equation

1

--1S1
1 ,

--0: 0 /
1 /o 1//--0
------

--0 //", 0
/ I ,

//0 : -0'"
I -, Fig. 7.11. Intersecting prescribed head bound-
i aries.

be used to advantage, as the mediators of the segments joining two nearby
wells are flow lines marking the limits of the flow towards each of the wells
(Fig. 7.12). The flow is then a succession of identical "modules" defined for
instance in

XE{-~ +~}2' 2

Schneebeli (1966)has shown that, in such a module, the elementary solution
is expressed by

h = J..L
ln

cosh (2nyja) - cos (2nxja)
4nT 2

When y becomes large compared to a (in practice, y > a), the cosh term
becomes predominant compared to the cos term and we can write

h~~(y_aln2)
2aT tt

This is equal to a uniform flow parallel to the y axis with the constant
gradient

oh Q

oy 2aT

v) \

t
a L/~ -f- a --- ..

x
Well

We" yrti~ '( Well

1

Fig. 7.12. Line of wells.
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As soon as one moves away from the well line (y > a), one can therefore
represent it as a continuous drainage ditch, located along the x axis at y = 0,
and withdrawing the same flow from the aquifer as the line of wells with a
constant prescribed head given by

h(y = 0) = -2
Q

In2
nT

taking as a reference h = 0 for y = 0, x = ±al2 in the complete exact solution
above.

This procedure is often useful in drawdown projects, when the aim is to pass
from a well line to a ditch or vice versa. It is easy to generalize to the case where
the well line is parallel to a boundary by means of the method of images.

(e) Characteristic curve of a well. In steady state the flow rate of a given
well may be expressed as a function of the drawdown (initial hydraulic head
minus that of the stabilized state) in the borehole:

= 2n (H - h)
Q In(Rlro)

in confined aquifers (Dupuit's formula) where "o is the well radius, and in
unconfined aquifers,

(H 2 _ h2 )

Q = nK In(Rlro)
Hence, we deduce that the curve describing the evolution of the flow Q

versus the stabilized drawdown s = H h should be a line for a confined
aquifer and a parabola for an unconfined one.

In reality, the "characteristic curve" of a well, which gives the drawdown s
versus Q, always has a parabolic shape, as in Fig. 7.13.

There are always quadratic head losses (nonnegligible term v2 /2g) in the
first 10 or 20 em surrounding a well, in the filtering gravel pack, and in the
central well screen as shown in Fig. 7.14. The characteristic curve of the well
describing this quadratic loss of hydraulic head is particularly useful for
determining the power of a pump in order to obtain a given production rate.

Fig. 7.13. Characteristic curve of a well.

s

.-,,"-------------Q
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Wall of
the borehole

/ Slotted tube (well screen)

,Sorted gravel pack

Cross section of a well

Fig. 7.14. Gravel pack and screen of a well.

In practice, it is admitted that the quadratic form of the head losses in the
formation, in the well screen, and even in the well casing allows us to formulate
a law of variation in the stabilized drawdown with the flow rate, which has the
following form:*

s = AQ + BQ2

Therefore, tests are made on the well at several flow rate steps, each of them
sufficiently long for the water level to be fairly stabilized (after a while, s does
not vary much with time; each step lasts a few hours). Then s/Q is plotted
versus Q. This should be a line of slope B and vertical intercept A. Walton
(1970)characterizes the state of the well by the value of B:

B < 675 m/(m 3/s? good well, highly developed"

675 < B < 1350 m/(m 3/s)2 mediocre well

B> 1350 m/(m 3/s)2 dogged or deteriorated well

B > 5400 m/(m 3/s)2 well that cannot be rehabilitated

* See Note Added in Proof at the end of this chapter.
t Ifa well in an alluvial medium is to be developed, the fine particles in the formation around the

borehole are set in motion through alternating pumping and injection so that they may be
extracted by pumping. In this way, the permeability of the sediment close to the well is increased
and the quadratic losses in hydraulic head decrease. In a limestone formation, the quality of the
well is improved by injection of acid (H'Cl),which dissolves the rock and opens the fractures. In a
fractured medium, blasting may also be used to increase fracturing locally. In a formation
containing clay particles or drilling mud, polyphosphates are used to remove the clay.
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7.4. Elementary Solution in Spherical Coordinates

In spherical coordinates in three dimensions (p, (),</», the Laplace operator
is written as

2 1 0 ( 2 Oh) 1 0 (. Oh) 1 02h
V h = p2 op P op + p2sin () o() sm () o() + p2sin? () 0</>2

A solution that depends only on the distance p at the origin satisfies

V2h = ~ (p2 Oh) = 0
op op

a
h = -- + b

p

It can also be shown that this solution is a flow converging on the origin, which
corresponds to a constant withdrawal Q in all spheres of radius R centered on
the origin. The flow Q is

Q =4na

As an example of how to calculate a new solution by integration of an
elementary solution, we look for the solution h that corresponds to a
withdrawal at a constant flow rate on a segment of the line z = ±C with a
constant withdrawal density dQ = ,.ldc; on this segment.

The elementary solution for a withdrawal at a point C; of the segment (+
- C) of the z axis is

whence by integration,

f+ C ,.ldC;
H-

- -c4nJx2 + y2 + (z - 0 2

,.l Z + C + J x 2 + y2 + (z + C)2
= -In------"---;=========7=========::;=

4n z - C - J x2 + y2 + (z - cf

7.5. Complex Potential in Two Dimensions

+c

o

-c

If the hydraulic conductivity K (or the transmissivity T) is constant,
uniform, and isotropic, the velocity potential e « Kh (or Th) is defined.

Darcy's law and the steady-state diffusion equation become, as functions
of </>,

U = -grad</>

V2</> = 0
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It is then possible to define a conjugate function t/J called the "stream function"
by

ot/J o¢ ot/J o¢
ox - oy' oy ox

This definition is possible because V2¢ = 0, which means that V2t/J = 0. The
above conditions are Cauchy's conditions on the two functions ¢ and t/J, which
define an analytical function r,

which is an analytical function of the complex variable z = x + iy (and not of
x and y separately; cf. Cauchy's conditions). The function r is called the
complex potential of the flow.

Why is t/J called the stream function? This can easily be explained. Let P and
pi be two neighbouring points of the complex plane, as in Fig. 7.15.

Now calculate the flow crossing the segment PP' using

dQ = U-n ds

The components of V and n ds are

(

_K Oh = _ o¢ = _ ot/J
ox ox oy

Koh _ o¢ _ ot/J
- oy - - oy - ox

and

Hence

n ds {
- dY
dx

ot/J ot/J
dQ = oy dy + ox dx = dt/J

Thus, between two points A and B as in Fig. 7.16, the flow crossing any curve
that joins A to B is

flow = t/J(B) - t/J(A)

v I P' (x-s dx, v+dv)

Ip (x,v)

x Fig. 7.15. Complex plane.
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y

Fig. 7.16. Complex plane.

A

x

Hence, the lines of constant ¢ are equipotentials of the flow, and the lines of
constant ljJ are the stream lines of the flow, whence the name stream function
for ljJ.

Example. The elementary radial solution in two dimensions is very easily
expressed in terms of the complex potential:

r(z) = JL In z = JL ln r + i Q8 = ¢ + iljJ
2n 2n 2n

Therefore, the equipotentials are ¢ = (Qj2n) In r. We recognize the same
expression given already if we remember that the velocity potential is ¢ = Kh
(or Th).

The complex potential is valuable in that it permits the use of a number of
analytical methods of transformation. In particular, conformal mapping
(inversion, for example), which retains the angles, may be applied to this type
of problem and makes it possible to find simple analytical solutions to
problems that appear not to have any. See Polubarinova-Kochina (1962)
Bear (1972), or Strack (1985) for this type of approach in mathematical
hydrogeology.

The underlying principle of the process is as follows. The complex x-y plane
is transformed into a plane U-V, where the given flow problem has a known
potential r. By inverse mapping, we obtain the complex potential I" in the
initial plane (x-y). The elementary solution to the problem of Section 7.3.d, for
example, has been calculated by Schneebeli (1966) using the following
mapping:

. nr
r'=sm

a

which transforms the infinite plane into a "module"

XE{-~ +~}2' 2

with the desired boundary. It is then sufficient to separate what is real from
what is imaginary.



160 7. Steady-State Solutions of the Diffusion Equation

For unconfined flow conditions Strack (1985) uses the potential ¢ =
!Kh2 + const, assuming that the head is measured from the elevation of
the horizontal impervious base of the unconfined aquifer. It is clear that

V2¢ =~ (!Kah2)
+ ~ (!Kah2)

=~ (Kh ah) =~ (Kh ah) = 0ax 2 ax ay 2 ay ax ax ay ay
is the diffusion equation for the unconfined aquifer, as was given in Section 5.1.
The associated stream function 1/1, defined by the same Cauchy conditions as
above, also gives the flow in the aquifer. The method of the complex potential
can therefore also be applied to unconfined flow conditions with this new
definition of the potential. Once the potential has been determined, the head is
calculated by

if the constant is taken to be zero.
Since the unconfined flow equation is linear in ¢, but not in h, the principle

of superposition can be applied for ¢, but not for h; h can only be calculated
from the sum of the ¢'s.

Example: The elementary solution for a single well is ¢ = (Q/2n) In r; for a
doublet of wells, one injecting and one pumping with the same flowrate, the
potential is

Q Q Q r2
¢ = ¢1 + ¢2 = -lnr1 - -lnr2 = -In-

2n 2n 2n r1

The head distribution is then calculated from h = .J2¢!K.

Note Added in Proof

In the petroleum industry, it is usual to assume that the medium
surrounding the borehole has been modified by the drilling. A dimensionless
"skin effect" Sk is defined by Sk = (k/ks - 1)In(Rs/ R), where k is the intrinsic
permeability of the formation, k; is that of the perturbed zone, R is the radius
of the well, and R, is the radius of the perturbed zone. The skin effect can be
positive or negative, e.g.,if the perturbed zone has been clogged by injection of
mud, or, on the contrary, developed by the production or by other operations
(e.g., acidification). The skin effect can be determined by interpretation of the
pumping tests and recovery curves.

kenne
Subrayado
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We shall try to find a few analytical solutions commonly applied to the
diffusion equation in transient state. We derived in two dimensions (confined
or unconfined aquifer subject to Dupuit's hypothesis),

V2h =! oh
T at

or in three dimensions

161
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Note that the general properties of the diffusion equation (uniqueness of
solution, linearity, anisotropy) given in Section 7.1. hold true for the transient
state as well.

8.1. Elementary Solutions in Radial Coordinates

In radial coordinates, we write the diffusion equation in two dimensions,
and if we assume that the solution only depends on the distance r, we obtain

~~ (r Oh) _! oh
r or or - T ot

Let us define

T
et.=-

S
or

K

Ss

which is called the aquifer diffusivity. One elementary solution is the Laplace
solution":

h = C exp( _r2 j4et.t)t-n/ 2

with n = 1, 2, or 3,

r=x

r=Jx2 + y 2

r = J x 2 + y2 + Z2

(n = 1)

(n = 2)

(n = 3)

This corresponds to an impulse point injection of fluid at the origin, in an
infinite aquifer, with initial condition h = 0 Vr. In the following, other
solutions are given.

8.1.1. Theis's Solution

Theis (1935) presented an integral solution (possible because of the linearity
of the equations) of this elementary solution in two dimensions, which
corresponds to a continuous point injection of fluid at the origin:

h( ) I
t exp(-r2Sj4TT)d

r,t = C T
o T

This is also the solution of the diffusion equation with boundary conditions
prescribed at infinity and initial conditions h = 0 Vr.

* It is easily obtained by using the Laplace transform, which is a very efficient method for
solving a number of transient problems.



8.1. Elementary Soluttons ill Radial Coordinates 163

With this solution we calculate the flow crossing a cylinder of radius r:

oh a [ ft exP(-r
2S/4TT:) JQ(r,t)=-2nrT-;-=-2nrT- C dt

or or 0 T:

_ 2csft exp(-r2S/4TT:)a
- nr 2 T:

o T:

Q(r, t) = 4nTC exp(-r2S/4Tt)

If r = 0, the flow rate injected at the origin is thus constant; if r -+ 0 or t -+ 00,

Q -+4nTC.
The flow rate Q(ro, t) crossing the cylinder of radius "o representing a

borehole is therefore constant if r0 is negligible or t is large: this solution, caned
the Theis solution, is consequently one that corresponds to injection (or
pumping) at a constant rate in a well with a negligible radius, and C = Q/4nT.

h(r,t)=4Q ftexp(-r2S/4TT:)aT:
nT 0 T:

If we write

4Tt
u = r 2 S

then

Q foo e-' Q [ (l)Jh(r,t)=- -dT:=- -Ei --
4nT 1(u T: 4nT u

Here, E, is the exponential integral function, which is known and tabulated.
In practice, the so-called "Theis curve" is drawn as a function of the

parameter u:

her, t) = /;T W(u)

W(u), the Theis function, is generally drawn on log-log paper. See Table 8.1
and Figs. 8.6 and 8.7.

Note that if Q ~O, h grows with u (or with t). This is then the case, when
the flow Q is injected, and Q < 0 corresponds to the case where the flow is
withdrawn.

8.1.2. Jacob's Logarithmic Approximation

If t is large, then so is u, and

- Ei( -l/u) -+ In u - y

where y is the Euler constant (y = 0.577, e' = 1.781).
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TableS.!

The Theis Function, W versus u"

u 1.0 0.5 0.333 0.25 0.20 0.167 0.143 0.125 0.111

x 1 0.219 0.049 0.013 0.0038 0.0011 0.00036 0.00012 0.0000380.000012
x 10 [ 1.82 1.22 0.91 0.70 0.56 0.45 0.37 0.31 0.26
x 101 4.04 3.35 2.96 2.68 2.47 2.30 2.15 2.03 1.92
x 10' 6.33 5.64 5.23 4.95 4.73 4.54 4.39 4.26 4.14
x 104 8.63 7.94 7.53 7.25 7.02 6.84 6.69 6.55 6.44
x 105 10.94 10.24 9.84 9.55 9.33 9.14 8.99 8.86 8.74
x 106 13.24 12.55 12.14 11.85 11.63 11.45 11.29 11.16 11.04
x 10 7 15.54 14.85 14.44 14.15 13.93 13.75 13.60 13.46 13.34
x 108 17.84 17.15 16.74 16.46 16.23 16.05 15.90 15.76 15.65
x 109 20.15 19.45 19.05 18.76 18.54 18.35 18.20 18.07 17.95
x 10 [0 22.45 21.76 21.35 21.06 20.84 20.66 20.50 20.37 20.25
x 10 II 24.75 24.06 23.65 23.36 23.14 22.96 22.81 22.67 22.55
x 10 [2 27.05 26.36 25.96 25.67 25.44 25.26 25.11 24.97 24.86
x IOU 29.36 28.66 28.26 27.97 27.75 27.56 27.41 27.28 27.16
x 10[4 31.66 30.97 30.56 30.27 30.05 29.87 29.71 29.58 29.46
x 10 15 33.96 33.27 32.86 32.58 32.35 32.17 32.02 31.88 31.76

a After Wenzel (1942).

In practice, as soon as u = 4TtjSr2 2:: 100, the logarithmic approximation
of the Theis formula can be used. This is also called Jacob's formula.

her r)=~ln 4Tt =~ln2.25Tt
, 4nT eYSr 2 4nT Sr 2

For u = 100,50,25,10, the errors in using Jacob's instead of Theis's formula
are 0.3%, 0.5%,1.4%,5.2%, respectively.

On semilog paper, the response curve h(t) at a given point is a straight line
(as shown in Fig. 8.3).

A review of the basic assumptions of the Theis and Jacob formulas may be
helpful. They are

(1) Infinite, homogeneous, and isotropic medium.
(2) Constant transmissivity (confined aquifer or, with approximation,

unconfined aquifer with small drawdown; S is then replaced by CUd, the specific
yield).

(3) Two-dimensional approximation, i.e.,the hydraulic head does not vary
in the third dimension: the velocity is parallel to the confining beds for a
confined aquifer, or to the bedrock, assumed horizontal, for an unconfined
aquifer (Dupuit's hypothesis).

(4) Boring going through the entire thickness of the aquifer" (so that the
problem remains two-dimensional), pumping at a constant rate with a
negligible borehole radius.

* This is then called a fully penetrating well.
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(5) Initial conditions h(t,O) = 0 Vr, i.e., an aquifer that is initially
immobile. If this is not the case, according to the principle of superposition,
the drawdown s = ho - h satisfies the initial conditions if ho is a steady state.

Note. The variation of the hydraulic head around the well can be computed
for large t from

ah Q exp(-Sr2/4Tt)
~-.iL!

at 4nT t - 4nT t

Hence ah/at --+ 0 as t --+ 00: the hydraulic head variation becomes very slow
in the vicinity of the well. Furthermore, as bh]at depends very little on r,
the piezometric profile moves down while remaining parallel to itself in the
vicinity of the well.

8.1.3. Relations between Transient and Steady States

In a steady state, Dupuit's formula, which gives the drawdown in a boring of
radius r 0' is

Q R
s =--In-

ro 2nT ro

where R is the radius of action of the well, i.e., the zone inside which the effect
of the pumping is felt. Beyond R, the drawdown caused by the well is taken to
be zero.

This notion is often accepted in practice. In most cases, this zone R is
fictitious. The drawdown is stabilized and a steady state is established through
the influence of a boundary such as a river at some distance or of a leakage
phenomenon (see Section 8.3)or simply of surface recharge for an unconfined
aquifer.

However, in an aquifer that is not recharged by leakage, infiltration, or
through a boundary, this radius of action around the well may be expressed as
a function of the pumping time. We use Jacob's logarithmic approximation at
the radius ro of the well itself to find

If this expression is compared to Dupuit's formula, it gives R = 1.5.) Tt/S.
If the aquifer is infinite and not recharged, R varies as Jt. If t is large, R

varies very slowly and it seems as if a steady state has been obtained.
Moreover, at a given time, a piezometric profile passing through the well

actually has a logarithmic expression as given by Dupuit's formula (as long as
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Jacob's approximation can be used, i.e., if head measurements are made not
very far from the well).

8.1.4. Application of the Principle of Superposition

Just as in a steady state (Section 7.3.c), the principle of superposition may be
used, either (1) to calculate the influence of several wells pumping in the same
aquifer, (2) to describe artificially the influence of a straight line boundary
(method of images), or (3) to study the recovery of the aquifer after the
production has stopped.

(a) Impervious straight-line boundary (no flow). We shall use the draw
down as an example. The production is of the same sign in both the well and its
image well (Fig. 8.1).

s = /;T[w(~~;)+ w(;~;)J
When it becomes possible to use the logarithmic approximation for both W

functions, then

s = JL [In 2.25Tt + In 2.25TtJ
4nT Sr2 Sr,2

_ Q [21 2.25 Tt 1 r
2 Js--- n---+ n-

4nT Sr2 r,2

If the evolution of the drawdown s is plotted versus the logarithm of the
time (semilog paper) for a given observation point M, the slope of the line
doubles as soon as the logarithmic approximation becomes valid for both the
well and the image (see Fig. 8.3).

(b) Straight-line recharge boundary (prescribed head). The production is
of the opposite sign (injection) at the image well:

s - JL [ (4Tt) _ w(4Tt)J- 4nT W Sr2 Sr,2

Boundary

Well

M

Image

Fig. 8.1. Boundary, real and image wells.
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When the logarithmic approximation can be used for both W functions, then

s = JL [In 2.25Tt _ In 2.25TtJ
4nT Sr2 Sr,2

Q r'
s=--ln

2nT r

The drawdown stabilizes and does not change with time any longer (see
Fig. 8.3). This is one way in which a steady state is obtained.

(c) Cessation of production. To calculate the behavior of a well after it
has been stopped ("recovery curve"), an imaginary injection with the same
constant flow rate is superimposed on the borehole itself, which is supposed to
continue production at the same constant rate. The two flow rates thus cancel
each other, and indeed represent an idle well.

Let to be the duration of the pumping and t, the time counted from the
cessation of production. The drawdown at any time after the end of
production is given by

s = JL {W[4T(to + tdJ _W(4Tt l
) }

4nT Sr2 Sr2

Three cases may arise:

(1) The functions of W must be used for one or both terms.
(2) Jacob's approximation may be used for both of them:

s = JL {In 2.25T(to + t l ) -In 2.25Tt l }

4nT Sr2 Sr2

If s is plotted as a function of the logarithm of (1 + to/t l ) , a straight line also
appears. Such a plot is called Horner's diagram.

(3) It can be supposed that the first function W is stabilized (i.e., that the
pumping has gone on for long enough)-that is to say that, at least during the
first part of the recovery, the drawdown s only varies as a result of the second
function W (or its logarithmic approximation). This term is treated alone as a
single pumping. This last method is known as the Houpeurt-Pouchan
method.
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8.2. Interpretation of a Pumping Test

(a) Jacob's method. If a well is pumped at a constant rate, it is possible to
determine the T and S parameters of the aquifer: hence the frequent use of
"pumping tests" in the study of an aquifer.

From an initial condition of the head in the aquifer that is as steady as
possible, pumping at a constant rate is started in the well and the drawdown is
observed in the well itself and, if possible, in a certain number of piezometers
in the neighborhood. The rhythm of the measurements is very fast in the
beginning (once or, if possible, more per minute) and slows down with time.

The pumping test is usually interpreted by graphical analysis of these
measurements so that T and S can be deduced.

Jacob's method consists in plotting, on semilog paper, the drawdown s at a
given point (well or piezometer) versus time (Fig. 8.2).

It is also possible to plot s/Q versus tfr?, if the flow rate from the well has
varied a little or if the aim is to plot all the piezometers at different distances on
the same graph.

As soon as the logarithmic approximation holds the points must line up on
one straight line, and when this is identified, the interpretation follows
immediately (Fig. 8.3). The problem is that the beginning and sometimes the
end of the curve deviates from Jacob's straight line, e.g., the end part, if the
aquifer is not infinite or in case of leakage (see Fig. 8.3, Sections 8.1.4 and 8.3).
It may thus be doubtful which is the "right" line. Theis's method, which will be
discussed later, offers a way of deciding in uncertain cases.

When one line has been selected, two arbitrary points A and B on this line
are chosen (Fig. 8.2):

Q ta
Sa - SA =-4In

«t tA

The common practice is to choose

which gives

T = _O._18_3Q-=-
Sa - SA

Fig. 8.2. Drawdown versus time
's log t on a semilog plot.
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Fig. 8.3. Evolution of the head in a piezometer during a constant-rate pumping test.

To calculate S, the storage coefficient, we only need to remember that the
fictitious point C, where the axis s = 0 intercepts the Jacob line (Fig. 8.2),
corresponds to

whence

I 2.25Ttc = 0
n Sr 2 i.e., 2.25Ttc = 1

Sr 2

S = 2.25Ttc
r 2

Influence of a boundary. We have seen that an impermeable boundary
doubles the slope of Jacob's straight line, as in Fig. 8.4. If the pumping test
were interpreted with the second straight line, an incorrect transmissivity
equal to half the true one would be found.

It is, however, possible to specify the distance from the boundary. The
drawdown expression is

_ -.iLl (2.25Tt I 2.25Tt)
s - 4nT n Sr2 + n Sr,2

Consider the fictitious intersection point I of the two straight lines.
Mathematically, it is at this point that the influence of the image well is zero
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s Well

Boundary

M

Image

tl log t

Fig. 8.4. Drawdown versus time for a system with a no-flow boundary.

(even though the logarithmic approximation cannot be applied until much
later). In the same way as we calculated S using the fictitious point C, we now
write

I 2.25Ttl = 0
n Sr'?

that is,

r' = J2.2~TtI

which gives an idea of the distance from the boundary. Using two piezometers
and a small simple geometrical construction with two circles, it is even possible
to give the exact position of the image well and, thus, of the boundary.

The procedure is precisely the same for a recharge boundary, as in Fig. 8.5.
Note that it is also possible to use Jacob's method by plotting s versus log r

at a given date t, if several piezometers are available:

-Q
s = 2nT lnr + const

s

log t

Fig. 8.5. Drawdown versus time for a system with a prescribed head boundary.
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(b) Interpretation with the complete Theis formula by the curve-matching
method. We use the complete tabulated function, valid even for small times:

s = 4;T W(~~:)
A log-log paper is used for:

(1) The "type curve" W(u) versus u (Fig. 8.6 or 8.7),
(2) The experimental measurements s versus t (or possibly s/Q versus t/r 2

) .

A transparent log-log paper (tracing paper) of the same module as the type
curve" must be used. One of the graphs is drawn on tracing paper so that it can
be put on top of the other.

Then, if we look at the vertical axes we can write:

logs = IOg(4;T w) = log 4;T + log W

In the logarithmic graduation of the vertical axes, s is deduced from W
through a single parallel shift (log Q/4nT); then the corresponding sets of s,
and VV; points are matched.

Similarly, for the horizontal axes: one point of the horizontal axis u of the type
curve represents, in fact, a given value of

4Tt
--=U
Sr 2

If u and t are plotted in logarithmic graduation on the horizontal axes we get

4Tt 4T
logu = logS 2 = logt + log-2

r Sr

Also, t is deduced from u through a single parallel shift (log 4T/Sr2
) ; the set of

corresponding points t, and u, are then matched.
Consequently, on log-log paper, it should be possible to match the type

curve and the experimental curve through a simple parallel shift in the
direction of the two axes, from one paper to the other (seeFig. 8.8), but the axes
have to be kept parallel. When the two graphs are put on top of one another
and matched, identification is immediate. An arbitrary point M of the plane is

* On Fig. 8.6, Theis' curve is drawn on a log-log paper having a module of 62.5 x 62.5 mm;
this is the standard paper for the interpretation of electric soundings in geophysics. On Fig. 8.7,the
same curve is drawn on a paper with a 1.85 x 1.85 in. module; this is also a very common log-log
paper. Tracing paper of either module can thus be used. Figures 8.6 and 8.7 are each printed on
two pages; to use them as type curves, one must first make a good photocopy of each page
(without any magnification or reduction) and glue them together.



4 5 6 7 8 9104
3245678910

Fig. 8.6 (continued).

3210

I

I
I •

-- -

--

c
+J+!-lillj

tttmti
,

I

- --
I

- -

1,.--

. --, - I•

II
I I

11m • II
I~lllIl@-

-- -

- --

I rl--l-IH+IllI+!flHI-

-- - --. --

-- -

I • - -

-- 1111111111111

-

I I

I UU11Uill III
2 3

4 5 6 7 8 9324 5 6 7 8 91032

Fig. 8.6. Theis' type curve. 62.5 x 62.5 mm log module. By photocopying (without any
magnification or reduction) both parts of this figure and pasting them together, it is possible to
reconstruct the complete type curve.

i lj ,,
( ill

_.
-

II ~i\d I""
~ -~ I

I
I

I
-

-- ----

.- - ,

-r
W(U )

,

12 ,

I--
- - ,
_cF., fCC --• -

\I
II I

,
-

- -- - HIIIIIHIl
.- -

-- -- - -.

-

I
-_.

-
-

!
--

- - --
I

-

~+mlll4jjWll-

~®I~
- - 4HHHH+l1tI

,

I

- -

I ,[ I I
I

3

2

3

2

2

3

10
9
8
7

6

5

10
9
8
7

6

5

- 103

9
8
7

6

5



I i i ,;'1 ,rjl i" fH ii I , I, I ' 1 'I , ,, ,
, 11 !,

, , , 'I :Iij , I I
I I r Iii I I i 1

I

1 " i : il I I II I I 1
Ii iii .
, ' :

Ii I I 1

1 I I
I' ,

j'i+H 11,111 i I " 1, i
! 1

,
11 i I

I i I I,
,~

I I I I I I

~, ~
1:"

"
-1 1

I I

~:
I !l!

I , I

~J
~

. ( I

11
1
\ '

-I"dt 1
! ! I

I
I

,ill

~ \
111:,lj !I-! [j .. u I

1'1' i'
II i , r

""iTTT 11,1 1t1 ',11"tl .~ .; il [I! II I,U; ,', ,
I 'I iniI

I II 1 'I i ild hi! IIH j ~j' .j.lj -j( '11j;)! II I
, 1

1 , i i 1 I i"1 II 'I, fiji 1 I I' I' I
I I , I \I IIi

I I :1
il' 1 11 I

" I . - i I ~ , I'
"I I I 1 II /: I

1I

I
- I

I

I

j
I ,I lli I r~ j :1 un !

"
" I

I', ! 'I' i;! , , II,
i i ,I I i- nl\ I I I-

I' ill. ifI
1 t I Ii. ,!I, \1 -

I
I: II'~; ..

iI~'
u.

m
; ,

.~: 1I

I
11

I - -- - .

lliliill ,

-

110
9
8
7

6

5

4

3

2

1 1
9
B
7
6

5- 4
::l- 3
3

2

10-1

9
8
7
6

5

4

3

2

2
1

3456789,
I

I I I I I

1

2 3
1

56789,
I

I I I

I ", I I

10

2 3

Fig. 8.7. Theis' type curve. 1.85 x 1.85 in. log module. By photocopying (without any
magnification or reduction) both parts of this figure and pasting them together, it is possible to
reconstruct the complete type curve.

174



1
3456789

2
1

3456789
2 34567891

I 'i' Ij.

! i

, f 'II
+t+-H+t++H++H+t+

,! !

i d I
'!
!I

"
,

Fig.!!.7 (continued).

175



4Tt
u = r2 s

4 5 6 789103322 3 45678910 1 2 3 456789102

Fig. 8.8. Pumping test interpretation using Theis' method.
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T=SL Wo
4n So

{
Wo
Uo

and

from which we get
en;

Uo = Sr2

then chosen, not necessarily on one of the curves, and its coordinates are
expressed according to the two systems:

M = {so
to

By definition, we can write

Q
So = 4nT Wo

However, the influence of a boundary is more difficult to interpret in this
system than in that of Jacob. The only advantages of this system are that it is
not necessary to discard the first measurement points and that, for short-time
tests, there is less ambiguity than when we look for a line on Jacob's graph.

Either method can give, at best, two significant figures for the parameters T
and S, never three.

A great number of computer (or hand calculator) codes have been written to
adjust automatically the values of T and S in Theis' formulaiin order to match
the measurements. These methods must be taken with caution. Very often,
when the data are represented graphically, one realizes that only some of the
measurements must be used, because there is some deviation from the
hypotheses implied by the formula (e.g., influence of a boundary). A blind
computer code would use all the measurements regardlessly and produce a
meaningless "best fit." As the departure from the hypotheses may be due to a
number of causes, it is still preferable to use graphical techniques or, at least, to
check graphically the results of the computer codes.

(c) Interpretation of recovery curves. As we have seen in Section 8.L3.c,
there are two methods for interpreting a recovery curve:

(1) The Houpeurt- Pouchan method. Here it is assumed that the pumping
has lasted long enough to allow us to suppose-at least at the beginning of the
recovery-that a steady state has been attained before pumping stopped.
Then, the recovery curve is interpreted as a drawdown curve with the help of
either Jacob's or Theis's method.

(2) The Horner method. 10g(1 + tp/t) method. Here s is plotted versus
10g(1 + tp/t) (tp is the duration of the pumping, t the time counted from the
cessation of pumping) on a semilog diagram. With the help of the straight line,
which should then appear, and following Jacob's method (Section 8.2.a), we
can calculate the transmissivity but not the storage coefficient.

Recovery curves are of particular importance in pumping tests where no
piezometers are available and the only observation point in the aquifer is the
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boring itself. Indeed, during production the level in the borehole is disturbed
by the losses in hydraulic head (quadratic terms), which occur as the fluid
crosses the slots in the well screen and even in the first 10 or 20 em around the
well.This means that, during the pumping, the dynamic level in the wellgives a
poor representation of the hydraulic head in the aquifer around the well,
whereas during recovery all these phenomena are cancelled, and the real level
of the aquifer can be observed in the well, which makes an accurate
interpretation possible.

Observe that the level in the well often fluctuates slightly because of
irregularities in the running of the pump engine: the measurements in the well
during production are not exact. Moreover, it must be noted that, at the
boring, the radius r of the well is ill-defined: of course, the radius of the
borehole itself is known, as well as that of the casing, but the terrain around
the boring has been disturbed during the work on the well. It is accepted that
there is an effective well radius r ' surrounding it, which has to be taken into
account in the interpretations of the level in the borehole and which is usually
slightly larger than the real radius of the borehole. This is called a positive skin
effect. A negative skin effect (r ' < r) can sometimes be observed if a well is
clogged or poorly developed.

(d) Anisotropic medium. The interpretation of a pumping test can be
extended to the case where the medium is anisotropic in the horizontal plane
(the case where the medium is anisotropic in the vertical/horizontal directions
is examined in Sections 8.3.3and 8.4.3). Let X and Y be the coordinate system
in the horizontal plane, and x and y the principal directions of the anisotropy
tensor of the transmissivity.

y

y

Let () be the angle from X to x in the trigonometric rotation, and T; and T;
the principal components of the transmissivity T. As shown in Section 7.1.c,
the anisotropic system can be transformed into an isotropic one by the change
of coordinates

x' = JT/Txx and y' = JT/Tyy with T = JTxTy

In the (x', y') system, the diffusion equation is again isotropic and the Theis
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equation applies:

s = 4;T w(:,;;)
To interpret a pumping test in an anisotropic system, let us first suppose that
the principal directions x and yare known and that we have two piezometers
a and b, in the x and y directions, respectively, from the well. We can write
for piezometer a

and for piezometer b

We therefore have

s =~W(4Txt)
a 4:n:T x 2 S and Q W(41;,t)

Sb = 4:n:T y 2 S

Interpreting the drawdowns in a and b using Theis' curve-matching method
will first give us directly the same T for both a and b, and also T.jS for a, and
1;,/S for b (instead of only S in the regular case). From these 3 values we can
then determine Tx , Ty, and S. Now if the principal directions x and yare not
known, at least 3 piezometers are needed. Let X and Y be the coordinates, in
any system, of a piezometer; using the change of coordinates by the rotation e,
we obtain

x = X cos 8 + Y sin 8

y = - X sin 8 + Y cos 8
Then

r,2 = T/TAXcos 8 + Y sin 8)2 + T/1;,( - X sin 8 + Y cos 8)2

The interpretation using Theis' curve matching method still gives us first
T = -J 1'" 1;, for all piezometers, but then the second parameter obtained for
each piezometer is a rather complex expression of 1'", 1;" S, and 8. One can
solve it by trial and error, graphically, or mathematically. See Hantush
Neuman et al. (1984).

8.3. Leakage in Radial Coordinate Systems

We have defined leakage in Section 5.3.g as the flux F, and Fb exchanged at
the upper and lower boundaries of a confined aquifer with its confining beds.
We shall study three analytical solutions of this problem for a well pumping in
an aquifer, where at least one of the confining layers is an aquitard through
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which leakage occurs. These solutions are by Hantush, Boulton, and
Streltsova.

8.3.1. Hantush's Solution

Hantush (1956) assumed that the confined aquifer is recharged from an
overlying unconfined aquifer, which percolates through the aquitard separat
ing them, as in Fig. 8.9.

The leakage flux F?, in the steady state, is given according to Darcy's law
by the hydraulic head gradient in the aquitard between the two aquifers:

F? = _ K' h~ - h~ (8.3.1.1)
e'

where K' is the hydraulic conductivity of the aquitard, e' the thickness of the
aquitard, h2 the hydraulic head in the confined aquifer, hl the hydraulic head
in the unconfined aquifer, and the superscript 0 means steady state.

Hantush examined the reaction of such a system, when pumping at a
constant rate is started in the confined aquifer. He then made two
assumptions:

(1) The hydraulic head h, in the unconfined aquifer is not going to change
even if the leakage flux F, increases. This is true if the unconfined aquifer is well
recharged (e.g., by rainfall) or if the pumping does not last too long.

(2) The increase in the leakage flux is assumed to take place instantly and
to be always given by Darcy's law. If the drawdown in the confined aquifer is
denoted by s, then

(8.3.1.2)

This disregards the existence of a transient state in the aquitard (seeSection
8.5). Thus, the leakage flux is given by

K'
F, = F? +-, s

e
(8.3.1.3)

(8.3.1.4)

If the initial steady state h~ satisfies the equation V2h~ = -F?/T, the
drawdown s then satisfies the following diffusion equation:

2 S AS K'
V s=--+-s

Tat Te'

Fig. 8.9. Leaky system.
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Table 8.2

Values of W'(4Tt/r 2S,r/B)a

I~
0.01 O.QJS 0.03 0.05 0.075 0:10 0.15 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 '.0 1.5 7.0 7.5

,'5
ffi

0.000001
0.000005 9.4413
0.00001 9.4176 8.6313
0.00005 8.8827 8,4533 7.2450
0.0001 8.3983 8.1414 7.2122 6.2282 5.4228
0.0005 6.9750 6.9152 6.6219 6.0821 5.4062 4.8530
0.001 6.3069 6.2765 6.1202 5.7965 53078 4.8292 4.0595 3.5054
0.005 4.7212 4.7152 4.6829 4.6084 4.4713 4.2960 3.8821 3.4567 2.742H :::.2290
0.01 4.0356 4.0326 4.0167 3.9795 3.9091 3.8150 3.5725 3.2875 2.7104 2.2253 J.84R6 1.55;;0 1.3210 l.1307
0.05 2.4675 2.4670 2.4642 2.4576 2.4448 2.4271 2.3776 2.3110 2.1371 1.9283 1.7075 1.4927 1.2955 1.1210 O.97{)O 0.8409
0.1 1.8227 1.8225 1.8213 1.8184 1.8128 1.8050 1.7829 1.7527 1.6704- 1.5644 1.4421 1.J115 1.l7 lJI 1.0505 0.9297 0.8190 0.4271 0.2278
0.5 0.5598 0.5597 0.5596 0.5594 0.5588 0.5581 0.5561 0.5532 0.5453 0.5344 0.5200 0,5044 004860 0.4658 OA440 0.4210 0.3007 0,1944 0.1174
1.0 0.2194 0.2194 0.2193 0.2193 0.2191 0.2190 0.2186 0.2179 0.2161 0.2135 0.2103 0.2065 0.2020 0.1970 0.1914 0.185:- 0.1$09 o.j 139 0.0803
5.0 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0,0011 0.0011 0,0011 o.nm J n,OOII 0.0011 0.0010 0.0010 O.OQo9

a After Hantush (1956) and Walton (1970).

We define the Hantush leakage factor B = .JTe'IK' of dimension (length).
The Hantush radial solution of this equation then becomes

s = ~foo exp( -T - r
2/4B 2

T ) di =~w,(4;t ,~)
4nT r2S/4Tt T 4nT r S B

This solution depends on two parameters (u = 4Ttlr 2S and riB) and takes
the following form:

(1) The envelope curve is that of Theis (corresponding to negligible
(2) For a given value of riB (i.e., for a given hydraulic conductivity K' of

the aquitard and a distance r to the pumping well), the response curve
stabilizes with time: a steady state is reached. Table 8.2 gives the function wr

from Walton (1970). This function is drawn as a type curve on a log-log paper
in Figs. 8.10 and 8.11.*

This explains why, in certain cases, we obtain a stabilization in a pumping
test that is due to a leakage phenomenon but that may be wrongly interpreted
as a steady state because of the existence of a fictitious "radius of action" R
around the borehole (see Section 7.3.a, Dupuit's formula).

This stabilization of the drawdown in a piezometer close to the borehole
after a certain lapse of time occurs at the same time in all the borings at the
same distance from the well. This would not be true for a stabilization due to a
recharge boundary (stream), where the piezometers closest to the fictitious
image well would be the first to stabilize. To identify this type of leakage, the
Hantush type curve must be used (Fig. 8.10 or 8.11) and the procedure is the
same as for the Theis curve in Section 8.2.b, but the best fit using the Hantush
type curve has to be found in order to achieve a satisfactory matching, which
also gives riB.

* See the footnote 011 p.171. The same comments apply for Figs. 8.10and 8.11 as for 8.6 and 8.7,
respectively.
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Neuman and Witherspoon (1968, 1969a,b, 1972)have shown, however, that
this solution, which disregards the storage in the confining beds, may
sometimes lead to considerable errors. They suggest other methods of
interpretation, which take this storage into account as well as the variations of
hydraulic head in the overlying aquifer (see also Section 8.3.3).

We must remember that the identification of a leakage phenomenon during
a pumping test does not in the least affect the direction of the exchanges: the
leakage may stem from an overlying or an underlying aquifer and may be, in a
steady state (before the pumping has begun), a recharge of or a withdrawal
from the studied aquifer; the flow F? of Eq. (8.3.1.1) is algebraic and
Eqs. (8.3.1.1)-(8.3.1.4) are valid whatever its sign may be.

8.3.2. Boulton's Solution

Boulton (1963) made another assumption concerning the leakage flux
caused by the drawdown s: he assumed semiempirically that an increase in the
drawdown !1s at time t gives rise to a leakage flux !1q, which decreases
exponentially with time:

!1q(r) = S'f exp[ -f(r - t)J!1s

where f is a parameter of dimension (time -1).
The integral of this flux between t and infinity is

q = lex:> S'fexp[ -f(r - t)J!1sdr

q = Sf!1s

The term Sf is the storage coefficient of the overlying (or underlying) aquifer,
which recharges the confined aquifer through leakage, since a drawdown Ss
causes accumulated flux Sf !1s. However, this flow is not instantly released: the
suggested solution corresponds to an exponential decay of the leakage flux.

The diffusion equation is obtained by calculating the leakage flux F, at every
instant by convolution, i.e., by adding the elementary fluxes produced by all
the drawdowns from the beginning of the pumping:

VZs = ~ os + Sf ft f exp[ -f(t _ -n (os) ds
T ot Toot r

Boulton gives a radial solution to this equation, which takes the following
form for small r:

s=~W"(u Sf f)
4nT "

where u = 4Tt/rzS. Figure 8.12 illustrates this solution.



8.3. Leakage in Radial Coordinate Systems 187

~
OJ
o

log u

Fig. 8.12. Drawdown versus time for Boulton's leaky systems.

The evolution of the drawdown conforms initially to Theis's solution, which
corresponds to the parameter couple (T, S).Then comes a level stage at which
it might be possible to identify f, and, finally, the drawdown again takes the
form of a Theis function but this time displaced in relation to the first by a
shift parallel to the u axis (no vertical parallel shift) and corresponding to the
parameters (T, S + Sf). This type of leakage is therefore easy to recognize and
identify with the help of a Theis type curve, and we can then calculate Sf.

If t is the time when the leveling off of the withdrawal intercepts the second
Theis curve (see Fig. 8.12), Berkaloff (1966) shows that

f= 0.561
t

This type of behavior is rather frequent in unconfined aquifers, where the
delayed flowis simply due to the draining of the unsaturated medium when the
free surface is drawn down (see Sections 6.2.a and 8.4.3).

8.3.3. Streltsova's Solution

A more elaborate solution of delayed leakage has been proposed by
Boulton and Streltsova (1975) and Streltsova (1976b).These authors consider
a confined aquifer with a producing well overlain by an aquitard containing a
free surface. The following assumptions are made:

(1) The aquitard containing the water table is homogeneous and the flow
through it is only vertical downwards. Both the water and the aquitard itself
are supposed incompressible: the production of water in the aquitard is
by drainage and lowering of the water table. However, this lowering of the
water table is small enough so that the saturated thickness of the aquitard is
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Flow Q

t
Well

Piezometer
z

Water table__ •• - -- - - - - - --

.-. - - _.- - - Aquitard
e + e'

e

I

~ I

~:
!...!

-------b

Aquifer

---- --- ---- --'-- a
o

Bedrock

Fig. 8.13. Aquifer and aquitard in Streltsova's solution.

taken as constant and the position of the water table is considered as fixed (see
Fig. 8.13). There is no vertical recharge in the aquitard.

(2) The confined aquifer is compressible and in general anisotropic, the
horizontal and vertical hydraulic conductivities being constant. It is underlain
by a horizontal impermeable bed. In this aquifer a production well is pumped
at a constant rate from the instant t = O. This well is only screened over a
portion of the thickness of the aquifer (partially penetrating well). The
discharge per unit length of the unlined part is constant, and the radius of the
well is vanishingly small.

The equations and boundary conditions used are, (see Fig. 8.13) in the
aquifer,

O<z<e

z = e + e'

drawdown at the water table (see Section 6.3.d)

,os' , os'
K --a; = -Wd at'

at the interface between aquitard and aquifer

os _ K'os'
K; OZ - oz' z = e, Vr,t
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at the impervious bottom

along the well

as = 0
OZ '

z = 0, Vr, t

a < z < b, Vt
as Q

lim r-e-- = ,
r--+O or 2nKr(b - a)

along the nonscreened section of the axis of the well

as = 0
or '

at infinity

°< z < a and b < z < e, r = 0, Vt

initial condition

s = 0, r-+oo, Vz,t

s=o, t=O, Vr,z

with s, s' the drawdown in aquifer and aquitard, respectively; K" K, the
horizontal and vertical hydraulic conductivity in the aquifer; S; the specific
storage coefficient in the aquifer; where S = Sse is the storage coefficient; K',
w~ the vertical hydraulic conductivity and specific yield of the aquitard; e, e'
the thickness of aquifer and aquitard, respectively; a, b the position of the well
screen (see Fig. 8.13); and Q the flow rate of the well.

The drawdown in the aquifer is given by

Q foo 00s(r, z, t) = 4nT 0 4yJO(y,81/2)[UO(Y) +~ un(y)]dy

with the transmissivity of the aquifer given by

T= Kre

and

and

,8= (K z/Kr)(r
2/e2

)

S
Cf=-

w~

Uo(y) = [{1 - exp[ -ts,8(y2 - Y6)J}{sinh(Yob/e) - sinh(yoa/e)}

x cosh(Yoz/e)] {[(b - a)/e](y2 - Y6)xocosh(yo)} -1

where Yo is the positive root of the equation

(y2 - 1'6 - CCf)Yo sinh(,8o) + C( y 2 - 1'6) cosh(,8o) = 0
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and

- [ C(y 2 - Y6) ] . [ 2C
2a

]
Xo - 1 + 2 2 C smh(yo) + 1 + (2 2 C )2 Yo cosh(yo)

y - Yo - a Y - Yo - a

un(y) = [{1 - exp[ - tsl3(y2 + Y;]} {sinh)(Ynbje) - sinh(Ynaje)}

x cosh(Ynzje)] {[(b - a)je](y2 + y;)xncosh(Yn)} -1

where Yn is the nth positive root of:

(y2 + Y; _ Ca)Yn sin(Yn) - C(y2 + Y;) cos (Yn) = 0

and

[
C(y2 + Y;) ] . [ 2C

2a
]

Xn = 1 + 2 2 C sm(Yn) + 1 + (2 2 C)2 Yn COS(Yn)
y + Yn - a Y + Yn - a

This solution can be computed numerically although it is not very easy
when accurate results are required. Jo is the Bessel function of the first kind
and zero order.

The drawdown s is calculated at elevation z in the aquifer, i.e., for a
piezometer open only over a short distance at elevation z. If a fully screened
piezometer is used, the average of s from z = 0 to e must be calculated.

This solution is very close to that developed by Neuman for delayed yield in
an unconfined aquifer (see Section 8.4.3). Additional development can be
found in Streltsova (1984).

8.4. Additional Analytical Solutions for the Flow toward a Wen

The interpretation of pumping tests is a science in itself. This kind of test is
very useful in hydrogeology, because it is one of the most widely used means of
measuring in situ the values of the parameters T and S. Whole books are
devoted to the subject: see, for example Kruseman and de Ridder (1970).

In the following, some examples of particular importance will be given.

8.4.1. Effect of the Well Capacity

At the beginning of pumping, if the production rate is Q, the flow withdrawn
from the formation is not Q, since the well is starting to empty. Papadopoulos
and Cooper (1967) have given the following solution to this problem for
confined aquifers:
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Piezometric head h

Fig. 8.14. Well capacity effect.

with

( ex) = 32ex
2 ['00 1 - exp( - Pz /4up ) df3

F Up, J0 13 3 !i(f3)

where sp is the drawdown at the well, up = r;S/4Tt, rp is the well radius at
the well screen, ex = r;S/r;, r; is the well radius at the casing, Q the
production rate, S the storage coefficient, T the transmissivity, and

where I n is the Bessel function of the first kind and order nand y" the Bessel
function of the second kind and order n.

The difference between rp and rc is illustrated in Fig. 8.14. This solution is
particularly useful for pumping tests in dug wells with large diameters,
frequently found in developing countries. The function F(u p , ex) is given by the
Table 8.3 and the type curve of Fig. 8.15, taken from Papadopoulos and
Cooper. Note that the horizontal axis is graduated in up, not in l/up. Finally,
the expression for the drawdown in a piezometer at some distance from the
well is given by Carslaw and Jaeger (1959).

8.4.2. Artesian Tests

In an artesian boring, when the well is opened the water flows out naturally
at a rate that decreases with time. Instead of a constant flow rate, a constant
drawdown is imposed (h = z at the well head). Jacob and Lohman (1952)have
given the expression for artesian flow versus time:

Q = 2nT(ho - h)G(ex)
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Table 8.3

Values of the Well Capacity Function F(up , lX)a

~
10-1 10-2 10-3 10-4 10-5

10 9.755 X 10-3 9.976 X 10-4 9.998 X 10-5 1.000 X 10-5 1.000 X 10-6
1 9.192 X 10"2 9.914 X 10-3 9.991 X 10-4 1.000 X 10"4 1.000 X 10-5

5 X 10-1 1.767 X 10-1 1.974 X 10-2 1.997 X 10-3 2.000 2.000
2 4.062 4.890 4.989 4.999 5.000
I ].336 9.665 9.966 9.997 1.000 x 10-4
5 X 10-2 1.260 x 10° 1.896 X 10-1 1.989 X 10-2 1.999 X 10-3 2.000
2 2.303 4.529 4.949 4.995 5.000
I 3.276 8_520 9.834 9.984 1.000 x 10-3
5 X 10-3 4.255 1.540 x 10° 1.945 X 10-1 1.994 X 10-2 2.000
2 5.420 3_043 4.725 4.972 4.998
I 6.212 4.545 9.069 9.901 9.992
5 x 10-4 6.960 6.031 1.688 x 10° 1.965 X 10-1 1.997 X 10-2
2 7.886 7.557 3.523 4.814 4.982
1 8.572 8.443 5.526 9.340 9.932
5 x 10-5 9.318 9.229 7.631 1.768 x 10° 1.975 X 10-1

2 1.024 X 101 1.020 X 101 9.676 3.828 4.861
I 1.093 1.087 1.068 x 101 6.245 9.493
5 x 10-6 1.163 1.162 1.150 8.991 1.817 x 10°
2 1.255 1.254 1.249 1.174 x 101 4.033
I 1.324 1.324 1.321 1.291 6.779
5 x 10-7 1.393 1.393 1.392 1.378 1.013 x 101

2 1.485 1.485 1.484 1.479 1.371
I 1.554 1.554 1.554 1.551 1.513
5 x 10-6 1.623 1.623 1.623 1.622 1.605
2 1.705 1.705 1.705 1.714 1.708
I 1.784 1.784 1.784 1.784 1.781
5 x 10-9 1.854 1.854 1.854 1.854 1.851
2 1.945 1.945 1.945 1.945 1.940
1 2.015 2.015 2.015 2.015 2.015

a From Papadopoulos and Cooper (1967).

10-4 up
10-9 10- 8 10- 7 10~ 10-5 10-4 10-3 10-2 10- 1 1 10

Fig. IUS. Well capacity function. From Papadopoulos and Cooper (1967).
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where Qis the artesian flow rate, T is the transmissivity, and ho- h is the im
posed drawdown (hydraulic head in the aquifer before the test minus the
head imposed at the opening by the elevation of the top of the well). If the
boring is very deep, losses of hydraulic head in the casing have to be taken into
account, as the hydraulic head h required is the one at the level of the
formation

Tt
IX = -2

rpS

where S is the storage coefficient and r p the borehole radius, and

~fOO {n }G(IX) = ----;- 0 xe-o:
x 2 "2 + arctg[Yo(x)jJo(x)] dx

Here Jo and Yo are the zero-order Bessel functions of the first and second
kinds, respectively.

The function G and the corresponding type curve are given in Table 8.4 and
Fig. 8.16 respectively.

Table 8.4

Well Function for Artesian Conditions"

~ 10-4 10-3 10-2 10-1 1 10 102 103

1 56.9 18.34 6.13 2.249 0.985 0.534 0.346 0.251
2 40.4 13.11 4.47 1.716 0.803 0.461 0.311 0.232
3 33.1 10.79 3.74 1.477 0.719 0.427 0.294 0.222
4 28.7 9.41 3.30 1.333 0.667 0.405 0.283 0.215
5 25.7 8.47 3.00 1.234 0.630 0.389 0.274 0.210
6 23.5 7.77 2.78 1.160 0.602 0.377 0.268 0.206
7 21.8 7.23 2.60 1.103 0.580 0.367 0.263 0.203
8 20.4 6.79 2.46 1.057 0.562 0.359 0.258 0.200
9 19.3 6.43 2.35 1.018 0.547 0.352 0.254 0.198

10 18.3 6.13 2.25 0.985 0.534 0.346 0.251 0.196

~ 104 lOS 10 107 108 109 1010 1011

1 0.1964 0.1608 0.1360 0.1177 0.1037 0.0927 0.0838 0.0764
2 0.1841 0.1524 0.1299 0.1131 0.1002 0.0899 0.0814 0.0744
3 0.1777 0.1479 0.1266 0.1106 0.0982 0.0883 0.0801 0.0733
4 0.1733 0.1449 0.1244 0.1089 0.0968 0.0872 0.0792 0.0726
5 0.1701 0.1426 0.1227 0.1076 0.0958 0.0864 0.0785 0.0720
6 0.1675 0.1408 0.1213 0.1066 0.0950 0.0857 0.0779 0.0716
7 0.1654 0.1393 0.1202 0.1057 0.0943 0.0851 0.0774 0.0712
8 0.1636 0.1380 0.1192 0.1049 0.0937 0.0846 0.0770 0.0709
9 0.1621 0.1369 0.1184 0.1043 0.0932 0.0842 0.0767 0.0706

10 0.1608 0.1360 0.1177 0.1037 0.0927 0.0838 0.0764 0.0704

a From Jacob and Lohman (1952).
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Fig. 8.16. Well function for artesian conditions. IX = Tt/r;S.

8.4.3. Anisotropic Unconfined Aquifer

Neuman (1972, 1973b, 1974, 1975a,b) has studied the problem of a fully or
partially penetrating well pumping in an anisotropic unconfined aquifer,
taking into account the delayed drainage of the unsaturated zone by gravity.
The anisotropy is understood to be that of the vertical/horizontal hydraulic
conductivity. His solution has a very similar expression to that of Streltsova
(Section 8.3.3): he only assumes that the free surface remains always at z = e
(see Fig. 8.13) and that the boundary condition at this surface is

z = e, Vr,t

Otherwise he uses all the equations and boundary conditions given for the
aquifer in Section 8.3.3.Note however that his solution was published prior to
that of Streltsova.

If the well is fully penetrating and screened along its entire length, the
drawdown in a piezometer, which is also entirely screened, is given by
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where Yo and Yn are the roots of

(TYo sinh(yo) - (y2 - Y5)cosh(yo) = 0 Y5 < y2

(TYn sin(Yn) + (y2 + Y;) cos(Yn) = 0

with (2n - 1)(n/2) < Yn < nn n e. 1

where r is the distance from the piezometer to the wen, Q the flow rate of the
wen (constant), T the transmissivity, Jo the Bessel function of the first kind
and zero order, ts = Tt/Sr2, the dimensionless "elastic" time, and S the storage
coefficient of the formation (indeed, in the same way as in a confined aquifer,
owing to the elasticity, the pressures are transmitted up to the free surface,
where the drainage comes into play. Hence the notion of delayed drainage),
ty = Tt/Wdr2, the dimensionless "drainage" time, Wd is the specific yield of the
formation, (T = S/Wd = y/t., f3 = (K z/Kr)(r

2/e2), K; and K, are the anisotropic
hydraulic conductivity in the directions z and r, and e is the initial saturated
thickness of the aquifer, assumed constant through time.

This function is given in Table 8.5 and Fig. 8.17 (Neuman, 1975a). The
curves are drawn for (T close to zero; thus we obtain two families of curves
(type A and type B), which are united by a horizontal line. The length of
this horizontal stretch is directly dependent on the value of (T. To avoid
introducing this parameter into the type curves, the curves A are shown as
functions of dimensionless time ts (upper scale) and the curves B as functions
of t y (lower scale).

Theis for ts

111~illll~Oj'0~0~1 ;~:::~~~S:tiIS~~~~~~~~0 '~03~O~0 1~9§.004 (3= r

2

K
z/

(Kre 2)0.1 0.06
0.4 0.2---

~::::===0.80.61.5 1.0
1II':-~--2.0

"'......--2.53.04.0------::5.0)=====::::10·2 :7.g..:.
Tt

t y = Wdr 2

Fig. 8.17 Neuman's well function for unconfined aquifers. [From Neuman (1975a).]
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The interpretation is done on log-log paper as follows:

(1) The end of the test is fitted on the B-type curves by the same method as
for the Theis curve, and /3, T, and Wd are identified.

(2) The beginning of the test is fitted without vertical parallel shift of the
curves, so that the same T and /3 are retained. Then S is calculated on the
A-type curves.

(3) From T we calculate K, = Tie, and with the help of /3 we can calculate
K z . Therefore, this is one of the few methods that allows us to estimate the
anisotropy of the formation.

The above solution is, however, an approximation, obtained by lineariza
tion. It omits, for example, the reduction in the saturated thickness with time.
The solution may also be calculated for any piezometer open at a given
elevation z, but not screened along its entire length.

In the case of a partially penetrating well, Neuman (1975a) gives the changes
which should be made in the previous function. However, here the number of
parameters becomes too large to be shown on type curves: a program for
calculating the type curve for a given geometry (well depth, aquifer thickness,
position and intake of the piezometer) is available from the author (Neuman,
unpublished, 1975b). Additional developments on this approach of delayed
yield can be found in Neuman (1979).

8.4.4. Variations in Flow during the Test

All the solutions shown are linear in Q. If the flow varies in time, the
response is obtained by convolution of the elementary solution with the flow
variation. For example, for the Theis solution,

s = _1 {Q(O)W(4Tt) + (t(OQ) W[4T(t - L)] dL}
4nT r2 S Jo ot t r2 S

Inversely, the step-function response of the system may be calculated by
deconvolution of the observations, i.e., the drawdown s(t) that would have
been observed if the flow Q had been kept constant. This is the one that will be
used for the interpretation.

8.4.5. Flow in Fractured Systems

Pumping tests in porous fractured reservoirs are very common in the
petroleum industry, and a large number of particular solutions have been
developed for such systems, assuming particular geometries for the fractures.
[See Boulton and Streltsova (1977), DeSwann (1976), Gringarten et al.
(1974a,b; 1975), Gringarten (1982), Hartsock and Warren (1961), and Strelt
sova (1976a).]
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8.5. Other (One-Dimensional) Solutions to the Diffusion Equation

x and t > °Equation:

We shall only give two analytical solutions for one-dimensional flow that
are especially useful for the interpretation of natural variations of the
piezometric head in aquifers.

(a) Semiinfinite domain, sudden variation of hydraulic head.

(Ph S ah
ax 2 Tat'

Conditions: h(x,O) = ho, Vx> ° (initial)

h(O, t) = ° t :2: ° (at the boundary)

Solution: hix, t) = hoerf(xJ4~t)

where erf(u) is the error function, known and tabulated (Table 8.6) as

2 Ierf(u) =~ 0 e-
v 2

dv

This solution fits the case of a semi-infinite confined aquifer, initially in
equilibrium at the hydraulic head ho with a stream as one boundary. At the
time t = 0, the level of the stream suddenly drops to the elevation h = °as in
Fig. 8.18.

This solution is also applicable to the study of recharge in an aquifer.
Suppose that the aquifer is initially in equilibrium with a river at h = 0, and
that at time t = °it receives a uniform and instantaneous recharge ho all over
its surface. The head h(x, t) will be given by the same expression as above.

On the other hand, a sudden raising ho of the level of a stream, initially in
equilibrium with the aquifer at the elevation 0, causes a variation of the

Head h=O ----1~4---~~

x

Fig. 8.18. Stream in contact with a confined aquifer.
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Table 8.6

The Error Function"

u erf u erfc u u erfu erfc u

0 0 1.0 1.0 0.842701 0.157299
0.05 0.056372 0.943628 J.l 0.880205 0.1 19795
0.1 0.112463 0.887537 1.2 0.910314 0.089686
0.15 0.167996 0.832004 J.3 0.934008 0.065992
0.2 0.222703 0.777297 1.4 0.952285 0.047715
0.25 0.276326 0.723674 1.5 0.966105 0.033895
0.3 0.328627 0.671373 1.6 0.976348 0.023652
0.35 0.379382 0.620618 1.7 0.983790 0.016210
0.4 0.428392 0.571608 1.8 0.989091 0.010909
0.45 0.475482 0.524518 1.9 0.992790 0.007210
0.5 0.520500 0.479500 2.0 0.995322 0.004678
0.55 0.563323 0.436677 2.1 0.997021 0.002979
0.6 0.603856 0.396144 2.2 0.998137 0.001863
0.65 0.642029 0.357971 2.3 0.998857 0.001143
0.7 0.677801 0.322199 2.4 0.999311 0.000689
0.75 0.711156 0.288844 2.5 0.999593 0.000407
0.8 0.742101 0.257899 2.6 0.999764 0.000236
0.85 0.770668 0.229332 2.7 0.999866 0.000134
0.9 0.796908 0.203092 2.8 0.999925 0.000075
0.95 0.820891 0.179109 2.9 0.999959 0.000041

3.0 0.999978 0.000022

a After Carslaw and Jaeger (1959).

hydraulic head:

where erfc = 1 - erf is the complementary error function (see Table 8.6).
By convolution it is also possible to calculate the response of an aquifer to

continuous variations in stream level.
In practice, these solutions are always used for the variation of the head with

respect to an initial steady state, and not for the head itself (see Section 7.1.b).
They are also applied to unconfined aquifers if the variation of the head is
small enough that the saturated thickness of the aquifer can be considered
constant.

Figure 8.19. gives the error function (erf, curve I) and the derivative of h
versus time or space (curve II).

tfi ah xfi ah IS (x2S)
-h;;at = 2ho ax = x.yffiexp - 4Tt

(b) Bounded domains.

Equation:
s ah
Tat'

t ~ 0
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u =xf-fi

0.6

0.2

0.4

1.0

? 0.8
ue- u·, curve II

0.4 0.8 1.2 1.6 2.0

Fig.lI.19. The error function and its derivative. [From Carslaw and Jaeger (1959).]

erf (u}, curve I

0

1.5

h 1.0

ho 0.2 0.8

0.6

0.4

0.4

0.6
0.3

0.8 0.2

0.15
0.1

1 0.8 0.6 0.4 0.2 0 x/I

Fig.lI.lO Type curve for a bounded domain. The parameter given on the curves is Tt/SF.
[From Carslaw and Jaeger (1959).]
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Conditions:

h(x,O) = ho,

h(O,t) = 0,

(ah) = 0
ax x=l '

Solution:

°< x:s;, 1,

t 2:: 0,

t 2:: 0,

(initial)

(first boundary with prescribed head)

(second no-flow boundary)

h = hO{l - I (-It [ erfc 2nl + x fS + erfc(2n + 1)1- x fS)J}
n=O 2 ~Tt 2 ~Tt

or again:

h _ h ~ ~ (-It [_ (2n + 1)2n2Tt ] (2n + l)nx
- °n nf-o(2n + 1)exp 4SF cos 21

This solution corresponds to the same conditions as in Fig. 8.18, but with
an aquifer limited by a no-flow boundary at the distance x = 1. Figure 8.20
is the corresponding type curve, where the curves are indexed on the
parameter TtjSF.

8.6. In Situ Point Measurements of Permeability

The pumping tests described in Sections 8.2 and 8.4 offer the best estimates
of average hydraulic conductivities in a medium. However, since they are quite
arduous to work out, it has been suggested that more basic and localized
methods should be used to estimate the hydraulic conductivities. We shall
briefly describe three of these, which are chiefly used in civil engineering.

(a) Pocket or Lefranc test. A "pocket" of length 1facing the terrain to be
explored is made in a boring (open or screened) of diameter D. This pocket is
created either by putting a casing into the remainder of the borehole or by
isolating the section by means of an inflatable packer (rubber sleeve tightly
fitted to the terrain).

The test consists in injecting (or pumping) at a constant flow rate Q and
waiting until the hydraulic head (or the pressure) is approximately stabilized
(quasi-steady state; one only waits for a few minutes). The hydraulic
conductivity is given by the relation (Schneebeli, 1966):

()( Q
K = Dl1h
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where /ih is the change in hydraulic head between the initial condition and the
quasi-steady state, D is the diameter of the pocket, Q is the injected or
withdrawn constant flow rate, and IXis a dimensionless coefficient that depends
on the shape of the pocket:

(1) More or less spherical pocket:

1
IX=------;::;===

2nJljD + Ij4

(2) Ellipsoidal pocket:

In(ljD + J(ljD)2 + 1)
IX = 2nljD

(3) Very elongated pocket (ljD > 4):

In(2IjD)
IX = -'------'---'-

2nljD

Here, I is the height of the pocket. When the pocket is close to a no-flow
boundary (freesurface or impervious bedrock), the boundary effectcreates an
image, which is accounted for by multiplying IX by D j8nz, where z is the
distance from the center of the pocket to the boundary, assumed to be large
compared to I and D.

The test is made with different flow rates in order to verify the linearity of the
relation Q- Sh, since any nonlinearity may indicate a leak in the casing or the
packer or hydraulic fracturing of the terrain.

(b) Lugeon's test infractured rocks. This is a very well-known empirical
test using a boring in fractured rocks. A portion of the boring, usually 5 m
long, is isolated by a packer. Quite often, the test is made as the boring
progresses: every time a 5-m-Iong section of boring is finished, it is sealed off
with a single packer and the test made. The packer is then removed and the
boring resumed. Sometimes the test is made when the boring is already
completed. The procedure is then to isolate 5-m sections using two packers,
inject water under pressure, and measure the stabilized flow (after 5-10 min)
versus the pressure. The measurement program proceeds as follows: the
pressure is made to increase gradually from 0 to 10 bars, then to decrease from
10 to 0 bars. Then, the flow rate in liters per minute versus pressure in bars is
plotted as in Fig. 8.21.

The flow is generally stronger when the pressure decreases than when it
increases. This also conveys information concerning the behavior of fractured
rocks (unclogging of fractures, hydraulic fracturing of the terrain, etc.).
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Q

o ..,;;'--------'--~ p
10 bars Fig. 8.21. Lugeon's diagram.

In this test, the hydraulic conductivity of the terrain is defined in "Lugeon
units," i.e.,the flow injected in liters per minute under a pressure of 1°bars and
per linear meter of boring for a test time of 10 min at constant pressure.

It is admitted that, if the hydraulic conductivity in Lugeon units is small (a
few to some tens of units), then the Lugeon unit is very approximately equal to
1- or 2 x 10-7 m/s (Cambefort, 1966).

(c) Slug tests. Whereas the preceding tests are usually interpreted in a
steady state, the slug test consists in creating a very brief pressure pulse at one
point in the aquifer and observing the transient response at the same point.
The interpretation varies depending on the shape of the cavity where the
impulse occurs (cylindrical or spherical symmetry). This test measures chiefly
the transmissivity (or the hydraulic conductivity) and, with a lesser degree of
precision, the storage coefficient (Papadopoulos et al., 1973).

In cylindrical symmetry (Fig. 8.22), a slug test may be interpreted in a
penetrating well or piezometer, i.e., one that penetrates the entire thickness of
the aquifer. Let T be the transmissivity and S the storage coefficient of the
aquifer, and R the radius of the boring at the level of the aquifer (radius of the
borehole). Let R' be the radius of the boring at the static level of the water,
assumed to be at equilibrium before the test: R' is usually the interior radius of
the casing. At time t = 0, a sudden variation Llho of the hydraulic head in the
borehole of radius R' is caused by injection or withdrawal of a volume of

2R'

Porous medium
K,Ss

2R Resistance~
K'

(a) (b)

Fig. 8.22. Geometry for a slug test. (a) Cylindrical symmetry. (b) Spherical symmetry.
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water nR'2 Aha. We then observe the evolution in time of the residual head
Ah(t) in the casing. It is given by

Ah(t) = 4°cfCOexp(-Ttu2/R2S) du
Aha n2 a uF(u)

where a = S(R/R')2, F(u) = [uJa(u) - ocJ1 (u)J 2 + [uYa(u) - ocY1(U)]2, and In

and y" are Bessel functions of the first and second kind, respectively, and
order n.

This solution is given on Figs. 8.23 and 8.24 on log-log paper as Sh]Aha
versus the dimensionless time Tt] R,2 (Degallier and Marsily, 1977). The
measurements Ah/Aha versus time are drawn on log-log tracing paper of the
same module. The matching of the measured curve with the type curve gives o.
and the correspondence between dimensionless time and real time, whence

T = R,2/ t j

S = oc(R'/R)2

where t, is real time coinciding with dimensionless time of the value 1 on the
type curve.

Carslaw and Jaeger also consider the case where the observations are made
at a distance r > R from the boring or where there is a zone of low
conductivity between the boring and the aquifer.

If the cavity on which the slug test is made has a spherical shape, the same
authors give the following solution:

Ah(t) = 2OC')l2 fco exp(- Ktu 2/SsR 2)U 2 du
Aha n a [u2(1 + ')I) - OC')lJ2 + (u3

- oc')lu)

where K and S; are the hydraulic conductivity and specificstorage coefficient
of the aquifer, respectively; °c = 4SsR(R/R')2, the capacity ratio; and ')I =
K'R/Ke, the hydraulic conductivity ratio.

The sphere of radius R is in contact with the aquifer through a layer with
low permeability of thickness e and hydraulic conductivity K'. The initial
variation of the head Aha is created in a pipe of R' radius.

This solution depends on two parameters, a and ')I,and on the dimensionless
time Kt/SsR

2. The series of corresponding type curves are published by
Degallier and Marsily (1977). It can be useful for tests on tensiometers with
a shape approaching that of a sphere in an unsaturated medium or on nearly
spherical pockets opened at the bottom of an unscreened or a partly screened
piezometer.
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Thus far, we have only considered the flow of one fluid in porous media.
Many problems, however, involve several immiscible fluids flowing simulta
neously in the same porous medium. This is the case of oil, water, and gas in a
petroleum reservoir or simply of water and air in the unsaturated zone on top
of a water table aquifer. We will set out the basic concepts and equations for
multiphase flow and examine a certain number of special cases.

9.1. Theory

When several fluids occupy a given porous medium, their relationship with
each other and with the porous medium will be governed by the proportion
of each fluid in the medium. This will be measured by the volumetric saturation
for each of the fluids:

part of the porosity occupied by the fluid i
S, = "--------=-------=----"------=-----
, total porosity

where Si varies between 0 and 1.

207
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If we assume that the temperature does not vary significantly in the porous
medium, as we did in the case of one fluid, the solution of the problem requires
us to calculate six unknowns for each fluid i, the pressure Pi' the mass per
unit volume Pi' the saturation s, and the three components of the filtration
velocity Vi.

The equations we can write are:

(1) Continuity equation, one per fluid.
(2) Modified Darcy's law, three per fluid.
(3) Equation of state, one per fluid.
(4) Capillary pressure at the interface between two fluids, number of fluids

minus one.
(5) Relation between the saturations, one.

We thus have as many equations as unknowns. Let us examine them.

(a) Continuity equation. For each fluid, a mass balance equation is
written:

where PiSiW is the quantity of fluid i contained in a unit volume of porous
medium. This equation was established in Section 3.2.1 for a single fluid; the
only difference here is that the saturation s, has to be taken into account in
the second term. '

(b) Darcy's lawfor multiphaseflow- Relative permeability. It is admitted
that Darcy's law is valid for each fluid separately, as if it occupied a certain
portion of the porous medium:

k·
Vi = -~(gradpi + Piggradz)

fJ-i

where Vi is Darcy's velocity of the fluid i, and fJ-i' Pi' and Pi are its dynamic
viscosity, mass per unit volume, and pressure, respectively. Further, k, is the
intrinsic permeability for fluid i. This permeability will, however, depend on
the saturation s, of the medium by the fluid i. The larger the portion of the
porous medium occupied by the fluid i, the larger the permeability linked to
this fluid. A relative permeability is defined as

where k is the intrinsic permeability of the porous medium (see Section 4.1.a),
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Kri

Irreducible saturation Water saturation

Fig. 9.1. Relative permeability in a two-phase system. K r 1 , K.2 are permeabilities relative to
water, air respectively.

measured when the medium is saturated with a single fluid (remember that k is
independent of the nature of the fluid and depends only on the medium).

For example, for two fluids (e.g., air and water), Fig. 9.1 shows the shape of
curves obtained. Below a certain degree of saturation of air, the air phase is no
longer continuous, and the permeability to air is zero. It might be noted that
the sum of the two relative permeabilities for each fluid is not constant and
most of the time is less than or equal to 1: the two fluids interfere with each
other.*

These curves of relative permeability are determined experimentally on
samples. Unfortunately, they are subject to hysteresis, like the capillary
pressure (see Section 2.2.2.c), depending on whether draining or wetting is
taking place. However, this hysteresis is much less important than that of
capillary pressure and is often disregarded.

The ratio krdJ1i is sometimes called the mobility of the fluid i.
Note that the Darcy velocities Vi of the fluid are not necessarily parallel;

they may even be diametrically opposed, e.g., during infiltration in the
unsaturated zone, where water moves downward while air is pushed upward.

(c) State equation. The mass per unit volume of each fluid is a function of
its pressure. For a liquid a linear compressibility is generally assumed, as for
water:

where Pi is the fluid compressibility coefficient (mass" length time"),
Hence

* In certain flow experiments with water, oil, and gas, sums of relative permeabilities superior to
1(up to 2)have been measured. Attempts have been made to explain this by saying that one of the
fluids works as a "lubricant" for the flow of the others. This shows that the classical theory of
multiphase flow presented here is only a rough approximation.



210 9. Multiphase Flow of Immiscible Fluids

For a perfect gas, e.g., air, the state equation is, for one mole,

p;V=RT or

where V is the volume occupied by one mole of gas, R the perfect gas constant
(8.32 in SI units), T the temperature in Kelvins, and M, the molar mass of the
gas. Hence

dp, = (MJR Tvdp, = PiPi dp,

with Pi = llpi the gas compressibility coefficient (mass"! length time"), But
Pi is no longer a constant. For a petroleum gas, which deviates from a perfect
gas, the state equation is written

Pi = (MJRT)pJZi

where Z, is the compressibility factor of the gas, which is a function of Pi'
Hence:

with Pi = it». - (l/Z;)dZJdpi

From these laws, the term oPilot in the continuity equation can be expressed as
a function of opJot.

For the porous medium we have seen in Section 5.3 that the porosity «a
varies with the pressure, due to a change in effective stress in the medium

OW op
- = (rJ. - wp )in s ot

where rJ. is the compressibility of the porous medium and Ps is that of the grains
of the medium (generally disregarded). The variation of co in multiphase flow
is often regarded as negligible compared to the variation in saturation. If this is
not acceptable, the pressure P to consider in the above equation is that of the
wetting fluid, which surrounds all the grains of the medium. .

q ».1
p' bVI

(d) Capillary pressure. We have seen, in Section 2.2.2.( that there is a
difference in pressure across an interface separating two immiscible fluids,
called capillary pressure:

PCij = Pi - Pi

This capillary pressure is a function of the radius of the curvature r of the
interface between the two fluids and of the surface tension (Jij existing between
them:

2(Jij

Pc··=-
'1 r



Fig. 9.2. Capillary pressure versus saturation.
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As the radius of curvature of the menisci separating the fluids in the porous
medium is a function of the saturation, the capillary pressure depends on the
saturations. For air and water, Pc(s) = Pair - Pwater'

In Section 2.2.2.c, we showed a few curves of the capillary pressure Pc versus
the saturation s. Unfortunately, these curves display hysteresis, depending on
whether s increases or decreases (Fig. 9.2).The same phenomena occur when
there are more than two fluids. These curves are obtained experimentally.

(e) Relationship between the saturations. By definition, I s, = 1.Thus, we
obtain the system of equations

. a
d1V[Pikrik(grad Pi + Pig grad z)J = at (PiSiW )

LSi= 1

where kr i and PCij are functions of the saturations. In general, these equations
are solved numerically. We shall, however, examine some simplified cases
where approximate solutions are available.

Buckley and Leverett (1942)have given a classical analytical solution to the
problem of the injection of a fluid in a medium initially saturated with another
fluid. Both fluids and the matrix are supposed incompressible and the effectof
the capillary pressure gradients on the flow field are neglected. In one
dimension, it can be shown (see Subsection 9.2.2)that the sum of the fluxes
velocities) of each fluid is a constant through space. This sum of the velocities
can be explicitly calculated as well as the saturation, although the expressions
are highly complex and nonlinear. A sharp front (jump in saturation) is moved
inside the medium, although the saturation varies before and after the front
See Bear (1972), Morel-Seytoux (1973) and Allen (1986).

In the oil industry, the problem is even more complex, because exchanges
between the phases have to be taken into account (oil and gas) as the pressure
varies, and thermal problems must be considered (e.g., injection of steam into
an oil reservoir). The variation in viscosity of each fluid must also be included.
(See Allen, 1986.)
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Fig. 9.3. Capillary entrapment.

(f) Capillary entrapment and fingering. Two-phase migration makes it
possible to explain the phenomenon of "capillary entrapment,"which is the
cause of the formation of certain oil deposits in sedimentary porous media.
Imagine a flow of oil and water. The oil is assumed to be the nonwetting fluid.
A drop of oil squeezed into a pore that is too small for it looks like the
illustration in Fig. 9.3.Because of the pressure gradients of the flow, it presents
differences in the radii of curvature, r1 and r2, between its upstream and
downstream sides. If the drop is to cross the narrow passage of the pore, it has
to be subjected to a minimum pressure gradient producing a sufficiently small
radius r1. Below this gradient the drop of oil is "trapped." However, if the drop
is moving, its kinetic energy may help it to cross the narrow passage. This
phenomenon has been studied by Legait (1983).

Another problem posed by two-phase flow is that of instabilities or
fingering. If an attempt is made to displace a fluid A by a fluid B, the result will
often be neither a well-defined interface between the two fluids, nor a transition
zone where the saturation varies continuously between A and B, but a
penetration by, for example, the fluid A of the fluid B in the shape of a "finger"
(Fig. 9.4). These fingers have a tendency to progress faster than the average
front, and thus to continuously grow in size. Bubbles of the fluid B can also be
left immobile behind the front, because of fingering, and remain trapped inside
a medium almost saturated with fluid A.

This phenomenon is characteristic of unstable flow. The conditions of
stability or instability of a two-phase flow are quite complex and depend on
the viscosity, the density, the relative permeabilities, and the flow velocity.

Fluid A Fluid B
..

Fig. 9.4. Fingering.
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9.2. Special Case: Flow in Unsaturated Media

The flow in the unsaturated zone can be studied either by assuming that the
movement of the air can be disregarded and focusing on the movement of the
water or by taking both into account. We shall briefly present the two
approaches and then give some simplified solutions (see also Hillel,

9.2.1. Unsaturated Flow with Immobile Air Phase

Most of the time it is assumed that the air phase is immobile in unsaturated
media, so only the movement in the water phase is calculated; the pressure in
the air phase is equal to the atmospheric pressure, taken as zero.

First, we determine experimentally the relation between the unsaturated
hydraulic conductivity K and the moisture content B(or saturation), which is
taken to be a single valued function (i.e.,no hysteresis), as in Fig. 9.5.In Section
2.2.2.a, we defined the moisture content Bas (volume of water)/(total volume
of sample).

Next, the compressibility of the water is disregarded and Darcy's law is
written using the hydraulic head:

U = - K(B) grad h

As usual, the hydraulic head is defined by

h=L+ z
pg

but the pressure of the water is then negative (one talks of suction: t/J =
Finally, the hydraulic head h is used as the single unknown and the relation

between hydraulic head h and moisture content B is made through an
experimental relation between suction and moisture content. This relation
does show phenomena of hysteresis, which mayor may not be taken into
account, as illustrated in Fig. 9.6. The description of the mechanism of
hysteresis can be found in Topp (1971), and Mualem and Dagan (1972), its

Fig. 9.5. Hydraulic conductivity versus
moisture content.

K

L-.--"''''''--------_e
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suction 1/J =-p

e Moistu re content

Fig. 9.6. Suction versus moisture content.

approximation in numerical models has been described by Mualem (1974) or
Parlange (1976).

The continuity equation is then written as

div{pU) + :t (pB) = 0

that is,

divU + ~~ = 0

as p is assumed constant and the porous medium incompressible.
Darcy's law gives U versus the hydraulic head. The variation of the moisture

content dBfor a variation in hydraulic head dh at a given fixed point remains to
be expressed. If we choose a point in the plane ljJ{B) on a given cycle of wetting
or draining, the variation of Bwith ljJ is given by the slope of the tangent to this
curve (Fig. 9.6):

The variation in pressure is linked to the variation in hydraulic head at a
given fixed point by

thusdp = pgdh, dB = -pg(:~)6 dh

The term pg{dB/ dljJ)6 is sometimes called the specific moisture capacity. It is, of
course, a function of B. This gives

div{K{B) grad h) = -pg(:~)6 ~~

This equation is called Richard's equation. It can also be written taking
ljJ/ pg as the unknown, or even B. It is very definitely nonlinear and is solved
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numerically [see Vauclin et al. (1979a,b), Neuman (1973, 1975c), Freeze
(1971)].

The advantages of writing this equation in terms of hydraulic head hand
not in terms of moisture content e, which is equally possible, are that:

(1) The hydraulic head is continuous when the transition is made from the
saturated to the unsaturated medium. Then the medium as a whole is modeled
as a continuum.

(2) The hydraulic head is continuous even if the medium is not uniform;
on the contrary, there is a discontinuity of the moisture content at the point of
contact between two media of different nature.

9.2.2. Unsaturated Flow with Mobile Air Phase

In this case, the air is supposed compressible while the water and the
medium are incompressible. Both fluids follow the multiphase law

Uw= - k krw(grad Pw + Pwg grad z)
Pw

where "WOO and "a" stand for water and air. The other symbols are those defined
in Section 9.1.

The continuity equations are written

div(Uw) = -wosw/ot

div(PaUa) = -wo(Pasa)/ot

with the state and auxiliary equations

(Pw = const)

Sw + Sa = 1

Pa - Pw = Pc(sw)

The last equation gives the capillary pressure. This gives seven equations for
seven unknowns and can be solved numerically.

In the case where the compressibility of the air is neglected (Pa = const),
one can add the two continuity equations and thus define a total velocity U =
Uw+ U, which satisfies:

div(U) = 0

since Sw + Sa = 1
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For a one-dimensional flow (e.g., vertical infiltration), this total velocity is
thus a constant in space. This may simplifyconsiderably the integration of the
equations. Some analytical solutions or numerical solutions have been
obtained for this case. See Brustkem and Morel-Seytoux (1970), Levan and
Morel-Seytoux (1972), Noblanc and Morel-Seytoux (1972), Morel-Seytoux
(1973).

Using the mobile air phase approach does not, in general, give results
significantly different from the immobile approach: only in very special cases
does the air pressure build up (e.g., ponding due to flooding, stratified soil
profile, etc.).However, Morel-Seytoux and co-workers advocate the use of the
mobile air phase approach because of the simplicity of the calculations when
using the total velocity.

9.2.3. Solutions of the Infiltration Problem

This section summarizes the review given by Vauclin (1984).
Philip (1957)proposed an approximate analytical solution of the problem

of vertical infiltration in a one-dimensional semi-infinite medium. He solves
the single phase flow equation written in terms of moisture content and
obtains an expression for the depth y (counted positively downwards) where
the water content °is obtained at time t, with the initial and boundary
conditions given by

y~O,

y = 0,

t<O

t~O

00

y(O, t) = L i(O)t i
/
2

i=l

The coefficients i(O) are solutions of ordinary differential equations
depending upon the soil characteristics. This solution becomes unreliable
as t -+ 00.

Parlange (1971, 1972) proposed a solution for the same problem with
a prescribed flux boundary condition qo at the soil surface and the same initial
conditions as above. It can be written

[OI(t)

y(O, t) = Jo D(P){[qo - K(On)] [(P - 0n)/(Ol (t) - On)]

- [K(P) - K(On)]} -1 dP

where 01(t) is the water content at the soil surface, given by

t = [OI(t) D(P)(P - On) dP
J0 [qo - K(P)] [qo - K(On)]
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and

1 (dl/J)D(fJ) = --K(fJ) -
pg dfJ e

is the soil water diffusivity,
Green and Ampt (1911) proposed an approximate solution where

assume that the infiltrating wetting front can be defined by a water pressure Pf,
which remains constant as the front migrates downwards. Furthermore, the
soil behind the wetting front is assumed to have a uniform moisture content
and thus a constant hydraulic conductivity K., which corresponds to that
of a naturally saturated soil. They assume that a constant head ho is applied
at the soil surface (z = 0) at time t = O. Applying Darcy's law between the soil
surface and the position Zr of the front (z is positive upwards) gives the infiltra
tion rate i(i is negative if directed downwards):

h Pf
r =--+ Zf

Pwg

i = -Kshr - ho = _Ks[PrlPwg - ho + 1J
Zr Zr

The cumulative infiltration (positive) is then I = -zr/1fJ, where /1fJ is the
increase in moisture content in the wetted zone. Taking the derivative of 1,
one gets:

i = - dI = /1fJdzr = -K [PrlPwg - ho + 1J
dt dt s Zr

By integration, one obtains:

I = Kst - (pri Pwg - ho) /1fJ In [ 1 - /1fJ(prip~g _ hoJ

The pressure at the front Pr can be linked to the soil characteristics in the
two-phase flow theory by (Bouwer, 1964; Neuman, 1976)

Pr = -fo krw(p)dp
Pn

where Pn is the initial water pressure in the soil, and krw the relative
permeability to water. Note that k.; is generally expressed as a function of the
water saturation but can also be given as a function of the pressure through the
suction curve.

Bouwer (1964)also suggests to use for k; one half of the saturated hydraulic
conductivity to take into account the air entrapment which occurs in natural
conditions.
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Another expression for Pr has also been suggested by Morel-Seytoux and
Khanji (1974) using the total velocity defined in Subsection 9.2.2.:

Pr = -1 0

fw(pJdPe
Pen

where Pcis the capillary pressure, Pen is the initial capillary pressure below the
wetting front, and fw(Pe) = 1/(1 + kraJ1wlkrwJ1a) the "fractional flow".

On the other hand, empirical relationships have also been proposed to
represent infiltration. These are most commonly used to analyze the results of
infiltrometer tests (see Subsection 9.2.4).

Smith (1972) suggests

i(t) = i; + a(t - to)-P, t > to

where i is the infiltration rate and ie' a, to and fJ are constant for a given soil.
Holtan (1961) gives

i(t) = i e + a(W - l)n

where ie' a, and n are constant for a given soil. W - I represents the available
volume for storage in the unsaturated zone: W is the volume of void above
some impeding layer, and I is the cumulative infiltration. Values for ie' a, and n
for most major soils in the U.S. have been collected by the U.S. Dept. of
Agriculture.

9.2.4. Measurements in the Unsaturated Zone

Predicting the flow in the unsaturated zone requires a complex series of
measurements of the soil properties. These are usually made in the laboratory
but can also be made in the field.

The capillary pressure versus moisture content curve is generally deter
mined in the laboratory as follows: a sample of the soil (if possible,
undisturbed) is placed in a cylinder of known volume (e.g., diameter 0.1 m,
thickness 0.05 m), which is exactly filled. The lower end of the cylindrical
sample lies on a porous ceramic plate, which is saturated with water and
communicates with a water reservoir where the water pressure is recorded (see
Subsection 2.4.2). The upper end of the sample is included in a pressure vessel,
where the air pressure is controlled and measured. The high air entry pressure
of the porous ceramic plate prevents the air pressure from being applied to the
lower water reservoir. The difference between the air pressure and the water
pressure at equilibrium is, by definition, the capillary pressure. The air pres
sure is increased at low moisture contents so that the water pressure always
remains above atmospheric pressure to avoid boiling. To vary the moisture
content of the sample for the drainage curve, one starts with a saturated
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sample and periodically puts the sample into an oven for partial drying. The
moisture content is monitored by weighing the sample. For the imbibition
curve, known amounts of water are periodically added to the sample.

The hydraulic conductivity versus moisture content curve is generally
determined on an unsaturated vertical soil column where a steady-state flow
has been established (e.g., a prescribed flux at the upper end). Since the flux is
constant all along the column, the hydraulic conductivity is determined
measuring locally the head gradient; this is done by installing a large number
of porous ceramic plugs or rings at various elevations in the column by which
the water pressure in the porous medium can be measured; hence we find the
head. The corresponding moisture content is measured by a continuous ver
tical scanning of the volumn by a neutron probe (see Subsection 2.3.2.b). A
transient flow situation can also be analyzed; the flux is then given by the
variation in moisture content. Note that from these measurements it is also
possible to determine portions of the capillary pressure curve. This does not
work for very strong suctions.

The same type of measurements can be made in the field, the water pressure
and the moisture content in the medium being measured by tensiometers and
neutron logging, respectively (see Subsections 2.4.2 and 2.3.2.b). In general, it
willbe difficult to establish in the field a steady-state flow regime. Therefore the
method of the "no flow boundary" is generally preferred: in summer, in gen
eral, when there is no rain, one finds by looking at the measurements of the ten
siometers at several depths that there is inside the unsaturated zone a "water
divide" plane (e.g., at a depth of 2 m): above this plane, the water migrates
upward to compensate for evapotranspiration at the surface, and below this
plane the water moves downward toward the water table. By performing two
measurements of the water content at a short time interval (e.g., one week), and
assuming that the no flow boundary remains exactly at the same position, it is
possible to determine by continuity the flux migrating into the medium at any
elevation, upward or downward, and thus to determine the hydraulic
conductivity at those elevations. Since the moisture content varies with the
elevation, if the soil profile is assumed to have uniform properties one can thus
determine the in situ hydraulic conductivity versus moisture content curve, as
well as the first portion of the capillary curve (for suctions below one bar). To
go above one bar, indirect methods of water pressure measurements must be
used, eg., the plaster blocks described in Subsection 2.4.2. (See Hillel (1971).)

Slug tests in tensiometers (Subsection 8.6.c)have also been used to measure
in situ the hydraulic conductivity in the unsaturated zone.

Infiltration tests in situ are generally made using the double ring method. A
first large-diameter cylinder (e.g., 0.5 m in diameter, 0.5 m in height) with its
two ends opened, is pushed into the soil (e.g., 0.1 m) to insure a good seal. A
second, smaller cylinder (e.g., 0.2 m in diameter and of the same height) is
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* It is not generally possible to measure the scaling parameter (X directly from geometrical
properties: some simple hydraulic property is measured, from which the scaling parameter is
inferred.

It may sometimes be admitted that, when two immiscible fluids move, one
of them displaces the other entirely: each fluid occupies all of the porous
medium in which it is found (saturation = 1), and a clear-cut interface is
assumed to exist between the two fluids (Fig. 9.7). Then the continuity
equation is solved (using Darcy's law) separately in each of the domains, and
the dividing boundary is moved with time under the assumption that the flow
is stable (no fingering).
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Fig. 9.7. Interface between two immiscible fluids.
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9.3.1. Special Case: Fresh Water-Salt Water Interface in
a Steady State

This type of contact belongs in fact to the flow of miscible fluids. However, it
is often dealt with by making the following two assumptions for the contact
between fresh water in coastal aquifers and the sea, in a steady state: (1)the salt
water is immobile, and (2) the fresh water flows over the salt water with a clear
cut interface without mixing.

This approximation is fairly valid if the flow rate is steady, i.e., with an
immobile interface. In reality, there is a transition zone between the fresh and
salt water, and it has a very slight thickness (of the order of 1 m), as shown in
Fig. 9.8. The reason the immobile transition zone has such a small thickness is
that the fresh water flows toward the coastal outlet, constantly gathering the
salt diffusing into it from the immobile salt water zone.

However, if the interface moves under the influence of the tide or of
variations in the outflow from the aquifer toward the sea (natural variations or
withdrawals), the transition zone becomes larger and the problem must often
be treated as one of miscible fluids if we want to explore what happens around
the contact area (e.g., the problem of salt water intrusion into coastal aquifers).

We shall, however, choose the case of a steady state with a clear-cut
interface, as in Fig. 9.9. The free surface and the salt-water wedge are flow lines.
The equipotential lines are therefore at right angles to them in an isotropic

The boundary conditions obtaining at the interface are:

(1) Equality of pressure P: = P2 (capillary pressure is disregarded: since
the interface is assumed to be plane, it has an infinite radius of curvature).

(2) Equality of normal Darcy velocities of fluid displacement:

ohi _ ohj __ V.
K, an - Kr1iii" - n

The displacement of the interface is given by the normal mean microscopic
velocity of the two fluids at the interface, with We as kinematic porosity:

V = v"
We
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similarly installed at the center of the large one. A prescribed (and identical)
water level is then maintained in each cylinder. However, the flux of water is
only monitored in the smaller cylinder, the larger one being only there to
insure that the flow beneath the smaller cylinder is directed only downwards
(one-dimensional vertical flow) without any lateral migration.

Infiltration tests determine the hydraulic conductivity K; under "natural
saturation," assumed to be one half of the totally saturated conditions because
of air entrapment (see Subsection 9.2.3.). They can also be used to determine
the empirical parameters of the infiltration formulas given in Subsection 9.2.3.

Recently, the hydraulic properties of soils have been found to have a rather
large spatial variability. Geostatistical techniques (see Chapter 11) are now
being used, as well as the concept of scaling. In this theory, two porous media
are said to be similar if they differ only by the scale of their internal
microscopic geometries. If IX is the scaling factor (ratio of some characteristic
length of the pore space, e.g., grain diameter d2 / d1 ), it can then be shown that a
soil-water property Z can be scaled in the following way:

where the exponent n is -1 for pressure, 2 for hydraulic conductivity or flux,
1 for diffusivity, and 0.5 for sorptivity. Of course, this theory only approx
imately applies to real media, but it can be used to infer soil properties from a
complete set of measurements at a few points and then from limited hydrau
lic measurements elsewhere,* or to introduce the scaling factors directly into
the flow equations. See Vauclin (1984), Vauclin and Vachaud (1984), Nielsen
et al. (1973), Warrick et al..(1977), and Russo and Bresler (1980).
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the dividing boundary is moved with time under the assumption that the flow
is stable (no fingering).
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Fig. 9.7. Interface between two immiscible fluids.

" ....... Fluid 1 :,' .: ... .., .: Fluid 2' '. : .

9.3.1. Special Case: Fresh Water-Salt Water Interface in
a Steady State

This type of contact belongs in fact to the flow of miscible fluids. However, it
is often dealt with by making the following two assumptions for the contact
between fresh water in coastal aquifers and the sea, in a steady state: (1)the salt
water is immobile, and (2) the fresh water flows over the salt water with a clear
cut interface without mixing.

This approximation is fairly valid if the flow rate is steady, i.e., with an
immobile interface. In reality, there is a transition zone between the fresh and
salt water, and it has a very slight thickness (of the order of 1 m), as shown in
Fig. 9.8. The reason the immobile transition zone has such a small thickness is
that the fresh water flows toward the coastal outlet, constantly gathering the
salt diffusing into it from the immobile salt water zone.

However, if the interface moves under the influence of the tide or of
variations in the outflow from the aquifer toward the sea (natural variations or
withdrawals), the transition zone becomes larger and the problem must often
be treated as one of miscible fluids if we want to explore what happens around
the contact area (e.g., the problem of salt water intrusion into coastal aquifers).

We shall, however, choose the case of a steady state with a clear-cut
interface, as in Fig. 9.9. The free surface and the salt-water wedge are flow lines.
The equipotential lines are therefore at right angles to them in an isotropic

The boundary conditions obtaining at the interface are:

(1) Equality of pressure P: = P2 (capillary pressure is disregarded: since
the interface is assumed to be plane, it has an infinite radius of curvature).

(2) Equality of normal Darcy velocities of fluid displacement:

ohi _ ohj __ V.
K, an - Kr1iii" - n

The displacement of the interface is given by the normal mean microscopic
velocity of the two fluids at the interface, with We as kinematic porosity:

V = v"
We
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similarly installed at the center of the large one. A prescribed (and identical)
water level is then maintained in each cylinder. However, the flux of water is
only monitored in the smaller cylinder, the larger one being only there to
insure that the flow beneath the smaller cylinder is directed only downwards
(one-dimensional vertical flow) without any lateral migration.

Infiltration tests determine the hydraulic conductivity K; under "natural
saturation," assumed to be one half of the totally saturated conditions because
of air entrapment (see Subsection 9.2.3.). They can also be used to determine
the empirical parameters of the infiltration formulas given in Subsection 9.2.3.

Recently, the hydraulic properties of soils have been found to have a rather
large spatial variability. Geostatistical techniques (see Chapter 11) are now
being used, as well as the concept of scaling. In this theory, two porous media
are said to be similar if they differ only by the scale of their internal
microscopic geometries. If IX is the scaling factor (ratio of some characteristic
length of the pore space, e.g., grain diameter d2 / d1 ), it can then be shown that a
soil-water property Z can be scaled in the following way:

where the exponent n is -1 for pressure, 2 for hydraulic conductivity or flux,
1 for diffusivity, and 0.5 for sorptivity. Of course, this theory only approx
imately applies to real media, but it can be used to infer soil properties from a
complete set of measurements at a few points and then from limited hydrau
lic measurements elsewhere,* or to introduce the scaling factors directly into
the flow equations. See Vauclin (1984), Vauclin and Vachaud (1984), Nielsen
et al. (1973), Warrick et al..(1977), and Russo and Bresler (1980).
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Fig. 9.8. Seawater intrusion

medium. At a point P (of elevation z) of the wedge, the equality of pressures
and the immobility of the sea water allow us to write (with subscripts 1 for
fresh water, 2 for salt water):

P2 = - P2gz } (P2 - PI)gZ = - Pighl
PI = -PIgz + Pighl

that is,

z = - Pl hI
P2 - Pl

The depth z of the interface is related to the hydraulic head h in the fresh
water and to the difference in density. At a salt content of 32 g/liter (average

z
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Fig. 9.9. Saltwater-freshwater interface.
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Wedge

Fig. 9.10. Ghyben-Herzberg interface.

sea water), the mass per unit volume of sea water is close to 1025 kg/m", This
gives

z ~ -40h

This relation is known as the Ghyben-Herzberg principle. If we further
admit that the equipotential lines are vertical and that the free surface has a
constant slope (both of them rather crude assumptions), the first approxi
mation of the salt water wedge is a straight line (Fig. 9.10).

In a first approximation, it then becomes possible to estimate the probable
depth of the fresh water-salt water interface in a coastal aquifer. For example,
if, at 200 m from the coast, the piezometric head is 2 m above sea level, the
depth of the wedge is around 80 m, unless it has already been stopped by the
bedrock of the aquifer (i.e, if the aquifer is not 80 m thick) (Fig. 9.11).

However, Verruijt (1968)has calculated exactly the shapes of the free surface
and the wedge in the case of an infinite homogeneous medium. For a constant
seaward flow it is easy to show, by calculating the complex potential of the
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Fig. 9.11. Toe of the interface.
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flow, that the free surface and the wedge are actually two portions of
parabolas, the equations of which are, for the wedge,

Z 2Q QZ 1 - 13
z = - f3K(1 + 13) x + f3 zK z l + 13

and for the free surface,

Z 2f3Q
z = - K(1 + 13) x

which result from the following flow equation, written in terms of the complex
potential r (see Section 7.5)

Ky = (1 + f3)r z/2f3Q + ir

with z counted positively upward from the sea level, x counted positively
seaward from the coast, Q as the flow of fresh water seaward in the aquifer per
unit length perpendicular to the plane of the figure, 13 = (pz - pdf Pi' y =
x + iz (complex affix), and K as the isotropic hydraulic conductivity of the
medium. (For anisotropic media, the solution can be found by a trans
formation in the coordinate system; see Section 7.1.c.) Rumer and Shiau (1968)
have given such an expression in the case where the aquifer is anisotropic in the
x and z directions; they give, with the same notation

z 2Q QZ 1 - 13
z = - AKzf3(f3 + 1) x + f3zK; 1 + 13

for the wedge and

Z 2f3Q
z = - x

AKzCl + 13)
for the free surface where K, and K; are the hydraulic conductivities in the z

and x directions and A = -JKx/Kz is the anisotropy ratio. Their solution also
gives the head and the streamlines in the flow domain, as

and

where ¢ = - Kzh/Q is the potential function at location (x,z) and l/J is the
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associated stream function, defined by

at/; = -A o¢
ox oz and

at/; 1 o¢
OZ A ox

where h is the head. Now if the aquifer is confined, i.e.,the line z = 0 for x < 0 is
a confining bed, the same authors give the interface, the head and the
streamlines as:

Numerical solutions of the saltwater-freshwater interface problem can
be found in Sa da Costa (1981), Huyakorn and Pinder (1983), and Allen
(1986).

9.4. Multiphase Pollution Problems

This section is mainly concerned with the pollution of aquifers by petroleum
products, which are the most common fluids that do not mix with water. They
are difficult to treat, because pollution of the aquifers occurs through the
surface and it is therefore necessary to begin by dealing with the transfer of the
petroleum products through the unsaturated medium. It then becomes
apparent that a rather large quantity of petroleum products is needed for the
pollution to arrive at the aquifer, since a significant part is retained by
capillarity first in the unsaturated zone and then in the saturated zone. A
minimum oil saturation in the soil is indeed necessary, below which the oil
phase cannot migrate (zero relative permeability and capillary entrapment).

Once it has arrived at the water table, the oil phase accumulates and
migrates downstream. Figure 9.12, taken from Freeze and Cherry (1979) and
from Schwille (1967), illustrates the process.

However, we must remember that certain components of the petroleum
products (especially the aromatic ones, e.g., certain phenols) may be dissolved
in water and spread as miscible fluids, rapidly polluting the aquifers since
can drastically alter the taste of water, even in very small amounts.
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Fig. 9.12. Movement of spilled oil above an aquifer. [From Freeze and Cherry (1979).]

The organic phase retained by capillarity in the unsaturated zone is
gradually consumed through bacterial oxidation of the hydrocarbons, but this
may take several tens of years. Crude oil or fuel oil is generally more rapidly
consumed than gasoline. However, some of the degradation products of the
hydrocarbons, resulting from this bacterial oxidation, may themselves be
soluble contaminants, further polluting the aquifer.

In order to protect an aquifer on top of which an oil spill has occurred, one
first tries to dig out as much as possible of the contaminated earth and recover
most of the oil. Wells are then installed to create a local drawdown of the
piezometric surface of the aquifer; the oil reaching the water table will then
flow in the direction of the wells and end up on top of the water in the
borehole. It can be recovered by a supplementary skimming pump.
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However, it is difficult to recover more than 50% of the spill because of the
capillary entrapment. One then generally keeps pumping the wells for several
years, even if oil is no longer found on top of the water in the borehole, in order
to extract the dissolved hydrocarbons and prevent them from polluting the
rest of the aquifer. The flow rate in the wells has to be adjusted so that no
polluted water can leave the area due to the natural gradient in the aquifer [see
Fried et al. (1979), Schwille (1984).]



Chapter 10

Flow of Miscible Fluids: Dispersion,
Retention, and Heat Transfer

10.1. Solute Transport of Nonreactive Substances 229
10.1.1. Porous Media 230
10.1.2. Fractured Media 243
10.1.3. New Theories of Solute Transport 247

10.2. Laws of Interactions between the Immobile Phase and the Transported
Substances and Physicochemical Changes in the Substances 251
10.2.1. Porous Media 251
10.2.2. Fractured Media 266
10.2.3. Analytical Solution of the Dispersion Equation 267
10.2.4. Transport of Colloids in Porous or Fractured Media 270
10.2.5. Unsaturated Media 276

10.3. Heat Transfer in Porous Media 277

We shall discuss problems where a single fluid phase is present in the
medium, but where its composition or its properties vary. It may be the case of
two miscible liquids (e.g., fresh water and salt water) or of a substance
dissolved in variable concentration in a liquid or even of variable temperature
in a fluid. We shall study three cases separately: substances that do not interact
with the medium, substances that do, and finally, heat transport.

For miscible fluids we shall consider a single fluid phase and define the
concentration of one substance in the other, for example, concentration of salt
in water.

There are several ways of defining the concentration:

(1) The volumetric concentration, as mass of solute per unit volume of
solution (kg/m', or g/liter.)

(2) The mass concentration, as mass of solute per unit mass of solution
(kg/kg); the ppm or ppb (part per million or billion) is equal to 106 or 109

times the dimensionless unit, respectively.
(3) The molarity, number of moles of solute per unit volume of solution

(mol/m"]. This is the standard definition of concentration in SI units.

228
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(4) The molality, number of moles of solute dissolved in a unit mass of
solvent (mol/kg).

(5) The equivalent per liter (epl), number of moles of solute multiplied by
the valence of the species, per liter of solution. The common unit is the
milliequivalent per liter (meq/Iiter), 103 times greater than the epl.

(6) The nuclear activity (for radionuclides) per unit volume or per unit
mass of solution (Bq/m' or Bq/kg), The Becquerel corresponds to a quantity
giving one desintegration per second of a radionuclide.

(7) The ratio of the concentration to the maximum permissible concen
tration in drinking water (MPCW), often used for radionuclides as well.

In the following, we will mostly use the volumetric concentration C and can
it simply concentration. This concentration varies continuously in the
medium; there is no longer a sharp interface between two fluids as in the case
of immiscible fluids. When the fluid moves, the concentration varies in time
and space. This type of displacement is called mass transport or solute
transport in porous media.

10.1. Solute Transport of Nonreactive Substances

In order to clearly distinguish between the laws of transport and the laws of
interaction between the transported substances and the medium, we shan
discuss in this section the transport of substances that are not subject to any
changes, exchanges, or reactions while crossing the porous medium. These are
the nonreactive (or conservative) substances. This therefore excludes radio
active decay as well as adsorption.

In Section 10.2, we shall deal with the problem of reactive substances and
see how special laws governing their behavior must be added to the transport
equations as such.

It is important to define, at the outset, what is meant by solute transport
First of all, it concerns constituents included in the chemical combinations of
elements that are soluble in water. These elements may themselves be more or
less ionized* according to their ionic charge. However, these dissolved
substances may also be present in the shape of electrically neutral chemicals or
complexes created by aggregates of different molecules or ions.

Furthermore, salts considered to be "insoluble" may, nevertheless, be
transported in a dissolved state as trace concentrations since, in reality, this
"insolubility" is never totaL Because certain radionuclides, for example, are

* Recent terminology calls any dissolved salt an ion, irrespective of whether it is electrically
charged or not. Thus, for example, CaC03 in solution, not disassociated into Ca2

- , CO~+, is
called an electrically neutral ion complex.
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toxic even in weak concentrations, these traces may be significant in calcula
tions of radiological safety studies.

Finally, we must also consider constituents transported in the form of larger
molecular aggregates, such as colloids, which may, in the end, be caught by
mechanical filtration through the porous medium network (see Section 10.2.).

All these transported substances are known as "solutes," as long as they do
not constitute a mobile phase distinct from the transporting fluid but integrate
themselves into the single fluid phase (the water of the natural medium),
possibly modifying its physical (e.g., mass per unit volume, viscosity) and
chemical properties.

Solute transport is thus contrasted with the flow of immiscible fluids such as
that of oil and water, which obeys completely different laws of migration.

We shall now define the laws of transport in porous and fractured media
and in the unsaturated zone.

10.1.1. Porous Media

Traditionally, three main mechanisms of migration are recognized: con
vection, diffusion, and kinematic dispersion.

(a) Convection (or advection). This is the phenomenon where dissolved
substances are carried along by the movement of fluid displacement. It is the
most easilyunderstood of the displacements. It must, however, be defined with
preCISIOn:

(1) What portion of the fluid in the porous medium is effectively mobile?
(2) What is the real velocity of this fluid?

Indeed, in a saturated porous medium, a distinction must be made between
two fluid fractions: the one that is bound to the solid by molecular forces of
attraction, called adhesive water, and that which is free to circulate under the
influence of the gradients of hydraulic head, called free water. In reality,
especially in media with low permeability, the magnitude of the free fraction
depends on the degree of the hydraulic gradient: for clays, the deviations from
Darcy's law, mentioned in Section 6.4.2, are accompanied by an increase in the
fraction of free water at the expense of that of adhesive water, when the
hydraulic gradients increase.

It is therefore necessary to define a kinematic porosity COe , which corre
sponds to the voids in the porous medium occupied by the moving water. This
kinematic porosity may thus be dependent on the gradient, but such
measurements have never been made, and COe will be assumed constant.

If it is assumed that the transport is governed only by the phenomenon of
convection in the moving fluid fraction, the resulting transport equation is
easily found on the macroscopic scale of the representative elementary volume
by using the principle of mass balance.
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Take an elementary volume D of a porous medium with an outside
boundary L. The mass balance of the transported substance in the volume D is
given by writing that the integral over L of the mass flux of the transported
substance into D, is equal to the change of mass of the substance in the volume
D per unit time.

The volumetric flux of fluid crossing the area L is given by the Darcy
velocity U. This volumetric flux is transformed into mass flux of the
transported substance through scalar multiplication of the Darcy velocity D
by the volumetric concentration C; the left-hand side of the balance equation
(mass flow entering D) becomes

LCD -n da

where n is the normal vector on L directed toward the outside of D.
The mass of the transported substance contained in the element D at time t

is the integral of the elementary volumes of fluid We dv contained in the porous
medium multiplied by the volumetric concentration C in the fluid of the
substance in question:

ID co.Cd»

The porosity we' which must be used here, is the kinematic porosity (i.e., the
fraction of fluid that circulates) because, for the moment, we assume that it is
the only one capable of containing the transported substance; elsewhere, the
concentration C is assumed to be zero. Thus, the assumption is made that it is
possible to define, in the volume D, a mean concentration C, which is the result
of the mixture of all the substances in the mobile fluid fraction of D.

The variation of this mass per unit time is obtained simply by taking the
derivative of this expression with respect to time:

af f ecat D weCdv = D weiit dv

The passage from the first form to the second is made through Leibnitz's
since D is fixed and We is assumed constant.

The mass balance of the solute equation becomes

LCD -n do = Iv We ~~ dv

We transform the integral of the area of the left-hand side into a volume
integral using Ostrogradsky's formula:

LCD -n da = - Iv div(CD)dv
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i.e.,

- Iv div(CU)dv = Iv We ~~ dv

By taking out the integral signs on both sides, since D is arbitrary we find:

-div(CU) = We acat
(b) Molecular diffusion. This is a physical phenomenon linked to the

molecular agitation. In a fluid at rest the Brownian motion projects particles in
all directions of space. If the concentration of the fluid is uniform in space,
each one of two neighboring points sends, on average, the same number of
particles" toward the other, and the molecular agitation does not change the
concentration of the solution. However, if the concentration of the solution is
not uniform in space-in others words, if there is a gradient of concentration
between two neighboring points-the point with the highest concentration
sends out, on the average, more particles in all directions than the point with a
lower concentration. The result of this molecular agitation is then that
particles are transferred from zones of high concentration to those of low
concentration.

Fick has found that the mass flux of particles in a fluid at rest is
proportionate to the concentration gradient:

t/J = -dogn-adC Fick's law

The coefficient do, known as the molecular diffusion coefficient, is isotropic
and can be expressed by:

do = R T _1_ (length 2 time-1 )

N 6nW

where R is the constant of perfect gases, 8.32 SI units (mass length? time"?
kelvin-1); N is Avogadro's number, 6.023 x 1023; T is absolute temperature
(kelvin = temperature °C + 273.15); It is fluid viscosity; and r is the mean
radius of the diffusing molecular aggregates. This expression is only valid for
an infinite dilution; otherwise the activity of the elements and the ionic
strength of the solution has to be taken into account. However, this effect is
rather small. As far as variation with temperature is concerned, since It is also
a function of temperature, it is found that do varies in general exponentially
with T:

* Here we are talking about particles of solutes, not about water, in a fluid without any porous
medium.
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where E is the activation energy of the ion in solution, which is on the order of
21 x 103 J/mole for most ions. Most common ions have a diffusion
coefficient on the order of 10-9 to 2 X 10-9 m 2/s at 20DC; for instance, for
NaCI in water at 20DC, do = 1.3 X 10-9 m 2/s.

If the transport of substances in a fluid at rest is only due to Fickian
diffusion, the principle of mass balance is used to establish the law of
movement, exactly as above:

L4J.nda = - In div(4J)dv = :t In Cdv

If 4J is replaced by its expression and the integrals are taken out,

div(dograd C) = ~~

In porous media the molecular diffusion continues all through the fluid
phase (the mobile as well as the immobile one). Only the solid stops the
Brownian movement of the particles, since diffusion in solids is negligible. For
an immobile fluid in a porous medium this gives a diffusion coefficient in
porous media that is lower than do' It is usually admitted that the ratio
called the tortuosity of the medium, is equal to:

d 1

do Fw

where F is the formation factor of the geophysicists, defined by the ratio of the
electric resistivity of the rock over the resistivity of the contained water, and w
is the total porosity. In practice, d/do varies from 0.1 (clays*) to 0.7 (sands).

For a fluid circulating in a porous medium it is easy to combine the pheno
mena of convection and diffusion, giving for the left-hand side:

L4J.nda + LCD'nda = - Ldiv(w4J + CD)dv

The total porosity comes into play because the integral of the diffusive flux
4J over L is zero over the solid [area (1 - w)L] and nonzero over the pores
(area wL), whereas the Darcy velocity is defined as if the entire area L were
open to the flow. Now the right-hand side becomes

:t LweC dv + :tL(w - wJC' dv

* Neretnieks (1979) quotes measurements of dido up to 0.01 in highly compacted bentonite for
gases, cesium, and strontium.
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It is necessary to take two porosities into account: the kinematic porosity
We' which corresponds to the mobile fraction of the fluid phase with the
concentration C, and the porosity which corresponds to the immobile fraction
W - We (w is the total porosity) with a concentration C', which may be different
from C.

In the case of pure convection, only the mobile fraction.of the fluid could
contain the transported substances, whereas here the immobile fraction
necessarily contains these substances, as the molecular diffusion causes them
to penetrate into the immobile fraction.

By substituting and simplifying as above, we write this equation:

. ac ac'
d1V(wdgradC - CU) = weat + (w - wJiit (10.1.2)

Here, it has to be decided whether or not C' is to be included in the incoming
flux on the left-hand side. Where convection is concerned, it is clear that only
the concentration C of the mobile fraction brings solutes into the elementary
volume. As for the diffusion, the immobile fractions on each side of the area ~
of the elementary volume exchange substances according to the gradient of C'.
Rigorously, the diffusive term should be written:

We div(d1 grad C) + (w - we)div(d2 grad C')

where We is the fraction of the area ~ occupied by the mobile fluid, which is
then diffusing with a coefficient d.; and (w - we)is the rest of the fluid fraction
of ~ (immobile fluid) through which the diffusion of the concentration C' takes
place with a diffusion coefficient of d2 . Probably d, and d2 would be,
respectively, stronger and weaker than the global coefficient d.

We shall disregard this effect, particularly in view of the existence of the
kinematic dispersion, which already makes the diffusion almost negligible.

Section 10.2.a will show how the existence of the concentration C' in the
immobile fraction may combine with mechanisms of adsorption over the solid
phase of the porous medium.

(c) Kinematic dispersion. This is a mixing phenomenon linked mainly to
the heterogeneity of the microscopic velocities inside the porous medium on
whatever scale they are observed.

(1) Inside a pore the velocities in the mobile fraction are not uniformly
distributed; in laminary flow, as Poiseuille's formula suggests for a cylindrical
pipe, the velocity profile is of the type given by Fig. 10.1.This causes a faster
propagation of the transported substances along the axis of the pores, which,
through mixing and molecular diffusion, produces a progressive spreading of
the transported substances compared to the mean movement of convection.
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(2) The differences of aperture and travel distance from one pore to
another create a difference in mean velocities, as in Fig. 10.2. The fluids
traveling by each of the paths mix with each other and cause a dilution of the
concentration. It should be noted that this process also causes a spreading of
the substances at right angles to the main direction of flow, as in Fig. 10.3.

(3) A stratification or any features of large-scale heterogeneity such as
lenses, interlayered deposits, broken or fractured zones, etc. also introduce a
heterogeneity into the velocity field, which, through the same mechanisms as
above, causes the substances transported by the fluid to mix and spread in all
directions of space.

The kinematic dispersion is therefore in fact the product of an existing real
velocity field of very complex and unknown nature, which is entirely
disregarded in the convection, when the fictitious mean Darcy velocity is used
(which assumes that the whole of the continuous medium is open to flow).

The division of the transport into a convection term, representing the mean
displacement, and a dispersive term, integrating the effects of the heterogene
ities, is quite arbitrary; the respective role of each of the terms is chiefly
determined by the degree of precision with which the porous medium and the
velocity field can be described.

Fig. 10.3. Variation of the velocity di
rection between pores.
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For this purpose, a dimensionless Peclet number is defined:
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The value of these dispersion coefficients varies with the absolute value of
the Darcy velocity or with that of the mean microscopic flow velocity:

IU*I=~
We

where lu*1 is the module of the mean microscopic velocity, k is the intrinsic
permeability, do is the coefficient of molecular diffusion, and 1 is a
characteristic length of the porous medium (mean diameter of the grain or
the pores, for example.)

In the laboratory of the French Petroleum Institute, O. Pfankuch (1963)has
experimentally verified on small samples the validity of this dispersion law
suggested by the theory, and has established an empirical relation linking the
dispersion coefficient with the Peclet number. Depending on the size of the
Peclet number, five flow regimes are defined, and for each of them an
empirical relation between DL , DT , and Pe is found. These five regimes are
shown in Fig. 10.5. These five dispersion regimes correspond to various
distributions of the roles played by molecular diffusion and kinematic
dispersion:

(I) Pure molecular diffusion.
(II) Combination of I and III.

(III) Predominant kinematic dispersion.
(IV) Pure kinematic dispersion.
(V) Kinematic dispersion outside the domain where Darcy's law is valid.

What mathematical form can be given to the kinematic dispersion? The
answer may be either theoretical or experimental.

The classical dispersion theory has been developed primarily by Taylor
(1953), De Josselin De Jong (1958), Saffman (1959, 1960), Scheidegger (1960),
Bear and Bachmat (1967), Fried and Combarnous (1971) and established by
considering a random distribution in space of the small channels forming the
pathways through the pores of the porous medium.

The suggested mathematical formula adopts a law of transport through
dispersion similar to Fick's law which accounts for the phenomena of mixing:

dispersive flux 4J = - D grad C

which is applied to the whole section of the medium, like the Darcy velocity,
but with a dispersion coefficient D which:

(1) Is a tensor assumed to be symmetrical and of the second order.
(2) Has as its principal directions: (a) the direction of the velocity vector of

the flow (i.e., linked to the fluid and not to the medium), and (b) two other
directions, generally arbitrary and at right angles to the first one.

(3) Has coefficients that are themselves dependent on the module of the
flow velocity.

If the dispersion tensor is expressed in its principal directions of
anisotropy, it is limited to three components:

DL 0 0
D = 0 DT 0

o 0 DT

where DL is the longitudinal dispersion coefficient (in the direction of the flow)
and DT the transverse dispersion coefficient (in the two directions at right
angles to the velocity). Note that D is anisotropic, even if the medium has
isotropic permeability: the anisotropy of the dispersion tensor stems from the
fact that the spreading of the concentration is larger in the direction of the
velocity than in transverse directions. For instance, if a brief injection of tracer
is made through a piezometer in an aquifer, the shape of the traced water
would appear as in Fig. 10.4 at different times. Inside the spotted area the
concentration also decreases with time because of the spreading. Note that if
only convection occurred, according to Eq. (10.1.1), the bubble of tracer would
progress in the medium without any spreading. If only convection and
isotropic molecular diffusion occurred as in Eq. (10.1.2), the bubble would
remain spherical but would spread slightly with time. The large anisotropic
spreading outlined here is due to kinematic dispersion.

This dispersion flux D grad C is added to the diffusive flux cod grad C on
the left-hand side of Eq. (10.1.2).
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For this purpose, a dimensionless Peclet number is defined:
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The value of these dispersion coefficients varies with the absolute value of
the Darcy velocity or with that of the mean microscopic flow velocity:

IU*I=~
We

where lu*1 is the module of the mean microscopic velocity, k is the intrinsic
permeability, do is the coefficient of molecular diffusion, and 1 is a
characteristic length of the porous medium (mean diameter of the grain or
the pores, for example.)

In the laboratory of the French Petroleum Institute, O. Pfankuch (1963)has
experimentally verified on small samples the validity of this dispersion law
suggested by the theory, and has established an empirical relation linking the
dispersion coefficient with the Peclet number. Depending on the size of the
Peclet number, five flow regimes are defined, and for each of them an
empirical relation between DL , DT , and Pe is found. These five regimes are
shown in Fig. 10.5. These five dispersion regimes correspond to various
distributions of the roles played by molecular diffusion and kinematic
dispersion:

(I) Pure molecular diffusion.
(II) Combination of I and III.

(III) Predominant kinematic dispersion.
(IV) Pure kinematic dispersion.
(V) Kinematic dispersion outside the domain where Darcy's law is valid.

What mathematical form can be given to the kinematic dispersion? The
answer may be either theoretical or experimental.

The classical dispersion theory has been developed primarily by Taylor
(1953), De Josselin De Jong (1958), Saffman (1959, 1960), Scheidegger (1960),
Bear and Bachmat (1967), Fried and Combarnous (1971) and established by
considering a random distribution in space of the small channels forming the
pathways through the pores of the porous medium.

The suggested mathematical formula adopts a law of transport through
dispersion similar to Fick's law which accounts for the phenomena of mixing:

dispersive flux 4J = - D grad C

which is applied to the whole section of the medium, like the Darcy velocity,
but with a dispersion coefficient D which:

(1) Is a tensor assumed to be symmetrical and of the second order.
(2) Has as its principal directions: (a) the direction of the velocity vector of

the flow (i.e., linked to the fluid and not to the medium), and (b) two other
directions, generally arbitrary and at right angles to the first one.

(3) Has coefficients that are themselves dependent on the module of the
flow velocity.

If the dispersion tensor is expressed in its principal directions of
anisotropy, it is limited to three components:

DL 0 0
D = 0 DT 0

o 0 DT

where DL is the longitudinal dispersion coefficient (in the direction of the flow)
and DT the transverse dispersion coefficient (in the two directions at right
angles to the velocity). Note that D is anisotropic, even if the medium has
isotropic permeability: the anisotropy of the dispersion tensor stems from the
fact that the spreading of the concentration is larger in the direction of the
velocity than in transverse directions. For instance, if a brief injection of tracer
is made through a piezometer in an aquifer, the shape of the traced water
would appear as in Fig. 10.4 at different times. Inside the spotted area the
concentration also decreases with time because of the spreading. Note that if
only convection occurred, according to Eq. (10.1.1), the bubble of tracer would
progress in the medium without any spreading. If only convection and
isotropic molecular diffusion occurred as in Eq. (10.1.2), the bubble would
remain spherical but would spread slightly with time. The large anisotropic
spreading outlined here is due to kinematic dispersion.

This dispersion flux D grad C is added to the diffusive flux cod grad C on
the left-hand side of Eq. (10.1.2).
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Fig. 10.5. Dispersion coefficients versus Peclet number.

In the domain of the usual velocities (domains III and IV, Pe > 10), the
following relations are generally admitted:

DL = Q(L!UI

DT = Q(TIUI

where Q(L and Q(T' which have the dimension of a length, are known as intrinsic
dispersion coefficients or dispersivities. When measured in the laboratory on a
column of sand Q(L is on the order of a few centimeters. In the field, it is on the
order of a meter to a hundred meters depending on the degree of heterogeneity
of the formation [see Lallemand-Barres et al. (1978) and Section 1O.3J.
However, Q(T is much smaller, between! and tfJO of Q(L'

Amore general type of dispersion coefficient may also be adopted, explicitly
taking into account the molecular diffusion d so as to extend the validity of the
model towards the low Peclet numbers, i.e.,the states I and II, where the Darcy
velocity is weak:

(10.1.3)

where d is the molecular diffusion coefficient in porous media, and w the total
porosity. This term only comes into play when IU I is very small.

The transport equation, now including the kinematic dispersion which
takes the place of the diffusion term, becomes

(10.1.4)

In this case the kinematic dispersion transport indeed concerns the
mobile fraction with concentration C and not the immobile fraction at con
centration C'.

For the purpose of simplification, we now make the assumption that the
concentration C in the mobile fraction instantaneously reaches an equilibrium
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with the concentration C' in the immobile fraction, due to the action of
molecular diffusion. Because of the extraordinary interpenetration of the two
fractions, it may then be admitted that

C'=C

and

div(O grad C - CU) = (f) ~~ (10.1.5)

which is the usual form for the dispersion equation. If we divide by (f), the total
porosity, a mean fictitious velocity appears:

u
u'=

(f)

Moreover, it is possible to divide the dispersion coefficient by (f):

0,=0
(f)

that is,

Dr = d + ()(T 1U1
(f)

which can also be written

This shows that the dispersivities ()(L and ()(T stay the same whatever form is
given to the dispersion equation (with or without (f) on the right-hand side).

Then the transport equation becomes

div(O' grad C Cu') = ac
at (10.1.6)

which is the classical form more commonly used in the literature. Fried (1975)
has shown that if the mass per unit volume p of the solution cannot be
considered as constant when the concentration varies, the dispersion equation
should be written

div(D' p grad C/p - Cu') = aC/at (10.1.7)

In practice, this expression need only be used for studying the movement of
dense brines (see also Subsection 1O.1.1.d) and will not be used in the remain
der of this text.

Conversely, if the immobile fluid fraction is assumed not to be invaded by
the transported substances, it may be admitted that C' = 0, and the transport
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equation is reduced to

div(D grad C - CU) = we ~~ (10.1.8)

It is also possible to divide both sides by We in order to make a fictitious
mean convection velocity U/ We = u" appear.

This discussion shows that, contrary to general practice, it is preferable to
retain the Darcy velocity, which has a precise definition and meaning for the
convection term, and make the porosity (or porosities) appear explicitly on the
right-hand side of the equation. We shall come back to the right-hand side in
the discussion of adsorption (Section 10.2.a, fifth case).

The classical theory of dispersion was first established for homogeneous
isotropic media and later extended to and used, without modification, for
heterogeneous and anisotropic ones. In Section 10.1.3, we shall see how
new concepts are currently being developed for these media. In particular, it
appears that the dispersion tensor is no longer oriented in the direction of the
velocity but at an angle to it.

(d) Coupling of the transport equation with that of fluid movement. To the
transport equation must be added another needed for the calculation of the
Darcy velocity U:

k
U = --(gradp + pggradz)

f.l

which is the generalized Darcy equation written in terms of pressure, since p
varies with C. Finally, we have the continuity equation of the fluid with its
state equations:

div(pU) + :t (pw) = 0 (3.23)

p = p(C,p) f.l = f.l(C,p)

D = a function of U and of the molecular diffusion coefficient in porous
media d.

These equations are coupled and should thus be solved simultaneously.
(The velocity U depends on the concentration, and vice versa.) Note that
Eq. (10.1.7) should be used instead of (10.1.5) or (10.1.6).

(e) Simplification of the dispersion equation: Tracer hypothesis. The
tracer hypothesis consists in separating the equation of the variation in
concentration from that of the velocity: the concentration C is assumed to be
so low that the mass per unit volume p of the fluid is almost constant. Then, the
velocity U does not depend on the concentration.

The flow problem is therefore solved separately, and only the dispersion
equation (10.1.5) or (10.1.6) remains to be solved. There are a few analytical
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solutions for the latter [see Section 10.3 and Bear (1972, 1979)], but the
solution must often be numerical, which causes quite a number of difficulties in
numerical analysis due to the discretization, in particular the one related to
the appearance of "numerical dispersion" (see Chapter 12).

(f) Boundary conditions of the dispersion equation. When boundary
conditions are imposed on the dispersion equation, it must be remembered
that this equation contains two separate terms: a diffusive and a convective
term.

The characteristics of a boundary are, first of all, related to the direction of
the flow crossing it:

(1) Boundary with incoming flow. The concentration on this type of
boundary is fixed by the concentration of the entering flux; C = Co.

(2) Boundary with outgoing flow (e.g., the outlet of the geologic formation
toward the surface, such as a superficial aquifer, a body of fresh water or salt
water, etc.). The concentration of the outside medium assumed to be wen
mixed does not playa dominant role on the concentration inside the medium.
The concentration in the flux going out by convection is said not to vary when
it crosses the boundary:

ac
Uo-on=Oan or ac =0

an
where n is the normal to the boundary. The dispersive flux is then disregarded.

(3) Boundary with outgoing flow, taking into account the dispersive flux.
If one assumes, as in (2), that the outside domain is well mixed, and has a
concentration Co independent of the flux coming from the inside domain, then
there is by definition a discontinuity in concentration at the boundary, and the
dispersive flux would become infinite. One must therefore consider a small
buffer zone of thickness e between the two media, and assume that the
concentration varies, e.g., linearly between concentration C (inside the
medium) and Co (outside the medium), in the buffer zone. This zone is further
assumed to have no storage capacity, so that at all times the total flux coming
from the inside medium is equal to the total flux leaving for the outside
medium. The total flux from the inside medium is written

(D grad C - CU) 0 n

and total flux to outside medium is written

do(C - Co)/e - CoUn

where D is the total dispersion coefficient in the medium (molecular diffusion
plus hydrodynamic dispersion), U is Darcy's velocity, n is the outer normal to
the boundary, U; is the component of U along n, do is the molecular diffusion
coefficient in water, and e the thickness of the buffer zone. Equating these two
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fluxes gives a Fourier-type boundary condition in C and oC/on; however, the
choice of I) is very arbitrary, and therefore the boundary condition given in (2)
is generally preferred. Note that we have written the flux to the outside
medium considering molecular diffusion only and not hydrodynamic disper
sion, since the buffer zone is supposed here to be made of pure water and not of
a porous medium. This is of no importance as I) is arbitrary. The convective
flux leaving the buffer zone is indeed - CoUn since, by definition, the
concentration of the water leaving the buffer zone becomes Co.

(4) No-flow hydraulic boundary. The velocity U is parallel to the
boundary, and the convection flux U . (oC/on)n will always be zero even if
OC/ on is not.

If there is no solute flow coming in or going out by pure diffusion across the
boundary, we write

oC/on = 0

On the other hand, if there is a known diffusion phenomenon across this
boundary, we write

oC/on = f

(g) Choice of dispersion coefficients. The dispersion coefficients (or
dispersivity) can be measured on a column in the laboratory. However, such
coefficients are of little use in forecasting a real migration in the field, where the
scales of heterogeneities are different and the coefficients much larger.
Consequently, they have to be measured by tracer experiments, which are
interpreted by analytical or numerical methods.

It is found, however, that if the space and time scales of the tracer experi
ments are changed, different values are obtained for the coefficients. This
means that the problem of choosing coefficients capable of forecasting long
distance migrations is not completely solved. See Subsection 10.1.3.

(h) Remark: Upstream Migration For the high longitudinal dispersion
coefficients, it may also be doubtful whether a theory that does not distinguish
between the direction of the convective circulation and that of the concen
tration gradient is valid for determining the dispersion flux. If it is only a
question of molecular diffusion, i.e., a phenomenon that is isotropic in all
directions, it is obviously not necessary to define the flow direction, but in the
case of kinematic dispersion the case is different.

Consider, for instance, an axis 1 (longitudinal), which is parallel to the
direction of the flow velocity and assumed to be oriented in the same d.irection.

U~M
I ) 1
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At a point M, the dispersion and convection fluxes are

The absolute value sign may be taken out and the velocity U factored out:

If ac/az < 0, i.e., the concentration decreases downstream (e.g., the case of
the substance spreading in a clean medium, propagation of the migration
front), the resulting flux ¢z is always positive: that is to say, convection and
dispersion cause the substance to spread downward. This shows that the
dispersivity Il(L does indeed accelerate the propagation through the influence of
the velocity heterogeneities.

However, if ac/az > 0, which is the case of a clean fluid sweeping through a
contaminated medium, the magnitude of Il(L ac/az in relation to C determines
the sign of ¢z: for strong gradients and dispersivities, ¢zmay become negative,
which means that the transported substances start to travel upstream against
the flow. It is difficult to understand physically how the kinematic dispersion,
which, after all, is a heterogeneity of the real velocities as compared to the
average convective velocity, could spread the substances upstream: the real
velocities in a porous medium are probably always oriented downstream
rather that upstream. The only physical mechanism that could possibly
explain an upstream migration of the transported substances is molecular
diffusion, which would then be written

ac
¢z = -rodm+ CU

which would make the value of the dispersion coefficient depend on the
direction of the gradient compared to that of the velocity.

This effect is diminished, if the dispersion coefficient is made to depend on
the traveled distance (see Dieulin, 1980), but it appears to be one of the
inconsistencies of the classical dispersion theory (Simpson, 1978).

10.1.2. Fractured Media

There are no very elaborate special theories for transport in fractured media
and few experiments to support a theory. The three phenomena (convection,
diffusion, dispersion) already cited exist in fractured media as well, and, if there
is a porosity in the blocks between the fractures, the porosity may also play an
important role.



244 10. Flow of Miscible Fluids: Dispersion, Retention, and Heat Transfer

(a) Convection. In the fracture network, convection works in exactly the
same way as in the porous medium. Using Darcy's velocity, we write

. 8C
- divf CU) = We 7ft

in order to identify the convection.
A set of fractures having a spacing of 10 m and an aperture of 0.2 mm has an

equivalent hydraulic conductivity of 10- 3 m/s (see Section 4.1.e) and a
porosity of 2 x 10- 5. Compared to a porous medium of the same hydraulic
conductivity with a porosity of, say 20%, the fractured medium has a
kinematic porosity 10,000 times smaller: the average microscopic velocity in
such a medium is thus 10,000 times larger than in the porous medium for the
same hydraulic gradient.

The convection transport is therefore much faster in fractured media than in
porous ones, if the rock matrix is impermeable, impervious, and compact.

(b) Diffusion and dispersion. These two phenomena occur in fractured
media as well, the first one through molecular agitation, the second through
the heterogeneities of the velocities inside a fracture (parabolic profile of the
velocities as in a pore) as well as through that of the velocities from one
fracture to another (different degrees of aperture) and finally through
transverse mixing and dispersion, when fractures with different directions
intersect.

As fractured media are quite often anisotropic, the validity of the classical
assumption that the principal directions of the dispersion tensor is in the
direction of the velocity is very questionable.

However, very few values for dispersion coefficients are known in fractured
media. One of the rare cases where these values are known is that of the
Hanford (Washington) basalts, where an accidental release of tritium polluted
the aquifer over nearly 15 km.

A study made by Ahlstrom et al. (1977) gives

IJ(L = 30 m

IJ(T = 20m

Another study of pollution by radioactive waste was made by Robertson in
1974 (quoted by Fried, 1975) at the experimental station of Snake River
(Idaho). The aquifer is made up of fractured basalt and interlayered
sedimentary deposits. The model has been fitted on the concentrations of
chlorides and tritium, with the coefficients

IJ(L = 91 m

IJ(T = 137 m (note IJ(T > IJ(L)

as the pollution had spread over nearly 10 km in 10 years.
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D. B. Grove (personal communication, 1973) quotes a tracer experiment
with tritium in 150-m-thick fractured rocks. With an observation well at 600 m
from the tracer point, he obtains O(L of 150 m and a porosity of 8 x 10-4 • For
fractured limestone, he quotes O(L = 152 m.

Recent developments on transport in fractured systems are now focusing on
random generation of fracture networks and numerical simulation of
transport in these networks. See Schwartz et al. (1983), Smith and Schwartz
(1984), Robinson (1984), Endo et al. (1984), and Anderson (1985).

(c) Secondary porosity. This is understood to mean the case where the
rock matrix itself, which is cut up by fractures, cannot be considered to be
impermeable and compact: the transported substances migrate inside it.

If we take up the line of thought that we followed for the porous medium, we
can write the transport equation including two concentrations C and C':

. ac aC'
dlv(DgradC - CD) = weat + (w - wJ-at

where We is the kinematic porosity of the fractures, w - We is the porosity
containing immobile water in the fractures and in the pores of the matrix, Cis
then the concentration of the fluid in the fractures, and C' is a "mean"
concentration in the matrix.

We elminate the trivial case, where the migration from the fractures to the
matrix is so fast or the medium so densely fractured that it might be assumed,
at any instant, that the concentration C' in each block of the matrix is equal to
that of the fluid circulating in the fractures. As we have seen in the case of the
porous medium, this extreme case would imply using a porosity for the
transport equal to the total porosity of the rock (mobile fraction in the
fractures plus immobile fracture plus total porosity in the matrix).

First hypothesis: Porous matrix with almost no permeability. In this case,
the only migration mechanism in the matrix is molecular diffusion. In each
block isolated by fractures, the equation of molecular diffusion has to be
solved:

aC'
div(w'dgradC') = w'-at

where co' is the total porosity of the matrix. This equation has as its boundary
condition at the fracture planes the value of the concentration C in the
fractures, which itself varies with time. Then the flux exchanged with the
fracture per unit surface area of contact between the two media is calculated
on the contact area:

4J = -w'dgradC'

This term is then introduced as a source term in the transport equation in the
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fractures:

diveDgrad C - CD) = W c ~~ + ex¢

where ex is the ratio (area of the fracture planes)/(volume of the medium). (A
fracture counts as two surface areas because of its two bounding planes.)

In order to simplify these calculations, the diffusion equation in one block is
solved schematically by reducing it to one dimension, giving the block a mean
half-dimension equal to the mean half-distance between the fractures in all
directions of space, but respecting the volume of the matrix (Fig. 10.6).

We can solve the one-dimensional diffusion equation subject to a condition
of no flow at the distance L and an imposed concentration on the fracture
plane either numerically or analytically. The analytical solution gives ¢ in the
form of a convolution integral of the concentration C in the block. Because of
this added complexity, such a calculation can only be undertaken in one, or
maybe, two dimensions. A spherical solution in the blocks, assuming that they
are equal to spheres of uniform radius, could also be conceived or a calculation
where the dimension L would be taken as infinite, if the spacing of the
fractures is such that, in the time considered, the progression of the molecular
diffusion front inside the blocks is small compared to L. See Barbreau et al.
(1980), Neretnieks (1980), and Sudicky and Frind (1982).

Second hypothesis: Porous and permeable matrix. It must be said at the
outset that, if the hydraulic conductivity of the matrix is of the order of that
of the fractures, the fractured medium will have an equivalent hydraulic
conductivity, which explicitly shows the permeability of the matrix, included
in the expression given in Section 4.l.f. The transport then takes place
simultaneously in the two media and may be represented by a higher
dispersion coefficient,which takes into account the systematic heterogeneities
of the velocity field (this coefficient must be determined by experiments).

The most difficult problem is the one where the permeability of the matrix is
not zero, but small compared to that of the fractures. It might then be
suggested (O'Neill 1977; Lefebvre du Prey and Weill (1974)) that.

Fig. 10.6. Block of fractured medium (L= Ijoc).
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(1) It can be solved using one single equation for the hydraulic head by
assuming that in a steady state the pressures in the two media are equal and
by using the overall equivalent hydraulic conductivity.

(2) Two velocity fields can be deduced in each medium by applying
Darcy's law in each medium with its own hydraulic conductivity
assumption is that the two media are continuous and overlapping).

(3) Two transport equations can be written in each of the media with their
own Darcy velocity and porosity.

(4) These two transport equations are coupled by the exchange terms:
(a) a convection exchange term linked to the Darcy velocity in the
matrix, where if C is the concentration in the fractures, and C the one
in the matrix, the term is -rxU'C in the transport equation for C and
+rxU'C in the transport equation for C, where rx is an exchange
coefficient; and
(b) a dispersion exchange term linked to the difference between the
concentrations C and C.

10.1.3. New Theories of Solute Transport

The dispersion equation which we have established is known to be an
approximation of reality: how good is it in practice? Working in the
laboratory, on rather homogeneous columns, it is found that the measure
ments can be well represented by the solution of the transport equation, using
dispersivities on the order of a few centimeters. But in field situations, it was
soon found that things worked much less well. Interpreting a tracer test (or a
real pollution case) at a given observation well, it is always possible to fit a
dispersivity for which the solution of the dispersion equation will,with a good
approximation, match the observations (concentration versus time). However,
if a second observation well is used, at a different distance from the source, one
finds in general that a different dispersivity will be needed to match the
observations: the further apart the source from the observation well, the larger
the dispersivity, Lallemand-Barres and Peaudecerf (1978) synthesized all
published values of dispersivities and were able to show that, on the average,
the dispersivity increases with the distance between the source and the
observation point. This was called the "scale effect". Their data ranged
between distances of a fewmeters to 10km for several rock types, and, as a rule
of thumb, the dispersivity was on the order of one tenth of the traveled
distance. Did this mean that dispersivity should not be regarded as a constant?
It was thought initially that this might be due to different scales of
heterogeneities that were encountered successively by the tracer (or the
pollutant) during its migration. Dieulin (1980), Dieulin et al. (1980, 1981a,b,c)
was able to show that this was not the case: in a careful field experiment, he
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showed that for a given scale of heterogeneity of the medium (i.e., without any
change of the structure of the medium, without any additional heterogeneity),
the dispersivity was increasing with time or, in other words, with the average
traveled distance of the tracer (for a pulse injection of tracer into a parallel
flow). This meant that at two observation wells, at different distances from the
source, it was possible to fit the observations during a short time interval with
the same dispersivity; for a later time interval, a larger dispersivity should be
used but again identical at the two wells. Now of course, if a global fit was
made for each well, using all the measurements, an average dispersivity would
have to be used. At the well farther from the source, as the tracer is observed
later than at the closer well, this average dispersivity would thus be larger.

Dieulin suggested that the scale effect be called a "time effect." At the same
time, new theories for representing transport were being developed which also
showed the dispersivity to be a function of time. These were based on a
stochastic description of the velocity field in the aquifer. The reader is therefore
referred to Chapter 11, particularly Section 11.10, before going any further.

As hydrodynamic dispersion is the result of the heterogeneity of the velocity
in porous media, the stochastic approach seems particularly well suited for
representing this variability. We will first summarize here the Lagrangian
approach presented by Dieulin et al. (1981b,c). Transport is studied in the
ordinary space Rn(n = 1, 2, or 3) with the following simplifying assumptions:

(1) The velocity variations of the fluid in the medium is the dominant
mechanism, molecular diffusion is negligible.

(2) The Eulerian microscopic velocity field u, which is unknown, can be
regarded as a stationary random process, i.e., u is a vectorial stationary
random function, and II. is conservative, i.e.,div u = O. This means that the flow
is in steady state with a constant porosity.

(3) A slug of tracer is injected at time t = 0 at the origin X = 0 of the
system (note that u and X are vectors, the components of which are denoted u'
or Xi. A subscript t will denote the time: Xt). The transport can be described
by giving, as a function of time, the position X, of a particle" injected at t = 0
at the origin. Kolmogorov (1931)has shown that if the particle is transported
by convection and diffusion (Brownian motion) the probability density p(X, t)
of the particle is identical to the concentration given by solving the classical
transport equation for a slug injection of tracer.

Let V(t) = u(Xt ) be the Lagrangian velocity, i.e., the velocity of the particle
following its trajectory along a flow path. Matheron (unpublished, 1981)has
shown that if u satisfies the assumptions given above, then V is a stationary
random function having the same probability distribution function as u. We

* This particle has no physical meaning and is just a mathematical symbol.
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can now write:

We then have:

E(Xt) = tE[V(r)] dt = tE(V) = tE(u) = ut

where u = E(u). Thus the average position of the particle is just the average
velocity multiplied by the time. Let us now determine the variance of this
position; this variance is now a n x n matrix. Superscript T will denote the
transposition of a vector:

Var eXt] = E{[Xt - E(Xt)]T[Xt - E(Xt)]}

= (X;Xt) - E(Xt)E(TXt)

= E{tV(r)drtV(r')dr'} - t
2uTu

= tt {E[V(ryV(T')] - OTO}dt dt'

= ttE{[V(T) - o]T[V(r') - 0] dt dT'

= ttqr - T')drdT' = 2t(t - T)qT)dT

where C(t) is the n x n covariance matrix of the components of the Lagrangian
velocity V taken with a time lag t.

The variance of the position of the particle is the equivalent of the
"spreading" of the pulse of tracer around its mean position; it is therefore
related to the dispersion coefficient. Indeed, Einstein (1905) has shown that
the dispersion tensor D is given by:

1 d
D = "2 dt [Var(X t)]

We therefore obtain here:

D = t qT)dT

Very important conclusions can be drawn from this simple result:

(1) The dispersion tensor D is a function of time. As each component of
the tensor varies with time, there is a priori no reason why the principal
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directions of this tensor should remain constant. They will not, in general, be
colinear with the average velocity.

(2) If the covariance matrix C of the Lagrangian velocity is well behaved,
i.e., C(t) ---+ 0 sufficiently rapidly as t ---+ 00, we can assume that the integral of
C(t) will become constant as t ---+ 00. Thus one can, in general, expect that after
a certain time a constant dispersion tensor will be acceptable to represent the
transport. This is called an asymptotic diffusive behavior.

(3) The dispersion tensor is a direct function of the Lagrangian velocity.
If the velocity is increased, e.g.,by a factor of 2, but otherwise remains identical
in direction, the dispersion tensor will be increased by the same factor of 2.
Thus a dispersivity could be defined, but this dispersivity is not a function of the
properties of the porous medium only; it is also a function of the velocity field.
If a new Eulerian velocity field is created, e.g., by going from parallel flow to
radial flow, or changing the vertical/horizontal velocity ratio (for instance by
varying the recharge in the aquifer), then the Lagrangian velocity field (i.e.,
flow path) willbe changed, and therefore the covariance matrix of this velocity
is changed: it is no longer possible to assume that the dispersivity is an intrinsic
property of the medium, independent of the flow field.This is a very important
point.

(4) These results are only valid for a slug injection of tracer. For any other
source, the concept of convolution should be applied. This has not always
been realized in the past and erroneous results have been obtained using a
numerical model where D was simply made a function of time for a step
injection of tracer. This is totally incorrect.

(5) Only in the case where the probability distribution function of the
Eulerian velocity field u is assumed to be Gaussian is it possible to show that
the transport equation equivalent to the particle position is:

"" ft Ok a2e" -" ec ec
41... CJ (,)d'a ja k - 4 uJ-a =-a
J k 0 X X J x j t

This is similar to a dispersion equation where the dispersion tensor is made a
function of time (Dieulin et al., 1981b,c).For all other distributions of velocity,
there is no equivalent dispersion equation for early times until the asymptotic
behavior is reached. There is very little reason why the Eulerian velocity field
should have a Gaussian distribution. Therefore there is at present no correct
dispersion equation representing transport for early times.

Quite similar results were obtained for stratified media by Gelhar et al.
(1979a) and Matheron and Marsily (1980) including, however, a local dif
fusion in the equations. The former used a spectral approach, the latter a
Lagrangian approach. More recently, Gelhar and Axness (1983), Dagan
(1982a), Winter et al. (1984) were able to relate the time-varying dispersivity
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tensor to the Eulerian velocity field and thus to the hydraulic conductivity of
the medium. To arrive at such results, these authors were obliged to make
simplifying assumptions that may-or may not-hold. Long term experi
ments are planned to check these theories.

In summary, the classical dispersion equation is probably only valid after
large times or large distances traveled by the tracer in the medium; such
distances can be equal to several times (up to 10) the average "correlation
length" of the heterogeneities of the medium (i.e., on the order of 10 times the
characteristic length of the geological structures of the medium). In typical
sediments, this can imply that several hundreds of meters are necessary before
an asymptotic behavior is reached. Meanwhile transport is only approximate
ly represented, for a slug injection, by a time-varying dispersion coefficient
and, for any other injection, by the convolution of the response to the slug
injection with the actual source term.

One must also bear in mind that since the controlling parameter of
transport is the Lagrangian velocity field, any field determination of the
channeling properties of the medium (e.g., buried high permeability channels
or highly conductive faults) will improve tremendously the understanding of
transport. In fact, improving the knowledge of the heterogeneity of the
medium is a prerequisite to predicting transport at early times.

10.2. Laws of Interactions between the Immobile Phase and
the Transported Substances and Physicochemical
Changes in the Substances

The purpose here is to describe the mechanisms that can turn the migration
of substances in porous or fractured media into a reactive phenomenon, i.e.,
which tend to invalidate the laws of mass balance during the transport. The
case of the porous medium and that of the fractured medium will be discussed
separately.

10.2.1. Porous Media

The immobile phase includes mainly the solid phase, but also the immobile
liquid bound to the solid by the forces of molecular attraction. Several
mechanisms of interaction, transformation, or decay can make transport
nonconservative (see Jackson, 1980).

Physical mechanisms. The transported substances can sometimes be
stopped by physical filtration through the pores of the medium. This can
happen even if the transported substances are much smaller than the size of
the pores.
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Geochemical mechanisms.

(1) Combining of ions into electrically neutral molecules.
(2) Acid/base reaction depending on the pH of the solute and on

the rocks it travels through.
(3) Oxidation-reduction reactions which condition the state of

valence of the transported ions.
(4) Precipitation-dissolution, which may immobilize or dissolve the

substances.
(5) Adsorption-desorption limited by definition, strictly speaking,

solely to the ion exchanges (mainly cations), which take place on the
surface of the clayey or colloidal minerals.

Radiological mechanisms. These are radioactive decay (vanishing of
substances), and creation of daughter products by this decay (appearance of
new substances).

Biological mechanisms. Biological activity in porous media can decom
pose or transform some elements; very often, such processes are represented by
a decay reaction, like radioactive decay, with a "biological" half-life.

This whole set of mechanisms is represented by a "net source or sink term"
Q in the transport equation, which expresses the lack of mass balance, when
the balance of fluxes entering into and accumulated in a volume D is
calculated, as we have seen in Section 10.1. It is written as

div(D grad C - CU) = OJ~~ + Q (10.2.1)

The term Qrepresents: the disappearance of substances, if it is positive (sink),
and the addition of substances, if it is negative (source). It is expressed as a
mass of the considered substance, added (or substracted) per unit volume of
porous medium and per unit time; Q is the algebraic sum of the rates of each
individual mechanism.

We shall try to review the laws which allow us to estimate the source or sink
term.

(a) Filtration. We will first consider the case where the transported
elements are actually "sieved" by the medium, i.e.,when the size of the pores is
smaller than that of the particles in solution. Greenberg (1971) gives the
following estimate for the pore size, in clays:

(1) Diameter of the clay particles ",20,000 A(A = angstrom = 10-1 0 m),
and sometimes much smaller.

(2) Spacing between the sheets of the clayey minerals, 9-15 A.
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(3) In sands, the order of magnitude of the diameter of the pores, given
the effective grain size diD defined in Section 2.1.e. It is usually in the range
10-2 to 10- 1 mm (100,000-1,000,000 A).

(4) Diameter of the smallest soluble ions, such as Na+ or CI-: 1-10 A.
(5) Diameter of the large organic molecules with high molecular

e.g., the chain polyethylene glycol of molecular weight 20,000: up to 500
(6) Diameter of bacteria: 5,000-30,000 A.
(7) Diameter of colloids: extremely variable, usually in the range

50,000 A.

Thus, it can be admitted that direct sieving can be effective only for very
large molecules, bacteria or colloids, in clayey soils or silts.

However, the term filtration is also used to describe mechanisms where
particles that are much smaller than the size of the pores are nevertheless
stopped and "sedimented" in porous media. See Subsection 10.2.4.

(b) Adsorption and ion exchange. Because solutes become attached to
the mineral particles, a quantity of substances bound to the solid phase
should be defined. A mass concentration F, dimensionless, is generally
representing the mass of substances adsorbed per unit mass of solid. In a unit
volume of porous medium, the mass of solid is (1 - OJ)p., where OJ is the total
porosity and Ps the mass per unit volume of the solid particles (e.g., the
grains in sands, not the bulk mass per unit volume of the medium). The mass of
substances bound to the solid is then (1 - OJ)PsF.

The source term to be introduced into the equation is the variation of this
mass per unit volume per unit time:

The problem of adsorption consists in defining the relation between the
concentration F and C.

Mechanisms of ion exchange. The adsorption capacity of certain minerals
or colloids is due (Jackson, 1980) to the existence of nonneutralized electric
charges at the surface of and/or inside these minerals. Ions with an opposite
charge attach themselves to it, thus creating a "double electrical layer", which
may belong to one of the following two types:

Type 1. Imperfections or ion substitutions in the crystal lattice of the
mineral, causing positive or negative electrical imbalance. The surface of the
mineral is then called the stable electrical layer, and the ions with an opposite
charge attracted by the stable layer constitute the mobile electrical layer.
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Type 2. The specific adsorption of certain ions by the surface of a mineral
initially uncharged creates a stable electrical layer to which other ions of
opposite charge become attached, thus creating the mobile layer.

Vermiculite and montmorillonite have, for example, double layers of type 1.
Other clays, metallic hydroxides, and organic and inorganic colloids (silica, for
example) have double layers of type 2. The latter are very much more sensitive
to the pH action of the water.

An order of magnitude for the maximum adsorption capacity of the clayey
minerals is around /0 of their weight. It should rather be given in
milliequivalents per unit mass, as the valences of the adsorbed ions have to be
taken into account: adsorption is an electrical balance. As clays are negatively
charged, the mobile electrical layer is made of cations. Orders of magnitude
of cation exchange capacity are: montmorillonite, 100 meq/l00 g; illite,
30 meq/100 g; kaolinite, 1-10 meq/100 g.

First case: Adsorption is instantaneous. It is then admitted that F and C
are always in equilibrium and linked by a relation where time does not count.
Experiments made up to now with adsorption (not necessarily with desorption)
seem to prove that for clayey bodies and minerals, the time to equilibrium is of
the order of a few minutes, i.e., quite negligible for common cases. James and
Rubin (1979) have shown, however, that a local chemical equilibrium for
calcium is obtained "only when the ratio of the hydrodynamic dispersion
coefficient to the estimated molecular diffusion coefficient is near unity." This
will very seldom be the case in practice.

Generally, the entire set of transported substances (ions) has to be taken into
consideration and the concentrations Ci and F; calculated for each of them.
Thus, the usual transport equation for each constituent i becomes

oc. of
div(D grad Ci - CiU) = waf + (1 - w)Ps at'

We then state that the sum of the adsorbed concentrations is equal to the
total ion exchange capacity of the solid; as this exchange capacity IT is
generally expressed in equivalents per gram (epg), the adsorbed mass
concentration F;and the volumetric concentration C,have to be transformed
into epg or epl (equivalent per liter):

Cic-=-v· u,:
where F; is mass concentration (dimensionless), M, is molar mass of
constituent i, Vi is valence of constituent i, and C, is volumetric concentration
(kg/m? or g/liter),
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We then write

where m is the number of substances present.
Finally, the selectivity of the adsorption for certain substances is expressed

by an equilibrium relation (mass action equation), assumed to be reached
instantaneously and to be reversible (i.e., not representing irreversible
fixation):

where Kij is the ion exchange selectivity coefficient of the solid matrix with
respect to elements i and j and the dimension of Kij depends on the valence
Vi and Vj. The coefficients Kij are not, of course, independent of each other,
but are more or less independent of the concentrations in the solution.

It is then possible to solve this system of equations for all elements i.
A good example of the application of this method can be found in Valocchi

et al. (1981); they studied the ternary system Na(!), Mg(2)' Ca(3) in the labo
ratory on core samples from an alluvial aquifer (sand, gravel, silt, and clay)
giving iT= 0.1 meq/g, K 12 = 1.7 eq/liter, K 13 = 3 eq/Iiter. They were then
able to reproduce the observed concentration during an in situ injection test,
where Mg and Ca were exchanged with Na as in Fig. 10.7.

The selectivity of ion exchange generally follows the same order of
preference: divalent ions have stronger affinity than monovalent ions, and
within each of these categories, the affinity is: Cs+ > Rb+ > K+ > Na+ >
Li", and Ba2+ > Sr2+ > Ca 2+ > Mg2+ (Freeze and Cherry, 1979).

In montmorillonite clays, when 2 Na+ are substituted for Ca 2+, the clay
swells, and its permeability can be drastically reduced.

Ca2+ , mglQ
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Fig. 10.7. Comparison between simulated and actual breakthrough of Ca2+ and Mg2+ at an
observation well. After Valocchi et al. (1981). Reproduced with permission from Water Resources
Research, Vol. 17, pp. 1517-1527. Copyright by the American Geophysical Union.
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In cases where the transported substances are in very weak concentration,
the assumption is made that the adsorption of these substances does not to
any great extent change the fj/cj ratio of other substances that are present in
larger quantities. As this ratio is constant, we get

I' F (fVi( 1'/'1' )Vi)l/V'
!..!:.. = -.i = T :'j JT J = const = K

d i
Ci c;i cj'Kij

The coefficient K d i is called the distribution coefficient of the substance i in
relation to the porous medium. It assumes that the adsorption is linear,
reversible and instantaneous. As K d varies with temperature, it is also known
as the slope of the adsorption isotherm. Its dimension is length" mass-I, and
it is usually expressed in ml/g. We can then write

ac
div(D grad C, - c;iU) = [w + (1 - w)PsKdJ-'at

The term

(10.2.2)

(dimensionless) (10.2.3)

(10.2.4)

is generally called the retardation factor due to the adsorption. It is introduced
as a multiplying coefficient of the porosity:

div(D grad C - c;U) = wR ac;at
If both sides are divided by wR, an apparent velocity U/wR is defined, while

the transport equation takes the same form as in Eq. (10.1.6): everything
behaves as if the mean microscopic velocity of the convective transport were
divided by R. Under this assumption, the displacement of each substance can
be calculated independently of that of its neighbors. This approach is widely
used, and is probably valid for elements in very low concentration. If there is
no adsorption, R = 1.

Second case: Instantaneous adsorption that is not entirely reversible. If
such a phenomenon occurs, we get adsorption-desorption isotherms with, for
example, the shape shown in Fig. 10.8.The quantity, which is irreversibly fixed,
may then depend on the maximum concentration c;max-

This phenomenon may be included in a numerical model, but this requires
rather a large amount of calculations, because at each time step and for each
mesh of the model, the new concentration c;tHt is compared to the former
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F

~--------_-!--- C
Cmax

Fig. 10.8. Partly reversible adsorption.

concentrations Ct. Suppose, for example, that we start with an adsorption
phase. If

Ct +M > c,
then we must use the retardation factor for the mesh in question,

1- ill
R; = 1 + ---PsKda

ill

where Kda is the slope of the adsorption isotherm; however, if

then we must use

where K dd is the slope of the desorption isotherm.
It can be observed that the constant term F;r is eliminated in the course of

the derivation [in desorption, we would write F = F;r + KddC, but of/ot =
Kdd(OC;ot)], which shows that it is only important to determine the slope of
the desorption isotherm in so far as the various desorption isotherms are, at
least in the first approximation, parallel to each other (Fig. 10.9).(In reality, the
isotherms are generally curved.)

It must also be noted that there is a risk involved in using this irreversibility,
because it may be due to desorption kinetics. It is possible that, if the
equilibrium lasts for a very long time, the situation might slowly revert to that
of the single adsorption isotherm. Therefore, if irreversible desorption is used
in the calculations, there is a risk of making mistakes, which may jeopardize
the safety of the environment if the adsorbed substance is harmful. Then, the
problem is posed of the long-term validity of measurements made in the
course of laboratory experiments, which include kinetic reactions and which
are necessarily of short duration.



258 10. Flow of Miscible Fluids: Dispersion, Retention, and Heat Transfer

F

""-------------.... C

Fig. 10.9. Partly reversible adsorption.

Third case: Nonlinear adsorption isotherm. In the case where each solute
moves independently of its neighbors, other instantaneous relations between
F and C have been suggested instead of the linear isotherm. They are the
following:

(1) Isotherm of the second degree:

F = K 1C - K 2C
2

(2) Langmuir's isotherm:

F= K 1C

1 + K 2C

(3) Freundlich's isotherm:

n2::.1

(4) Exponential isotherm:

C = K 1Fe
k 2F

Moreover, these constants depend on the direction of the exchange (ad
sorption or desorption) if the phenomenon is not strictly reversible.

Fourth case: Kinetics of noninstantaneous adsorption-desorption. Here
we must know the law of variation in time of F versus C. Because of the
complexity of the problem, the phenomenon is generally treated numerically
in two stages, although some analytical solutions have been proposed. First, if
C, and F; are known at the beginning of the time step, F;Ht is calculated at the
end of the time step according to the law of reaction kinetics, assuming C,to be
constant during the time step:

Q = (1 - w)Ps F;+~; F;
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Then this source term, assumed constant over the time step, is introduced into
the transport equation.

The concentration F is, as it were, an explicit term, one time step behind the
concentration C.

If more precision is needed, C and F must be calculated several times
during the same time step, iterating the calculations of kinetics and transport
For example, it may be assumed that the kinetics of adsorption are linear.
Then we write:

. ac aF
dIV(Dgrad C - CD) = w- + (1 - w)Ps-at at in the liquid phase,

on the solid phase,

where K 1 is the kinetic constant of linear chemical adsorption. These two
equations are solved successively or simultaneously. See Harada et al
and Pigford et al. (1980).

Fifth case: Relation between the adsorption and the concentration C' in
the immobile fluid fraction. In Section 10.1.1, we have a transport equation,
Eq. (10.1.4),in which a concentration C' appears in the immobile fraction. It is
possible to add an adsorption term to this equation, which gives

diveD grad C - CD) = We ~~ + (w

If we admit that there is a linear adsorption isotherm F = KdC and that the
relation between C and C' is linear as well, C' = K'C, we get

(

W - W 1- W )ac
diveD grad C - CD) = We 1 + e K' +--PsKd ---;-

We We ut

This makes a new retardation factor appear, in which the adsorption and
the retention in the immobile fluid phase are merged. The same would happen
if a first-order kinetic reaction was used for both F and C'.

In practice, the coefficient K d is measured in the laboratory in a batch
experiment by difference. We start with a known concentration C1 in the fluid
phase, into which a certain weight of rock* is introduced. After equilibrium is
reached (constant concentration), the concentration Cz is measured in the
remaining liquid phase: the mass of the adsorbed quantity is deduced by
difference. However, in fact, the quantity which has disappeared from the
mobile phase (which is the only measurable) also includes the quantity

* This rock must on no account be crushed, so as to avoid increasing the area of fluid-solid
contact.
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retained in the immobile liquid bound to the solid: the obtained coefficient K d

therefore explicitly accounts for the total quantity retained in the immobile
fluid, and when linear and instantaneous adsorption is introduced, it is
unnecessary to consider the concentration C' in the immobile phase. Similarly,
in a kinetic experiment, an average kinetic constant would be obtained.

Recent work on the interaction between the solute and the rock matrix is
now directed toward the coupling of geochemical codes with the transport
codes. Indeed, the semi-empirical partition coefficient approach is quite
insufficient to represent all the complex chemical reactions that can take place
between several solutes and the medium. In general, geochemical equilibrium
is assumed to take place at each time step, although including reaction kinetics
is also considered in some cases. See Morel (1983), Nordstrom et al (1979),
Graven and Freeze (1984).

(c) Adsorption of organics: the hydrophobic theory. Organics present in
trace quantities in groundwater are also found to be adsorbed by the medium,
i.e., to have a retardation coefficient just as ions do. However, the mechanism
of sorption is different; the organics are mostly sorbed on existing solid
organic compounds present in the porous medium.

Just as for ions, an equilibrium partition coefficient K p , equivalent to the
distribution coefficient K d (Section 10.2.1.b) is defined by:

F = KpC'

where C' is the massic concentration of the organic compound in water (mass
per unit mass of water) and F is the concentration of the organic sorbed on the
solid (mass per unit mass). K p is dimensionless. As the mass per unit volume of
water is assumed constant, the volumetric concentration of the organic
compound in water (mass per unit volume of water) would be C = pC'. To
write the transport equation in terms of C', we need to divide it, e.g.,
Eq. (10.2.1), by p:

. " oC' Q oC' o, of
dlV(D grad C - CD) = w-+-= w-+ (1- w)--ot p ot p In.

where Qis the source or sink term and Ps the mass per unit volume of the grains
of the porous medium.

Assuming instantaneous equilibrium, we can define a dimensionless
retardation factor R as in Eq. (10.2.3) by

R = 1 + 1- w Ps K
w P p

Then the transport equation is again:

OC'
div(DgradC' - C'U) =wRot
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Note that Ps/p is used instead of Ps in Eq. (10.2.3) because C' is the massic
concentration.

Schwartzenbach and Westfall (1981) report that kinetic effects are unim
portant for such sorption if the groundwater pore velocity is on the order of
1 m/day but cannot be neglected if the pore water velocity goes to 10
(for chlorinated benzenes). However, to this day, no satisfactory kinetic
model is available; the first-order one described in Subsection 10.2.1.b does
not seem to give good results; see also Miller and Weber (1984).

The partition coefficient K; can be measured in static batch experiments or
in dynamic column tests; however the so-called "hydrophobic theory"
(Karickhoff et al., 1979; Schwartzenbach and Westfall, 1981, 1984) provides a
method to estimate this coefficient indirectly, within a factor of 2.

(1) F or a neutral hydrophobic compound* one first measures (or finds in
the literature) the dimensionless partition coefficient K ow between water and a
reference organic solvent, namely the n-octanol:

K ow = Co/Cw

where Co and Cware the mas sic concentration of the compound in octanol and
in water, respectively, when the water, the octanol and the compound are in
contact at equilibrium. Some values of K ow are given in Table 10.1
Karickhoff, 1981).

(2) Then a provisional dimensionless partition coefficient Kocis defined for
a hypothetical soil made of 100% of solid organic material as found in small
quantities in aquifer material. It is found that this coefficient Koc is very
strongly correlated with the octanol-water partition coefficient K ow for a
given compound but depends very little on the actual nature of the solid
organics in the soil. Table 10.1 (from Karickhoff, 1981) gives some values of
K ow and Koc for various organics. This author suggests

K oc = 0.411Kow

with a correlation coefficient of 0.994. Schwartzenbach and Westfall (1984)
propose a linear regression of the form:

10gKoc = alogKow+ b

Values of a and b, as well as the correlation coefficient of the regression are
given in Table 10.2 for a series of major organics.

(3) Finally the actual distribution coefficient K; is given by

«, = Kocfoc

* An organic compound is said to be hydrophobic if it is soluble in water, but also more soluble
in an organic solvent. It is neutral if it is not electrically charged (not ionized).
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Table 10.1

Partition Coefficients for Octanol-to water (Kow ) and Sediment Solid
Organic Carbon to Water (Koe) for Selected Organic Compoundsv"

Compound

Hydrocarbons and Chlorinated Hydrocarbons
3-methyl cholanthrene
dibenz [a,h] anthracene
7,12-dimethylbenz[a] anthracene
tetracene
9-methylanthracene
pyrene
phenanthrene
anthracene
naphthalene
benzene b

1,2-dichloroethaneb

1,1,2,2-tetrachloroethaneb

Ll.J-trichloroethane"
tetrachloroethylene"
y BHC (lindane)
rxBHC
pBHC
1,2-dichlorobenzeneb

pp'DDT
methoxychlor
22',44',66' PCB
22',44',55' PCB

Chloro-s-triazines
atrazine

propazine

simazine

trietazine
ipazine

cyanazine

logKow logKoe

6.42 6,09
6,50 6.22
5.98 5.35
5.90 5.81
5.07 4.71
5.18 4.83
4.57 4.08
4.54 4.20
3.36 2.94
2.11 1.78
1.45 1.51
2.39 1.90
2.47 2.25
2.53 2.56
3.72 3.30
3.81 3.30
3.80 3.30
3.39 2.54
6.19 5.38
5.08 4.90
6.34 6.08
6.72 5.62

2.33 2.17
2.71 2.21

2.33
2.94 2.20

2.19
2.56

2.16 2.13
2.14
2.33

3.35 2.74
3.94 3.22

2.91
2.24 2.30

2.26

(Continued)
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Table HI.l (Continued)

Compound logKow logKoC'

Carbamates
carbaryl 2.81 236.
carboturan 2.07 1.46
chlorpropham 3.06 2.77

Organophosphates
malathion" 2.89 3.25
parathion" 3.81 3.68

4.03
methylparathion 332 3.71

3.99
chlorpyrifos 331 4.13

4.82
5.11

Phenyl ureas
diuron 1.97 2.60

2.81 2.58
fenuron 1.00 1.43

1.63
linuron 2.19 2.91

2.94
monolinuron 1.60 230

2.45
monuron 1.46 2.00

2.13 2.26
fluometuron 1.34 2.24

Miscellaneous compounds
13Hdibenzo[a.ijcarbazole 6.40 6.02
2,2' biquinoline 431 4.02
dibenzothiophene 438 4.05
acetophenone" 1.59 1.54
terbacil 1.89 1.71

1.61
bromacil 2.02 1.86

° Reproduced with permission from Karickhoff (1981). Copyright 1981
Pergamon Press, Ltd.

b Compounds are liquids at 25°C
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Table 10.2

Estimation of K oc Based on Kow by the Expression log Koc = a log Kow + b"

Regression
coefficient

Correlation Number of
a b coefficient compounds Type of chemical

0.544 1.377 0.74 45 Agricultural chemicals
1.00 -0.21 1.00 10 Polycyclic aromatic

hydrocarbons
0.937 -0.006 0.95 19 Triazines, nitroanilines
1.029 -0.18 0.91 13 Herbicides, insecticides
1.00 -0.317 0.98 13 Heterocyclic aromatic

compounds
0.72 0.49 0.95 13 Chlorinated hydrocarbons

alkylbenzenes
0.52 0.64 0.84 30 Substituted phenyl ureas

and alkyl-N-phenyl
carbamates

a From Schwartzenbach and Westfall (1984).

where foe is the dimensionless fraction of dry weight of sediment which is made
of solid organic carbon compound. Schwartzenbach and Westfall (1984)
indicate that only the fine fraction of the aquifer material (e.g., grain size
smaller than 0.125 mm) is predominant for sorption; foe should then be taken
as the product of the fraction of sediment smaller than 0.125 mm times the
fraction of solid organic compound in these fine sediments. Since most of the
solid organics are found in the fine fraction anyway, this should not make very
much difference.

Note that the relationship is only valid if foe> 10-3
, otherwise sorption of

the organic compound on nonorganic solids can become significant. The
linear sorption isotherm C' = KpF is approximately valid only if C' remains
below one half of the solubility limit of the compound.

Other methods of estimating K oe have also been suggested based on the
solubility of the organic compound in water, or directly on its chemical
formula. See Karickhoff (1981).

(4) For an ionizable hydrophobic compound, sorption is found to vary
also with pH. Several mechanisms are then responsible for sorption: ion
exchange, ligand exchange, formation of ion pairs, or ion complexes (that
may be transferred into the organic phase) in addition to simple partitioning.
See Schwartzenbach and Westfall (1981, 1984), Schellenberg et al. (1984),
Westfall et al. (1984).
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(d) Radioactive decay. If no transport occurs, radioactive decay is
expressed by the differential equation

OC
-=-ACat

which, integrated, gives

C = Coe- At (exponential decay)

The half-life T is defined by CjC o = t, which yields

A = In2 = 0.693
T T

Hence, radioactive decay causes a mass AC per unit volume of the
phase to disappear per unit time. In order to restore it to a unit volume of the
porous medium, it must therefore be multiplied by w. The transport equation
then becomes

div(DgradC - CD) = w(~~ + AC)

If there is a concentration F in the adsorbed phase, this will also decrease
according to the same law:

of
at -AF

(10.2.8)

This disappearance is expressed here in mass per unit time and per unit mass
of solid. To restore it to the unit volume of the porous medium, we must
multiply by (1 - w)Ps. Thus it becomes

. (OC) (OF)dIV(D grad C - CD) = to at + AC + (1 - w)Ps at + AF (10.2.7)

In the case of linear and reversible adsorption (F = KdC), this becomes

diveD grad C - CD) = wR ~~ + wRAC

(e) Daughter products. If a substance C, disappears through radioactive
decay, it means that it gives birth to a daughter product, i.e., a different
substance c.» In the transport equation of the substance Cj , the source term

* In the following, C, can possibly be the granddaughter of C, through the action of several
nuclear reactions, if the half-lives of the intermediate substances are very short compared to that
of Cj and, if only C, and Cj are present in significant amounts.
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will then represent a creation of matter. It is written as

. ) ec, ~diveD grad C, - C·U = OJ- - OJA--C-
J J at 'Mi .'

where M)M, is the ratio of the atomic weights of the substances i and j, if they
are different. We can easily generalize to the case of adsorption.

Thus, the transport equation for j must be solved after the one for i, as the
distribution in time and space of the source term for element j is given by the
solution of the transport of i. For three-member decay chains, analytical
solutions have been developed. The difficulty with numerical solutions lies in
the agreement between the calculation time steps for the two elements. See
Harada et al. (1980) and Pigford et al. (1980).

10.2.2. Fractured Media

All of the phenomena mentioned in connection with porous media may
occur in fractured media. The only case we need to point to here is the one of
adsorption in the fracture planes, when the rock matrix is assumed to be
impermeable and nonporous, i.e., where, in practice, the transported sub
stances cannot penetrate. It is then necessary to determine experimentally a
distribution coefficient per unit surface area of the fracture. It is, in fact,
possible to define conceptually a "concentration" W adsorbed by the fracture,
where W is expressed in mass of substance retained per unit surface area of the
fracture (Burkholder, 1975).

In order to equate this quantity W of adsorbed substances with the unit of
the source term, W must be multiplied by the ratio IX which we have already
defined:

area of the fracture planes
IX = ---- ----=--

volume of the medium

The source term is indeed the variation of the mass of substances per unit
volume of an equivalent fractured medium, per unit time.

Note that we have defined IX by counting two planes for the walls of each
fracture. Hence, the source term for adsorption is

Q = IX
aw
at

If we admit that there is still a linear relation between this concentration W
and the concentration C in the solution, then
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where K a , the fracture distribution coefficient, has the dimension of length
(volume/surface area).

The transport equation becomes

. ( r:xK) ecdIV(D grad e - CU) = OJ 1 +_a -
OJ at

with the "retardation factor"

1
«x,

R= +
OJ

(dimensionless)

To measure K; experimentally on a core sample containing a fracture, we
proceed as for the porous medium, by difference, but the mass quantity W
bound to the planes of the fracture is attributed to the surface area of the
fracture (i.e., twice its dimension, if the two walls of the fracture are in contact
with the solution).

10.2.3. Analytical Solutions of the Dispersion Equation

(1) If we choose a one-dimensional case (Fig. 10.10) and study the
displacement of a contaminant in a semiinfinite medium, we know an
analytical solution to the dispersion equation with the following initial and
boundary conditions:

C(x) = 0, Vx > 0, t = 0

C(O) = Co, t > 0

with the tracer hypothesis, velocity U constant for one-directional flow, and
dispersion coefficient D = r:xl UI a constant (only longitudinal dispersion in this
one-dimensional problem). The governing equation is

(10.3.1)
»c ec ec

D--U-=OJR-ax 2 ax at
This equation is identical in one dimension to Eq. (10.1.5)or (10.1.7)if R = 1

or to (10.2.4) if there is adsorption; R is then the "retardation factor" of
Eq. (10.2.3).

u

c = co~/_o X

t = 0 /
/

at

Fig 10.10. One-dimensional transport system.
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Solution.

C( ) Co [ 4' (x - (U/WR)t) (UX) ..4' (x + (U/WR)t)]x, t = - eriC + exp - ertc
2 2JDt/wR D 2JDt/wR

(10.3.2)

where erfc is the complementary error function (see Section 8.5).
For given x and after a certain time, the second term becomes negligible

before the first and the expression may be simplified to

C( ) - Co 4' (x - (U/WR)t) _ Co f+oo -r2

x, t - 2 eriC ~ - r:: e dr,
2v Dt/wR v tt v

x - (U/wR)t
v=------===:-

2JDt/wR

The solution given in Eq. (10.3.2) is shown in Fig. 10.11 versus the three
dimensionless parameters,

~ = Utkokx on the horizontal axis

C/Co on the vertical axis

1] = D/U x curve parameter

(2) If the radioactive decay is added [Eq. (10.2.6) or (10.2.8)], we get (Bear,
1979)

(PC ec (OC )D--U-=wR -+ACox2 ax at
where A is the coefficient of exponential decay from Eq. (10.2.5) and R the
retardation factor due to the adsorption as in Eq. (10.2.3).

Solution.

( ) _ Co (ux){ (-13) 4' [x - tJ(U/WR)2 + 4AD/WR]C x, t - 2 exp 2 exp x errc ~
D 2v Dt/wR

(13)
4' [x + tJ(U/WR)2 + 4AD/WR]}+ exp x errc ~ (10.3.4)

2vDt/wR

where 13 = (2~Y+ A~R

(3) Consider an impulse point injection of tracer of mass dM into an
aquifer with parallel flow in two dimensions. If x is the flow direction, with the
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origin of the coordinates at the injection point, we get (Bear, 1979):

»c a2c ec ec
DL - -2 + DT--;z - U --;- = wR---;-

ax uy ox ot

Solution.

(10.3.5)

dC(x,y,t) = dM ex [_ (x - Ut/WR)2 _ y2 J (10.3.6)
4ntJDLDT/w

2R 2 p 4DLt/wR 4DTt/wR

where DL and DT are the longitudinal and transverse dispersion coefficients,
and R is the retardation factor [Eq. (10.2.3)].

If the injection at the origin is a continuous flow rate Qwith a concentration
Co (but Q small enough not to disturb the parallel flow), the solution is
obtained by convolution:

CoQ it 1C(X Y t) = - --
, , 4nJDLDT/w

2R 2 ot-1:

{
[x - U(t - 1:)/WRJ2 y2 }

X exp 4Ddt _ 1:)/wR - 4DT(t _ 1:)/wR dt

If t is made to tend toward infinity (steady state), we get

CoQ
C(x, y, OCJ) = -,===;;=:=;;:-

2nJDLDT/w
2R 2

U
2

(x
2

y2)J
4DLwR DL!wR + DT/wR

where K o is a modified Bessel function of the second kind and zero order. See
also Bear (1972,1979), Harada et al. (1980), Pigford et al. (1980), and Javandel
et al. (1984) for additional solutions.

10.2.4. Transport of Colloids in Porous or Fractured Media

(a) Description of the physical mechanisms involved. Colloidal particles
transported in a porous medium experience a large number of interactions
with the medium, which can make their behavior quite different from that of
solutes. These mechanisms are referred to as "filtration." To present them, we
will first consider unretained particles and then analyze the retention
mechanisms on the surfaces.

(1) Unretained particles moving faster than the water. The electrical
charges carried by colloids are in general a function of the pH of the solution:
for each type of colloid, there exists a pH for which they are uncharged, the
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origin of the coordinates at the injection point, we get (Bear, 1979):

»c azc ec ec
DL --;-z + DT-Z - U -;- = OJR ---;- (10.3.5)

uX ay uX ot
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point of zero charge (Pzq. When such very small uncharged particles are
injected into a porous medium, a capillary tube, or a thin fracture, they will
generally be transported without retention with the flowing liquid by con
vection, as well as by diffusion through Brownian motion. The diffusion
coefficient do in water is inversely proportional to the radius r of the colloid,
as shown in Subsection 10.1.Lb.

In pores, capillary tubes or fractures, the velocity distribution of the water is
generally more or less parabolic, the maximum velocity at the center being on
the order of 1.5 times the average velocity of the water. Particles transported
in the water will, by diffusion, randomly sample the velocities in the pores,
but, because of their size, they will never reach the walls: their average velocity
will therefore be larger than that of the water, larger colloids being faster than
smallerones. This effect was discovered by Small (1974, 1977) and is called
hydrodynamic chromatography. It is used for measuring particle sizes. The
ratio between particle velocity and water velocity is, however, small, in general
between 1 and 1.1,in extreme cases 1.4 (Dodds, 1982).For such movements to
be observed, the particles have to be much smaller than the size of the pores
(or fracture aperture). Dodds (1982) gives an upper limit of particles size of
0.25f.lm, for a porous medium constituted by spheres of 20 f.lm, i.e., roughly a
factor of 100 between grain size and particle size (see Nagy et al., 1981).

If the particles are charged with the same charges as the solids of the porous
medium, repulsion effects will tend to increase the velocity of the particles, as
they are kept further away from the walls. Small (1974,1977) has evaluated the
thickness of the repulsive layer to 0.39f.lm for particles of 0.357 f.lm in diameter,
in dilute solutions. However, if the ionic strength of the solution is increased,
this repulsive force decreases, and the attractive Van der Waals forces can play
a role in slowing down or retaining the particles. Hydrodynamic chroma
tography is therefore a function of the ionic strength of the solution (Dodds,
1982).

If the charges of the particles are of opposite sign to that of the solid grains
of the medium, retention mechanisms will start to playa role in the slowing
down (or "filtration") of the particles. But whatever the electric charges, larger
particles will always interact with the medium and be stopped or move more
slowly than the water, even if their diameter is still much smaller than the
average size of the pores.

(2) Filtration of particles by the medium. Herzig et al. (1970), Wnek et al.
(1975), Tien et al. (1979), Corapcioglu et al. (1986), and Willis (1986) among
others, have described the most important interaction mechanisms, and
proposed equations to represent them. Filtration includes three mechanisms:
(i) particles cominginto contact with the walls; (ii) particles becoming fixed to
the walls; (iii)previously retained particles breaking away. We will study them
successively.
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dC(x, y, t) = dM exp[ _ (x - Ut/OJR)Z _ yZ J (10.3.6)
4ntJDLDT/OJ2R

z 4DLt/OJR 4DTt/OJR

where DL and DT are the longitudinal and transverse dispersion coefficients,
and R is the retardation factor [Eq. (10.2.3)].

If the injection at the origin is a continuous flow rate Q with a concentration
Co (but Q small enough not to disturb the parallel flow), the solution is
obtained by convolution:

10.2.4. Transport of Colloids in Porous or Fractured Media

(a) Description of the physical mechanisms involved. Colloidal particles
transported in a porous medium experience a large number of interactions
with the medium, which can make their behavior quite different from that of
solutes. These mechanisms are referred to as "filtration." To present them, we
will first consider unretained particles and then analyze the retention
mechanisms on the surfaces.

coQ it 1C(x y t) = - --
, , 4nJD

LDT/OJz R Z 0 t - "i

{
[x - U(t - "i)/OJR]Z yZ }

x exp - 4Ddt _ "i)/OJR - 4DT(t _ "i)/OJR dt

If t is made to tend toward infinity (steady state), we get

CoQ
C(x,y,oo) =-,=======,"

2nJDLDT/OJzR
z

( XU ) [ U
Z

(X
Z

yZ)Jx exp - K o ---+---
·2DL 4DLOJR DdOJR DT/OJR

where K o is a modified Bessel function of the second kind and zero order. See
also Bear (1972,1979), Harada et al. (1980),Pigford et al. (1980), and Javandel
et al. (1984) for additional solutions.
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occur.

Contactinq: several processes can bring the particles into contact with
solid.

Sedimentation occurs if the particles have a different density from that of the
their velocity will be different.

Inertia: due to their weight, the trajectories of the particles deviate from the
streamlines and can come into contact with the grain.

vdrodynamic effects: because the velocity field of the liquid is not uniform,
l~Cllctir'Jp~ are subjected to a rotation couple, which modifies their velocity
trajectory See Brenner and Gaydos (1977),

Direct interception: because of their size, the particles collide with the walls
convergent pores,

Diffusion: Brownian motion will send particles toward the walls, or even
dead-end pores, where the velocity is nil. Diffusion is said to be negligible

particles larger than 1 /lm.
Fixing:

Retention sites can be located on the surface of the solid, on edges between
convex surfaces, in constriction sites, where the particle cannot penetrate

in dead-end pores or caverns, where the velocity of the fluid is nil.
include axial pressure of the fluid a constriction site),

an edge), surfaces forces der Waals forces, which are
if the particles are charged, electrical forces which can

repulsive), and, chemical forces, if chemical bonding

Breakinq away: a moving particle may collide with a retained particle;
local variation in pressure or flow rate (due to clogging) may modify the flow

sufficiently to bring a retained into motion; an external change in
flow conditions will do the same in the complete medium (e.g., declogging
filter by reversed circulation).

will now examine how these mechanisms have been combined to form
filtration equation,

where D is the hydrodynamic dispersion tensor in the medium, C is the
concentration of colloids in the phase, expressed as volume of colloids

equation. A general equation for the mechanisms of
nltranon has been proposed by Herzig et al. (1970), Wnek et al. (1975), Tien et

Dodds (1982), and Dieulin (1982), among others. It is

a
C) - = ot (wC + 0")
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per unit volume of liquid, U is Darcy's velocity in the medium, co is the
kinematic porosity, (J is the concentration of colloids retained by filtration in
the medium, expressed as volume of colloids per unit volume of porous
medium.

It is then assumed that the porosity of the medium can be reduced by
filtration, with a first-order dependence on (J:

w = W o - {3(J

Here, {3 is the inverse of the compaction factor of the retained colloids, i.e., a
volume (J of retained colloids occupies a volume {3(J of the pores, imprisoning
"dead liquid."

More complex clogging factors, including the changes in specific surface of
the medium, have been proposed (Herzig et al., 1970) in order to also predict
the permeability variation of the medium and, thus, the pressure gradient
increase with time necessary to maintain a constant Darcy velocity U in the
medium.

The variation in concentration of the retained colloids is

O(J/ot = AUCF((J)

In the hypothesis called "deep filtration," F((J) = 1, i.e., where there is no
interaction between the particles, the mechanisms stay the same as (J increases.
Otherwise, F((J) takes into account the variation with (J of porosity and specific
surface. F((J) can be taken, as a first approximation, as 1 - {3(J. A is the filter
coefficient (see Subsection 3 below).

(2) Analytical solutions. Dieulin (1982) developed an analytical solution
to this equation in 1 dimension assuming that the porosity w is constant and
that F((J) = 1. It is

Co { [ Ux ] [x - Uty/w]C(x, t) = 2 exp 2wD (1 - y) erfc 2.jDt

[
Ux ] [x + Uty/w]}+ exp 2wD (1 + y) erfc 2.jDt

and

Co { [Ux ]ft [x - uyz/w]o(x, t) = 2 AU exp 2wD (1 - y) 0 erfc 2JDi dz

[
Ux ]ft [x + uyz/w] }+ exp 2wD (1 + y) 0 erfc 2JDi dz
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where

J 4AWD
y= 1+U-

Co is the constant concentration of the solution in colloids at the entrance of
the medium (x = 0) prescribed from t = O.

If the hydrodynamic dispersion can be disregarded, these equations further
simplify into:

wx
C(x, t) = Co exp( - Ax), t > U

O"(x, t) = AUCO exp( - AX)(t - U;).
wx

C = 0" = 0, t <-
U

Finally, for large times, the asymptotic solution is:

WX
t>

U

(
- 2Ax)C(x, t) = Co exp --
1 + y

(
2AX)o(x, t) = AUtCoexp - 1 + Y

the C and 0" profiles become straight lines in a semi-logarithmic plot versus x.
Such behavior was indeed observed for americium colloids filtration experi
ments on sand columns (Saltelli et al., 1984)

Herzig et al. (1970) also give an analytical solution for the case where the
porosity and the retention vary* according to:

w = Wo - 130" and F(O") = 1 - 130"

but neglecting hydrodynamic dispersion. They found that:

C(x t) = Coexp(f3AUCor)
, -1 + exp(Ax) + exp(f3AUCor)

O"(x t) = (~) 1 - exp(f3AUCor)
, 13 1 - exp(Ax) - exp(f3AUCor)

where r = t - wox/U 2:: 0; C = 0" = 0 if r < O.
They also give similar expressions for other simple forms of F(O") (e.g.,

1 - 13 20"2, -J 1 - 130", (1 - 130")3 /2). In the experiments of americium colloids
filtration, it was not necessary to take into account any clogging of the

* See Note Added in Proof at the end of this chapter.
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medium, to was constant and F(a) = 1 (Saltelli et al, 1984; Avogadro and
Marsily, 1984).

(3) Filter coefficients. The filter coefficient A takes into account all the
mechanisms described earlier. Tien et al. (1979) propose the following
theoretical expression for small 1]

A = 3(1 - w) .1]

2dg

where w is the porosity, dg : the grain diameter and 1] the collection efficiency of
the filter,

1] = (1 W)2/3AsNL~8 N~S/8 + 3.375 x 10-3(1 - W)2/3 AsNt;2N;O.4

+ 4A~/3N;;/3

where,

2(1 - pS) 4H
As = 2 _ 3p + 3ps _ 2p6 ' N Lo = 9nJld~U'

N - (pp - p)d;g N _ 3nJldpdgU

G - 18nJlU' Po - kT

p = (1 - W)I/3, H is the Hamaker constant (~1O-2 0 1), dp the particle
diameter, U is Darcy's velocity, Jl the viscosity of the fluid, Ppthe mass per unit
volume of particles, p the mass per unit volume of fluid, and k is the
Boltzmann's constant (1.38048 x 10-2 3 J/K).

These expressions apply to spherical grains of the medium and to spherical
colloids; similar expressions could also be developed for fractures. Other forms
are suggested by Herzig et al. (1970) or Dodds (1982).

It is interesting to note that the dependence of A on the diameter of the
grains and the particles is rather complex and depends strongly on the
properties of the medium, especially the porosity. In the filtration experiments
of americium colloids, the following values were obtained by fitting the
analytical expression for a(x, t) given above on the measurements:

glauconitic sand:

clean sand, 100-200 us»:

clean sand, 200-400 Jlm:

A = 31 mm"

A = 0.125 mm""

A = 0.032 mm"".

The calculated filter coefficients using Tien's expression fall within one order
of magnitude of the measured values.

One must also bear in mind that colloids are not necessarily stable in the
medium; they may dissolve, or on the other hand increase in size by
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coalescence or by serving as germs for precipitation. All this depends on their
chemical nature and their geochemical equilibrium in the medium.

10.2.5. Unsaturated Media

So far we have only considered transport in a saturated medium. However,
the transport equation that we have developed also applies to unsaturated
media. The left-hand side of the transport equation [e.g., (10.1.5) or (10.2.1)J
remains unchanged, although it is found that the hydrodynamic dispersion
coefficient D is now also a function of the saturation. The mass balance on
the right-hand side is however modified to account for the saturation. When
we first developed this mass balance, in Subsection 1O.1.1.a, we stated that
the total mass of solute in an arbitrary volume D of saturated medium was

In wCdv

Now for an unsaturated medium, the same total mass is

fD wswC dv or fD OCdv

where Sw is the water saturation of the medium and 0 the moisture content. We
need to have the rate of change with time of this total mass. The transport
equation is thus

oswC OOC
div[D(O)grad C - CUJ = w[jt = fu

If the flow in the unsaturated medium is in steady state, 0 (or sw) is a
constant and can be taken out of the time derivative. However, in a transient
flow situation, it is first necessary to determine 0 and 00/ot from the flow
equation prior to solving the transport equation.

In the unsaturated zone, for certain conditions, the existence of an immo bile
water phase needs to be taken into account as in Eq. (10.1.4). In steady-state
flow conditions, this would be written

. oC oC'
dlV[D(O)gradC - CUJ = Of_ + (0 - Of)_

ot ot

where C is the concentration in the mobile water phase, C' the concentration
in the immobile water phase, Of the moisture content corresponding to the
mobile water phase, 0 the total moisture content, and 0 - Of the moisture
content corresponding to the immobile water phase.

It is then found that the exchange between the mobile and immobile
functions can often be represented by a first-order kinetic reaction (see
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Subsection lO.2.1.b, fourth and fifth case):

aC' = K (C - C')at 1

Recent work on transport in the unsaturated zone can be found in Gaudet et
al. (1977), Dagan and Bresler (1980), Arnold et al. (1982), and Oster (1982).

10.3. Heat Transfer in Porous Media

At first sight, heat transfer in porous media is governed by three separate
mechanisms: (1) conduction in the solid matrix, (2) transport by the fluid
phase, and (3) heat exchange between the two phases depending on their
temperature difference.

The first phenomenon would produce a heat equation relative to the mean
temperature <as) of the solid. The second would resemble the dispersion
equation for the fluid with the fluid temperature <e) playing the part of the
concentration. The third would be related to the exchange mechanisms
between the solid and the liquid phase, which we have discussed above.

However, in practice, except for a very small number of cases, the
assumption is made that the temperature of the solid and that of the fluid
become identical almost at once, and that there is only one temperature ein
the porous medium. Houpeurt et al. (1965) have shown that the temperatures
will become equal in less than a minute in a medium with grain-sizes of less
than 1 mm or in less than 2 h for pebbles of 10 em diameter.

All that has been said previously on the subject of solute transport can then
be applied to heat transfer in porous media.

A single temperature is calculated for the porous medium. The transport is
characterized by (1) a convection phenomenon similar to that of the solutes
and (2) a phenomenon similar to that of dispersion in porous media: (a) pure
conduction in the two phases, solid plus liquid, takes the place of molecular
diffusion, while (b) the heterogeneity of the real velocity gives rise to an
anisotropic "fictitious conductivity," equivalent to the kinematic dispersion,
which experience shows to be a linear function of the absolute value of the
velocity (Ledoux and Clouet d'Orval 1977; Sauty, 1978).

The principle of heat conservation (analogous to the mass balance) makes it
possible to write directly:

. aa ae' ae
dlv(Agrada - peUa) = tope at + (1 - w)p'e'at = p"e" at

with A the tensor of equivalent conductivity, ethe temperature, pc the mass
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per unit volume and specific heat of the water, p'c' the mass per unit volume
and specific heat of the solid with a temperature 8' = 8, p"c" the mass
per unit volume and specific heat of the porous medium (water plus solid)
[p"c" = cope+ (1 - w)p'c' J,and w the total porosity.

The tensor of equivalent conductivity Acombines the isotropic conductivity
Ao of the porous medium (water plus solid) in the absence of flow and a term
for the macrodispersivity linked to the heterogeneity of the velocity, which is a
linear function of this velocity. We suggest using Darcy's velocity U multiplied
by the volumetric head capacity of the water pc so that the proportionality
coefficient has the dimension of length like the macrodispersivity in the case
of dispersion. In the longitudinal and transverse axes linked to the velocity, we
get

Tracer:

with

with

Heat:

It is possible to put this equation and that of the dispersion into comparable
expressions in order to bring out the similarities of the dispersion coefficients.
For this purpose, temperatures or concentrations are made dimensionless, as
follows:

C or 8 = Z - Zmin
Zmax - Zmin

where Z is the concentration or the temperature.
Either the Darcy velocity or the velocity of the advancing front (thermal or

chemical) may be used as a reference, giving the same results if the
dispersivities are compared:

Equations relative to the Darcy velocity:

div(O grad C) - div(UC) = co ~~,

0= cod + IXIUI

( A ) p"c" 08
div pC grad 8 - div(U8) = -pc ot'

A Ao
-=-+~IUI
pc pc

Equations relative to the velocity of the advancing convective front for tracers
and heat respectively, are

div(O' grad C) - div(u*C) = ~~ with 0' = d + IXlu*1
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diV(p'~" grad 0) - div(u*'O) = ~~ with
A A

_ 0 + 0:11 *'1
p"c" - p"c" i' U

In these equations, the velocities of the average front of tracer and heat are,
respectively,

u
u" =

OJ
and u*' = _ pcU

p"c"

It is then obvious that, in both cases, the dispersivity of the tracer 0( must be
compared to the dispersivity f3 of the heat, which are both expressed as lengths.
We have tried to do this at a single experimental site (Bonnaud, Jura, France),
where both tracer tests and heat transport tests were made. The aquifer
consists of relatively homogeneous sands and gravels and is 3 m thick. It is
confined, its transmissivity is of the order of 10-3 m 2 Is, and its storage
coefficient is between 10-3 and 10-4

.

The values of the main dispersivities (Peaudecerf et al., 1975; Ledoux and
Clouet d'Orval (1977); Sauty (1978b), Gringarten et al. (1979», calculated by
model calibration, are shown in Table 10.3. These results seem to prove
the dispersivities for the heat and for the tracer are comparable, even though
the conductivity in the absence of flow is around 400 to 1000 times stronger
than the molecular diffusion.

This seems to contradict the first laboratory experiments of such a
comparison: Green [in 1963, quoted by Bear (1972)] suggests that the
equivalence between the thermal and chemical dispersivities occurs for Peclet
numbers of the order of 10,000, and that under 3000 the thermal dispersivity is
negligible.

The Peclet numbers, chemical as well as thermal, in the experiments at
Bonnaud are, at the most, a few tens:

u*lr, tracer = a;;

where if u* (mean pore velocity) is ~0.09 m/hr, 1 (mean diameter of the
grains) is ~ 2 mm, and do (molecular diffusion coefficient in water) is
~ 1.0 x 1O- 9m2/s, then P; is ~ 50.

u'l
P; thermal = A I " "

o P c

Vl

Aolpc

where if V (Darcy velocity at average radius of 6 m) is ~ 0.03 m/hr, 1(mean
diameter of the grains) is ~ 2 mm, and ..101pc is ~ 2 x 1O-7m2Is, then
is ~O.1.



Table 10.3

Comparison of Longitudinal Dispersivities in the Bonnaud Aquifer (Jura, France) for a Chemical or Thermal Tracer

Dispersion Conduction

Molecular Relative heat
Longitudinal diffusion in Longitudinal capacity of the Pure heat

Distance of dispersitivity Porosity porous media dispersitivity porous medium diffusivity
Authors Tracer Type of flow tracing (m) CiL(m) (%) d (m2js) f3L(m) p"C'/pc (%) Ao/p"c'' (m2/s)

Peaudecerf Iodine 131 Parallel, point 13.05 0.70 33
et al. (1975) tracing

Idem, other wells 12.97 1.20 29
Idem, 26.02 2.23 37
Idem 35.52 2.19 48

~ 1.0 x 10- 9

Gringarten et al. (1979) INa Radial converging 13.00 1.6 9
tracing by piezometer

Well doublet 13.00 4.0 9
(injection +
pumping)

Ledoux and Heat Radial single 13.00 3.00 50 4 X 10- 7

Clouet d'Orval well (injection +
(1977) pumping)

Sauty Heat" Radial converging, 4 to 13 1.00 62.5 9.6 x 10- 7

(1978 b) multiple
observations
of wells

Sauty Heat" Same experiment 0 62.5 192 x 10- 7

(l978 b) interpreted with
constant equivalent
conduction
AL= A~

"The experiments of 1978 were made after a violent unclogging of the wells by air lift, which might have changed the terrain slightly. The porosities of 1975 are probably
overestimated because of insufficient knowledge of the permeability, i.e., the Darcy velocity, the gradient being the only known parameter, whereas in radial flow the Darcy
velocity is imposed.
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Table 10.4

Thermal Properties of Common Materials

Medium

Dry sand
Wet sand
Dry clay
Wet clay
Granite
Sandstone
Water
Salt

0.4-0.8
2.5-3.5
0.8-2.0
1.2-1.7
2.5-3.8
1.5-4.3
0.598
5.86

p'c' of the mineral (J m- 3 K- 1 )

1.9 X 106

1.9 X 106

2.1 X 106

2.3 X 106

2.1 X 106

2.3 X 106

4.185 X 106

2.0 X 106

It then seems, as Sauty (1978b) has observed, that in the field, on the scale
in question, the macrodispersivity clearly dominates the molecular diffusion,
or even the conduction. This is very likely to be due to the heterogeneity
of the velocity in the different layers of the formation, thus making the
dispersivity obtained for each one of the tracers comparable.

However, on a larger scale, in a tracer experiment over a longer distance and
time, the coefficients of dispersion and conduction reach an asymptotic
and the dispersivity of the tracer should be around five times stronger than the
thermal dispersivity, However, there are no experiments confirming this.

A few values of ito and p'c' for different rocks are given in Table 10.4.
Remember that, in calculating the volumetric heat capacity of the rock, we
have to take the contained water into consideration:

p"e" = wpe + (1 - w)p'c'

With porosities from 10 to 20%, p"c" is of the order of 2.1-2.5 x
106 J m- 3 K- 1•

Remember also that this equation for heat transfer must be associated with
a generalized form of Darcy's law and with the continuity equation in porous
media, which will give the velocity U. This association is made through the
mass per unit volume p = p(O) and the viscocity j1 = j1(0).

This association through the mass per unit volume has an important
consequence: hot water injected into an aquifer has a tendency to migrate
toward the top of the aquifer owing to the density effect. This is one of the
problems inherent in hot water storage in aquifers. Furthermore, even when
no human intervention disturbs the state of flow, the flow of geothermal heat
originating at the bottom may create a vertically ascending flow in an aquifer
layer. However, through continuity, a descending flow must arise and thus
"cells of natural convection" develop in the aquifer.



H = 4 cm
H = 5.5 cm

H = 6 cm

Fig. 10.12. Convective cells in a porous medium. From Bories (1970).Top: view of the flow lines shown in vertical section (the upper face is cold, the
lower is warm). Bottom: view of the six-sided convective cells, seen from above; H is the thickness of the porous layer.
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Combarnous and Bories (1975)* have studied this phenomenon of natural
convection. They have pointed out that below a minimum thermal gradient in
the vertical direction, convection does not occur. When it occurs, rough six
sided cells (in two dimensions) appear and their size and migration velocity can
be foreseen (see Fig. 10.12).

These phenomena of natural migration under the influence of thermal
gradients may be at the origin of mineral or hydrothermal deposits.

* They define a "Rayleigh number in porous media" as

R* = grxp(pc)keliB
a JlA

with rx the coefficient of thermal volumetric expansion of the fluid (10- 3 to 1O-4°C- 1) , p the
mass per unit volume of the fluid, (pc) the volumetric heat capacity of the fluid, k the intrinsic
permeability, Jl the dynamic viscosity of the fluid, A the equivalent conductivity of the porous
medium (immobile), e the thickness of the layer, liB the difference in temperature between the
top and bottom of the layer, assumed to be impermeable and at a constant temperature. Natural
convection appears if R;cosy > 4n2

, where y is the angle between the horizontal line and the
layer.

Note Added in Proof

An empirical relation between the increase in pressure drop through a filter
(permeability variation due to clogging) and the concentration a of the
retained particle is /1p//1po = 1/(1 - ja)m, where j and m are constant; to first
order /1p//1po ~ 1 + mja. If 1is the length of the filter, one can also write, to
first order, p = Po(1 + mjUCoTjl), where U is Darcy's velocity, Co the
concentration of particles at the inlet, t the time, and p the pressure applied on
the filter. Values of mj are in the range of 40 to 450 (Herzig et al., 1970).
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The various magnitudes that are important in hydrogeology (e.g.,hydraulic
head, transmissivity, permeability, thickness of a layer, storage coefficient,
rainfall, effective recharge, etc.) are all functions of space and are very often
highly variable. However, this spatial variability is, in general, not purely
random: if measurements are made at two different locations, the closer the
measurement points are to each other, the closer the measured values. In other
words, there is some kind of correlation in the spatial distribution of these
magnitudes. Matheron (1965,1970,1971) has given the name of "regionalized
variables" to these types of quantities: they are variables typical of a
phenomenon developing in space (and/or time) and possessing a certain
structure. Here, the term "structure" refers to this spatial correlation which, of
course, is very different from one magnitude to the other or from one aquifer to
the next.

Regionalized variables can be divided into two main categories: stationary
and nonstationary. In the latter the variable has a definite trend in space: for
instance, the variable decreases systematically in one direction. This is
generally the case of the hydraulic head. On the contrary, there is no
systematic trend in space for the stationary variables. This is in general the case
of transmissivity. We shall define these terms more precisely in Sections B.2,
11.3, and 11.7.

Here we will first address the problem of how to estimate a regionalized
variable, which is the most common problem facing the hydrogeologist in the
field. Having measured a variable at a set of points (e.g., heads at several
piezometers, transmissivities at several wells, rainfall at several rain gauges),
how do we estimate the value of the variable at all other locations in order to
produce a contour map of the variable? Kriging is an optimal estimation
method, and its use will be described for both the stationary and the
nonstationary case.

To make this estimation we use the concept of random functions, which was
introduced in Section 2.1.d. It is therefore useful to return to this section and
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read it first. This concept of random functions will also be used to introduce
briefly, in Section 11.10, what is known as stochastic hydrogeology. This
consists in regarding the parameters of the flow and transport equations as
random functions and then looking at stochastic solutions to these equations,
i.e., heads, velocities or concentrations, etc. which are also random functions
and no longer deterministic ones, as we have assumed so far.

H.L The Problem of Estimation: Definition of Kriging

Kriging is a method for optimizing the estimation of a magnitude, which is
distributed in space and is measured at a network of points. Let (1) Xl'

X2, ... .x, be the locations of the n points of measurement and Xi denote
simultaneously the one, two, or three coordinates of the point i (Fig. 11.1 is a
two-dimensional representation, but the theory is also applicable in one or
three dimensions), and let (2)Zi = Z(xi) be the value measured at the point i.

The problem of the point estimation lies in determining the value of the
quantity Zo for any point X o that has not been measured. By continually
modifying the position of the point Xo it is thus possible to estimate the whole
field of the parameter Z.

In hydrology, kriging has a wide variety of applications:

(1) Calculations of rainfall, temperatures, sunshine, etc. based on measure
ments from climatological stations.

(2) Interpolation of thickness or elevation of underground geological
formations based on well logs.

(3) Estimation of hydrogeological parameters such as the transmissivity
of an aquifer, piezometric head, concentration of solutes based on measure
ments in the piezometers.

(4) Mapping of the concentrations of polluting agents in a lake, etc.

*

*
X3

Fig. 11.1 The point estimation problem.



H.l. The Problem of Estimation: Definition of Kriging 287

However, kriging is not limited to simple point estimations of the given
magnitude Z but can also be used to:

(1) Obtain the estimation variance of the magnitude Z, i.e., roughly, the
confidence interval of this estimation,

(2) Estimate the mean value of Z on a given block, e.g., on the mesh of a
model or a subdomain of any shape of a watershed basin.

(3) Locate the best situation for a new measurement point, e.g., by
minimizing the overall uncertainty in the field under consideration.

A generalization of kriging also makes it possible to create an infinite
number of conditional Monte Carlo simulations of the field Z, i.e., different
realizations of the map of Z, which are compatible with the measured data.
These maps can be used to visualize the uncertainty of the estimation and as
entries into stochastic models (Delhomme, 1979; Chiles, 1977). This will be
described in Section 11.9.

For the sole purpose of making the estimation, we shall choose a
probabilistic framework and assume that the magnitude Z(x) is a random
function (RF.) Z(x,~) for which we only have one realization (see Section
2.1.d). Here, x denotes the point in the geometrical space and ~ the state
variable in the space of the realizations; Z(x, ~d denotes a realization and
Z(xo,~)a random variable (RV.), i.e., the whole set of realizations of the R.F.
Z at the point xo.

In order to use kriging we must try to determine, on the basis of the only
sampled realization Z(x i , ~1), both (1)the "structure" of the RF. Z(x, ~), i.e., its
autocovariance function (the problem called statistical inference) and (2) the
"optimal" estimation of Z(xo, ~d for any point X o'

The probabilistic method must be seen as nothing more than a language and
a tool, which only leads to a system of equations, whence the desired
estimation can be obtained. In most cases there is only one realization of
which is completely determined in space. Our uncertainty concerning the
value of Z only stems from the weakness of the available samples, and the
probabilistic language only supplies a useful tool for expressing this un
certainty. When we start making hypotheses on Z to make the estimation, e.g.,
on its stationarity, these will be working hypotheses and only required to be
locally compatible with the data. The only objective proof of the validity of
the procedure will come from the confirmation of the predictions it has made
by measurements in the field.

In the following we give kriging equations for three cases: (1) stationary
hypothesis in Section 11.2, (2) intrinsic hypothesis (stationarity of the
increments) in Section 11.3,and (3)nonstationarity hypothesis in Section 11.7.
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11.2. Kriging in the Stationary Case, Use of the Covariance

11.2.1. Hypothesis of Weak Stationarity (or Second-Order Stationarity)

An R.F. is said to be second-order stationary if (1)E[Z(x,~)J = m (constant
mean) and (2) the function of autocovariance, or simply covariance, only
depends on the distance and not on the points of reference:

coV(Xl,X2) = E{[Z(Xl'~) - m][Z(x2'~) - m]} = C(h) (11.2.1)

where h = Xl - X 2 (distance).* If this expression is expanded, we get

(11.2.2)

The covariance function C(h) determines the "structure" of the phenomenon
(Fig. 11.2). Observe that C(O) = var(Z) = (T~ is the variance (or dispersion
variance) of Z.

Note that the expected value is taken here over all possible realizations of Z,
i.e., for all values of ~. Saying that E[Z(x,~)J = m means that this expected
value would be the same at any location x, But it does not mean that for a
particular realization ~l' Z(x, ~l) should be constant over x: such a function
would no longer be variable in space!

11.2.2. Kriging with Second-Order Stationarity Hypothesis when the
Mean m and the Covariance C(h) are Known

From now on we leave out the state variable ~ in order to simplify the
notation. We define a process of mean zero by

Y(x) = Z(x) - m (11.2.3)

which gives E(Y) = o. We shall estimate the value of Y at the point X o

* See Note Added in Proof at the end of this chapter.

o
h Fig. 11.2. Covariance function.
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Y; = Y(Xi ), i = 1, ... , n, then

n

Y6 = Y*(xo) = L Ab Y;
i= 1

(11.2.4)

Notation. Y6 is the estimation of the exact unknown value 10 at the
X o. The asterisk shows by definition that we are dealing with an estimate. The
Ab are the weights of the kriging estimator. These are the unknowns of our
problem. The indices i and 0 are indices and not exponents. The index i signifies
that the weight Ai relates to the measurement made at the point Xi; the index 0
shows that at each point x o, where Yo will be estimated, there will be a different
set of weights Ai.

The estimator Y6 is said to be "optimal" if the error of estimation (Y6 -
is minimal. Since the real value of Yo is unknown, we will only minimize the
mathematical expectation of the quadratic mean of this error of estimation:

minimum (1

In other words, since Y6 and Yo are random variables, we minimize the
variance of the error of estimation (Y6 - Yo). Please note here that the
mathematical expectation is taken for a fixed point in space X o for all possible
realizations of Y 6- 10, i.e., for all possible values of the state variable ein the
notation Y(xo, e).

In other words, if we were able to estimate Y6 for an infinite number of
realizations, using always the same weights Ab for each realization Y(x i , e), we
would make on the average the minimum error. Of course, since in general we
have only one realization, we will make at location X o an estimation error that
we cannot quantify. But by applying the ergodic hypothesis, we can say that on
the average, over a large number of locations X o where we will estimate Y, our
error of estimation will be minimum.

We can develop the expression Eq. (11.2.5) by replacing the value of Y6
Eq. (11.2.4):

- 2E[~AbY;Yo] + E[Y~J

= LLAbAbE(Y;lj) - 2LAbE(Y;Yo) + E(Y~)
i j i

By definition of the covariance function of Eq. (11.2.2), we can write

E(Y;lj) = C(x i - xj ) + m2
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but the mean m of Y is zero. Hence E(Y;lj) = C(xi - Xj) and, in particular;

E(Y5) = C(O) = dispersion variance of Y = var(Y)
Then

E[(Y6 - YO)2] = IIA~AbC(Xi - Xj) - 2IA~C(Xi - Xo) + C(O)
i j i

(11.2.6)

i = 1,... ,n

Equation (11.2.6) is a quadratic function of the weights A~. To minimize this
function, all the partial derivatives with respect to the A~ are equated to zero.

o~~ E[(Y6 - Yo?] = 2~AbC(Xi - Xj) - 2C(xi - Xo) = 0

(11.2.7)

This results in a linear system of n equations with n unknowns.

I AbC(xi - Xj) = C(Xi - Xo)
j

i = 1,... ,n (11.2.8)

This system has only one solution if C is a positive definite function and if
the Xi are distinct. We assume that this is indeed the case. The solution of Eq.
(11.2.8) is easily obtained by inverting the coefficients matrix or by Gaussian
elimination and gives the weights Ab,j = 1,... , n.

Note that the left-hand side of Eq. (11.2.8)does not depend on X o: we only
need to invert the matrix of the linear system of Eq. (11.2.8) once, when the
point X ois changed. Only the right-hand side of Eq. (11.2.8)is a function of X o.
(An explicit formulation of the matrix of the kriging system for a less simple
case is given in Section 11.3.2.)

11.2.3. Calculation of the Estimation Variance

We know now the estimated value Y 6:

Y6 = IA~Y;
i

We cannot compute the error of estimation Y6 - Yo but only its variance:

var(Y6 - Yo) = E[(Y6 - Yo?] - [E(Y6 - YO)]2

The second term of the right-hand side is zero, since

E(Y6 - Yo) = E(Y6) - E(Yo) = I A~E(Y;) - E(Yo) = 0
i

as E(Y) is assumed to be zero. Then

var(Y6 - Yo) = E[(Y6 - Yo?] (11.2.9)

But we have already calculated the right-hand side, which is given explicitly in
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Eq. (11.2.6) as a function of the Jeb. When we substitute in Eq. (11.2.6) the
values of the Jeb obtained in Eq. (11.2.8), we get

LJeiC(xi - Xj) = C(Xi - Xo) i = 1,... , n
j

var(Y6 - Yo) = var(Y) - LJebC(xi - xo) (1
i

We can see that the estimation variance of the unknown quantity is
smaller than the dispersion variance or real variance of the R.F. Y. Because Y
was measured at the points Xi' the uncertainty on Y decreases. We can now
return to our original variable Z (Z = Y + m):

Z6 = m +LJeb(Zi - m)
i

var(Z6 - Zo) = var(Z) - LA-bC(xi - xo)
i

Further on we shall examine how to estimate a covariance function C from
the data. It is also possible to establish kriging equations when the average m is
unknown, either in order to estimate Z directly or to estimate this average m
[see Matheron (1970), Journel and Huitjbregts (1979)]. We proceed directly to
the case called the "intrinsic case," where m is unknown and where the second
order stationarity hypothesis is not satisfied.

11.3. Kriging in the Intrinsic Case: Definition of the Vanogram

In the mining industry (estimation of ore grades), it has been shown that the
hypothesis of second-order stationarity with a finite variance C(O) is not
satisfied by the data in certain cases. This is frequently the case in hydrology as
well. The experimental variance increases with the size of the area under
consideration. A less stringent hypothesis, called the "intrinsic hypothesis,"
has been developed to make the estimation possible.

11.3.1. The Intrinsic Hypothesis

The intrinsic hypothesis consists in assuming that even if the variance
of Z is not finite, the variance of the first-order increments of Z is finite
and these increments are themselves second-order stationary, i.e., that
[Z(x + h) - Z(x)] satisfies

E[Z(x + h) - Z(x)] = m(h) } f . fhunctions 0 ,not X
var[Z(x + h) - Z(x)] = 2y(h)
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where h is a vector in the one-, two-, or three-dimensional space and where y(h)
is generally only a function of the distance h.

Although this is not absolutely necessary, it is usually assumed that m =0.
If this were not the case, but m(x + h) - m(x) = m(h), the function Z(x) - m(x)
would satisfy this condition.

The variance of the increment then defines a new function called the
variogram y(h):

E[Z(x + h) - Z(x)J = 0

y(h) = tvar[Z(x + h) - Z(x)J

Equations (11.3.1) and (11.3.2) make it possible to write

y(h) = tE{[Z(x + h) - Z(X)J2}

(11.3.1)

(11.3.2)

(11.3.3)

where y(h) is the mean quadratic increment of Z between two points separated
by the distance h.

If we compare the intrinsic hypothesis with the hypothesis of second-order
stationarity, we see that Eq. (11.3.1) is equivalent to E[Z(x)] = m (constant
mathematical expectation) but that Eq. (11.3.2) is less stringent than the
condition on the covariance:

C(h) = E[Z(x + h)Z(x)] - m2

Is there a relation between the covariance and the variogram? In the case
where both exist, i.e., in the stationary hypothesis, we can write

y(h) = tE[Z(x + h?J - E[Z(x + h)Z(x)] + tE[Z(X)2J

where we can see that

y(h) = C(O) - C(h) (11.3.4)

Ifwe know the covariance, the variagram is simply its reflection with respect
to the horizontal axis and with a vertical shift (Fig. 11.3).

When var(Z) is finite, the variogram tends towards an asymptotic value
equal to this variance, which is also called the sill of the variogram (the
distance at which the variogram reaches its asymptotic value is called the
range). However, if the phenomenon under consideration does not have
a finite variance, the variogram will never have a horizontal asymptotic
value (Fig. 11.4). Not just any function y(h) can be a variogram, just as the
covariance must be positive definite. It is indeed possible to show that:

(1) Minus y must be conditionally positive definite, i.e., for all Xl' ... '
x, E R"' (m = 1,2, or 3) and for all Al, ... , An E R, n coefficients satisfying
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h

o
Fig. 11.3. Covariance and variogram.

Fig. 11.4. Variogram of a phenomenon with
an infinite variance.

Llii = 0, then

h

o
h

-IIIi;AjY(Xi - X j ) :2: 0
i j

(2) y(h) for Ihl-? OCJ must necessarily increase less rapidly than Ih1 2
, i.e.,

. y(h)
lim Ihl 2 -? 0

Ihl.... oo

In practice, only a limited class of functions is used to describe variograms.
We shall present a few of them in Section 11.5.1 in connection with statistical
inference (determination of the variogram from the data).
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11.3.2. Kriging as Used in the Intrinsic Hypothesis

We shan also try to find the estimate zt of the unknown quantity Zo by a
weighted sum of an the available measurements:

n

zt = L A~Zi
i=1

(11.3.5)

Since we do not know the value of the constant mean m in the intrinsic
process Z(x), we impose an additional condition on the estimation zt,
namely, that its mathematical expectation be equal to that of the true R.F. Zo:

or (11.3.6)

Let m be the unknown mathematical expectation of the process Z.
Introducing Eq. (11.3.5) into Eq. (11.3.6), we can write

E[~ A~ZiJ = E[Zo] = m

or

i.e.,

LA~E(Zi) = m
i

or

LA~ = 1
i

(11.3.7)

This condition is required in order to have an unbiased estimator. We now
redetermine the set of weights A~ in Eq. (11.3.5), subject to the condition of
Eq. (11.3.7),by imposing the condition that the error of estimation be minimal:

E[(Zt - Zof] minimum

(or var(Zt - Zo) minimum since E(Zt - Zo) = 0.)
Let us develop Eq. (11.3.8):

(11.3.8)

(11.3.9)

E[(Zt - Zof] = E[(LA~Zi - ZoYJ = E[(~A~Zi - ~A~ZOYJ

= E[(~A~(Zi - Zo)YJ

= E[~A~(Zi - Zo)~AMZj - Zo)J

= LLA~A-bE[(Zi - Zo)(Zj - Zo)]
i i
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We then use the definition of the variogram:

y(xi - Xj) = !E[(Zi - Z)2]

= !E[((Zi - Zo) - (Zj - Zo)?]

= !E[(Zi - Zo?] + !E[(Zj - ZO)2] - E[(Zi - Zo)(Zj - Zo)]

= Y(Xi - X o) + Y(Xj - X o) - E[(Zi - Zo)(Zj - Zo)] (11.3.10)

From Eq. (11.3.10) we can calculate the mathematical expectation, which we
need in Eq. (11.3.9). By substitution we find

E[(Zt - ZO)2] = - LLAbAtY(Xi - Xj) + LLAbAtY(Xi - Xo)
i j i j

We can factor Li Ab or L· A~ in the last two terms of the right-hand side of this___ .• J

equation, but according to Eq. (11.3.7) these two sums are equal to one.
Furthermore

whence

E[(Z* - ZO)2J = - LLAbAtY(Xi - Xj) + 2 LAby(xi - xo)
i j i

(11.3.11)

(11.3.12)

We again find a quadratic form of the unknowns Ab. The minimization of
Eq. (11.3.11), subject to the linear constraint of Eq. (11.3.7), is found using
the Lagrange multipliers; we simply minimize the expression

!E[(Zt - Zo?] - JJ[~Ab - 1]
where JJ is a new unknown, called a Lagrange multiplier, which is added to the
n previous unknowns Ab. It can be shown that, when the above expression is
minimum, the linear condition Li Ab = 1 is satisfied for the value of
E[(Zt - ZO)2], which is the smallest one compatible with the constraint.
In Eq. (11.3.12) we have divided by 2 and put a minus sign before JJ in order
to simplify the following expressions, but, as JJ is an unknown, this is
unimportant.

The minimum of the quadratic form in A and JJ is obtained by equating to
zero its partial derivatives with respect to Ab and JJ. We get

LAtY(X; - Xj) + JJ = Y(X; - Xo)
j

LAb = 1
i

i = 1,... ,n
(11.3.13)
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Let us for once write the complete linear system of kriging in matrix form:

0 Y12 Y13 Yln 1 ,,1.6

(")
Y21 0 Y23 Y2n 1 ,,1.6 Y20

= . (11.3.14)

Ynl Yn2 Yn3 0 1 AD YnO

1 1 1 0 11 1

Note: We have denoted y(x; - Xj) by Yij. The diagonal is zero since Yu =
y(x i - Xi) = y(O) = o.

The matrix of the kriging equations is always regular if -Y is conditionally
positive definite. Here again the matrix only needs to be inverted once for all
points X o.

11.3.3. Variance of the Estimation Error

The variance of the error of estimation can also be computed:

var(Z6 - Zo) = E[(Z6 - ZO)2]

because E(Z6 - Zo) = o. We can calculate its value by substituting the
solution of Eq. (11.3.13) in Eq. (11.3.11):

var(Z6 Zo) = L:)hy(x; - xo) + 11 (11.3.15)
i

We have now, at last, obtained the usual kriging equations, which are used
in the intrinsic hypothesis or even in that of second-order stationarity when
the mean is unknown.

11.4. A Few Remarks about Kriging

11.4.1. Kriging is Called a "BLUE"

BLUE is an acronym for best linear unbiased estimate.

Other classes of estimators are also used in practice; for instance, nonlinear
estimators can be built by prior transformation of the data. Disjunctive
kriging (Matheron, 1976) and indicator kriging (see, e.g., Journel, 1984) are
examples of nonlinear estimators (see also Section 11.6.2). Biased esti
mators can sometimes be preferred to unbiased ones, e.g., when other con
straints are placed on the estimation or simply when the nonbias condition
is removed. We will come back to this problem in an example in Section 11.6.2.
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11.4.2. Kriging is an Exact Interpolator

If we try to compute the value of Z at a point X k, which has been measured,
i.e., xk E (Xi' ... ,xn) , the kriging system gives

Zj( = ZK

for a measured value, i.e., A~ = 1, A~ = 0, i =F- k, and

var(Z: - Zk) = 0

(no uncertainty at a measured point).

This contrasts with a least-squares fitting of a polynomial, which will never
give the true value at the measurement points.

11.4.3. Confidence Interval

Knowing the variance of the error of estimation is, in principle, not enough
to determine the confidence interval of the estimates. However, one can very
often assume that the distribution of this error is normal: in that case we can
say, for instance, that the 95% confidence interval is ±2(1, (1 being the standard
deviation, i.e., the square root of the variance:

(1 = Jvar(Zt - Zo)

Then the estimate of Zo with 95% chance is

ZJ' = IA~Zi ± 2(1
i

We also know that many other distribution functions also satisfy a ±26
confidence interval at 95%, and consequently this expression is very often
used.

11.4.4 Computation of the Complete Covariance Matrix

Instead of computing only the variance of the estimation error, var(Z~ 
Zo), it is also possible with kriging to compute the complete covariance
matrix of this error of estimation. We can show that

cov[(ZT - Zd, (Z! - Zz)] = -y(x i - Xz) - IIAiA~Y(Xi - x)
i j

This quantifies the relationship between the estimation error at locations x,
and xz.
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11.4.5. Equations in the Kriging System do not depend on the
Measured Values Z,

Indeed, we only need to know the coordinates Xi of the measurement points
in order to calculate the weights Ai. If the data vary in time, for instance, these
weights Ai may be used for various situations.

11.4.6. Drawing Contour Maps with Kriging

By solving the kriging system we can estimate Zo at any point xo. In order to
draw a contour map, we generally choose a large number of points X o on a
regular mesh, regardless of the position of the measurement points. The
contour lines are then drawn either by hand or with a standard contouring
package, which generally requires as input the value of Z onjust such a regular
mesh. One must also plot the map of the variance of the estimation to
understand the uncertainty. One can also plot the map of twice the standard
deviation, which corresponds to the 95% confidence interval.

11.4.7. Calculating Average Values over a Mesh Instead of Point Values

Instead of estimating the value Zo at a point xo, it is also possible to estimate
directly any linear combination of the value of the variable Z, in particular its
average over a given area So:

ZSo = J..-f Z(x)dx
So So

Here So may be a given mesh or the entire domain (e.g., for estimates of the
average rainfall on a watershed basin during a thunderstorm). The estimator
of the average is built directly as a linear combination of the available data:

zto = LA~Zi
i

Using the same conditions of unbiased and optimal estimation, it is also
possible to calculate the following new kriging system:

LA£Y(X i - xJ + fJ. = y(xi,So),
j

LAb = 1
j

with

i = 1,... ,n

(11.4.1)

(average variogram between Xi and the area So).
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The estimation variance is given by

var(zto - ZSo) = I AhY(X;, So) + f.1 - y(So, So)
;

with

Similarly, it is possible to use as measurements the value of Z obtained as
averages over a certain area; e.g., if the measurement Zj is an average of the
parameter over the area Sj' y(x; - xJwill be replaced in the kriging equations
by

y(x;,Sj) = -sl.1 y(x; - x)dx
J s,

and jJ(xj , So) on the right-hand side by

y(Sj'So) = SIS.11y(x - y)dxdy
o J So s,

This makes it possible to simultaneously use data collected by different
methods (measurements from core samples, slug tests, long pumping tests, etc.,
in the case of transmissivities, for example). Note, however, that y here is the
variogram of point-measured data. Non-point-measured data should there
fore not be used to estimate y (or a prior deconvolution has to be made), unless
all data are measured over the same area. In such cases, y is directly
determined. If measurements made as averages over different areas have to be
used simultaneously both in the determination of y and in kriging, then co
kriging should be used (see Section 11.9).

11.4.8. Kriging with Uncertain Data

So far we have assumed that the measured values Z; are known without any
uncertainty. In reality this is not always the case, but kriging can also handle
uncertain data. In the case where the errors e, linked to each measurement
are

(1) nonsystematic, i.e., E[e;] = 0, i = 1,... , n,
(2) uncorrelated with each other, i,e., covts., ej) = 0, 'if i =1= j,
(3) uncorrelated with Z, i.e., covjs., Z(x)] = 0, 'if i, 'ifx, and
(4) have a known variance (If (different for each 0,

it is easily shown that the equations of the kriging system become, for example,
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for estimates of point values, as follows:

(1) Estimator

(2) Kriging equations

Llity(xi - Xj) - Ii~(j"; + P, = Y(X; - Xo)
j

(3) Variance

i = 1,... ,n

var(Z~ - Zo) = LIi~Y(Xi - X o) + p,
i

The function Y is supposed to be the true variogram of the magnitude Z
(without errors). This would be feasible by determining yon those points where
the measurement error is zero only (see Section 11.5.3). The Z, are the
measured values (i.e., with the measurements error, if any). The quantity Zo is
the "true" (unknown) value (without measurement error).

The only change from the usual system is that the equations now have - (j";
on the diagonal instead of O. It is also possible to use both "certain" and
"uncertain" data simultaneously: we simply put (j"; to 0 for the certain data. If
the errors e,are correlated, the equations in the kriging system are a little more
complex. The same equations can be developed for the estimation of averages
instead of point values.

11.5. Statistical Inference

11.5.1. Determination of the Varioqram

We have defined the variogram in the case where the mean is constant by

y(h) = !E{[Z(x + h) - Z(X)J2}

To estimate the variogram we simply use the measurement points Z; and
assume ergodicity on the increments (i.e., that space averages can be used to
estimate the averages in the whole set of realizations).

First we define a certain number of classes of distances between the
measurement points, e.g.,

0< d1 < 1km 1 < d2 < 2km

3 < d4 < 5km

2 < d3 < 3km

5 < ds
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Then, taking all possible pairs of points i and j for each class of distance, we
calculate:

(1) The number of pairs present in the class.
(2) The average distance in the class.
(3) The average square increment !(Zi - Z)2.

With a set of 50 measurements we obtain, for example:

Class d1 dz d3 d4 ds

Number of elements 500 350 250 100 25
Average distance 0.7 1.3 2.4 3.8 6.2
1(Z, - Z)2 average 130 275 350 570 400

Note that the number of pairs that can be formed from a set of n points is
n(n - 1)/2; for 50 points this gives 1225 pairs. However, generally they are not
evenly distributed. There are more pairs at short than at long distances. The
variogram becomes more and more uncertain as [h] increases. At large
distances certain points may playa privileged role and introduce errors into
the estimation. It may be necessary to eliminate a few measurements when
calculating the variogram (Fig. 11.5).

However, we have seen that all functions cannot be variograms. In a class of
acceptable analytical functions we choose a given form and fit the parameters
of this function on the observed points. The main types of variograms
commonly used are: linear; in IhIA

, A. < 2; spherical; exponential; Gaussian;
cubic. The forms and equations of these variograms are given in Fig. 1

500

400

300

200

100

o 2 3 4 5 6

h, km

Fig. U.s. Experimental variogram.



302 11. Geostatistic and Stochastic Approach in Hydrogeology

adapted from Delhomme (1976). For example, the variogram in Fig. 11.5
would be interpreted as a spherical one and the two parameters, OJ and a,
would be fitted by hand on the data (Fig. 11.7). Note that a piecewise linear
variogram (i.e., made of segments of straight lines) is not acceptable; it is not in
general a positive definite function. See Armstrong and Jabin (1981).
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500
•••@ .......

400 • .. ··0

.s: 300
>-.

200

100

o 234567
h, km

Fig. 11.7. Spherical variogram fitted to the experimental one, to = 430, a = 3km.

11.5.2. Behavior of the Varioqramfor Large h

Note that an unbounded variogram, e.g., a linear one, suggests that the field
has infinite variance and that there is no covariance function: the intrinsic
hypothesis is the only acceptable one here. But if the variogram reaches a
as for example in Fig. 11.7, then the covariance function exists for the
phenomenon in question.

Fig. 11.6. Common varia gram models (from Delhomme (1976)).Here, h denotes the length of
the vector h. The expressions given are for y(h).

(a) model in h' coh" A<2

(b) spherical model w[~ (~) - H~YJ h<a

w h>a

(c) exponential model w[l exp( -hja)]

(d) Gaussian model w{l exp[ -(hja)2]}

(e) cubic model W[7(~) - 8.75(~Y + 3.5GY - 0.75(~YJ

h<a

h<a

(f) fitting on a "linear plus spherical" model (example)

13.3 h + 60[~ (~) - ~ (~)3J
2 1.5 2 1.5

13.3 h + 60

h < 1.5

h> 1.5



304 u. Geostatistlc and Stochastic Approach ill Hydrogeology

11.5.3. Behavior Close to the Origin

Theoretically, for h = 0, y(b) = °regardless of the variogram. However,
very often variograms exhibit a jump at the origin, as in Fig. 11.8. This
apparent jump at the origin is called the nugget effect, as it originated in the
mining industry. Indeed, if a core contains a nugget, the concentration will be
very high, whereas neighboring cores even with high mineral concentration
will never be as rich: there is an "erratic" component in the behavior.

Such behavior is very frequently found when data are analyzed (e.g.,
transmissivities), To take it into account, one just adds the quantity C to the
variogram fitted on the data as if C were the origin:

y(b) = C[l - b(b)] + y'(b)

where b(h) is the Kronecker 15 (15 = 1 if h = 0, 15 = °if h =1= 0) and y'(h) is the
variogram fitted on the data with C as origin.

This nugget effectcan also be attributed to measurement errors or to the fact
that the data have not been collected with a sufficiently small interval to show
the underlying continuous behavior of the phenomenon (Fig. 11.9).

A horizontal variogram, i.e., y(h) = C, v h » 0, is called a variogram with
pure nugget effect. It expresses a purely random phenomenon without spatial
structure.

When the variogram has a nugget effect, kriging is still an exact inter
polator, as stated in Section 11.4.2., but the estimation is discontinuous at the
measurement points, i.e., if x, is a measurement point and Zk = Z(xk), then
Z*(xk) = Zk' but Z*(xk + dx) =1= Zk even if dx -+ 0. However, the estimation is
continuous everywhere else.

Let C be the nugget effect. Let us write the variogram y(b) = C(1 - b) + y'.
An alternative that gives strictly identical results is to subtract the nugget

effect from the variogram, considering that it only represents measurement
errors, and use an uncertainty (11 = C on the diagonal of the kriging system, as
explained in Section 11.4.8, whereas the kriging matrix and the right-hand side
are both built using y' instead of y. It is easily seen that this new kriging system
is identical to the original one, by adding the last line of the system multiplied
by C to all the others.

c

h Fig. U.S. The nugget effect.
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h

available data

I J >~
.L":c ",....... -1\-

)0... ......V
..............
------- apparent nugget effect C

h
Fig. 11.9. Underlying continuous behavior of a variogram with a nugget effect. The left-hand

side shows the "true" variograrn.

However, it is also possible to write the kriging equations using yon the left
hand side (with zero on the diagonal) and y' on the right-hand side. De Smedt
et al. (1985)have shown that this corresponds to the case where y' is said to be
the true variogram of the phenomenon (without measurement errors) and y
the variogram of the noisy data. In this case, the estimate Z~ is continuous
everywhere but is no longer exact at the measurement points. The variance of
the error of estimation is also reduced with respect to the normal system. It is
given by:

var(Z~ - Zo) = LA~Y'(Xi - xo) + f1 + C
i

Finally, if a horizontal variogram is used (pure nugget effect), one finds that
;V = n-t, Vi, n being the number of measurement points. The estimation Z(j is
then constant over the domain and equal to the average of all measurements.

Much work is presently being done to establish procedures that improve the
quality and the robustness of the determination of the variogram. See for
instance Armstrong (1984) and Diamond and Armstrong (1984).

11.5.4. Anisotropy in the Varioqram

It may be useful to compute the variogram while assuming that y(h)is also a
function of the direction of the vector h. Of course, this requires more data
points in order to be significant. We could, for instance, use four (or eight)
classes of directions and plot each variogram separately, as in Fig. 11.10.

Generally, variograms do not show anisotropy like Fig. 11.10. If they do,
then (1)this may be a sign that the assumption of stationarity (or even intrinsic
behavior) does not hold (such cases are dealt with in Section 11.7); or, (2) if
the intrinsic or the stationary hypothesis is valid, this anisotropy can be
eliminated by an appropriate linear transformation in the coordinate system.
This will permit us to krige as usual in the new system.
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................········N

h

Fig. 11.10. Directional variogram.

11.6. A Few Additional Remarks about Kriging

11.6.1 Kriging with a Moving Neighborhood

For this case, instead of kriging with all the measurement points, i =

1,... ,n, we use only those that are situated inside a given neighborhood of
the point we want to estimate (Fig. 11.11). This neighborhood can be defined in
several different ways:

(1) As all the data points at a distance less than R from the point xo.
(2) As the set of m points closest to the point xo.
(3) Even better, by selecting the points according to some criterion, e.g.,the

quality of the data.

There may be several reasons for using a moving neighborhood:

(1) The variogram is best known for small values of h and becomes less
and less certain as h increases; therefore it is more efficient to use data close
enough to X o that IXi - xjl remains in the range where the uncertainties on the
variogram are still small.

(2) By using only a limited number of neighboring points, the kriging
system has fewer equations and therefore less effort is required to invert the

Point to be kriged

,,_Measurement point
l<

"

" "
"

" x

"
x "

Fig. H.H. Kriging with a moving neighborhood.
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matrix; however, each time the set of neighboring points is modified one must
compute and invert the matrix of the kriging system again.

(3) By this procedure, one can sometimes relax the condition of stationar
ity (or "intrinsic" behavior) of the phenomenon. One only requires pseudo
stationarity in a limited area around the estimated point and can allow for a
long-range trend in space.

(4) If data from distant points are used in the estimation, their weights will
be very small and possibly negative. In certain cases, this could lead to negative
estimated values.

For example, if the object were to krige the elevation of the ground in a
mountainous area, the stationarity would be a question of scale (Fig. 11.12).

11.6.2. Kriging of the Logarithms

Instead of working with the magnitude Z it is sometimes possible to krige its
logarithm. There are several reasons for choosing this procedure.

First, some magnitudes have log-normal probability distribution functions.
In such cases the spatial structure is much better (the variogram shows a
stronger correlation) if we use the logarithm of the variable instead of its
natural value. This is true for the transmissivities, for instance.

Second, if we take mean values over a mesh, the arithmetic mean of the
logarithm gives, in fact, the geometric mean of the natural values, and it so
happens that the latter is a better estimator of the true average than the former
for the transmissivities (see Section 4.4).

It might, however, be desirable to return to a nonbiased estimator. If the
probability distribution function of Z is log-normal and we estimate Y =
logZ, then exp[E(Y)] is not an estimator of the average E(Y) but of the
median. Conversely,

E(Z) = exp[E(Y) + !var(Y)]

However, another bias is introduced by the condition of unbiased estimation,

Large scale =stationary

]
~ Middle scale = nonstationary

lli>1----------J:-/'lI!~;------ll>o!

~ Small scale = stationary

Fig. 11.12. Stationarity versus scale of observation.
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E(Y6 = E(Y). It can be shown that the optimal estimator of Z6 is

Z6 = exp[Y6 + tvar(Y6 - Yo) - ,u]

However, this expression is not very robust (i.e., insensitive to the assumptions
or to error) because it supposes that all the probability distribution functions
of Z (with n variables) are log-normal as well. If this is not the case, it is
preferable to use an iterative process (Journel and Huijbrechts, 1978;Journel,
1980).

When kriging average transmissivities over blocks, it is preferable, however,
to obtain an unbiased estimation of Y = In T, and to use T = exp(Y) as a
biased estimation. It is indeed impossible to have an unbiased estimation of
both Y and T, and we have seen in Section 4.4 that the geometric mean is the
optimal estimation of the average transmissivity, in two dimensions, for
uniform flow conditions.

11.6.3. Verification of the Validity of the Model

To check the validity of all the assumptions used in kriging (e.g.,
stationarity, good estimation of the variogram), it is preferable to test the
ability of the model to predict known data.

(1) One value is taken out of the set used in kriging, e.g.,at point i (say Z;).
(2) We compute the predicted value (Z{) at point i, obtained by kriging

with the other data.
(3) We can then exactly estimate the error of kriging at this point and

compare it with the variance of estimation at the same point (or rather the
standard deviation 0"z).

(4) Bydoing this successivelyfor all data points, one can check that there is
no systematic bias,

and that the kriging errors are coherent with the predicted variance,

1 (20 - Z~)2-2: ' , ~ 1
n n O"Z

11.6.4. Network Optimization

The variance of the estimation is a powerful tool for optimizing a network,
because in the expression:

var[Zo - Z<f] = 2:A.~Y(Xi - xo) + ,u
i

the measured values Z, at each measurement point Xi are not included. One
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can therefore conceptually add a new "fictitious" measurement point, compute
the map of the variance of estimation with this new point, and compare it with
the previous map. One can then locate the additional measurement points
in the area where the variance of estimation is high.

The quality of the measurement (variance or "uncertainty" of the measure
ment) can also be included as shown before.

Conversely, a network that is too costly to maintain can be reduced by
maintaining only the observation points that give the most acceptable map of
estimation variance in view of the objectives of the observation (general
surveillance or local zone of interest).

Furthermore, if the purpose of the network is to estimate the average of Z
over the entire domain (e.g., computation of rainfall averages), then the
variance of estimation is only a single figure, not a map for the entire domain.
The fictitious point can then be moved around over the entire domain, and
the "increase in precision" can be plotted. It is defined by

()
var[Z* - Z] - var[Z* - Z]'

Gx=--=-----="=--~::-----=-
var[Z* - Z]

where the prime shows the variance computed with the fictitious point.
Having selected the first best additional point, one can repeat the

calculation for a second point, and so on. The suppression of one or several
measurement points can be decided according to the increase of the global
variance.

n.7. Nonstationary Problems

11.7.1. Definition

In nonstationary problems the mathematical expectation of Z is no longer a
constant: E[Z(x)] = m(x), and the variogram cannot be calculated directly
from the data since m(x) is unknown.

y = !var[Z(x + h) - Z(x)] = !E{[Z(x + h) - Z(X)]2} - ![m(x + h) - m(x)]2

If we then try to calculate the variogram as shown in the preceding section,
i.e., directly from the data, by

y'(h) =-2
1

~)Zi - zy
nh

where nh is the number of pairs (Z, - Z) separated by distance h, we find that
the variogram y'(h) is anisotropic because the mathematical expectation m is
anisotropic and Z has a main direction of drift, e.g., the direction of flow, for
hydraulic head.
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In this direction, if m is a linear spatial function, a parabolic function is
added to the true variogram y. Thus the calculation of the variogram in
several direction (see Section 11.5.4.) makes it possible to detect the
importance of the nonstationarity.

There are several procedures for solving nonstationary problems. We start
with three solutions of special cases before turning to the general one in
Section 11.7.3.

11.7.2. Special Cases

In certain cases, it is possible to:

(1) Assume that Z is "locally stationary," that is to say, that the variogram
stays isotropic for a certain neighborhood, and we can krige with the intrinsic
hypothesis in that area using a moving neighborhood (see Section 11.6.1 and
Chiles, 1977).

(2) Assume that the mathematical expectation m(x) is known. It may, for
instance, be deduced from other types of measurements. Its mathematical
expression might also be known for physical reasons (e.g., the general shape of
the drawdown in the vicinity of a borehole for the hydraulic heads), and then
the constants of this expression may be fitted on the model. We then verify
that the residues Z(x) - m(x) are stationary and can be kriged under the
assumptions of the intrinsic hypothesis. It is, however, incorrect to fit a
polynomial expression (by least squares) arbitrarily on the data, assimilate it
to m(x), and work on the residues. Indeed, the fitting by simple least squares
assumes that the residues are independent and therefore that no spatial
structure exists. It is usual in statistics to test the independence of these
residues with the Durbin-Watson test. It is thus contrary to the hypothesis to
try to find a variogram for them. It is nevertheless possible to use generalized
least squares if we take this spatial correlation into account iteratively [see
Neuman, (1984)].

(3) Assume that the variogram y is stationary and known. This is an
extension of simple kriging which is called "universal kriging" but which is
usually difficult to apply because the variogram must be known. However,
assume that we know it and that it is stationary and not a function of x:

y(h) = tvar[Z(x + h) - Z(x)J (11.7.1)

We have seen that we cannot compute this variogram directly from the data
because the average m(x) is not known. As usual, the kriging estimation is

(11.7.2)
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but the condition for having an unbiased estimator is different:

E(Zti) = E(Zo)

whence

I ll~m(Xi) = m(xo)
i

but E(Z) = m(x)

(11.

The average m(x) is not known, but we make the assumption that it is
regular and that it may be represented locally by a known set of basis
functions. Polynomial expressions are commonly used for this purpose. For
example, in two dimensions, we write

m(x) = ao + a1X + az Y + a3X
z + a4XY+ as Y z + ...

where X and Yare the coordinates of point x in two dimensions or

m(x) = I akpk(X)
k

where the p(x) are polynomials in X and Y.
In order to ascertain that the estimator is unbiased, we impose that

Eq. (11.7.3)is satisfied by any value of ai:

IIl~[Iakpk(xi)J = Iakpk(xo)
i k k

or

which is satisfied if

'V . k kL.1l0P (x;) = P (xo),
i

k= 1,... ,m (1

These conditions are the equivalent of the single condition Ii Il~ = 1,which
was imposed in the stationary case. We then minimize the estimation variance
var(zt - Zo), subject to the m conditions [Eq. (11.7.4)], in the same way.
The estimation variance is again a function only of the variogram y because of
Eq. (11.7.4), and the equations in the kriging system become

IIl~y(xi - Xj) + IJ.lkpk(X;) = y(x; - xo)} i = 1,... ,n
j k

(11.7.5)1
'V i k k k 1L.1l0P (xi)=p (xo) = , ... ,m

i
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where the J-tk are Lagrange multipliers. The solution of Eq. (11.7.5) gives the A~

for calculating Zo with Eq. (11.7.2) and the J-tk for calculating the estimation
variance with

(11.7.6)

Note that the drift m is fitted only locally and that it does not appear directly
in the estimation of Z but only in the calculation of the variance. Therefore it is
not the same thing to fit one polynomial expression on the system as a whole
and to krige the residues. Each new point X o has a new fit for the drift m(xo), the
coefficientsof which (the ak) are never calculated. For this reason we generally
use only low-degree polynomial expressions (linear or quadratic in X and Y).

However, the serious problem with universal kriging is that the "true"
variogram y(h)must be known and cannot be estimated directly from the data.
Although efforts have been made to calculate y iteratively (assume that y is
known, krige, verify yonce m is known), this is not practical. This is why
universal kriging is used only if (1) there is a drift in part of the system, e.g.,
towards the boundaries (the variogram is fitted in the center, where the
phenomenon is stationary, and is then used to krige the entire domain); or (2)if
there is no drift at all in a given direction in the field as a whole. (Then the
variogram is determined from the data in this direction only and we use it in all
the other directions while assuming that the "true" variogram is stationary
and isotropic. However, it is very difficult to verify the validity of such an
assumption.)

11.7.3. General Solution: Intrinsic Random Functions of Order k

(a) Redefinition of the intrinsic hypothesis. Kriging with the intrinsic
hypothesis, which we have described above for the stationary case, may be
summarized as follows:

(1) Define the weights A~ such as
n

Z6 = I A~Zi
i=1

(2) Write the condition
n

I A~ = 1
i= 1

(11.7.7)

(11.7.8)

(3) Take the (minimal) estimation error given by the kriging system to be
(by Eq. (11.7.8))

n n

Z6 - Zo = I A~Zi - Zo = I A~(Zi - Zo)
i=1 i=1

(11.7.9)

kenne
Subrayado
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(4) Assume that the difference (Z, - Zo) or [Z(x + In) - Z(x)], called first
increment of Z, is stationary. It can then be shown that the variance of
the estimation error with kriging depends only on the variogram:

n n n

var(Z6 - Zo) = £[(Z6 - ZO)2J = - L L A~AbY(Xi - x) + 2 L Y(Xi -
i=lj=l i=l

(1

We can formulate all these equations again by arranging them slightly
differently. We define Ag = -1 (i.e., the value of A~ for i = 0) and associate the
point X o with the value i = o. Then Eq. (11.7.8)-(11.7.10) can be written as

n

L A~ = 0 (11.7.8a)
i=O

n

Z6 - Zo = L A~Zi (1
i=O

n n

£[(Z6 - zofJ = - L L A~AbY(Xi - x) (1
i=Oj=O

Equation (11.7.9a), subject to the condition of Eq. (11.7.8a), is called an
increment of zero order of the random function Z. The intrinsic hypothesis
assumes that this increment is stationary. The variance of the estimation error
is then a linear function of the variogram. Finally, it is possible to determine
the variogram directly from the data, as shown in Section 11.5.

This method can be called the procedure for the intrinsic random functions
of zero order, which will be generalized below.

(b) Intrinsic random functions of order 1 (IRF-1) and of order 2 (IRF-2).
We treat orders 1 and 2 simultaneously and the estimation runs as follows.

(1) We define the weights A~ such as
n

Z6 = L A~Zi
i=l

(11.7.11)

(In fact, we are looking for the optimal weights A~). We define likewise
Ag = -1.

(2) We impose three conditions (first order):
n

L A~ =0
i=O

n

L A~Xi=O
i=O

n

L A~Y; = 0
i=O

(11.7.12)
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or six conditions (second order):
n

I A~ =0
i=O

n

I A~Xi = 0
i=O

n

I A~Y; = 0
i=O

,~o lbXI ~ °1
I A~Yf = 0

f=:~XiY; = •
i=O

(11.7.13)

where Xi = (Xi' Y;) are the two coordinates (in two dimensions) of the point Xi'

(3) Then the error of estimation is given by
n

zt - z, = I A~Zi
i=O

(11.7.14)

The quantity I:=o A~Zi' subject to the condition of Eq. (11.7.12) or Eq.
(11.7.13), is called a generalized increment of order 1 (or order 2) because it
filters a polynomial expression of order 1 (or order 2), Assume that we define

i = O, ... ,n

Then

ito A~Z; = itA~Zi + ao(to A~) + a1 (to A~X)

+ h1 (to A~ Y;) = ito A~Zi
if the conditions of Eq. (11.7.12) are satisfied. The generalized increment of
Z ± any polynomial expression of the first order is unchanged. The same
would be true for the second order.

In one dimension, to first order, if the measurement points are equally
spaced one can take a set of three A's as, for instance A1 = 1,A2 = - 2, A3 = 1.
They satisfy the constraints I~ Ai = 0 and I~ AiXi = 0 if Xl = a, X2 = 2a,
X3 = 3a. Then I~ AiZi = Zl - 2Z2 + Z3' This is by definition a second
order difference. Generalized increments of order k are therefore just a
generalization, in two or more dimensions, of this simple concept.

(4) We make the assumption that the generalized increments of the first or
the second order of Z are stationary (intrinsic hypothesis of order 1 or 2).It is
then possible to show, exactly as in the hypothesis of zero order, that the
variance of the estimation error may be expressed in the following form:
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where K is a new function, called the "generalized covariance" of the first or
second order of the IRF Z; K is stationary, i.e., K is only a function of
h = X; - Xj.

(5) If we assume that K(h) is known, the equations in the kriging system
become (when we replace y by - K in the preceding expressions) for first order

n

I AbK(x; - Xj) - J11 - J12X; - J13 Y; = K(x; - xo)
j=l

i = 1,... ,n

n

I A~ = 1
;=1

n

I A~X;=Xo
;=1

n

I A~ Y; = Yo
;=1

(11.7.15)

n 5

I AbK(x; - Xj) - I J1kpk(X;) = Kix, - xo)
j=l k=O

[where X; = (X;, Y;)] and for second order,

n

I A~pk(X;) = pk(Xo),
;=1

k = 0, ... ,5

t = l, ... ,n

(11.7.16)

where pO(X), ... , p5(X)designate the 6 polynomials in X;, Y; from Eq. (11.7.13).
The estimation variance is given for first order by

n

var(Z~-Zo)=E[(Z~-Zo)2J=K(0)+J11 +J12XO+J13 YO- I A~K(x;-xo)
;=1

(11.7.17)

and for second order by
n

var(Z~ - Zo) = K(O) + I J1kpk(XO) - I A~K(x; - xo)
k ;= 1

(11.7.18)

When these new equations are compared with those of universal kriging,
Eqs. (11.7.4)-(11.7.6), they prove to be identical. This is not surprising if we
bear in mind the filtering properties of the generalized covariance. The IRF
hypothesis assumes that the drift is locally linear (or quadratic) and we can
krige as soon as we know the generalized covariance K(h).

Observe that here K(O) is usually zero unless we use integrated values, in
which case we have shown that this term is given by

K(O) = ;2f f K(x - y)dxdy
o So So

IRF k ofa higher order can also be defined, but practical experience shows that
it is enough to use IRF-1 and IRF- 2 in most cases.

(c) Statistical inference of the generalized covariance. In order to identify
the variogram in the case of an IRF-0, it was only necessary to calculate
y(h) = !E{[Z(x + h) - Z(X)J2}, since the first increment (of zero order) was
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stationary. To do it, we only used the measurement points 2 by 2. Then an
analytical expression was fitted on the experimental variogram (cf. Section
11.5). For K(b) we actually proceed in a similar way but the fitting becomes
automatic. The statistical inference runs as follows.

(1) Choice of a point Xo where, naturally, Zo = Z(xo) is known. We then
choose n points Xi close to Xo with Zi ~ Z(xa known, i = 1,... , n. A moving
neighborhood is generally used, just as in kriging.

(2) A generalized increment of k order is built; i.e.,we compute
n

G(xo) = L A~Zi
i=O

(11.7.19)

where the weights A~ satisfy the conditions for being generalized increments of
order k, e.g.,Eq. (11.7.13) at the second order. To calculate a set of weights A
that fulfill the conditions of Eq. (11.7.13), several methods can be used. We can,
for instance, calculate the A that minimize

(11.7.20)

subject to the conditions of Eq. (11.7.13). Just as in kriging, these weights are
obtained by equating to zero the partial derivatives of Eq. (11.7.20) with
respect to A while taking Eq. (11.7.13) into account through the Lagrange
multipliers. We can also calculate the A terms as solutions to a problem of
universal kriging (see Section 11.7.2.c) by using any variogram y and taking
Ag = -1. Another solution is to take a small number of points and solve
Eq. (11.7.13) directly.

(3) We assume that the increments G(xo) are stationary, of zero average
(for all Xo and for all sets Xi of neighboring points). Then the variance of these
increments G(xo) may be expressed as a function of the (still unknown)
generalized covariance K(h) by

n n

var[G(xo)] = [G(XO)]2 = L L A~AbK(Xi - Xj)
i=Oj=O

(11.7.21)

(4) We assume that K(h) can be expressed as a preselected function of h,
which only depends linearly on unknown coefficients Ai; a usual form is

(11.7.22)

where f> is the Kronecker symbol (see p. 304) and Ao is the nugget effect.
In order for K(h) to be a generalized covariance, the Ai must satisfy

Ao~ 0, Ai:::; 0, A 3 ~ 0, As ~ -J -24AiA3 /n2

in one dimension and
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in two dimensions. In practice, experience has shown that this limited class of
generalized covariance functions K(h) is quite sufficient for the study of most
problems. Sometimes it is not even necessary to use all the terms: Ao, A l or
Al, AS' or simply A 3 , may suffice.

We can then write Eq. (11.7.21)as follows:

[G(xo)]Z = LA~Ab{Ao[1 - <5(xi - xj)] + Allxi - Xjl
i,i

+ Aslx i - xjlZlnlxi - Xjl + A31xi - Xj13} (11.7.23)

The second, third, and fourth terms are called the linear, spline, and cubic
terms, respectively.

(5) The calculation of G(xo)by Eq. (11.7.19) is repeated a great number of
times (several hundreds or thousands) while varying the point Xoas well as the
neighboring points Xi' i = 1, ... , n of each point Xo' Often the Xi are chosen in
increasingly large circles surrounding the point xo, as in Fig. 11.13. The linear
combinations Amust be correlated as little as possible (not have many points
in common between two of them).

(6) The coefficients Ai are determined by simple regression:

~iin~ {G(Xo)Z - i.tO A~AMAo(1 - b(h)) + Alh + Azh
z + A 3h3]}

where h = IXi + xJ The Ai are calculated by canceling the first derivative of
the preceding expression with respect to the Ai (linear system of four
equations with four unknowns).We can also, if we so desire, weight this sum in
order not to give too much weight to the large G(xo) values, which would
present too great a variance.

(7) Once K(b) is known, the whole kriging procedure is verified by
recalculating, one by one, all the measurement points as we have explained in
Section 11.6.3.Consequently, to krige with the 1.R.F. k, we must (1)choose the
k order (0,1, or 2); (2)choose the form of K(b) [selected terms in Eq. (11.7.22)];
(3) calculate K(b) and verify its validity as for the variogram. It is possible to

3rd neighborhood

2nd neighborhood

1st neighborhood

Fig. 11.13. Neighborhood for calculating the generalized covariance.
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make several test runs in order to choose the best k order or form of K(h), but
experience also allows us to select the most suitable values simply by studying
the data. A computer program, BLUEPACK 3-D (Renard et al., 1985) has
recently been developed to apply nonstationary geostatistics to two- or
three-dimensional problems using these principles (see also Delfiner, 1976;
Kitanidis, 1983).

11.8. Examples of Kriging

We shall describe two examples where kriging is used in hydrogeology:
transmissivities and heads.

11.8.1 Kriging Transmissioities (after Delhomme, 1974)

The aquifer of Fig. 11.14 consists of confined eocene sands in the Aquitaine
basin (France). Data were available in 86 wells; 29 came from pumping tests
and were considered exact and the 57 other data points were only the specific
capacity in the wells, which was also available in the 29 wells with pumping
tests. A linear regression was then made between the log of the specific
capacity (Q/s)j and the log of the transmissivity ~ at these 29 wells. The 57
other wells were given a transmissivity value by means of this regression as
well as an "uncertainty," estimated to be the variance of the regression:

where

(J2 = (J2 {1 + ~ + [In(Q/s)j _hl(QTs)]2 }
J n n __

L [In(Q/s)i - In Q/s] 2

i= 1

j = 1, ... ,m (11.8.1)

1 n

(J2 =-- L [In 1; - aln(Q/s)i - b]2
n - 2 i = 1

with n as the number of pairs in the regression

__ 1 n

In Q/s = - L In(Q/s)i
ni=1

and a and b as coefficients of the linear regression.
The variogram was then estimated with the 86 values of transmissivities,

This was done both on In T and on the natural values (Fig. 11.15). The former
have a much better "structure" than the latter. This is due to the fact that the
transmissivities are very often log-normally distributed, as can be seen on the
histogram (Fig. 11.16). A linear variogram with a small nugget effect was
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DOURAS

";Z

Fig. 11.14. Eocene aquifer and location of wells; ., well with pumping test, *, well with only
specific capacity.

(a) (b)
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Fig. 11.15 Variogram of transmissivity: (a) of T and (b) of In T. T is in 10- 3 m2/s.
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Fig. 11.16. Histogram of transmissivity values.
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Fig. 11.17. Kriged map of transmissivity.



11.8. Examples of Kriging 321

adjusted on the data, such that

y(h) = 0.15(1 - (j) + 0.06251hl (11.8.2)

was the variogram for In T, with Tin 10-3 m2/s, h in km, and (j = 1 if h = O.
The variogram shows that the intrinsic hypothesis holds. Intrinsic kriging

was then done using the "exact" data (in 29 wells), the "uncertain"
and the variance of each [Eq. (11.8.1)]; the variogram of Eq. (11.8.2) was also
used. The estimation was done on a square grid of 2 x 2 km, using all the 86
data points without a moving neighborhood. Figure 11.17 gives the kriged
contour map of T and Fig. 11.18 gives the contour map drawn manually by
a hydrogeologist. As the kriging was done on In T, the 95% confidence interval

o 10 20 krn

Fig. 11.18. Hand-drawn map of transmissivity.
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Fig. 11.19. Uncertainty of kriged map of transmissivity (e"),

is ±20-, 0- being the standard deviation of the estimation error.
From In T = (In T)* ± 20-, where the asterisk indicates estimation one gets

with T* = e(lnT)*

Note that T* is here the median estimator and that the correction for
obtaining an unbiased estimator was purposefully not applied, as explained in
Section 11.6.2.

Figure 11.19 gives the contour map of e". For instance, if e(J = 3.15, then
e2(J = 10, i.e., the uncertainty on T is of one order of magnitude.

Kriging was also done to estimate the average of In T directly on the meshes
of a digital model, which in this case used a nested square grid.
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11.8.2. Kriging Heads

The example concerns an unconfined aquifer in chalk, at Origny Sainte
Benoite (Aisne, France). The aquifer is drained by three rivers to the north,
west, and south. A piezometric survey was made on December 31,1976, in 88
piezometers. An additional 64 measurement points were introduced into the
kriging by taking water levels in the rivers surrounding the aquifer at regular
intervals, since these rivers acted as prescribed head boundary conditions for
the aquifer.

Since heads are typically nonstationary, generalized covariances were used
at order 1 (locally linear drift). The generalized covariance was found to be in
11 3

: K(h) = alhl 3
. It was, however, necessary to use a different coefficient a for

different zones of the aquifer, as the spatial variability was greater under the
plateau than under the plains. The values of a were adjusted by fitting the
estimation error of kriging on the true estimation error when the validity of
the model was verified as shown in Section 11.6.3.

The map of a, the kriged map of the heads and the standard deviation of the
estimation error are given in Fig. 11.20.

11.9. Co-Kriging

Co-kriging is an estimation technique useful when two (or more) variables
which are correlated are measured in the field and can be estimated together.
For instance, if in an aquifer the concentration in the water of several metals is
correlated, then it is possible to estimate in one location the amount of metal
Zr based on the measurements not only of Zl' but also of metals Z2 or
Another example is that of the estimation of transmissivity in an aquifer based
not only on the measurements of the transmissivity itself, obtained by
pumping tests, but also simultaneously on the measurements of the specific
capacity, which is correlated to the transmissivity. Co-kriging is then a more
elaborate and accurate method for using both types of data than the simple
regression and kriging with uncertain data, which was presented in Sections
11.8.1 and 11.4.8.

11.9.1. Co-Kriging Equations

Let Zl(X) and Z2(X) be two regionalized variables that are correlated. The
estimation of Zl (and if necessary Z2) by co-kriging is again given by a best
linear unbiased estimate in the form

n m

ZI(xo) = L A{Zl(Xj ) + L A~Z2(XI)
j=l 1=1

(1
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Fig. 11.20. Kriging of heads: (a)coefficient of the generalized covariance, (b)kriged head, meters, and (c)standard deviation of kriged heads, meters.
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Here, Z!(xo) is the estimate of Zl at location xo, Zl(X) are the measured
values of Zl,j = 1,... ,n, and Zz(x1) are the measured values of Zz, 1= I,m.
(Note that Z, and Zz need not be measured at the same location, and m and n
may be different); the It's are the co-kriging weights. However, we have to
slightly change the notation here compared to the previous sections: A~ is the
kriging weight for variable Zj measured at location Xi' and we omit the index 0
used earlier (A~) which meant that these weights were related to the estimation
of Z at location X o' It is clear however that these It's will change for each new
location X o to be estimated. It would also be necessary to have another index to
show that they refer to the estimation of Z! since one could also wish to
estimate Z! from the same measurements. To keep the notation simple, we
will only consider here the estimation of one variable Z.

We will however generalize Eq. (11.9.1) for N variables by writing

(11.9.2)

As in simple kriging, the It's will be determined by writing the two usual
conditions: nonbias and optimality.

(a) Unbiased estimation. We will assume that E(Z~) = m~, (X = 1,... , N
(valid both for the stationary and intrinsic hypotheses). Then the condition
E(Zn = m, can be written

m, = Im~IA~
~ j

(11.9.3)

If all variables have a different expected value, then the estimation of Z1"
requires:

ni

I Ai = 1
j= 1

(11.9.4)

But if the variable Zk has the same expected value as Zi, a case which is very
common in practice, then Eq. (11.9.3) gives:

nj nk

I Ai + I Ai = 1
j= 1 1= 1

(11.9.5)

(X # i and k

(b) Optimality. When the optimality condition was developed for simple
kriging in Sections 11.2.2or 11.3.2by imposing the condition that the variance
of the estimation error E{[Z(xo) - Z*(xo)]Z} be minimum, the covariance or
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the variogram of the variable of interest was introduced by the need to
evaluate terms like E[Z(x;)Z(xj ) ]. In co-kriging, additional terms like
E[Za(x;)Zp(xj)] will also have to be evaluated. We will therefore introduce a
new function to quantify the spatial correlation of the variable Za with the
variable Z p as a function of the distance h between the points where Z; and Z p

are measured. In the stationary case, this will be called the cross-covariance
function Cap(h) and, in the intrinsic case, the cross-variogram Yap(h). These will
be precisely defined in section 11.9.2.

We will also need in the co-kriging equations the usual covariance or
variogram of each variable Za which we will denote Caa(h) or Yaa(h).

The co-kriging equations can very easily be developed given these new
functions. We will first write them for the estimation of Z!(xo) (Eq. 11.9.1)
from n measurements of Zl and m measurements of Z2 (i,e., with the nonbias
condition 11.9.4). If Zl and Z2 are both second-order stationary, the co
kriging system can be written

n m

I A{Cll (x; - Xj) + I A~C12(X; - XI) - J-ll = Cll(Xo - X;)
j=l 1=1

for i = 1,... , n (11.9.6a)

n m

I A{C21 (x, - Xj) + I A~C22(Xk - XI) - J-l2 = C12(Xo - Xk) (l1.9.6b)
j=l 1=1

for k=l, ... ,m

with

n

I Ai = 1
1=1

and
m

I A~ = 0
1=1

(l1.9.6c)

The variance of the estimation error is:

n m

= - I A{Cll(Xo - Xj) - I A~C12(XO - XI) + J-l1 (11.9.7)
j=l 1=1

If Z, and Z2 are both intrinsic, then the kriging system will be obtained by
replacing Cij by -Aij in Eqs. (11.9.6) and (11.9.7). This can easily be
generalized for more than two variables: for instance, the kriging system
for the estimation in the intrinsic hypothesis of Z{(xo) from Eq. (11.9.2) is
given by

N n~

I I A~Ypixj - XI) + J-lp = YiP(XO- Xj)
a=l/=l

for j = 1,... ,np and f3 = 1,... ,N (l1.9.8a)
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and

I Al = {1 if a: = i
1=1'" Oifa:#i

The variance of the estimation error is:

a: = 1,... ,N (1

N na

var[Z!(xo) - Zi(XO)] = I I A~Yi"'(Xo - XI) + Ili
",=11=1

These expressions can also easily be generalized for kriging the average over
a mesh or with uncertain data. A matrix formulation of co-kriging was also
proposed by Myers (1982, 1983, 1984).

11.9.2. Cross-Cooariances or Cross-Varioqrams

In the hypothesis where the variables Zl (x)and Zz(x) are both second-order
stationary, the cross-covariance C12(h) of Z, and Zz is defined by

C12(h) = E{[Zl(X) - m1][Zz(x + h) - mz]} (1

where m1 = E(Zd and mz = E(Zz)·
One can show that, in general, C1Z(h) # C21 (h), but that C12(h) = CZ1(-b)

(Journel and Huijbregts, 1978).
In the intrinsic hypothesis, the cross-variogram Y1Z(h) is defined by

Y1z(h) =!E{[Zl(X + h) - Zl(X)] [Zz(x + h) - Zz(x)]} (11.9.10)

In the stationary case, where both C12 and Y12 exist,

Y1Z(h) = C12(O) - ![C12(h) + CZ1(h)]

Thus one sees that the variogram is always symmetric:

Y1z(h) = YZ1 (h) = Y1Z( - h) = YZ1 ( - 11)

Using the cross-covariance has therefore more possibilities than using the
cross-variogram in the stationary case. Experimental cross-covariance or
cross-variogram can be determined in a fashion similar to that used for
ordinary variograms as shown in Section 11.5.1.

The main difficulty in using co-kriging is that these functions have to satisfy
constraints in order to be acceptable, just as we indicated that covariance
functions need to be positive definite and that, minus the variograms, must
be conditionally positive definite.

Let G be a weighted sum of all the measurements such as the one used in
co-kriging

G =II A~Z",(Xj)
'" j
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then

or

var(G) = - IIIIA~Ahap(Xj - x.)
a P j I

with I j A~ = 0 for the latter, as in Section 11.7.3.a.
Imposing that var(G) in both cases be positive for any A'S or points x gives

the constraints that must be met simultaneously by the covariances, cross
covariances or variograms and cross-variograms used in a co-kriging system.
It is not at all simple to select functions which satisfy these constraints.

(a) Linear Model. A first method (Francois-Bongarson, 1981; Waker
nagel, 1985) is to assume that the N variables Z; can be considered as linear
combinations of M hypothetical variables Z;, which would be uncorrelated:

M

Za(x) = I aapZ;(x),
i=1

for Il( = 1,... ,N (11.9.11)

Even if the variables Z; are independent (i.e.,their cross-covariance or cross
variogram is zero) the variables Z; would be correlated. Let C;(h) or yah) be the
covariances or variograms of the variables Z;. Then one finds easily that the
covariances and cross-covariances (or variograms and cross-variograms) of
the variables Z; are

or (11.9.12)

where b~p = aaiapi (thus b~p = b~a)'
Then the constraint on the covariances or variograms becomes simply that

the matrices [b~p] for i = 1,... , M must be positive definite. This can be
achieved by imposing that the second-order minors of these matrices be
positive definite:

for each i = 1, , M
and for a = 1, ,N and f3 = 1,... ,N (11.9.13)

This bring about the condition

(11.9.14)

For example, suppose that we have two variables Z1 and Z2, and the
variograms of Z1, Z2, and Z1Z2 all have the same form, which we will
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(11.9.15)

with b, > 0

with b2 > 0

call y. This means that M = 1, N = 2. Thus

Yll(h) = biy(h)

Y22(h) = b2y(h)

Y12(h) = Y21(h) = b1 2y(h)

Then the only condition is b12 <.jb;JJ;.
If the variograms Yll' Y22' and Y12 are each the sum of two components

(e.g., a nugget effect plus a variogram Y, e[l - l5(h)J + by(h), then a similar
constraint would apply on the C's.

In practice, experimental variograms and cross-variograms are determined
using all pairs of available measurement points, as in Section 11.5.1, using
Eq. (11.9.10). Then these experimental variograms are adjusted with a linear
combination of the same basic variograms, and one makes sure that the
constraints (11.9.14) or (11.9,15) are satisfied.

(b) Nonlinear Model. Myers (1982) proposes an alternative to the
linear model. He shows that, if we define

then the variogram of U is

Yu~/h) = ![y",p(h) - yih) - Yp(h)J (1

One can therefore calculate and fit separately the variograms of Z"" Zp, and
U",p, and calculate Y",p from (11.9.16).

It is only necessary to verify that

Iy",p(h) I :::; Jy",(h)Yp(h)

This approach can be extended to the generalized covariances (in the
nonstationary case, see Section 11.7; see also Matheron (1973». Examples
of the use of co-kriging in soil science are given by Vauclin et al. (1983);
Abourifasso and Marino (1984) give examples of co-kriging used to calculate
transmissivities and specific capacities in an aquifer.

H.lO. Stochastic Partial Differential Equations

Stochastic partial differential equations can be used to study groundwater
flow in three different cases:

(1) When the boundary conditions or initial conditions are prescribed as
stochastic processes. *This could, for instance, be the case when the water level

* A stochastic process is a phenomenon that can be described by one or several dependent or
independent random variables.
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in a river or the infiltration rate at an outcrop are considered as stochastic
processes.

(2) When a source/sink term is a stochastic process (e.g., recharge).
(3) when the coefficients of the equations are stochastic processes. This

can be the case for transmissivity, for example, when the uncertainty
associated with its estimation suggests that it should be considered as a
stochastic process.

In all cases some of the inputs of the flow equation are assumed to be
random, i,e., they will be defined by their probability distribution functions or
its first moments. The dependent variable of the flow equation, e.g.,the head, is
then also a random function, and the solution of the stochastic flow equation
is then, by definition, the probability distribution function of the dependent
variable.

Let us give a few simple examples. Annual recharge in an unconfined aquifer
depends directly on the rainfall. If a given annual recharge is prescribed and
the flow conditions in the aquifer are known (i.e., boundary conditions,
parameters), one can deterministically define the head at any location in the
aquifer. For every different annual recharge there will be a different value of
the head. If this problem is treated stochastically, given the variability of
rainfall, the annual recharge will be considered as a random function and
defined by its mean and variance. Can one then directly calculate the mean and
variance of the head at each location? This could be very useful, for instance,
for predicting the probability of the water table rising above a certain
elevation (e.g., the bottom of an underground excavation).

We can take another example involving transmissivities, They are known to
be rather variable in an aquifer, generally log-normally distributed and with a
variance of In T on the order of one or more. Given a set of measurement
points of T in an aquifer, kriging gives an optimal estimation of T as well as the
variance of the estimation error. If one only uses the kriged T map to predict
the flow in the aquifer, one completely disregards the residual uncertainty of T.
It would make much more sense to consider T as a stochastic process and to
try to determine the expected value and the variance of the head directly at
each point, thereby determining the uncertainty in the predicted flow.

Our last example is one of transport in porous media. Hydrodynamic
dispersion is known to be the result of the variability of the pore water velocity
in the medium at every scale. Rather than defining a single average velocity in
the aquifer and then describing the variability of velocity by an empirical
dispersion coefficient, is it not more efficient to characterize the variability of
the velocity by its variance and covariance and to represent hydrodynamic
dispersion by solving a stochastic transport equation, where this velocity is a
stochastic process?
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All these approaches have been used recently.
Having defined a few properties of stochastic partial differential equations,

we shall give a brief outline of several methods for solving them.

11.10.1 Properties of Stochastic Partial Differential Equations

For equations where the parameters are random functions one must first
define what the derivative of a stochastic process is. If K is a random function,
the quadratic mean derivative K' is defined by

1· [K(X + ~x) - K(x) '()J 01mE -Kx =
A.x--+O ~x

Also, K' is a random function.
The complete solution of a stochastic partial differential equation consists

in obtaining all the probability distribution functions, at every location and at
all times, of the unknown random function, e.g., the head. This is almost
always impossible to achieve. Therefore one will generally look for (1) the
probability distribution function of the unknown at several particular
locations or (2) the moments of the unknown function: expected value,
variance, covariance. These moments can sometimes only be approximately
evaluated.

To obtain even such approximate and limited solutions, one must often
make some hypotheses on the stochastic processes in question.

(1) If these hypotheses concern the input parameters (e.g., boundary
conditions, soutce terms, coefficients),the corresponding solution is said to be
"honest."

(2) If these hypotheses concern the unknown solution, whose form is a
priori unknown, the solution is said to be "dishonest." This does not mean that
a dishonest solution is necessarily incorrect if these hypotheses (e.g,
stationarity, ..) are based on valid physical reasoning: dishonest solutions can,
on the contrary, sometimes be more precise than honest ones. It is only when
the assumptions are not physically based that they may be invalid [see Keller
(1964), Lumley and Panofsky (1964), and Schweppe (1973)].

We shall now briefly examine some methods of solution.

11.10.2. Spectral Method

This method is applicable to second-order stationary stochastic processes
for both inputs and outputs. If Y(x) is second-order stationary, the spectrum
(or spectral density) of Y is the Fourier transform of its autocovariance
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where q is the constant flow rate in the flow tube. Dividing by K and defining
W= 11K,

We assume that K(x) is a second-order stationary stochastic process, i.e.,we
shall treat the class 3 type of stochastic partial differential equation. If we
integrate Eq. (11.10.5) once, it gives

(11.10.8)

(11.10.9)

(11.10.10)

dH 
-=-qW
dx

thus

By substituting in Eq. (11.10.7) and taking its expected value, we get
dH dh _
-+-= -q(W+w)
dx dx

E(~~) = -qE(W)

dh
-= -qw
dx

Assuming h to be second-order stationary ("dishonest" hypothesis) and using
the "representation theorem," we can define two complex stochastic processes
such as

f
OO f+oo

h(x) = _00 eikxdZh(k) w(x) = _00 eikxdZw(k)

We then take the first derivative of h and introduce it into Eq. (11.10.9):

dh foo .
dx = -00 e,kXikdZh(k)

ik dZh(k) = - qdZw(k) thus dZh(k) = i~ dZw(k)

From Eq. (11.10.4) we can calculate the spectrum of h:

qJh(k) = E[dZh(k) dZt(k)]

= E{[i~dZw(k)J[ -i~dZ~(k)J} = :: E[dZw(k)dZ~(k)]
qZ

qJh(k) = kZ qJw(k)

We have no~ solve~ our problem. Equation (11.10.8) gives us the first
mome~t of H, H = -qWx+constant, and Eq. (11.10.10)gives us the spectrum
of H given the spectrum of W. Using Eq. (11.10.2), one can also determine the
covar~ance ~nd variance of h from the spectrum. For instance, if the following
covanance IS used for W as suggested by Gutjahret al. (1978),

cov[w(x + s),w(x)] = (TJ!v(1 - IsI/I)e- lsl/1

where (TJ!v is the variance of wand the distance I is called the correlation
length, one obtains

(11.10.7)

(11.10.6)

(11.10.5)

(11.10.3)

(11.10.4)

(11.10.2)

(11.10.1)

dH
-=-qW
dx

dH
K(x)-= -q

dx

d [ dHJ.- K(x)- = 0
dx dx

Y(x) = f:: e
ikx

dZ(k)

E[dZ(k1)dZ*(kz)] = 0 if k1 =1= kz

E[dZ(k1)dZ*(k1)] = qJ(k1 ) i.e. if k1 = kz

Equation (11.10.3) is a Fourier-Stieltjes integral and the asterisk in Eq.
(11.10.4)denotes the complex conjugate.

We shall give a simple example of the use of the spectral method, from
Gelhar (1976), Bakr et al. (1978), and Gutjahr et al. (1978). Let us consider a
one-dimensional steady-state flow in an infinite medium. The flow equation is
written as

cov[Y(x + S), Y(x)] = C(s) = f:: eiksqJ(k) dk

The following "representation theorem" will be used: if the second-order
stationary stochastic process Y(x) is of zero mean [E(Y) = 0] and of
covariance C(s), then one can define a complex associated process Z (i.e.,Z E C
if Y E R) that satisfies

qJ(k) = 2-f+OO e-ikscov[y(x + s), Y(x)] ds
2n - 00

Using the inverse Fourier transform, one can also write

function:

Let us define the expected value of Hand Wand their fluctuation around
the average by

H = E(H)

W= E(W)

h=H-H

W= W-W

thus

thus

E(h) = 0

E(w) = 0

2k Z(TZ 13

(k) - w«; -n(l+kZZZ)Z

cov[h(x + s),h(x)] = qZ(TJ!vZZ(l + IsI/I)e- lsl/1

(Tl = C(O) = qZZZ (TJ!v
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2k Z(TZ 13
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In this simple example the covariance and variance of h are constant all over
the medium.

Gelhar et al. (1974, 1977, 1979a,b), Gelhar and Axness (1983), and Gelhar
(1986) have used this spectral method extensively, mainly for the transport
equation in their later articles.

11.10.3. The Method of Perturbations

We shall use the same example as before, i.e., Eq. (11.10.5). Let K be second
order stationary with E(K) = K and the "fluctuation" k = K - K, E(k) = O.
We shall also assume that the "fluctuation" h of the solution H is second-order
stationary ("dishonest" hypothesis) with E(H) = ii and h = H - ii, E(h) = 0.
We develop K and H to the first order, i.e., add to K and ii a "small
perturbation," i.e., a fraction of their fluctuation:

K = K + fJk H = ii + fJh (11.10.11)

Given k, we now look for h.We can introduce Eq. (11.10.11) into Eq. (11.10.5)
and develop in fJ, disregarding the terms in fJ2 (assuming fJ to be small):

_ d2Ii ( _ d2h dk dIi d2Ii)
K dx 2 + fJ K dx 2+ dx dx + k dx 2 = 0

If this is to hold for any small fJ, each of these two terms must be equal to zero.
Thus:

or
dIi 
-= -q/K
dx

and ii = -qx/K + const

and substituting this result in the second term,

d2h q dk
dx 2 = K 2 dx

or

dh q
-=-=zk+a
dx K

(11.10.12)

where a is a constant. We take the expected value to be

(
dh ) d q

E dx = dx E(h) = K 2 E(k) + E(a)

As E(h) = E(k) = 0, we can see that E(a) = O. Then Eq. (11.10.12) gives directly

(
dh ) q2

cov dx = K4 cov(k)
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However, for a stationary random function with a differentiable covariance
one can write

(
dh ) d2cov - = --cov(h)
dx ds 2

Thus, if we can assume that

:x cov[h(x), h(x + s)] Is .... _00 = 0

then with two integrations we find

and cov[h(x), h(x + s)] Is .... _00 = 0

q2 IS IYcov[h(x + s), h(x)] = - 1(4 -00 -00 cov[k(x), k(x + u)] dudy

We have again found the expected value and covariance of the head, but this
time we must assume that O"i is small, otherwise the first-order development in
13 is not valid. To overcome this difficulty in the case of a permeability where O"i:
is generally rather large (see Section 4.4), Gelhar has suggested the use of the
logarithm of K. Equation (11.10.5) is written as

or

If F = InK is second-order stationary, one again writes F = F+ PI and his
expressed as a function of the covariance of I; Gelhar has shown that in one
dimension the error involved in the method of perturbations is less than 10% if
0"; :::; 1 (by comparing it to the exact spectral method).

Tang and Pinder (1977) have used the method of perturbations for the
transport equation. Sagar (1978) applied it to the flow equation. Gelhar and
Axness (1983) have used it for the same equations together with the spectral
method. Winter et al. (1984) applied it in the second order to the transport
equation.

11.10.4. Simulation Method (Monte Carlo)

This is probably the most powerful method, where fewer assumptions are
required. However, it is a numerical method, which may require much central
processing unit (CPU) time and a careful examination of the results. The
principle of the method is very simple. Let Z(x, () be a stochastic process, x
being the coordinates in space and ( the state variable. Remember that Z (x, ~1)
is called a realization of Z. One first generates "simulations" of Z in the
probabilistic sense, i.e., a large number of realizations of Z. To do so, we must
know the probability distribution function of Z and its covariance
variogram) if Z is spacially correlated.



336 11. Geostatistlc and Stochastic Approach ill Hydrogeology

Note that the knowledge of the probability distribution function of Z was
not necessary in the two previous methods.

Then, for each of these realizations the parameter represented by Z(x, ~i) is
completely determined and known (e.g., the permeability or the source term or
the boundary conditions). Thus. the flow equation can be solved numerically
for each realization, giving the value of the dependent variable, e.g., h(x,~;). It
is then possible to statistically analyze the ensemble of calculated solutions
h(x,~;) for i = 1,... , N: expected value, variance, histogram, and distribution
function for each location x. It is no longer necessary to assume that h is
stationary; these statistics can be calculated at each point. The covariance or
variogram can also be determined if h is found to be stationary or intrinsic.

There are some difficulties associated with the simulation method. First, a
large number N of realizations is necessary in order to get meaningful
statistics: from 50 to several hundreds or thousands. Second, as N is
necessarily finite, one can always calculate an experimental variance or
covariance, even for a phenomenon where they do not exist. It is preferable to
check that when N increases, these statistics indeed become constant. Third,
the solution can be a function of the mesh size: because the numerical solution
requires us to estimate an average of Z(x,~;) over a mesh, this estimate
becomes less variable as the mesh becomes larger simply because of the
integration. Thus, the variability of the solution htx, ~) will also be affected.
Furthermore, one must realize that if C (or y) is the correlation structure of Z
in space, then the correlation structure of the average of Z over a mesh will be
the integrated covariance or variogram (see Section 11.4.7). This has not
always been recognized in the past.

The main difficulty with the simulation method is how to generate the
realizations Z(x,~;). Freeze (1975) assumed that Z (in this case, the hydraulic
conductivity on a one-dimensional flow problem) was not spatially correlated.
When the probability distribution of Z was known, independent values were
drawn randomly in each mesh. In two dimensions, Smith and Freeze (1979)
and Smith and Schwartz (1980,1981a,b)imposed a correlation structure on Z
(the hydraulic conductivity) using the method of the "nearest neighbor." The
correlation is imposed by a kind of "moving average" of the value of Z, taken
in adjacent meshes. Binsariti (1980)generated the complete covariance matrix
of Z and took a vector of independent random numbers and solved for the
correlated Z(x, 0 by triangulation of the covariance matrix using Cholesky's
method (Section 12.4.1.b). See also Neuman (1984). Meija and Rodriguez
Iturbe (1974) used spectral methods.

Delhomme (1979) used the method of the turning bands, developed by
Matheron (1973), which is a very powerful tool in two dimensions (see also
Chiles (1977) and Mantoglou and Wilson (1982)). Delhomme also used
conditional simulations of Z instead of simple simulations. This is a great
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improvement on the Monte Carlo method for practical problems. Indeed, the
stochastic process Z is then said to be conditioned by the measurements
in space: all the realizations Z(x,,;;) must have the measured values Z(xj ) at
each point Xj' where a measurement has been made. The method used to
generate these conditional simulations is based on kriging.

Nonconditional simulations are suitable for studying the theoretical
variability of a process: the statistics of Z are assumed to be known, but no
measured values are available. On the contrary, conditional simulations take
the measured values into account and the considered variability is only that
stemming from the uncertainty in the estimation of Z between measurement
points. Conditional simulations are thus a logical follow-up to kriging.
Delhomme (1979) used them for transmissivities and mentioned that the
transmissivity could be further conditioned by the inverse problem (see
Section 12.6). Such conditioning is also discussed by Neuman and Yakowitz
(1979), Neuman (1984) and Dagan (1982,a,b).

Note added in Proof

Here, h is by definition a vector in space. In general, the covariance C or
variogram yare only functions of the length of this vector. In some cases,
however, they also depend on the direction of the vector h. To simplify, we
shall keep the notations C(h) or y(h) even if h only refers to a length. (See also
Section 11.5.4.)
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12.1. Selection of a Numerical Technique and a Code

It may become necessary to use numerical solutions to the flow and/or
transport equations, rather than analytical solutions, for one or more of the
following reasons.

(1) The flow domain is bounded, with boundaries of complex shape that
play a role during the time for which a solution is sought. The available
analytical solutions deal with infinite or semiinfinite media; the method of
images cannot be used or is too complex to use to represent the role of the
boundaries.

(2) The problem is nonlinear (e.g., the transmissivity varies with the head
in an unconfined aquifer) and no analytical solutions are available.

(3) The properties of the medium vary in space, whereas analytical
solutions assume the medium to be homogeneous or the geometry of the
heterogeneities to be very simple.

(4) The geometry and magnitude of the source term are too intricate to be
represented by a point source, a line source, or an integral of these along a
simple path.

(5) An analytical solution can be found, but its expression is so complex
(e.g., sum of infinite series, integral of complex functions) that the numerical
calculation of its values requires far more effort (programming and CPU time)
than the direct use of a numerical solution of the original problem.

In some of these instances, it may be advantageous to use a semianalytical
method that consists in solving the problem first analytically in the Laplace
transform domain and then computing the inverse Laplace transform
numerically; this may be of interest for a transport equation involving first
order kinetic reactions, for instance, for which the Laplace transform is very
suitable (seeTalbot, 1979). Another semianalytical method involves the use of
Green's functions (see for instance Roach (1982), and Herrera (1985)).

When numerical solutions are required, one must first decide (1) what
numerical method to use (essentially, finite differences, finite elements,
boundary elements) and (2)how to obtain a code (program it, or get access to
an existing one).

There is no universally agreed answer to the first question; for each of the
three methods quoted above, one can say the following.

(1) Finite differences are easy to understand and to program; they are very
well suited to solving regional aquifer flow problems, in one or two
dimensions, in multilayered systems, or in three dimensions. Although they
can in principle handle meshes of any shape and size, they are restricted in
practice to simple meshes: regular squares, nested squares, rectangles, or

kenne
Cuadro de texto
analytical
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rectangular parallelepipeds in three dimensions. They can handle heterogene
ities of the properties of the medium very well, provided that the shape of these
heterogeneities can be adequately described by the shape of the meshes;
anisotropy must be restricted, for all practical purposes, to directions parallel
to the sides of the meshes. They are not very well suited to solving the
transport equation, unless the methods of characteristic and particle tracking
are used (see Section 12.5.2).

(2) Finite elements are less easy to explain and far less easy to program. As
this method is more flexible than that of finite differences, a finite-element
program can be more complex to .use(more input data, e.g., on the geometry of
the meshes, thus more possibilities for error) and may require more computer
time. However, the shape of the meshes is much less restricted: in practice,
triangles and quadrilaterals are used in two dimensions, and tetrahedra or
parallelepipeds of any angle in three dimensions. This makes it possible to
describe much more satisfactorily the shape of the boundaries of the medium
and that of the heterogeneities or the source functions. It also makes finite
elements ideally suited to solving problems with moving boundaries, e.g., with
a free surface, an abrupt interface between fresh water and sea water, or
between two immiscible fluids. Finite elements can handle any directions of
anisotropy, and these directions may even change from one element to the next
or with time. In practice, for flow problems, finite elements can be used for
regional studies but are best suited to local civil engineering problems like
dewatering of an excavation, mine drainage, and flow around a dam, where
the shape of the boundaries and heterogeneities must be represented with
precision. Note that when seepage forces must be calculated as input for
structural analysis, it is often necessary to compute them on the same network
that will be used for the structural calculations: virtually all of these use finite
elements. For solving the transport equation, finite elements are far superior to
finite differences, as they can handle the anisotropy of the dispersion tensor
and the mesh size can be adapted to the magnitude of the velocity; it is thus
possible to seek a compromise between stability and numerical dispersion.

(3) Boundary elements or boundary integral methods have been proposed
recently for solving the flow equation. Their main advantage is that the
precision of the calculations is not a function of the size of the elements used,
contrary to what happens with finite differences of finite elements. Thus, a few
very large (even infinite) elements can be used, so that the method is very
efficient in terms of computer time. In a first step the numerical solution is only
calculated along the boundaries of the elements; if the solution is also
explicitly required inside an element, its value is calculated in a second step by
numerical integration inside the element. The main restriction is that the
properties of the medium in a given element are assumed constant: if the
heterogeneities of the medium are such that a large number of elements are
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required to describe them adequately, then the boundary integral method
loses its superiority, and finite differences or finite elements can just as well be
used. This method is therefore much less flexible and general than the previous
ones [see Brebbia (1978), Liu and Liggett (1979), Liggett and Liu (1979), Tal
and Dagan (1983),and Herrera (1984)].

The second question, how to obtain a code, is a matter of personal
judgement, and only a few hints can be given here. Programming a simple
finite difference code, for a one- or two-dimensional problem with simple
meshes (squares or rectangles) and simple boundaries can be done from
scratch in a few days. However, the code will not be easy to use; to make it
"user-friendly" (i.e., give it, e.g., simple inputs, error checking, and messages,
graphical outputs) may require a couple of months. A more complex
multilayer or three-dimensional finite-difference code with several options
(e.g., nonlinearities) may require 6 months to a year, as does a user-friendly
two-dimensional finite-element code. A very complex three-dimensional
finite-element transport code may require 1 or 2 years, and a multicomponent,
multiphase, and three-dimensional oil-reservoir model may represent an effort
of 5-10 (or more) man-years. One must remember that any new code must be
carefully tested and validated against known analytical (or other numerical)
solutions before it can be used for any serious purpose. This testing can be
quite lengthy.

However, a very large number of codes are now available, either free of
charge or at the cost of the duplication of a card deck, a tape, or a floppy
or even at a cost covering part of the expenditure for their development. In
order to make such codes easily available, a clearing-house has been
together (Bachmat et al., 1980).t A computer file of available codes in
groundwater modeling has been set up for flow, transport, management, data
processing, etc., where more than 500 codes are described. A search through
this file will reveal the available codes best suited to solving a given problem
and adapted to a hand-held calculator, a microcomputer, or a main-frame
computer.

In the rest of this chapter we shall briefly describe the methods of finite
differences and finite elements, the resolution of large linear systems, and
finally, the use of numerical models for regional groundwater flow studies.
Even if one decides to use an existing code to solve a groundwater flow or
transport problem, it is essential to clearly understand the principle and
limitations of numerical models in order to be able to use them efficiently.

t The International Groundwater Modeling Center at Holcomb Research Institute, Butler
University, Indianapolis, Indiana 46208 or at TNO-DGV, Institute of Applied Sciences, P.O.
Box 285, 2600 Delft, The Netherlands. Inquiries can be directed to either of these institutes.
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12.2. Finite Differences

Three different methods, at least, can be used to present finite differences.
We will illustrate the first two, the methods of differentials and mass balance,
by a simple example and proceed more rigorously with the third one, the
method of integrated finite differences. The results will be, for the same
equation, identical.

We shall first consider the simple flow equation in a confined aquifer, in two
dimensions [Eq. (5.3.10)], which is written as

where T is the transmissivity, which can vary in space, (length2 time-1), h is the
unknown, the head (length); S is the storage coefficient, which can vary in space
(dimensionless), and q is the source/sink term, representing at each point the
algebraic sum of the density of recharge to or discharge from the aquifer,
which also varies in space. It is expressed in flow rate per unit area
(length time-1) and is positive for a sink and negative for a source.

We look for the solution of this equation on a finite bounded domain with
prescribed boundary conditions (see Section 6.3).We shall consider prescribed
head boundaries (i.e., Dirichlet) or prescribed fluxes (i.e., Neumann). Anyone
of these two boundary conditions can be prescribed on different segments of
the boundaries. The corresponding values of the prescribed head or fluxes are
assumed to be known, as well as the values of T, S, and Q in the entire domain.
For the first simple examples we shall assume that the equation is solved in
steady state (i.e., iJh/ot = 0) and that T is isotropic. On the domain where the
equation is to be integrated, a square grid is superimposed (Fig. 12.1) with its
size governed by the desired precision of the numerical approximation of the
true solution (the smaller the size of the squares, the better the approximation).
The coordinates x and y in the domain are taken along the sides of the grid.

The principle of finite differences is to look for the numerical value of the
heads in each of the centers of the squares, assumed to represent an "average"
value of the true head in each square. The squares are numbered from 1 to r;
H1 to H, will be the heads at the nodes (the centers of the squares) and T1 to 1;.,
Sl to S" and Q1 to Qr the transmissivity, storage coefficient, and source terms
in each square, assumed to be the average of T and S and the integral of q over
the square, respectively. If a node i falls on a prescribed head boundary, Hiwill
be known at this node; if the side of a square represents a prescribed flux
boundary, the flow entering into the square through that side will be known.
Let us look (Fig. 12.2.) at five adjacent nodes inside the grid, which we shall
number for the sake of convenience C, N, E, S, W (for center, north, east, south,
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Fig. 12.1. Finite-difference square grid on a bounded domain.

N

w c

s.

E

Fig. 12.2. Five adjacent nodes of a finte-difference grid.

west), respectively, although in reality they will have numbers falling between 1
and r and depending on the numbering system used, which is generally from
west to east and north to south. We shall use three different methods to
establish the finite differences approximation of the continuous partial
differential equation for flow in a steady state, which is

~(TOh) +~(TOh) = q
ox ox oy oy

(12.2.1)

We shall not address the problem of consistency of the finite difference
approximation, which consists in showing that when the mesh size tends
towards zero the approximate solution H tends towards the true solution h.
For finite differences and finite elements it can be shown that this is indeed so.

The method is well described by Varga (1962), Remson et al. (1971), Thomas
(1973), Prickett (1975), Narashiman and Witherspoon (1976), Trescott et al.
(1976), Mercer and Faust (1981), and Wang and Anderson (1982).
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12.2.1. Approximation of the Derivatives by Differences

The name "finite differences" has its origin in the fact that derivatives are
approximated by differences. If a is the size of a square, we can write

. . . f oh b d d He - Hwapproximatron 0 ox etween no es W an C = a

.. oh b d C d He - Heapproximation of ox etween no es an E = a

. . f oh b d d He - H,approximation 0 oy etween no es S an C = a

. . fOh
b

Hn-Heapproximation 0 oy etween nodes C and N = a

We now need to approximate the second-order derivatives or, more
precisely, the derivatives like (%x)(Toh/ox). Let 1;.,e, Tee,'" be the value of
the transmissivity evaluated between Nand C, E and C, etc. (see Section 12.2.5
for their evaluation from the transmissivity 1;." 1;" ... in each square). We can
write, for node C,

. . f 0 ( Oh). Capproximauon 0 ox T ox In

= [ ( T:~) between C and E - ( T:~)between Wand C] Ia

= [r. He - He _ t: He - HwJI
ee a we a a

= Tee(He - He)/a
2 + Twe(Hw - He)/a

2

Similarly, we get

. . f 0 ( Oh). C n; - He n, - Heapproximation 0 - T - In = Tne 2 + T.e 2oy oy a a

Adding these two terms, multiplied by a', and given Eq. (12.2.1), we obtain

1;.,e(Hn - HJ + Tee(He - HJ + T.e(Hs - HJ + Twe(Hw - He) = a2 q = Qe

(12.2.2)

where qwould be the average of the source term q over the square. However,
a2 q is then equal to Qe, the integral of q over the square.
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This is the finite-difference equation for node C of the original partial
differential equation. Note that it is a linear equation in Hi; if there are p nodes
in the grid where the head is not prescribed (i.e., that in r - p nodes lying on the
boundaries the head is prescribed), then our problem has p unknowns, and we
can write p linear equations similar to Eq. (12.2.2) for these p nodes. The
solution in each node is thus obtained by solving a linear system of p equations
with p unknowns, which is mathematically trivial. (Section 12.4.). Note that
the ordering number of the p unknowns will not, in general, be from 1 to p:

depending on the numbering system used and the position of the prescribed
head boundaries, these numbers will fall between 1 and r, the total number of
squares.

The finite difference equations for the nodes adjacent to a prescribed flux
boundary are slightly different, but we shall examine them later.

12.2.2. Mass-Balance Equation

Instead of starting from the partial differential equation (12.2.1), we can
establish the finite-difference equation (12.2.2) directly using only Darcy's law
and the principle of mass balance. Consider square C in Fig. 12.2. In a steady
state the principle of mass balance imposes that the algebraic sum of the mass
fluxes crossing each of the four sides of square C be equal to the mass entering
or leaving C by recharge or discharge, i.e., the integral of the source/sink term
pq over square C, where p is the mass per unit volume of the fluid. Using
Darcy's law, we can evaluate these fluxes directly. We will keep the same
notation as in Eq. (12.2.1) and assume that these fluxes are positive when
leave C, while qis positive when itis a sink (discharge), so that the mass balance
equation becomes

sum of the fluxes of mass + integral of pq = 0

and

flux of mass leaving C through one side

= (area of side) x (velocity) x (mass per unit volume of fluid)

= ae(-K~~)P

where e is the thickness of the aquifer, K the hydraulic conductivity, n the
normal to the side directed outwards, a the size of a square, and T = Ke. The
mass flux leaving C through one side is then given by apT oh/an.
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For each side, we then get

flux leaving the side between Wand C = -apTweHw - He
a

fl I . h id b C H; - Heux eavmg t e SI e etween Nand = -apTne---a

flux leaving the side between E and C = -aPTee He - He
a

flux leaving the side between Sand C = -apT.e Hs - He
a

and the integral of pq over square C is pQe if p is constant.
Then, if we write the mass-balance equation and simplify by p, assumed

constant, we finally obtain exactly the same equation as Eq. (12.2.2). This will
help us to establish the form of the finite-difference equation for the nodes
adjacent to a prescribed flux boundary. Indeed, each of the terms like
+ 1;,e(Hn - He) represents a volumetric flux entering the side of square C
between Nand C. Therefore, if a side of a square is a prescribed flux boundary,
it is sufficient to substitute the prescribed value of this flux, calculated along
the given side, for the difference expression that one would normally have. For
instance (Fig. 12.3), if the side north of C is a prescribed flux boundary, i.e.,
there is no node north of C, then the finite-difference equation becomes

Tee(He - He) + T.e(Hs - He) + Twe(Hw - H.) - Fn = Qe

or

~~-~+~~-~+~~-~=~+~

where F; is the prescribed flowrate (length 3 time -1) crossing the side north of C,
i.e., the integral of the prescribed flux over the side, and F is counted as positive
when leaving the domain. Such an equation is still a linear equation in Hi' but
with one unknown less than the usual equation. Similarly, if one of the heads,
e.g., He, in a finite-difference equation is a prescribed value (representing a
prescribed head boundary condition), then the term TeeHe is known and is
transferred to the right-hand side of the equation, leaving only the unknowns

wrJ
-0-

Fig. 12.3. Prescribed flux boundary.
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on the left-hand side. This is, in general, of no consequence for solving the
complete linear system of p equations with p unknowns. It can be shown,
indeed, that the matrix of this linear system is always regular (i.e., can be
inverted and has a unique solution), provided that for a steady state, there is at
least one mesh in the domain where a prescribed head boundary condition is
imposed.

12.2.3. Integrated Finite Differences

This is a more rigorous method of establishing finite, difference equations.
To be more general, we shall now assume the transmissivity of the medium to
be anisotropic with x and y as the principal directions of anisotropy and the
mesh to be formed of polygons of any shape or number of sides. Let D, be one
of these polygons with I its center (or node) and J and K the nodes of two
adjacent polygons (Fig. 12.4). The exact definition of the "center" of a polygon
(e.g., its center of gravity) is of no importance at this time; we shall give
examples later.

In the entire domain, and therefore also in Di , the partial differential flow
equation

:x (t: :~) + :y (Ty :~) = q

should be satisfied at every point (x, y). The principle of integrated finite
differencesis that only the integral of this equation over each of the polygons
Di must be satisfied. We write

i = 1,... ,p

D, D,

I.

A

K

Fig. 12.4. A polygon for an integrated finite-difference approximation.
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where p is the number of polygons where the head is unknown (i.e., not
prescribed). In other words, the partial differential equation no longer has to
be satisfied at every location but only in the average over each polygon of the
grid. Using very simple mathematics, like Taylor's series expansions, we shall
now establish rigorously the general form of a finite difference equation. With
Green's first identity, the spatial integral over D; is first transformed into a
contour integral over the perimeter r; of D;; if A is any vector, we can write

ffdiVAdXdY= Li(A,n)dS
Di

where n is the outer normal to r; and (A,n) the scalar product. Here, we obtain

(12.2.3)

where nx and ny are the direction cosines of n, and ds is an element of rio
Let us evaluate this integral over one side, AB, of D; (Fig. 12.4). Note that it

represents, by definition, the flowrate exchanged between polygons D; and Dj

across AB. To evaluate the derivatives ohjox, ohjoy along AB, we shall need
three adjacent nodes, I, J, and K, in general. Only in simple cases will the two
nodes I and J be sufficient, as we shall see later. We shall also show how to
select node K, when necessary. It is only important now to realize that the
same node K must be selected when the flowrate along AB is evaluated for the
benefit of the equation of polygons D; or Dj • Otherwise, mass balance would
not be conserved in the entire domain.

Let hi' hj' and hkbe the actual heads at nodes I, J, and K, and M be any point
of AB. Using Taylor's first-order series expansion, we can write

h; = hm+ (x, - Xm)G~t + (y; - Ym)G~)m

hj = hm+ (Xj - Xm)G~t + (Yj - Ym)G~t

hk = n; + (Xk - Xm)G~t + (Yk - Ym)(:~t

Assuming hi' hj' hkto be known, this is a linear system with three unknowns,
hm, (ohjox)m and (ohjoY)m, which can easily be solved.

Ifwefurther assume that the actual heads hi' hj' and hkcan be approximated
by the finite difference values H;, Hj , and Hk which will be evaluated at the
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nodes I, J, and K, we get

(I!; - HJ(yk - Yi) - (Hk - Hi)(Yj - Yi)

(x, - xJ(Yk - yJ - (xk - xJ(Yj - Yi)

(Hj - Hi)(Xk - Xi) - (Hk - Hi)(xj - Xi)

(x, - XJ(Yk - Yi) - (Xk - xJ(Yj - Yi)

(12.2.4)

(12.2.5)

(12.2.6)

Note that these expressions are not functions of the coordinates of M and thus
are constant along AB. As the direction cosines are also constant along AB, we
can write

Let TXab and 'I;,ab be the integrals of the directional transmissivities T; and T,
along AB. Then we obtain

where Cij and Cik are functions only of the geometry and transmissivities:

C. = TxabnAYk - yJ - 'I;,abny(Xk - xJ
1] (xj - Xi)(Yk - yJ - (Xk - Xi)(Yj - Yi)

C
ik

= - Txabnx(Yj - Yi) + 'I;,abny(Xj - xJ
(Xj - XJ(Yk - Yi) - (Xk - xJ(Yj - yJ

Similar expressions would be obtained for the other sides of polygon o; If
we finally define the integral source/sink term over the polygon by

Qi = ffqdXdY

Di

then the finite difference equation, for each polygon, would have the form

Cij(I!; - Hi) + Cik(Hk - Hi) + Ci/(Hl - Hi) + ... = Qi

which is of the same nature as Eq. (12.2.2).

Boundary conditions. If a node of the grid falls on a prescribed head
boundary, then the corresponding Hj is known. A finite difference equation is
not written for this node, and each time I!; appears in another equation, the
term CijI!; is transferred to the right-hand side. If the side of a polygon falls on
a prescribed flux boundary, then this prescribed flux is substituted for the



350 12. Numerical Solutions of the Flow and Transport Equations 12.2. Finite Differences 351

If all these rectangles have the same size (a along x, b along Y), Eq. (12.2.7)
reduces to

corresponding term of the contour integral and then transferred to the right
hand side of the equation. More precisely, if ahlan is prescribed along AB,

then

f ( ah ah) f 2 2 ahdT -n + T -n ds = (Txnx + TynY)-a sxa x Yay Y n
AB x AB

which can be evaluated. Note that, when a grid is designed over a domain in
finite differences, its nodes should fall on the prescribed head boundaries and
its sides on the prescribed flux boundaries.

and similarly, we obtain in the end

(12.2.7)

If the medium is isotropic ('4 = Ty = T) and the grid is made up of squares
(b = a); this expression reduces to Eq. (12.2.2), which we have established
earlier with the two simpler methods. In the case of rectangles it is important
to note the ratio of the coefficients of two unknowns in different directions,
e.g., Hnand He in the linear system. It is

Fig. 12.5. Rectangular grid.

f ah Yb - Ya ( H)Tx-a
dy = Txec He - c

AB X x, - x,

If the anisotropy ratio is close to 1 and alb is close to 10, the ratio of two
coefficients of the matrix of the linear system will be close to 100. Depending
on the method used to invert the matrix, its size, and the accuracy of the
computer (16-, 32-, or 60-bit words), it is often found that such a large ratio
creates a numerical difficulty by round-off errors. The calculated solution may
then be unreliable. With 32-bit words a ratio alb of 5 is often a maximum.

(b) Nested squares. It is often necessary to have more precision in one
area of the domain than in others, which means that one should be able to vary
the mesh size in the grid. One way to do it is to use rectangles of variable size
(Fig. 12.6a), but this procedure increases the total number of meshes
unnecessarily and is limited by the alb ratio quoted above. Another way is to
use nested square meshes (Fig. 12.6b). Provided that two adjacent squares
have at most a factor of 2 of difference in size, there is no limitation to the
relative size of the smallest and largest squares. When two adjacent squares
are of the same size, the general expression [e.g., Tync(Hn - HJ] is used. When
adjacent squares are of different size (Fig. 12.7), the three-node Taylor's series
expansion of Eq. (12.2.4) must be used to evaluate the contour integral. If a is
the size of the large square in Fig. 12.7, we find from Eq. (12.2.4) that

(
ah) 2ax m = 3a [(~ - H;) + (Hk - H;)]
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If all these rectangles have the same size (a along x, b along Y), Eq. (12.2.7)
reduces to

corresponding term of the contour integral and then transferred to the right
hand side of the equation. More precisely, if ahlan is prescribed along AB,

then

f ( ah ah) f 2 2 ahdT -n + T -n ds = (Txnx + TynY)-a sxa x Yay Y n
AB x AB

which can be evaluated. Note that, when a grid is designed over a domain in
finite differences, its nodes should fall on the prescribed head boundaries and
its sides on the prescribed flux boundaries.

and similarly, we obtain in the end

(12.2.7)

If the medium is isotropic ('4 = Ty = T) and the grid is made up of squares
(b = a); this expression reduces to Eq. (12.2.2), which we have established
earlier with the two simpler methods. In the case of rectangles it is important
to note the ratio of the coefficients of two unknowns in different directions,
e.g., Hnand He in the linear system. It is

Fig. 12.5. Rectangular grid.

f ah Yb - Ya ( H)Tx-a
dy = Txec He - c

AB X x, - x,

If the anisotropy ratio is close to 1 and alb is close to 10, the ratio of two
coefficients of the matrix of the linear system will be close to 100. Depending
on the method used to invert the matrix, its size, and the accuracy of the
computer (16-, 32-, or 60-bit words), it is often found that such a large ratio
creates a numerical difficulty by round-off errors. The calculated solution may
then be unreliable. With 32-bit words a ratio alb of 5 is often a maximum.
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area of the domain than in others, which means that one should be able to vary
the mesh size in the grid. One way to do it is to use rectangles of variable size
(Fig. 12.6a), but this procedure increases the total number of meshes
unnecessarily and is limited by the alb ratio quoted above. Another way is to
use nested square meshes (Fig. 12.6b). Provided that two adjacent squares
have at most a factor of 2 of difference in size, there is no limitation to the
relative size of the smallest and largest squares. When two adjacent squares
are of the same size, the general expression [e.g., Tync(Hn - HJ] is used. When
adjacent squares are of different size (Fig. 12.7), the three-node Taylor's series
expansion of Eq. (12.2.4) must be used to evaluate the contour integral. If a is
the size of the large square in Fig. 12.7, we find from Eq. (12.2.4) that

(
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(0)

(b)

I I
I I

Fig. 12.6. Refined grid by (a) rectangles of variable size and (b) nested squares.

A

Fig. 12.7. Adjacent nested squares.

and as, along AB, nx = 1 and ny = 0,

f ( Oh Oh) 2J;.ijk )
AB T;ox nx + 1;, oy ny ds = -3- [(Hj - H;) + (Hk - Hi ]

where

Txijk = ~f Txds
a AB
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Fig. 12.8. Thiessen (or Voronoi ) polygons.

is the average directional transmissivity along AD. As the fluxes crossing AB
must be identical when evaluated in meshes I, J or K, the above expression is
decomposed into (2Txijk/3)(Hj - Hi) for exchanges between I and J, and into
(2Txijk/3)(Hk - Hi) for exchanges between I and K.

Note that the ratio of two coefficients of the matrix of the linear system in an
isotropic medium is at most ~ and independent of the size of the squares: there
is indeed no limitation in the mesh size for nested squares.

(c) Thiessen polygons. One of the first finite-difference models built
(Tyson and Weber, 1964) used as a grid Voronoi polygons, also known as
Thiessen polygons (Fig. 12.8). Given a set of nodes, which can be selected
arbitrarily, Voronoi polygons are built as the union of the mediators of each
segment successively joining all adjacent nodes. For such polygons, and only if
the medium is isotropic (Tx = 1;, = T), the contour integral can be evaluated
with a Taylor series expansion limited to two adjacent nodes:

f ( Oh Oh) f oh
AD T OX nx + T oy ny ds = AD T on ds

if n is the outer normal to AD. But

MEAB

and, if we use

T· = -1-f Tds,
lJ IABI AD
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the average transmissivity along AB, then

f ( Oh Oh) IABI
AB T ox nx + T oy ny ds = 'T;riIJf(~ - Hi)

where IABI and IHI refer to distances (positive).
Similar expressions are obtained for all other sides of the polygons.

12.2.5. Estimation of Average Transmissivities

Finite-difference equations require knowledge of the value of the average
transmissivity (isotropic or directional) along the sides of each mesh. In some
models these are given directly as input, but most of the time the input data are
the average transmissivities (isotropic or directional) over the area of each
mesh. These can, for example, be obtained by kriging (Section 11.4.7) from the
local measurements obtained by pumping tests. We shall also see in Section
12.6that these transmissivities are often adjusted by calibration of the model.

To calculate the required contour transmissivities, we shall limit the
discussion to the special cases (rectangles or squares in anisotropic media as
well as Thiessen polygons in isotropic media), but it could be extended to the
general case.

(a) Rectangles or squares (Fig. 12.5). We had to evaluate integrals such as
JAB 1'" oh/ox ds when we used Taylor's expansion between C and E to write

This derivative was assumed uniform between C and E, but if there is a
constant transmissivity 1'"c in C, and Tx e in E, the gradient can no longer be
uniform between these two blocks that are in series.By virtue of mass balance,
we can write along the interface AB (see Section 6.3.b)

(Oh)C (Oh)e
Tx c ox m = Tx e ox m

and (Oh)C= (Oh)e
oy m oy m

where the upper indices c and e mean that the derivatives are evaluated in
the medium respectively to the left or to the right of AB. By also writing a
Taylor expansion separately in each medium, we obtain
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Thus

where Xk = X m is the coordinate along x of AB.
Assuming again that he = He and he = He, we get

(
Oh ) e
ox m

Let us evaluate the contour integral along AB in the homogeneous medium
in C (the same result would be obtained if we evaluated it in E); then T; = Txe
and

LB T.x:~ dy = TxeG~): (Yb - Ya)

T.xeTxe(Yb - Ya) (He - HJ
Txe(xe - X k) + Txe(xk - xJ

If we compare this expression with that given in Eq. (12.2.7), we see that the
"average" transmissivity defined earlier is the harmonic mean:

TxeTxe(xe - xc)

The same expression could be established for all directions.
For squares or rectangles, all of the same size, K is the middle of CE and

21;ei;
1;ne = etc.

1;e + 1;n

For isotropic media these expressions hold when we substitute T for T; or
1;, for example

2T,.I::
t; = T + T

s e

(b) Nested squares (Fig. 12.7). A similar calculation between squares I
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and J and I and K gives:

f ( ah)d - 44iTxjTXk (H - H U - H)T.- y - . . + Hk .
AB x ax 4iTxj + 4i TXk + 4Txj4k J' ,

A slightly simpler approximate expression, where the fluxes between each of
the squares are decomposed, is

f (1'" ah) dy = 24i Txj (~- Hi) + 2Txi4k (Hk - Hi)
AB ax TXi + 2Txj TXi + 24k

(c) Theissen polygons (Fig. 12.8). Similarly, with an isotropic medium,
one finds

f (ah ah) - IABI1iTj (H- - H-)
AB T ax nx + ay ny ds - IIMITj+ IMJI1i J ,

where IABI, IIMI,and IMJI are distances.

12.2.6. Finite Differences in a Transient State

So far we have only used the steady-state flow equation, (12.2.1). If we want
to solve the transient-flow equation, this only adds one term to the right-hand
side of the equation:

a ( ah) a (ah) ah
ax T; ax + ay Ty ay = S at + q

where S is the storage coefficient in a confined aquifer or the specific yield in an
unconfined aquifer. If we use the integrated finite-difference approach (Section
12.2.3),this will add the term

to the right-hand side of the finite-difference equation.
If Hi is the finite-difference head at node I, we will assume that ah/at over D,

can be approximated by aHdat.
Then we define the average storage coefficient as

s, = l~iI IISdxdy
Di

where IDiI is the area of Di •

The new term to add to the finite difference equation is simply IDiISi(aHdat).
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The general equation, Eq. (12.2.6), would then become

(12.2.8)

For the sake of simplicity we shall now use a matrix notation and write
Eq. (12.2.8) as

or (12.2.9)

(12.2.10)

If there are p nodes in the grid, where a finite difference equation similar to
Eq. (12.2.8)is written, M is a p x p matrix, the coefficients of which are the Cij
or their sum on the diagonal; S is a diagonal p x p matrix with IDilSi as
coefficients on the diagonal; Q is a column vector with Qi as coefficients;
H is a column vector of the p unknowns Hi; and oH/ot is the derivative of
i.e., a column vector of the p derivatives of the unknowns oHjot.

There are two basic methods for solving the differential system of
Eq. (12.2.9): the integral and the differential method.

(a) Integral method. Direct integration of the differential system leads to
the solution

H' = (H O _ M-1Q)exp(S-lMt)+ M- 1Q

where the exponential of a matrix is defined as

1 An
eA = I + A + - A 2 + ... + - + ...

2 n!

and where I is the identity matrix and HO is the vector of the initial conditions,
i.e., vector H' for t = 0; Q is assumed independent of time.

It is then possible to approximate the matrix exponential operator by a
matrix polynomial operator and, in principle, to solve Eq. (12.2.10) for any
time t. In practice, large time steps are used, because of the error involved in
the polynomial approximation and also because Q generally varies with time
and can only be considered constant for a given time step.

This method was successfully used by Emsellem and Ledoux (1971),but it is
not widely used.

(b) Differential method. This is commonly used and consists in approx
imating the time derivative by a finite difference oH/ot = (Ht U t

-

where the upper indices represent the time at which vector H is considered and
!1t is the time step of the approximation. This is, in fact, a first-order Taylor
series expansion and can be written formally in three different ways.
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(1) Explicit approximation. Taylor's expansion is written

H t+f1t H' Ll 8H
t

Llt
2

8
2
H'

= + t&+2~+···

To the first order, and taking into account Eq. (12.2.9),

(12.2.11)

Note that we have written Eq. (12.2.9) at time t for both sides of the equation.
Rearranging, we have

H t+f1t = H' + M(S-l MHt - S-lQt) (12.2.12)

Given H', H t+f1t is thus obtained explicitly, i.e., simply by multiplying vector
H' by a matrix and adding a few terms. When we look at the implicit
approximation, the simplicity of Eq. (12.2.12) will become clear. Note that S-1,
the inverse of a diagonal matrix, is simply a diagonal matrix having l/IDiiSi

as coefficient on the diagonal. The solution of Eq. (12.2.9) is thus obtained
time step by time step. Given the initial conditions HO, H 1 is calculated, then
H 2 etc. The length of the time steps M may vary, as well as the source/sink
term Qt, during the simulation.

In general, small time steps are used at the beginning of a simulation or each
time Qt changes significantly (see Section 12.6).

There is, however, a limitation on the magnitude of the time step. If M >
Me' which is called the critical time step, the explicit approximation becomes
unstable. This can easily be understood from Eq. (12.2.12). If, at time t, a small
approximation error 1/was made in the evaluation of H', then at time t + Llt
this error is multiplied by (M s:'M). If the norm of this matrix is larger
than 1, the errors are amplified from one time step to the next and very soon
the results are meaningless. Let us write explicitly one equation of the linear
system Eq. (12.2.12):

H~+f1t = H~ + Llt [C-.(Ht. - H~) + C-k(Hk
t - H~) + ... - Q~], 'IDd Si 'J J " , ,

As the Cij are positive, it is clear that the largest coefficient of the matrix
(MS- 1M) is

MLjCij

IDdSi

where the summation over j is extended to all the neighboring nodes of node i.
As this coefficient must be smaller than 1 for all equations of the linear
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system, the critical time step lJ"te is

" . IDdS;
ute = mln--

i LCij

When the explicit approximation is used, it is first necessary to evaluate IJ"te

and then to keep IJ"t < IJ"te • Note that.in general, lJ"te depends on the area of the
smallest mesh of the grid.

(2) Implicit approximation. Taylor's expansion is written

oHt+ At IJ"t2 o2Ht+ At
H' = Ht+At - IJ"t-o-t-. + 2 ot2 +... (12.2.13)

In the same way as before, to the first order and taking Eq. (12.2.9) into
account,

Here Eq. (12.2.9)has been written at time t + IJ"t on both sides of the equation.
Rearranging,

(12.2.14)

Now the solution of this linear system is no longer straightforward: the
matrix [(1/IJ"t)S - MJ needs to be inverted (see Section 12.4).Given the initial
conditions HO, Hi can be computed by solving Eq. (12.2.14), then H 2,etc. But
at each time step a linear system must be solved, which takes a considerable
amount of computer time compared to the explicit approximation. The
advantage of the implicit approximation is that there is no stability criterion:
the method is stable for any length of the time step. But, of course, as for any
first-order approximation, the shorter the time step, the better the precision
(see Section 12.6).

(3) Crank-Nicholson's approximation. Let us subtract Taylor's implicit
expansion [Eq. (12.2.13)J from the explicit one [Eq. (12.2.11)]. We find

Ht+At _ u: = n: _ Ht+At + IJ"t(OH
t
+ OHt+At)

at at

1J"t2 (o2 Ht 02Ht+At) ...
+2 8[2- ot2 +

We see that the second-order terms almost cancel out, so that the first-order
approximation is almost correct to the third order; it becomes

Ht+At _ H t = ~ (OHt + OHt+At)
IJ"t 2 at at
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Using Eq. (12.2.9), we could replace oH/ at by s: (MH - Q) at each time. In
order to gain generality, let us do this substraction again, but this time,
multiplying Eq. (12.2.13) by a and Eq. (12.2.11) by (1 - a). We obtain

The parameter a can vary between 0 and 1. For a = 0, the approximation is
fully explicit. For a = 1, the approximation is fully implicit. For a = !, the
approximation is called "Crank-Nicholson," but other values of a between °
and 1 can be used. Using Eq. (12.2.9) and rearranging,

(L S - aM)HtH t = [LS + (1 - a)MJHt - (1 - a)Qt - aQtHt

(12.2.15)

As for the implicit approximation, a linear system needs to be solved at each
time step if a =I- O. But it can also be shown that for a :::; !, the method is
unstable for time steps larger than the critical one defined for the explicit
approximation. In practice one always uses an a a little larger than 0.5, e.g.,
0.55 or 0.6.

Narasimhan and Neuman (1977) have also proposed an explicit-implicit
scheme where a varies from one mesh to the next in the domain. If a local
stability criterion is met for a given length of the time step, a is set to zero
and the equation of that mesh is solved explicitly. Then, for all the meshes
where the stability criterion is not met a is set to 1 and the system of equations
is solved implicitly.

(4) Gir's approximation. So far, the interpolation used for H between t
and t + I1t has always been linear. Gir's approximation consists in using a
parabolic approximation in time:

Hi = at 2 + bt + c

At each time step, the three coefficients a, b, and c, for each mesh are adjusted
by imposing three conditions on the parabola: it passes through the two
previous time steps, H~-M and H~, and its derivative at time t + I1t is equal to
that given by Eq. (12.2.9) written at t + I1t. For instance, if I1t is the same for
the two consecutive time steps, one finds

HtH t = _tHh it + j-Ht + il1t(S-lMHtH t _ S-lQ)

Rearranging, one would have to solve a linear system at each time step. Gir's
approximation is stable for all time steps as well as second-order correct. As
one needs to know H for two consecutive time steps, another method (e.g.,
implicit) must be used for the first time step.
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12.2.7. Nonlinear Problem

A very common nonlinear problem in groundwater modeling is that of
unconfined aquifers. We have seen, in Section 5.1.d, that in the flow equations
[Eqs. (5.1.1), (5.1.2), or (5.1.3)] the transmissivity is a function of the saturated
thickness of the aquifer, i.e., of the hydraulic head h.

This can be handled in numerical models by changing iteratively the value
of the coefficients of matrix M in Eq. (12.2.9). This method is explained in
Section 12.4.2.3 both for steady and transient states.

One must also check that the elevation of the hydraulic head in an
unconfined aquifer model does not fall below the substratum or rise above the
ground surface. In the first case the aquifer actually becomes dry and the
corresponding mesh in the domain should be taken out, which introduces a
no-flow boundary condition. In practice, it is simpler to accept that the model
includes a calculated head, which can fall below the substratum, and to give
the mesh a positive transmissivity, which is very small, e.g., 10- 2 or 10- 3 times
the normal value of the transmissivity in the domain. For all practical
purposes, this mesh becomes a no-flow boundary, but if infiltration takes
place or if the head rises again (in transient conditions), the mesh can again act
as a portion of the aquifer. In the second case, when the head rises above the
ground surface, this means that an outlet is created (spring, flow in a river, etc.),
The corresponding mesh in the model becomes a prescribed head boundary,
where the prescribed head is the elevation of the ground (elevation of the
spring, the river bed in the mesh, etc.).Then it becomes necessary to check that
the flow in this mesh remains an outflow. When this is no longer the case in a
transient state, the head falls below the ground surface and the mesh should no
longer be a prescribed head boundary. It can only remain a prescribed head
boundary if there is enough surface water available in that mesh to ensure an
inflow of water into the model (e.g., water coming from upstream in a
See Section 12.2.10for a discussion of how a prescribed head boundary is in
practice applied to a river.

Another nonlinear problem is that of dewatering in a confined aquifer. As
soon as the hydraulic head in a confined aquifer falls below the elevation of the
confining bed, (1)the storage coefficient S in the mesh must be changed into the
specific yield Wd and (2) the transmissivity may become a function of the
saturated thickness of the aquifer, i.e., of the head.

Note that the transmissivity in an unconfined aquifer is, by definition,

T=rKdz

where (J is the substratum and h the head. The variation of T with h can
sometimes be disregarded if the distribution of K(z) is such that highly
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permeable material lies at the bottom of the aquifer and only low-permeability
material lies at the top.

The flowequations in multiphase flow(Section 9.1.e) and in the unsaturated
zone (Section 9.2.1) are also highly nonlinear. The method for solving them is
described in Section 12.4.2.3.

12.2.8. Multilayered Systems

In large sedimentary basins one frequently finds a succession of pervious
and impervious (or semipervious) layers which form, respectively, aquifers
and aquitards or aquicludes. Aquitards are layers where water cannot be
withdrawn through wells but which are pervious enough for significant
leakage to occur toward the adjacent aquifers. Aquicludes are less pervious
layers, for which leakage is insignificant during a pumping test in an adjacent
aquifer but through which leakage can be significant over a large regional
area [see lavandel and Witherspoon (1969), Neuman and Witherspoon
(1969a,b)]. Such systems are called multilayered systems.

Modeling multilayered systems is easy. One makes the assumptions (1)that
flow is essentially parallel to the layering in the aquifers, (2) essentially
orthogonal to it in the aquitards or aquicludes, and (3) that the leakage flux
can be introduced as a source term in the flow equation of the aquifers. This
last assumption has actually been demonstrated in Section 5.3.9.

The model will represent each aquifer in the system by a two-dimensional
layer of meshes. In order to make the problem tractable, the mesh size is made
identical in the two aquifers covering each other. Only for nested square
meshes is it feasible to have overlying meshes with a difference in size of one
rank (Fig. 12.9).

There are two methods for evaluating the leakage flux between two
superimposed meshes through an aquitard.

Fig. 12.9. Multilayered systems.
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Apply Darcy's law directly and write the leakage flux as

K'
F = --;-(Hb -Ht )

e
(12.2.16)

(12.2.17)

where H, and Hbare the heads in the top and bottom meshes, respectively. This
flux F is then integrated over the mesh size. In finite differences this means
multiplying F by the area of the mesh. In finite elements (see Section 12.3),
since Hband H, vary over the domain of integration Di, this integration is done
either after substituting the expression of H in Eq. (12.2.16) as for the
"consistent" transient formulation in Eq. (12.3.10) or by using the nodal value
of Hi in Di as for the "lumped" formulation. With Galerkin's formulation, this
integration is also weighted by a basis function N1 as in Eq. (12.3.17).

The resulting source term is added to the right-hand side of Eq. (12.2.6) in
finite differences, or Eq. (12.3.7) in finite elements, for the system of equations
of layer t and subtracted from that of layer b (remember that the source term
of the flow equation is negative for a source, positive for a sink).

The resulting source term is then transferred to the left-hand side of the
equation, which adds a new unknown to the linear system, for instance,

Ciil/.; - Hi) + Cik(Hk - Hi) + ... + Cit(Ht - H;) = Qi

where H, is the head in the mesh at the top of mesh I.
This only increases the size of the linear system that must be solved and

makes each layer dependent on the behavior of the others (which is what
happens in reality). One can have two such terms simultaneously, one for an
underlying and one for an overlying aquifer.

This formulation is strictly valid for a steady state; in a transient state it
assumes that the steady-state flux through the aquitard is reached instantly
and disregards all storage of water in the aquitards.

To extend its validity, one adds half of the storage coefficient of the aquitard
to each of the storage coefficients of the underlying and the overlying aquifers:
in this manner, the storage of water in the aquitard is accounted for. But the
validity of the assumption of steady-state flow through the aquitard can only
be checked by

(
n

2K'M)
exp S~e'2 « 0.5

where K' is the hydraulic conductivity, S~ the specific storage coefficient [see
Eq. (5.3.8)],e' the thickness, and M = length of the time step of the transient
calculation of the aquitard.

If the assumption of steady-state flow in the aquitard is not valid, then it is
possible to use an analytical solution of the one-dimensional flow equation in
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the aquitard and to evaluate analytically the leakage flux P at the limit of the
adjacent aquifers. But this analytical expression involves a convolution and
the calculations are rather lengthy:

f
tOH ftOH

pt(t) = _ _br« - r)dr + -T ft(t - r)dr
o at 0 ot

with

K' [ 00 ( nZnZK't)]
f(t) = -, 1 + 2 L (IX)" exp S' 'Z

e "=1 se

with IX = -1 iot f? and +1 iot f". F' is the leakage flux in the top layer.
However, the convolution integrals can be calculated by recurrence without

the need to store the value of H as a function of time [see Marsily et al.(1978),
Trescott et al. (1976), Herrera and Yates (1977) and Hennart et al. (1981).
Equation (12.2.17) comes from this analytical solution.

12.2.9. Three-Dimensional Systems

In cases where a two-dimensional or multilayered approximation is not
valid-i.e., when the true components of the flux in three dimensions have to
be evaluated-then a three-dimensional network must be built. In finite
differences, cubes or parallepipeds will be used. In finite elements, tetrahedra
(linear elements) or hexahedra (bilinear elements) will be used. Just as for
multilayered systems, this involves additional terms in the discretized form of
the flow equation, representing the fluxes in, e.g., six directions for a cube
(north, south, east, west, top and bottom around the central cube). The
differences are now that (1) the hydraulic conductivity K and the specific
storage coefficient S; must be used instead of T and S in two-dimensions;
(2) the contour integrals of T along the border line of a mesh now become a
surface integral of K over the side of the cube; (3) the surface integral of S
now becomes a volume integral of Ss; and (4) the source term must be de
fined per unit volume and then integrated inside the volume of each element.

The resulting linear equation, however, is identical to Eq. (12.2.6) or
Eq. (12.3.7),but the Cij are given by these surface integrals.

Note that if the medium is anisotropic, the ratio of the horizontal-vertical
mesh size must be adjusted so that the resulting Cij are of the same order of
magnitude in the three directions. Otherwise the linear system cannot be
solved accurately because of round-off errors (see Section 12.2.4).

Using a three-dimensional model is extremely costly since the number of
meshes rapidly becomes extremely large. Freeze (1971)has calculated the flow
in three-dimensions on a watershed, including both the saturated and
unsaturated zone. In practice, three-dimensional modelling is only applied to
local problems (e.g., dams, dewatering of an excavation).

It is often much better to study the flow on several two-dimensional cross
sections of the medium rather than on a three-dimensional model. For such
modeling one considers a unit thickness of the medium, orthogonal to the
plane of the cross-section. Consequently one uses K and S instead of T and
S, which we generally use in the two-dimensional equations,

On such cross-sections it is often necessary to locate the position of the free
surfa~~. In a steady state this can be done iteratively by first imposing the
COndI!lOn h = z on a surface chosen a priori (see Section 6.3.d) and then
checkmg that the second condition (K oh/on prescribed) is also fulfilled. If not
the position of the surface is modified. The finite-elements method can handle
s~ch problems with a moving surface more accurately than the finite
differences method (see Neuman and Witherspoon (1970, 1971».

In a transient state it is also possible to move a free surface in the same
fas~ion, ~ut !h~s. does not accurately represent the physical processes of
drainage/imbibition of an unsaturated medium. It is therefore much better to
solve a complete saturated-unsaturated flow problem, using Richard's
equati~n expressed :vith the head as the unknown (see Section 9.2.1),and then
determme the position of the free surface in the domain as the place where
p = °(or h = z) [see Freeze (1971)].

12.2.10. Representation of Rivers

For unconfined aquifers in temperate climates, rivers act as sinks or sources
for the aquifer. They can be represented by prescribing the head in each node
of the model where a river flows. This head is then the elevation of the water in
the river.

In practice, river beds are very often covered by a silt layer, and the flux
exchanged between the river and the aquifer creates a difference of head
between t~e two. In Section 6.3.c,we have shown that this may be represented
bya Founer boundary condition. When modeling an aquifer, one therefore
~refers to prescribe the head in the river for a mesh overlying the aquifer and
linked t~ It by an exchange coefficient similar to the one used to represent
leakage m a steady state through an aquitard,

K'a'zc; =--,-
e

where K' is the hydraulic conductivity of the silt layer on the river bed e' the
t~~ckness of this low.conduct~vity layer between the river and the acquif~r, and
a the area of the river bed m contact with the aquifer in the mesh.

The term CiiHr - Hi), where H, is the prescribed head in the river, is then
added to the left-hand side of the flow equation, e.g., Eq. (12.2;6). Generally,
n~ither K' nor e' nor a'? is measured. The coefficient Cir is adjusted so that the
difference in head H, - Hi observed in reality is reproduced by the model when
the flow balance is respected (e.g., total flow drained by the river).
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the aquitard and to evaluate analytically the leakage flux P at the limit of the
adjacent aquifers. But this analytical expression involves a convolution and
the calculations are rather lengthy:

f
tOH ftOH

pt(t) = _ _br« - r)dr + -T ft(t - r)dr
o at 0 ot

with

K' [ 00 ( nZnZK't)]
f(t) = -, 1 + 2 L (IX)" exp S' 'Z

e "=1 se

with IX = -1 iot f? and +1 iot f". F' is the leakage flux in the top layer.
However, the convolution integrals can be calculated by recurrence without

the need to store the value of H as a function of time [see Marsily et al.(1978),
Trescott et al. (1976), Herrera and Yates (1977) and Hennart et al. (1981).
Equation (12.2.17) comes from this analytical solution.

12.2.9. Three-Dimensional Systems

In cases where a two-dimensional or multilayered approximation is not
valid-i.e., when the true components of the flux in three dimensions have to
be evaluated-then a three-dimensional network must be built. In finite
differences, cubes or parallepipeds will be used. In finite elements, tetrahedra
(linear elements) or hexahedra (bilinear elements) will be used. Just as for
multilayered systems, this involves additional terms in the discretized form of
the flow equation, representing the fluxes in, e.g., six directions for a cube
(north, south, east, west, top and bottom around the central cube). The
differences are now that (1) the hydraulic conductivity K and the specific
storage coefficient S; must be used instead of T and S in two-dimensions;
(2) the contour integrals of T along the border line of a mesh now become a
surface integral of K over the side of the cube; (3) the surface integral of S
now becomes a volume integral of Ss; and (4) the source term must be de
fined per unit volume and then integrated inside the volume of each element.

The resulting linear equation, however, is identical to Eq. (12.2.6) or
Eq. (12.3.7),but the Cij are given by these surface integrals.

Note that if the medium is anisotropic, the ratio of the horizontal-vertical
mesh size must be adjusted so that the resulting Cij are of the same order of
magnitude in the three directions. Otherwise the linear system cannot be
solved accurately because of round-off errors (see Section 12.2.4).

Using a three-dimensional model is extremely costly since the number of
meshes rapidly becomes extremely large. Freeze (1971)has calculated the flow
in three-dimensions on a watershed, including both the saturated and
unsaturated zone. In practice, three-dimensional modelling is only applied to
local problems (e.g., dams, dewatering of an excavation).

It is often much better to study the flow on several two-dimensional cross
sections of the medium rather than on a three-dimensional model. For such
modeling one considers a unit thickness of the medium, orthogonal to the
plane of the cross-section. Consequently one uses K and S instead of T and
S, which we generally use in the two-dimensional equations,

On such cross-sections it is often necessary to locate the position of the free
surfa~~. In a steady state this can be done iteratively by first imposing the
COndI!lOn h = z on a surface chosen a priori (see Section 6.3.d) and then
checkmg that the second condition (K oh/on prescribed) is also fulfilled. If not
the position of the surface is modified. The finite-elements method can handle
s~ch problems with a moving surface more accurately than the finite
differences method (see Neuman and Witherspoon (1970, 1971».

In a transient state it is also possible to move a free surface in the same
fas~ion, ~ut !h~s. does not accurately represent the physical processes of
drainage/imbibition of an unsaturated medium. It is therefore much better to
solve a complete saturated-unsaturated flow problem, using Richard's
equati~n expressed :vith the head as the unknown (see Section 9.2.1),and then
determme the position of the free surface in the domain as the place where
p = °(or h = z) [see Freeze (1971)].

12.2.10. Representation of Rivers

For unconfined aquifers in temperate climates, rivers act as sinks or sources
for the aquifer. They can be represented by prescribing the head in each node
of the model where a river flows. This head is then the elevation of the water in
the river.

In practice, river beds are very often covered by a silt layer, and the flux
exchanged between the river and the aquifer creates a difference of head
between t~e two. In Section 6.3.c,we have shown that this may be represented
bya Founer boundary condition. When modeling an aquifer, one therefore
~refers to prescribe the head in the river for a mesh overlying the aquifer and
linked t~ It by an exchange coefficient similar to the one used to represent
leakage m a steady state through an aquitard,

K'a'zc; =--,-
e

where K' is the hydraulic conductivity of the silt layer on the river bed e' the
t~~ckness of this low.conduct~vity layer between the river and the acquif~r, and
a the area of the river bed m contact with the aquifer in the mesh.

The term CiiHr - Hi), where H, is the prescribed head in the river, is then
added to the left-hand side of the flow equation, e.g., Eq. (12.2;6). Generally,
n~ither K' nor e' nor a'? is measured. The coefficient Cir is adjusted so that the
difference in head H, - Hi observed in reality is reproduced by the model when
the flow balance is respected (e.g., total flow drained by the river).
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Even if there is no significant head differencebetween river and aquifer, such
a representation is still used with a large Cir' This makes it very easy to
calculate the flow exchanged between the river and the aquifer and (if
necessary) to limit this flow to a prescribed figure. This may be necessary when
the river recharges the aquifer. If the head in the aquifer is drawn down
substantially in the vicinity of a river, it may in reality reach a point where the
river and the aquifer are disconnected: either the medium becomes unsatu
rated or a recharge mound with a vertical gradient of 1 is created beneath the
river. In either case the recharge rate is no longer a function of the head in the
aquifer and becomes a constant prescribed figure. In groundwater modeling,
such a representation of rivers by an overlying mesh with a prescribed head, an
exchange coefficient,and a prescribed limiting recharge rate is called a drain
with a limiting flux.

In arid zones, where rivers are generally dry and carry water only during
floods, the recharge through the river bed is a prescribed flux, which is a
function of the total volume of each flood. This recharge may take a very long
time to reach the aquifer if the unsaturated zone is thick. Methods for
estimating both this flux and the transient time have been suggested by Besbes
et al. (1978).

12.2.11. Estimation of Regional Recharge

For an unconfined aquifer the distributed term q essentially represents
recharge to the aquifer. In Section 1.3,we showed how infiltration (recharge)
can be roughly estimated from rainfall and potential evapotranspiration data,
using a simple reservoir model to represent the storage of water in the root
zone. Although this type of model is very rough, it it the only one that can be
applied in practice to regional groundwater modeling. In more sophisticated
reservoir models, the rate at which evapotranspiration withdraws water from
the reservoir is made a function of its saturation, and so are infiltration and
runoff. In areas where runoff becomes significant it is therefore interesting to
be able to calculate simultaneously all the components of the water balance at
the ground surface (runoff, infiltration, and evapotranspiration) and then to
check these calculations by modeling surface-water flow and comparing the
calculated and measured flow at the river gauges. These models are called
coupled surface-water-groundwater models. The coupling also takes account
of the infiltration into or drainage from the aquifers by the rivers. Such a model
has been made by Girard et al. (1981) and Ledoux et al. (1984) using a nested
square mesh both for the aquifer and for the runoff in the surface layer. Such
meshes are very appropriate for representing the river network with small
elements.

If the unsaturated zone between the ground surface and the aquifer is not
too thick (e.g., a few meters), the infiltration beneath the root zone is
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transferred very rapidly to the aquifer: recharge is equal to infiltration.
However, if this unsaturated zone is very thick (e.g., tens of meters)
considerable delay and damping are introduced, and recharge at the aquifer
surface is, in fact, a "convolution" of the infiltration at the ground surface by a
"transfer function" representing the vertical flow through the unsaturated
zone. One could, in principle, try to solve the unsaturated flow equation in
order to represent this transfer, but this would prove much too complex,
costly, and difficult (because of the lack of data on the properties of the
unsaturated zone) to be applicable to regional groundwater modeling.

Besbes and Marsily (1984) have shown how a simple linear convolution
can be estimated from rainfall and piezometric data. Morel-Seytoux (1984) has
also shown how this linear convolution is related to the actual nonlinear
unsaturated flow equation.

12.2.12. Representation of Wells

In regional groundwater modeling, the dimension of a well is generally
much too small to be accurately described by the grid of the model (e.g., the
diameter of the well may be 0.5 m when the mesh size is 200 x 200 m). In a
given mesh there may often be several wells.

In the partial differential equation representing the flow in the aquifer the
sink term q for such a well would be

q = Qo b(xo, Yo)

where Qois the flow rate of the well, X oand Yo are coordinates of the well, and
b is the Dirac function at location (xo,Yo), i.e.,

b(x,y) = 00

b(x,y) = 0

ff S dx d» = 1

D

if (x, y) = (xo, Yo)

if (x, y) 1= (xo, Yo)

In the corresponding discretized form of the flow equation the integrated
source/sink term is

Qi= ffqdXdY=Qo

Di

Thus, Qiwill be the algebraic sum of the integral of the distributed source term
(representing recharge) and of the actual flow rates in the various wells in the
mesh.
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If there is only one well, e.g., in a square mesh, it is still possible to estimate
the order of magnitude of the hydraulic head in the well, given the value of the
calculated head at the node of the mesh. This calculation is based on Dupuit's
steady state expression (Section 7.3.a).

The flow equation for mesh I in a steady state would be written, as in
Eq. (12.2.6);

I Cij(/I.i - H;) = Qi
j

The summation over j may extend both horizontally and vertically in
multilayered systems; Qi is the integrated source term, including the flow rate
qi in the well. If no withdrawal had occured in this well, the computed head Hi
would have been given by:

I Cij(/I.i - Hi) = Qi - qi
j

This assumes that the head in the adjacent meshes /I.i is not modified by the
term qi. In other words, Hi - Hi is the additional drawdown created by the
well, which can be calculated by the numerical model, between the center of
mesh I and the adjacent meshes J, i.e., at a distance of a if a is the size of the
square mesh. What we want, in fact, is the actual drawdown for a well of radius
"o between this well and the adjacent meshes at a distance a. This is estimated
by Dupuit's formula as

qi a
s=--ln

2n1; ro

where 1; is the transmissivity in mesh I.
From these two expressions one can derive the head hi in the well:

( 1 a 1)h.=H-q. -In----
, , '2n1; ro LjCij

where hi is the head in the well bore and Hi the head calculated by the model.
This expression is approximate and does not account for quadratic head
losses, which must be subtracted if they are significant.

In a transient state the same expression is used, assuming that the
logarithmic profile of Dupuit's formula is valid at the scale of the mesh. This is
true as soon as Jacob's logarithmic expression can be used at distance a.

12.3. Finite Elements

The method of finite elements constitutes a very flexible and powerful
technique for integrating a partial differential equation over space. It involves
three major steps.
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(1) The domain is decomposed into a set of "elements," which in two
dimensions generally are triangles or quadrilaterals but can be more complex.

(2) On each element the unknown function hex, y) is decomposed on a set
of known basis functions bk(x, y) as

m

hex, y) = I akbk(X, y)
1

The unknowns are then the ak coefficients in each element.
(3) Some kind of integral equation is written to ensure that h(x,y)

approximately satisfies the partial differential equation in question or mass
balance.

We shall limit this presentation to two examples: linear interpolation on
triangles and linear isoparametric elements with the method of Galerkin, A
good description of the method can be found in Remson et al. (1971), Strang
and Fix (1973), Zienkiewicz (1977),Pinder and Gray (1977),Mitchell and Wait
(1977), Dhatt and Touzot (1981), and Wang and Anderson (1982).

12.3.1. Linear Finite Elements on Triangles

We shall start with the steady-state equation, Eq. (12.2.1). The domain is
decomposed into a set of triangular elements. Let UK (Fig. 12.10)be one of
them. On each triangle the unknown function hex, y) is supposed to be linear:

(12.3.1)

The unknowns are a., ai' and a2 • When writing a balance equation, the
first idea would be to use the integrated form [Eq. (12.2.3)] of the flow equa
tion (see Section 12.2.3) on the area of triangle UK. But this would lead us
nowhere, since a linear expression for h such as Eq. (12.3.1) would satisfy
div(T grad h) = 0 if the tensor T is constant over the triangle. Thus, the
balance equation can never be satisfied over a linear element unless the source
term q == O.

Instead we shall use a polygon surrounding each node I of the grid. These
polygons must constitute a partitioning of the domain, i,e., the union of the
polygons is equal to the domain itself and their intersection is <p. One usually
considers the union of the medians of each triangle (Fig. 12.11). Let Di be this

Ll.
I J Fig. 12.10. Triangle for linear finite elements.
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K

Fig. 12.11. Polygon of integration for a
J finite-element mesh.

polygon and ~ its perimeter. The integrated flow equation writes, as in Eq.
(12.2.3),

(12.3.2)

We shall assume initially that x and yare the principal directions of the
tensor T in the triangle 11K. Let MO and ON be the two sides of ~ inside 11K.

We need to calculate the contour integral along MON. This could be done
directly, but as h inside 11K is a linear function of the coordinates, we know
that div(Tgradh) = 0, i.e.,

Given Eq. (12.3.1)and the coordinates of I, J, and K, it is simpler to calculate
the second integral. Very simple algebra gives

Therefore

r (ah ah) 1 1
JMON T; ax nx + 1;, ay ny ds = zTxal(Yj - Yk) - z1;,a2(xj - Xk) (12.3.3)

Instead of using the unknowns ao, al' and a2 in Eq. (12.3.1), one usually
prefers to introduce the values of the head at nodes, I, J, and K. They verify:

Hi = ao + alxi + a2Yi

~ = ao + alxj + a2Yj

Hk = ao + alxk + a2Yk

(12.3.4)
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The head at a node I must, of course, be the same for all triangles having
I as their apex.

Solving Eq. (12.3.4), we obtain

a
_ (y; - Yk)(H; - Hj) - (y; - Yj)(H; - Hk)

1-
(X; - xj)(y; - Yk) - (X; - Xk)(Y; - Yj)

a _ (X; - Xj)(H; - Hk) - (X; - xk)(H; - ~)

2 - (X; - Xj)(Y; - Yk) - (X; - Xk)(Y; - Yj)

and introducing these values in Eq. (12.3.3),

LON (~:~ nx + t; :~ny)dS
1/2

or

(X; - xj)(y; - Yk) - (x, - xk)(Y; - Yj)

x {[Tx(Y; -.Yk)(Yj - Yk) + Ty(x; - xk)(x j - xk)](H; -~)

- [~(y; - Yj)(Yj - Yk) + Ty(x; - xj)(xj - xk)](H; - Hk)} (12.3.6)

We return to the balance equation, Eq. (12.3.2) and build the total contour
integral over r;by adding similar terms calculated in each of the triangles with
I as its apex. We finally obtain

(12.3.7)

where Q; is the integral of the source term over D;.
Equations like Eq. (12.3.7) can be written for each node I where the head is

not prescribed.
Note that this expression is very similar to Eq. (12.2.6),which we obtained in

integrated finite differences over a polygon of any shape. The main differences
are

(1) The domain of integration D; is not the elementary mesh of the
approximation. As we have used triangular elements here, D; is constituted
portions of all the triangles having I as apex. If the parameter values (e.g., T)
are given on the elementary triangles, then T varies inside D;, contrary to finite
differences.

(2) Finite differences compute "average" heads over a polygon affected to
a central node without making any assumption on the form of the variation of



372 12. Numerical Solutions of the Flow and Transport Equations

K

Fig. 12.12. Boundary conditions for a finite-element mesh.

this head from one node to the next. On the contrary, finite elements precisely
define the variation of the head within one element, linearly in this case. Values
at the nodes are only calculated for convenience, but H is defined everywhere.
From one triangular element to the next the head varies continuously.

(3) However, the fluxes along the side U of a triangle are discontinuous:
they are different when evaluated in the two triangles having U in common.
Linear finite elements do not conserve mass on an elementary triangle; this
only happens on a polygon surrounding a node.

Boundary conditions. If the head is prescribed along a boundary, the nodes
of the triangles falling on this boundary will be prescribed. Equations such as
Eq. (12.3.7) will not be written for these nodes.

If a flux is prescribed along a side of a triangle, e.g., IK (Fig. 12.12),then the
polygons D,and Dk will have IN and NK as sides. For polygon D,the flux along
NI will be evaluated using the prescribed boundary condition and introduced
as a known term into the total contour integral of Di , in Eq. (12.3.7). Note that
the flux along MaN will still be evaluated inside UK by Eq. (12.3.6)without
any change.

Contrary to finite differences, the boundary must follow the sides of the
elements both for prescribed heads and prescribed flux conditions.

Anisotropy. In Eq. (12.3.6) we have assumed that x and yare the principal
directions of the anisotropy tensor of the transmissivity inside triangle UK. If
this were not the case, Eq. (12.3.6) would still apply if x and y now form a
local coordinate system inside UK, parallel to the principal directions of
anisotropy.

Let X, Y be the general coordinate system and () the angle between the two.
The rotation () of the axis (Fig. 12.13)gives

x = X cos () + Y sin ()

y = - X sin () + Y cos ()
(12.3.8)
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y

Fig. 12.13. Rotation of axis for taking into
""""'-----J'-"- _o__ X account the anisotropy.

which can be introduced into Eq. (12.3.5). For instance, Cijbecomes

Cij = Tx[(Xk - X;) sin e+ (1"; - ~) cos e]
x [(Xk - Xj) sin e+ (Yj - 1;,) cos e]
+ Ty[(Xi - Xk ) cos e+ (1"; - ~) sin e]
x [(Xj - X k ) cos e+ (Yj - 1;,) sin e]

where 1'" and T; are still the local transmissivities in the local axis of
anisotropy. Such corrections can be introduced into each triangle and, if
necessary, with a different angle e.

Transient state. In transient state, the following term must be added to the
right-hand side of Eq. (12.3.2) or Eq. (12.3.7):

IIS ~~ dx dy (12.3.9)

D,

There are two methods for evaluating this term: the lumped and the consis
tent formulations.

Lumped approximation. One assumes that ohfat within D,can be approxi
mated by oHdot. If S, is the integral of S over Di,

s, = IISdxdy

D,

then the term Si(oHdot) is added to the right-hand side of Eq. (12.3.7). The
discretization of this term can be made exactly as for finite differences, i.e.,
explicit, implicit, etc. (see Section 12.2.6.d).

Consistent Formulation. In reality, the linear expression of the head over
each triangle [Eq. (12.3.1)] makes it possible to evaluate Eq. (12.3.9) more
rigorously. Let MONI (Fig. 12.11)be the portion of D,inside the triangle UK.
We can write

II S~~ dxdy = II Sijk :t (ao + a1x + azy) dx dy

MOM MONI

(12.3.10)

where Sijk is the storage coefficient of element UK. But in Eq. (12.3.5)we have
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evaluated a 1 and az as functions of Hi> Il.i, and Hk • Then aocan be taken from
Eq. (12.3.4) as

(12.3.11)

(12.3.12)

Thus Eq. (12.3.10) becomes

If ah [aHi IfS at dx dy = Sijk at f(x, y) dx dy

MONI MONI

en. If en, If ]+ a/ f'(x,y) dx dy +& f"(x,y) dx dy

MONI MONI

where f, 1', and f" are linear functions of x and y, with coefficients depend
ing on the coordinates of UK. These functions and their integrals over MONI
can be evaluated analytically using Eqs. (12.3.5) and (12.3.11). This term and
the equivalent ones for all triangles having I as apex will be added to the
right-hand side of Eq. (12.3.7).

In principle, the explicit, implicit, Crank-Nicholson's, and Gir's approxi
mations can also be used to solve the resulting consistent equation. However,
using the explicit approximation would be of no interest, because it is no
longer possible to solve explicitly for Hl+At on the left-hand side as in Eq.
(12.2.12). Each equation will now involve several unknowns at time t + Sr:
Hl+At, Hj+At, H~+At, etc., and the solution thus requires the inversion of the
matrix of the system at each time step, as in the implicit approximation.

As the implicit or Crank-Nicholson's approximations (with Il( > 0.5) are
unconditionally stable and do not require more computational effort in this
case, they are systematically preferred to the explicit approximation in
consistent finite elements.

12.3.2. Linear Isoparametric Finite Elements using
Galerkin's Approximation

(a) Basic element. In two dimensions the basic element is a quadrilateral
UKL (Fig. 12.14). For nonlinear elements the sides of this element could
represent polynomials of higher degree, e.g., parabolas, but we shall restrict
this presentation to linear elements for which the sides are straight lines.

One usually defines a linear transformation of the coordinate system (x,y)
for each element so that UKL becomes a square ijkl in the new system (~, 11)
(Fig. 12.14).

This transformation is defined by

x = N;(~,l1)XI + N.i(~,l1)XJ + Nk(~,l1)XK + Nz(~,l1)XL

Y = N;(~,l1)YI + N.i(~,l1)YJ + Nk(~,l1)YK + Nz(~,l1)YL
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Fig. 12.14. Quadrilateral element and linear transformation in a square.

In the system (~, 1/) the functions N;are bilinear functions, called the chapeau
functions:

(12.3.13)

For instance, for apex i(~; = -1,1/; = +1);

N; = i(1 - ~)(1 + 1/)

This function N; is equal to 1 in i and to 0 in j, k, and 1. It varies linearly with IJ
and ~ along the sides of the square and bilinearly inside the square. In Fig.
12.15,we have drawn the contour line of a chapeau function around a node i in
the (~, 1/) plane, assuming the value of N to be on an axis orthogonal to the
plane (~, 1/). The name "chapeau" (meaning hat) comes from the shape of this
function.

When (~,1/) describes the square ijkl, it is easy to see that (x,y) from
Eq. (12.3.12) describes IJKL.

(b) Basis functions. On the element IJKL the unknown h(x,y) (the head

o o
Fig. 12.15. Contour line of a chapeau function.
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here) will be approximated by the sum of four bilinear basis functions:

where H" ... ,HL will be the values of the head at the nodes I, ,L (the
unknowns of the problem) and the bilinear basis functions N" , NL will
again be the chapeau functions defined above, i.e., NlI) = 1, NM) =
N,(K) = N,(L) = 0, and N, varies bilinearly in x and y. More precisely,

(12.3.15)

with (x,y) given by Eq. (12.3.12) from ((,t1) and N; defined in Eq. (12.3.13).

(c) Integral equation. Instead of integrating the flow equation exactly
over a given domain D; around each node I, as we did for integrated finite
differences or linear triangular finite elements, the Galerkin formulation
requires the integration of this equation with a weighting factor. In a steady
state and assuming x and y to be the principal directions of anisotropy, we
write

and then

where VV; is a weighting function. In other words, the flow equation will be
satisfied "on the average" over D; but as a weighted average. Several types of
weighting functions could be used, but in Galerkin's formulation the weighting
functions VV; are again the same chapeau functions as the ones used as basis
functions, and the domain of integration D; is made up of the four
quadrilaterals surrounding each node. Equations like (12.3.16) can be written
for each node of the mesh where the head h is not prescribed.

Note that with Galerkin's formulation D; is no longer a polygon over which
mass balance is satisfied. But it can be shown that (1)mass balance is satisfied
globally for the entire domain, and (2)around each node one can find a domain
included in D; for which mass balance is satisfied. These domains form a
partitioning of the entire domain, but their actual shape is a function of the
nodal value of the head (Goblet, 1981) and cannot be defined a priori.

(d) Calculation of the integral. We can integrate Eq. (12.3.16) by parts.



12.3. Finite Elements 377

Substituting N, for VVr, we get

(12.3.17)

where n.; and ny are the direction cosines of the outer normal of rio However,
by definition of the chapeau function, N, == 0 over I], so that the contour
integral cancels out for all nodes inside the domain. We shall see later how to
deal with the boundary conditions. We now calculate the integrals over
separately for each quadrilateral having I as a node. We then use Eq. (12.3.14)
for the head in each quadrilateral. For instance, for IJKL, the left-hand side of
Eq. (12.3.17) would become

- HI If [O-;,N
x'

aN, aN, aNI] d d
u ax + oy t;ay x y

IJKL

- H If [aN, T oNJ aN, oNJ] d d
J ax x ax + oy Ty oy x Y

IJKL

- Hdsimilar term) - HL(similar term)

Finally, Eq. (12.3.17) will take the form

- C,H, - CJHJ - ... (9 terms, in general) = Q,

(12.3.18)

(12.3.19)

where Q,is the weighted integral of the source term over Di • Note that C, is the
sum of the integrals given in Eq. (12.3.18)for all four quadrilaterals like IJKL.
To calculate these integrals, which are only functions of the coordinates and
directional transmissivities, several methods can be used.

Analytical integration. It is then useful to integrate in the (e, 11) coordinate
system. We shall assume that T; and Ty are constant over each quadrilateral.
We must then evaluate integrals such as

If aN, oNJ dx dy
ax ax

IJKL

kenne
Subrayado
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where det(J) is the determinant of the Jacobian of the change of coordinates
from (x, y) to (~, t/):

ax oy
det(J) = oe o~

ax oy
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Fig. 12.16. Triangle in the (¢, 1/) system.
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can be explicitly calculated from Eqs. (12.3.12) and (12.3.13) and by inversion
of the Jacobian matrix.

Numerical integration. We use a Gaussian integration of the form

(12.3.20)

Three points:

IINIS~~ dx dy
Di

This can be done in two ways, as for the triangular elements. One can either
use the consistent formulation, i.e., substitute L1H1N1[Eq. (12.3.14)] for h in
Eq. (12.3.20), and thenevaluate the integrals of NjS over each quadrilateral, or
use the lumped formulation, i.e., assume that aHdat can be used to represent
ahlat inside the integral (see Neuman, 1975b). ..,

This lumped approximation has the advantage of making It possible t.o use
the explicit formulation. It is, however, less accurate than the consistent
formulation.

Matrix assembly. Instead of calculating successively for each node I, the
coefficients Cj, Cj, ... of each line of the system's global matrix (Eqs. (12.3.11)
or (12.3.19», itis more efficient to first determine all of these coefficients for
each element of the mesh, by calculating for each element successively the
integrals given in Eq. (12.3.18). Once this is done, the coefficients for each
node t (each line of the matrix) are calculated by adding the relevant term of
each element which has t as its apex. This is called the system's matrix
assembly.

Four points:

[ 27 1 .1]. [12 .1 .1]. [12 a .1]. [25 .1 ~]
-96,3' 3 , 96' 5' 5 , 96, 5, 5 , 96, 5, 5 .

Boundary conditions. We have seen that for a prescribed head boundary
the head on the nodes falling on this boundary will be known, and no equation
will be written for them. For a prescribed flux boundary the contour integral in
Eq. (12.3.17) is not zero but can easily be calculated knowing the flux on the
boundary and the chapeau function N1• This term is then known and can be
transferred to the right-hand side of Eq. (12.3.19).

Transient state. In transient state the term S ohl at is added inside the
brackets in Eq. (12.3.16). We then have to evaluate in Eq. (12.3.17) or
Eq. (12.3.19) terms such as

n~, ±Jt ±JJ]and

oe
ax

ax
oe

[~g, 0, ±-JH]an9

These derivatives,

or for seven points

Anisotropy. If the principal directions of anisotropy (x, y) of the transmis
sivity tensor T inside IJKL are not the true coordinate system (X, Y) of the
entire domain, one must first change the (X, Y) system locally into (x, y) by
a rotation, exactly as for triangular elements; see Eq. (12.3.8).

Mixed elements. It is also possible to use linear triangular elements and
bilinear quadrilaterals simultaneously in Galerkin's approximation, making
the mesh more flexible. The chapeau functions to use for a triangle are then
(1 - e- 11), m, and (11), if the three apexes of the triangle are located in
(0,0), (0, 1), and (1,0) in the (e,1'1) diagram (Fig. 12.16).

If a numerical integration is performed over the triangle, the Gaussian
points and weights are, for (A, e, 1'1),

IIG(e, 1'1) ded1'1 = nt
1

AnG(Mn)
ijkl

The points M, and the weights An are the Gaussian points and weight of ijkl,
and are known. The number of points to use is a function of the degree of the
polynomial expression G: with m points, the integration is exact for a
polynomial expression of degree 2m - 1. Four points are used in general
(Zienkiewicz, 1977; Dhatt and Touzot 1981).

One can take for four points
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12.3.3. Higher-Order Elements 12.4.1. Direct Methods

i-l

"u = mii - I rfk
k=l

(12.4.1)

i ~ j

j = 2, ... ,p

rll=~

rj1 = mjdr1l>

Direct methods are all more or less based on Gaussian elimination, which
means that the linear system is solved without ever computing the inverse
matrix. The simplest method of elimination is triangularization, but several
decomposition methods are also used.

(a) Trianqularization. If MH = Q is the linear system to solve we will
w~eti '

In the first equation, we write h1 as a function of h2 · · · and ql' This
expression of h1 is then introduced into the second and the following
equations. The second equation is then no longer a function of h

1
. This

equation is again written to give h2 as a function of h3 ••• hj and qi' and this
expression is introduced into the third and following lines. This third equation
is then no longer a function of h1 and h2 , and so on until the last equation,
which can then be solved, thus giving the value of hp • By back-substitution,
hp - l' ... , h2 , hI are then calculated. This method is called triangularization
because at each step M is transformed into a triangular matrix by linear
combinations of its lines.

(b) Decomposition. We shall only give Choleski's algorithm, which is
applicable to symmetrical positive definite matrices such as the matrices
presented earlier. For Choleski's algorithm the coefficients m

ii
must be

positive.
This may require the solving of the system -MH = -Q if the m

ii
are

negative. We shall assume below that the mii are positive in MH = Q.
One looks for a lower triangular matrix R such that M = RRT (T indicates

transposition). The coefficients rij of matrix R are calculated by recurrence
with

1 ( i-l )rji = ---::- mij - I rikrjk ,
Tu k= 1

Once R is calculated, the solution of RRT H = Q is straightforward. If
V = R T H, then R V = Q, where V is a vector. We then solve the triangular

(1) One can use higher-order polynomials as basis functions on the
elements (e.g., quadratic or cubic) that will increase the number of unknowns
on each element. One will therefore use more nodes on each element (e.g.,nine
nodes on a quadrilateral-the four corners, four nodes in the middle of each
side, and one in the center for quadratic functions-or 16 nodes for a cubic
function). But with such elements the interpolation function still does not have
a continuous derivative from one element to the next.

(2) One can use hermitian elements. The number of nodes per element is
not increased, but instead h and its derivatives at the nodes are taken as
unknowns. If cubic hermitian polynomials are used, h is continuous, oh/on is
still discontinuous, but oh/ox and oh/oy are identical in each quadrilateral at a
node: if the elements are rectangles, oh/ox and oh/oy are continuous. Higher
order hermitian polynomials can ensure continuity of the first- and second
order derivatives. This has proved very efficient for solving the transport
equation (Section 12.5.3); see Van Genuchten (1977).

12.4. Solving Large Linear Systems

Instead of using linear or bilinear basis functions, it is possible to use higher
order functions in finite elements to increase the precision and/or decrease the
mesh size. There are at least two possibilities.

All these techniques are described by Pinder and Gray (1977).

Except for the explicit formulation in a transient state in finite differences, all
numerical techniques that have been presented end up with a large linear
system of equations to be solved.

The matrices of these systems are generally sparse, i.e., they have only a few
nonzero coefficients per line (fivein finite differences on rectangles or squares,
nine in finite elements on quadrilaterals, etc.). These matrices are also
symmetrical. This is imposed by mass balance in finite differences (see Section
12.2.3) and can easily be checked on Eq. (12.3.18) for finite elements.

The simplest method of solving the linear system would be to compute its
inverse matrix; however, this matrix would no longer be sparse and would
require the storage of p x p coefficients if there are p unknowns. This becomes
unfeasible for p larger than 100, approximately. The time also becomes pro
hibitive and the accuracy of direct matrix inversion insufficient for larger p.
Therefore, other methods must be used. Here we will briefly introduce a few
of the most common ones.
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12.4.1. Direct Methods

Direct methods are all more or less based on Gaussian elimination, which
means that the linear system is solved without ever computing the inverse
matrix. The simplest method of elimination is triangularization, but several
decomposition methods are also used.

(a) Trianqularization. If MH = Q is the linear system to solve, we win
write it

(12.4.1)

In the first equation, we write hI as a function of hz ' " and ql. This
expression of h, is then introduced into the second and the following
equations. The second equation is then no longer a function of hI' This
equation is again written to give hz as a function of h3 • • • hj and qi' and this
expression is introduced into the third and following lines. This third equation
is then no longer a function of hI and hz, and so on until the last equation,
which can then be solved, thus giving the value of hp • By back-substitution,
hp - 1 , " " hz, hI are then calculated. This method is called triangularization
because at each step M is transformed into a triangular matrix by linear
combinations of its lines.

(b) Decomposition. We shall only give Choleski's algorithm, which is
applicable to symmetrical positive definite matrices such as the matrices
presented earlier. For Choleski's algorithm the coefficients m., must be
positive.

This may require the solving of the system -MH = -Q if the mii are
negative. We shall assume below that the m.;are positive in MH = Q.

One looks for a lower triangular matrix R such that M = RRT (T indicates
transposition). The coefficients rij of matrix R are calculated by recurrence
with

rll=~

rj 1 = mji/rll , j= 2, ... ,p

i::;, j

i-I

r« = mii - L rrk
k=1

1 ( i-I )
r j i =- mij - L rikrj k ,

ru k=1

Once R is calculated, the solution of RRT H = Q is straightforward. If
V = then R V = Q, where V is a vector. We then solve the triangular
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system RV = Q directly, whence V, and then we again solve the triangular
system RTH = V, whence H.

A very large number of other direct methods is available. Furthermore, with
the development of array processors, new and better direct methods are being
developed at present. One should know, however, that due to round-off errors,
direct methods are sometimes less accurate than the indirect methods, which
we shall now introduce.

12.4.2. Iterative Methods

Initially, iterative methods were widely used for solving linear systems in
groundwater modeling. Their advantage is that they require much less core
storage than the direct methods, since the matrix M is never stored in the
computer, but its coefficients are recalculated at each line. They may be less
efficient in terms of CPU time if a large core is available, but they are less
sensitive to round-off errors, especially for computers with 16-bit words. They
are therefore still very much in use, especially with micro- or minicomputers.
We shall briefly present two iterative algorithms, known as point successive
over-relaxation (PSOR) and alternate directions implicit (ADI), but we shall
first define an iterative algorithm using Jacobi's decomposition.

Let us decompose matrix M as the sum of three matrices:

M= L

lower

triangular

+ D +

diagonal

u
upper

triangular

(12.4.2)

where Land U are, respectively, the lower and the upper triangular matrices,
strictly below and above the diagonal, andD is the diagonal of M. IfM = (mij),
then

L = (mij) j < i

U = (mij) j> i

D = (mii)

To solve the system MH = Q we can write identically

(L+D+U)H=Q or DH=Q-(L+U)H or H=D-1[Q-(L+U)H]

As D is diagonal, D-1 = (1jmii) . From this expression, an iterative algorithm
is built by recurrence by

oH = arbitrary initial value given to H
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The indices 0, n,and n + 1referhere to the.iterationnumber of the calculation.
If the iterative algorithm converges, thenRH -+ H as n -+ 00 V°H, H being the
solution of the system. For strictly diagonally dominant matrices (i.e.,
Imiil ~Lk*ilmikIVi, with a strict inequality at least for one i), Jacobi's
algorithm converges and the only problem is to stop the iterations at some
point. One generally computes the difference between two successive
estimates,

E =R+1H _RH

and stops the iterations whenllEIl < s.where I> is a prescribed figure and 1111 is a
norm (e.g., Li ef, or Liled, or maxi e.);Note that E'is not the differencebetween
R+ 1H and the true solution H, but only the difference between two successive
estimates of H. Therefore I>must be much smaller than the required precision
for H.

Here we have used a matrix notation of Jacobi's iterative algorithm. One
must realize that, in practice, in programming, matrices o:-, L, and U are
never actually stored. Each line of Eq. (12.4.2) is indeed written using the
notations of Eq. (12.4.1):

R+lhi= _1 (qi - I mijRhi ) , i = 1, ... ,p (12.4.3)
mii i*i

Generally, there are only a fewnonzero terms in the summation over j (four in
rectangles in finite differences, eightinquadrilaterals in finite elements),so that
only the nonzero mij are stored or calculated. The FORTRAN codes for
iterative algorithms are thus extremely simple to write.

However, Jacobi's method is very inefficient. The two following methods,
PSOR and ADI, are much better.

(a) Frankel-Young's method or point successive over-relaxation (PSOR).
We start from the same decomposition of matrix M as Jacobi's, but we write
the identity

(D + L)H = Q - UH

The corresponding iterative algorithm, known as the Gauss-Seidel, algorithm
is written

oH = arbitrary value
(12.4.4)

Note that (D + L) is a lower triangular matrix, so that solving Eq. (12.4.4)
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does not involve any matrix inversion and is done by recurrence:

n+lh1 = _1_ (ql - L m1/hj )
mll j>l

n+lh _ 1 ( n+lh" nh)2 - -- q2 - m2 1 1 - L, m2 j j
m22 j>2

n+lhi = _1_ (qi - L m;/+lhj - L m;/hj )

mu j<i i>!

Frankel-Young's method, or over-relaxation, consists in accelerating the
rate at which this algorithm converges. One first writes, as before,

*hi = ~ (qi - L mijn+lhj - L mi/hj )
rna j<i j>i

and then d, = "h, - nhi; d, is the magnitude of the variation of hi during this
iteration. The over-relaxation consists in amplifying this variation by a
coefficient p and writing

This can be written

n+lhi = (1 - pthi +!!- [qi - L mijn+lhj - L m;/hj ]
mii j<i j>i

or in matrix form,

oH = arbitrary, n+1H = (D + pL)-1{[(1 - p)D - pUJRH + pQ}

(12.4.5)

where p is the over-relaxation coefficient. It can be shown that the algorithm
converges if p < 2. But p must be larger than 1 to accelerate the convergence.
In order to stop the iterations, a test similar to the one given for Jacobi's
algorithm must be used. The over-relaxation coefficient p is a complex
function of the geometry of the mesh and properties of the medium. It is better
to underestimate p than to overestimate it. In practice, the optimal value of p
can be obtained by trial and error (value for which the minimum number of
iterations is required to obtain a given precision) or by the following
expression:

2
p =-----===
1+~
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where J1 is the largest eigenvalue of matrix D-l(L + U). For finite-difference
equations written with squares in a homogeneous medium and for a
rectangular domain of n lines and m columns, J1 is given by

J1 = !(cos_TC
_ + cos_TC

_ )
n+1 m+1

If the domain is not rectangular, nand m are taken as the average number of
lines and columns.

If the medium is not homogeneous, J1 can be estimated iteratively by the
Rayleigh ratio of the following iterative Jacobi's algorithm:

oA = arbitrary vector

n+1A = D-l(L + UtA

. e+1A,nA)
J1 = hm -'-::::---:----:-":'"

n-s co (nA,nA)

where (A, B) = Iiab, is the scalar product.
However, this procedure of estimating J1 and p is quite lengthy, and the

value of p is generally fixed empirically.
Note that these iterative algorithms converge for any °H, but the closer

is to the solution, the faster the convergence. One tries to select 0H as close as
possible to the expected solution. In particular, in a transient state (implicit or
Crank-Nicholson), one always takes °Ht H t = H', i.e., the solution calculated
at the previous time step.

When the iterations are stopped, it is always preferable to compute
(MH - Q) and see if the residual errors, which are given in terms of flow
rate per mesh, are acceptable given the precision on the source term Q.

(b) Alternate directions or alternate directions implicit (ADI) in transient
state. Alternate directions are a decomposition method of matrix M that can
only be used for rectangular meshes in finite differences, where there are
five nonzero coefficients per line in matrix M. This matrix is decomposed into
the sum of two matrices.

For the sake of simplicity, we shall present the method on the example of a
square grid as given in Eq. (12.2.2):

T..e(Hn - HJ + T.e(He - He) + T.e(Hs - He) + Twe(Hw - HJ = Qe

where nand s correspond to the direction of the columns and e and w
correspond to the direction of the lines.

We can write Eq. (12.2.2) as the sum of columns and lines equations:
Column equation:

Tne(Hn - He) + T.e(Hs - He) = A1H
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Line equation:

1;,e(He - He) + Twe(Hw- He) = AzH

In matrix form, this is (A1 + Az)H = Q. The alternate directions algorithm is
then

°H = arbitrary

n+1/ZH = (A1 + P1I)-1[(P1I - Az)"H + Q]

n+1H = (Az + PZI)-1[pzI - A1)"+1/zH + Q]

(12.4.6)

where P1 and pz are acceleration factors and can vary from one iteration to the
next (they only need to be positive), n +! is an intermediate step in the
iteration, and I is the identity matrix. In other words, the linear system is first
solved column by column, then line by line. The only problem is to solve a
linear system like (A1 + P1I) or (Az + pzI). These systems only have three
nonzero coefficientsper line. They are solved by Gaussian elimination, which
is very simple for such matrices. If we want to solve the tridiagonal system
AX = E, where each line of matrix A has three coefficients, we denote them
aii - 1, aii, aii+ 1 and then the two-step elimination algorithm, known as
Thomas' algorithm, becomes for the forward step

;1::11z/w] and then ~: :::~/:-1h-1 ] i = 2, ... ,p

g1 = btlw gi = (bi - aii-1gi-1)/W

Only f and g need to be stored; w is only a dummy variable. If p is the
dimension of matrix A, then, the backward step is,

i=p-1, ... ,1

The alternate directions method is often used with rectangular grids and in
transient state in the implicit approximation. Sometimes the number of
iterations is limited to one per time step [i.e., one resolution per column, one
per line. See Pinder and Bredehoeft (1968)]. But this does not ensure
convergence of the solution and can only be used if the time steps are very
small: otherwise it is necessary to check the convergence with an error criterion
IIEII < E, as for the Jacobi or PSOR method.

The difficulty with the ADI method is to select the optimal P for each
iteration. It is also lessflexibleand less easy to program than PSOR, especially
if internal boundary conditions exist inside the domain (e.g., rivers). As they
are only more efficientthan PSOR for the set of optimal P terms (compared to
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an optimal p for PSOR), very often PSOR is the preferred algorithm for
iterative solution of linear systems in groundwater modeling.

(c) Other iterative methods. There are many other iterative methods
than PSOR and AD!. See,for instance, Varga (1962). A very efficient method,
called the incomplete Choleski conjugate gradient algorithm, can be found in
Gambolati and Perdon (1984).

(d) Nonlinear problems. Iterative methods are well suited to solving
nonlinear problems, i.e.,when the coefficients of matrix M are functions of the
solution H.

In a steady state the first simple thing that comes to mind is to change the
values of the coefficients of the matrix M at each iteration of the solution as
vector H changes. But this method, which sometimes works, is very dangerous:
there is absolutely no proofthat a nonlinear iterative algorithm converges, and
very often it does not. The correct method is to solve the iterative system for a
fixed value of the parameter M o, assuming a given initial value for the
unknown Ho. One then obtains a first approximation H1 of H. The coefficients
are changed and matrix M 1 is determined and, by solving the system
iteratively, Hz is calculated, etc. If H; -7 H as n -700, the nonlinear system has
been solved. But for each solution one knows that the iterative system will
converge. In practice, the number of iterations is kept small for the first Hi
terms and then increased as Hi converges.

In a transient state, nonlinearities can be solved assuming that the
parameters of matrix M between t and t + !1t are those estimated at time t, no
matter if one solves an implicit equation. If this is not precise enough, the
predictor-corrector method consists in predicting Ht+!J.t by an approximate
method (e.g., the explicit, using matrix M at time t, even if the time step is larger
than the critical time step). This approximate Ht+At is used to determine the
coefficients of matrix M at time t + si. Then the correct Ht+At is calculated
(e.g., by the implicit scheme)using this updated matrix. If this is still not precise
enough, it is also possible to iterate on the value of the coefficients, as
explained above for a steady state.

This can also be done if direct methods of solution are used.

12.5. Solving the Transport Equation

The transport equation (for solute or heat) was established in Chapter 10.It
has the form

div(D grad C - UC) = We ~~ (12.5.1)
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The numerical solution of this equation raises two problems. (1) The
principal directions of the dispersion tensor D are in principle parallel and
orthogonal to the direction of the Darcy velocity in the medium. As the
direction of this velocity may change with time and space, the numerical
method must be able to incorporate this variation. (2) The derivatives on the
left-hand side of Eq. (12.5.1) are of order 1 and 2: if a second-order correct
approximation of the first derivative is used, the associated error may be of the
same order of magnitude as the true second-order derivative. This is called
"numerical dispersion;" the numerical solution adds a purely numerical
dispersion to the real phenomenon of hydrodynamic dispersion and this
increases the total dispersion of the solute in the medium erroneously. Now, if
third-order correct approximations are used, the numerical solution may
become unstable: the numerical solution is often a compromise between
stability and numerical dispersion.

A large number of numerical methods have been proposed in the literature
and are still being developed. Here we shall briefly present three methods most
commonly used at present: finite differences, method of characteristics, and
finite elements.

12.5.1. Finite Differences

Simple finite differencescan be used in one or in two dimensions with square
or rectangular meshes if the direction of the velocity always remains parallel
to one of the axes of the mesh.

(a) In one dimension. Let us first assume that the dispersion coefficient D,
the Darcy velocity U, and the kinematic porosity We are constant. The
transport equation is

02C ec OC
D ox2 - U ox = weat

The convective term U(oCjox) can be taken as a centered or backward
difference.

Centered difference:

oC C(x + .1.x) - C(X - .1.x)
ox 2.1.x

Backward difference:

oC C(x) - C(x - .1.x)

ox .1.x

where .1.x is the size of the spatial discretization.
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The centered differences are correct to the third order (thus without
numerical dispersion), but they can be unstable if the numerical Peclet number
Pc = U I1x/D = I1x/1X is too large (IX is the dispersivity assuming that D = aU).
Price et al. (1966) have shown that the stability is ensured if P; < 2.

The backward differences are unconditionally stable if the velocity is
directed from x - I1x to x. However, they introduce a numerical dispersion,
which can be corrected as suggested by Lantz (1971). We will treat it together
with the time difference, which can also introduce numerical dispersion. Using
Taylor's series expansion, one can write:

Backward differences:

(
OC) = Cx - Cx+1l.x .111 (02 C) 0(11 2)
O ,,+2X02 + X

X x LlX X x

Sum of backward and forward differences:

(
02C) = Cx+1l.x + Cx-1l.x - 2Cx 0(11)
O 2 " 2 + XX x LlX

(12.5.3)

(12.5.4)

(12.5.5)

(12.5.7)

Explicit time difference

(
OC) = Ct+1l.t - Ct _.1 I1t(02 C) + 0(!1t2)
ot t !1t 2 ot2 t

Implicit time difference

(
OC) = Ct+l!.t - Ct + t!1t(02~) + 0(l1t 2) (12.5.6)
ot t+1l.t I1t ot t+1l.t

where I1t is the size of the time step.
The second-order time derivative can be evaluated by differentiating

Eq. (12.5.2):

02C 1 0 (02C OC)
ot2 = W

c
ot D ox2 - U ox

With a permutation of the order of derivation, disregarding third-order
derivatives and using Eq. (12.5.2) again, we obtain

02C U 0 (OC) U 0 (02C OC)
ot2 = - W

c
ox at = - w; ox D ox 2 - U ox

U202C

= -2-02 + third-order derivatives
Wc x

Equation (12.5.7)is then introduced into Eq. (12.5.6) or in Eq. (12.5.5). These
are taken into Eq. (12.5.2) together with Eq. (12.5.3); all terms in 02C/OX2 are
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grouped and (12.5.4) is then used. One gets, in explicit,

(
D _ tv Llx + t V

2
Llt) (CX+ AX+ CX;AX - 2Cx) _ v(Cx - CX-AX)

We Llx t Llx t

Ct+M _ Ct
=Q] x x

e Llt

and in implicit,

Llt
Lantz's correction for numerical dispersion is to use an apparent dispersion

coefficient given by, in explicit,

v 2 Llt
D* = D - tv Sx +t--

We

and in implicit,

1 1 V 2Llt
D* = D -2:V Llx -2:--

We

and to solve,

C + C 2C C C Ct + At - Ct* X+Ax x-Ax - x V x - X-AX_
D Llx2 - Llx - We Llt

Alternatively, in explicit, one can choose the time step Llt or the mesh size
Llx so that

i.e.,

which means that during each time step the convective flux of water entering
into a mesh, V Llt, is strictly equal to the volume of mobile water in that mesh
weLlx.

If U, D, or Llx vary in the model, the correction can be made mesh by mesh,
but this is rather complex.

If the centered Crank-Nicholson's approximation is used in the time
domain, there is no numerical dispersion for that term.

Note that this one-dimensional discretization can also be used in radial
coordinates [see for instance Sauty (1977, 1978a)].
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(b) In two dimensions. Backward differences are also used for the two
components of the velocity. Note that if the velocity is not parallel to one of
the axes, a five-point finite difference scheme cannot handle the anisotropy of
the dispersion tensor. One must therefore assume that D is isotropic, which is
far from correct, or use a nine-point finite-difference scheme. However, these
methods are not very efficient and finite elements should be preferred.

In any case, with backward differences (in the direction of the velocity) and
the time derivative, a correction for numerical dispersion can be introduced.
One finds that the apparent dispersion coefficient becomes, e.g., using the
explicit method (Goblet, 1981),

* _ Ux!J.x Ux
2 !J.t

Dxx - Dxx - -2- + 2m
e

D* _ _ Uy!J.y U; !J.t
yy - Dyy 2 + 2m

e

* _ * _ UxUy!J.t
Dxy - Dyx - Dxy + 2

me
where Dxx, Dyy, and Dxy are components of the dispersion tensor and Sx; !J.y,
and !J.t the discretization step in space and time.

But these corrections do not solve all the difficulties and for large Ax, !J.y, or
!J.t the higher order terms start to playa role. Van Genuchten (1977) has
suggested more elaborate schemes using centered differences both in space and
time.

In general, finite differences are not very well suited to solving the transport
equation apart from very simple one-dimensional problems.

Note that the "mixing-cell" approach proposed, e.g., by Simpson and
Duckstein (1975) can be seen in one dimension as a transport equation that
only has the convective term and that is discretized with a backward
difference. The hydrodynamic dispersion is introduced by the numerical
dispersion: if !J.x and !J.t are chosen so that the order of magnitude of this
dispersion is correct, the mixing-cell model provides a good description of
transport in one dimension.

12.5.2. Method of Characteristics

This method has been widely used and can be applied to finite differences or
finite elements, in two or three dimensions. The basic idea is to decouple the
convective part and the dispersive part in the transport equation and to solve
them successively. Two different ways of treating the dispersion term have
been proposed: the particle in cells (PIC) and the discrete parcel random walk
(DPRW).
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(a) Particle in cells (PIC). This method was introduced by Garder et al.
(1964) and has been presented with application, e.g., by Pinder and Cooper
(1970) Bredehoeft and Pinder (1973) and Konikow and Bredehoeft (1974,
1978). The flow equation is first solved with a numerical model, and the
velocity in each mesh is determined. Then at each location in the aquifer where
there is a source term of solute a large number of "particles" is introduced at
each time step (e.g., hundreds). These "particles" are assumed to represent the
solute transported with the flow. If the solute is initially distributed over an
area of the aquifer, a regular number of particles (e.g., 4 or 5) is introduced in
each mesh of this particular area at the beginning of the simulation.

To represent the convective transport, one keeps track of the coordinates of
each particle and moves them in the aquifer with the velocity of the flow. If x]
are the coordinates (in two or three dimensions) of particle i at time t, which
falls inside meshj, then its coordinates at time t + /).t will be

X~+Llt = X~ + V t·/).t, , J

where Vj is the pore velocity vector in meshj (i.e., Vlwe , the Darcy velocity
divided by the kinematic porosity) at time t if V is not constant. The time step
M is in general adjusted so that the maximum traveled distance of a particle
during a time step is smaller than one half of the mesh size.

In the PIC method each "particle" represents a concentration of solute.
Initially this concentration is given by the dilution of the flux of solute in the
mesh where this solute is injected. For instance, if the volume of water in this
mesh (area x thickness x porosity) is 104 m ' and if 103 kg of elements are
injected per time step /).t, the concentration in the mesh will be 0.1 kg/m'.
Alternatively, the initial concentration in the mesh may be known. Then each
particle present in a mesh is given the value of the concentration of that mesh.

The particles are then moved with the convective velocity V. A new
concentration in each mesh is then calculated by taking the average of the
concentration of each particle present in each mesh. This value is given to the
node in the center of the mesh for that time step.

To represent the dispersive part of the transport equation, the concen
trations calculated in each mesh, as above, are now modified at each time step
by solving a purely dispersive equation:

ac
div D grad C = weat

This equation (which is identical to the simple flow equation) is solved
numerically using finite differences for the time step M. Then the new
concentration of each particle in a given mesh is the sum of its previous value
(at the end of the convective step) and the change in concentration calculated
in that mesh during the dispersive step; this new figure is "labeled" on each of
these particles.
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Note that the coordinates of the particles are kept constant during this
dispersive part of the transport.

Then this whole procedure is repeated for a new time step: the particles are
moved convectively, new concentrations are determined in each mesh, these
are modified by dispersion, etc.

Although this technique is rather simple, it poses quite a few problems:

(1) Accurate bookkeeping of a large number of particles (several
hundreds) is necessary, giving their coordinates and concentration. As new
particles are added at the sources while others may leave the model at the
boundaries, this is not a very easy job.

(2) The method introduces some numerical dispersion when the concen
trations are calculated from the number of particles.

(3) There may be a net loss of solute at the front of the system in a mesh
where dispersion introduces solute but where there are no particles. This can
be corrected by introducing new particles, but this makes the method even
more complex.

(4) Finally, the method does not converge systematically when the number
of particles is increased. For instance, if 2,5, or 10 times as many particles are
used to solve an identical problem, the concentration may oscillate from one
solution to the next. As the number of particles always becomes small toward
the front of the solute plume, the method is not very accurate.

The second method of characteristics (DPRW) is preferable, although it
does not solve all these problems.

(b) The discrete parcel random walk (DPRW). This method was de
scribed by Ahlstrom et al. (1977) and Prickett et al. (1981). It differs from the
PIC method in two ways:

(1) Each particle represents a mass of solute, not a concentration. To
determine the concentration in a mesh, one divides the sum of the mass of the
particles by the volume of water in the mesh. This is more satisfactory as
masses are additive quantities, whereas concentrations are not. As long as
particles are not "lost," mass balance is always conserved.

(2) The dispersive part of transport is not represented by solving the
dispersion equation but only by giving an additional displacement to each
particle at the end of each convective displacement, without modifying the
mass of the particle. This dispersive displacement is random: in each direction
(longitudinal and transversal) it is determined for each particle by randomly
sampling a Gaussian distribution with zero mean and a variance equal to
2DJlt, D, being the dispersion coefficient in the longitudinal or transversal
directions. This random walk can be seen intuitively as a Brownian motion,
which is known to be responsible for molecular diffusion. If the number of
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particles is large enough, these random walks will indeed correctly represent
Fickian dispersion.

Another approach that has been used is to represent dispersion by
randomly sampling in a distribution of velocity for the convective transport
instead of using a unique "average" convective velocity. This can be done
either by defining this distribution of velocity at each point or by generating
different "realizations" of convective velocity fields and then averaging the
purely convective displacement of each particle in these realizations.

The advantages of DRPW are that it does not involve numerical dispersion
since concentrations are never calculated (except to plot the results). It also
conserves mass and, moreover, it is possible to take into account reactions
during transport, e.g., radioactive decay: the mass of each particle is simply
decreased as a function of time. The difficulties are due to the large number of
particles, their bookkeeping when they enter or leave the model, and the
determination of their displacement. In particular, when the velocity varies a
great deal in the medium, it must be changed during a time step each time a
particle enters into a different medium. Otherwise a particle entering, for
instance, mesh 2 with the velocity calculated in mesh 1, which was much
greater than that of mesh 2, can be "stuck" in mesh 2 if its distance of
displacement is calculated using V1 St. With V2 it would never have moved so
far in the mesh and would not have become "stuck."

The DPRW is, however, unstable when the number of particles is increased:
the solution oscillates and must be smoothed. Therefore it is not very accurate.

12.5.3. Finite Elements

Solving the transport equation using isoparametric elements and Galerkin's
procedure is straightforward. The calculations presented in Section 12.3.2 to
integrate div(T grad h) are used to integrate diveD grad C - UC). The integrals
given in Eq. (12.3.18)will now also involve the chapeau functions N I instead of
only their derivative, but this does not create any major difficulties.

It can be shown that Galerkin's procedure is equivalent to a centered
approximation for a regular mesh, so that numerical dispersion from the first
order space derivative is minimum. The stability criterion given by Price et al.
(1966) also applies, i.e., P; = U !:J.x/D = Sx]« < 2, !:J.x being the size of the
mesh in the direction of the velocity. Otherwise oscillations of the solution will
be observed at the front of the plume of solute.

To increase the stability, Huyakorn (1976) has suggested the use of a sort of
"backward difference" scheme in finite elements, which he has called an
upstream weighting function. This was extended to two dimensions and to the
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lumped transient approximation. However, it increases the numerical disper
sion, it is difficult to extend to anisotropic dispersion (the numerical Peclet
numbers are different in the longitudinal and transverse directions), and it is
lengthy to use (Goblet, 1981). It is more appropriate to use smaller meshes or
higher-order elements. For quadratic elements, the stability criterion becomes
Pc < 4 (Christie et al., 1976) and for second-order hermitian elements, P, <
4.64 (Jenson and Finlayson, 1978).

If Crank-Nicholson's (or Gir's) scheme is used in the time domain, it is also
a centered approximation that limits numerical dispersion.

Stability also requires that the current number Co = (U/w c)(!1t/ Ax) be on
the order of 1, but in practice it should stay smaller than t (Neuman, 1980).
This relates to the displacement distance of the convective front with respect to
the mesh size and is a constraint on the time step.

The choice of a mesh appropriate to the flow system greatly increases the
stability and precision of the finite-element method. In practice, one tries to
use a mesh that more or less follows the flow lines of the system. Away from the
zone of displacement of a sharp front, the criterion P, < 2 can be relaxed;
values up to 20 have been used without major instabilities: as time increases in
the simulation and fronts become less sharp, the criteria on both the Peelet and
current numbers can be progressively relaxed.

It is also possible to use apparent dispersion coefficients smaller than the
actual ones, to correct the numerical dispersion approximately, but these
corrections are difficult to evaluate if the mesh is irregular and the medium
properties vary in space.

Note that in finite elements the anisotropy of the dispersion tensor can
easily be accounted for as shown in Section 12.3.1.

Recently, procedures incorporating some features of the method of
characteristics into the finite element formulation, i.e., moving or deformable
meshes, have been suggested by Varoglu and Finn (1978), Neuman (1980),
Cady and Neuman (1986), and Farmer (1986).

12.5.4. Determination of the Velocity

If the velocity is not prescribed (e.g., uniform velocity field), it must be
calculated with an ordinary flow model, generally in a steady state. In finite
differences, the components of the velocity are calculated between each node
by applying Darcy's law. In linear finite elements the components of the
velocity will be given by differentiating the bilinear basis functions to get the
derivatives of the head and multiplying them by the hydraulic conductivity.

However, if the solute transport can modify the mass per unit volume of the
fluid, the flow and transport equations are coupled and must be solved
successively at each time step (see Section 10.1.1.d).
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12.6. Use of a Model

In the preceding sections, we have shown how to set up the equations of a
groundwater flow or transport problem, how to represent the boundary
conditions, the source/sink terms and some special featues (e.g.,leakage, wells)
and finally, how to solve the equations. In this section we shall look at the
data collecting, the choice of the parameters, the fitting of the model, and,
finally, how to use the model for prediction. We shall essentially discuss the
problem of regional groundwater flow modeling, which must, in any case,
precede any transport modeling.

12.6.1. Data Collecting

The geometry of the aquiferes) must first be described. Besides mapping the
outrcrops, this entails making a synthesis of all the well logs, especially in
sedimentary basins with multilayered systems. The continuity and thickness
of each layer (aquifer and aquitard) have to be estimated. For unconfined
aquifers the elevation of the bedrock (or underlying aquitard) must be known.
All these data can be estimated in space with kriging from the borehole
measurements. Surface geophysical measurements (seismic or electric) can
also be used.

Then the transmissivities must be estimated. Data may come from pumping
tests, specific capacity, slug tests, borehole flow meter, hydraulic conductivity
measurements on cores, or only from the thickness of layers and description of
material, which makes it possible to correlate areas where pumping tests have
been made with areas where they are lacking. Again, kriging can be used to
interpolate this information. In general, log T will be used and averages will be
estimated directly in each of the meshes of the model. If there is a systematic
drift in the transmissivity of the aquifer (thickness or conductivity or both),
and if this drift is approximately known from the borehole geological data, it
can be imposed in the universal kriging approach by writing m(x) = apex),
where p(x) is this prescribed drift. In universal kriging, the local optimal value
of a will be determined automatically.

Whether it is kriging or not, an automatic procedure capable of estimating
the value of a parameter in the mesh of a model from local measurements
helps to save time in setting up a model.

Storage coefficients, or specific yield, generally come from long-term
pumping tests. Short-term pumping tests (less than a month) generally
underestimate the specificyield, but there is, in general, less variability of these
coefficients than of transmissivity. Storage coefficients can be roughly
estimated simply from thickness and compressibility of layers as a function of
the geologic description.
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Interpretation of natural fluctuations of water levels in wells will generally
give a good estimation of the diffusivity T/S( or T/wd). In an unconfined
aquifer one will select one or several flow lines with several piezometers and
to interpret the decay of the piezometric level over several months in one
dimension, following the rise of the wet season. Analytic solutions given in
Section 8.5.a will be used. Alternatively, in the vicinity of a river, the
fluctuations of the piezometric level, caused by the fluctuations of the water
level in the river, can be used.

For confined aquifers natural piezometric fluctuations are linked to
barometric variations, earth tide, and sometimes seismic events. The first two
can be interpreted in terms of diffusivity (seeArdity, 1978). Diffusivity can
to assess both transmissivity and storativity, depending on which one is best
known.

Leakage factors of aquitards, as well as their storativity, will come from
pumping tests with several observation holes inside the aquitards above and
below them (seeNeuman and Witherspoon, 1972).Estimations can also come
from thicknesses of layers, geologic descriptions, and tests on cores. Environ
mental tracers (e.g., 14C, 36Cl) can provide information concerning the veloc
ity of transfer through an aquitard or an aquifer, but there are still large
uncertainties about these tracers, especially for very-long-term transfers
situ radiogenic sources, interactions with the medium, etc.).

Extraction from the aquifers through the wells has to be determined, which
may prove rather difficult. Nevertheless, this may be as important for the
calibration of the model as estimating transmissivities, Apart from exhaustive
surveys and inquiries, indirect estimations can be based on agricultural or
industrial production given the water requirements for each product, areas of
irrigation surfaces (e.g., from satellite images), energy consumption for
pumping (electricity or oil), and population and livestock density (domestic
water supply). A monthly extraction rate must often be estimated from the
annual consumption. Frequently, these data must be known over several
years.

Natural discharge at springs or into rivers must be measured, e.g.,
gauging the river in different sections, at low flow, when most of the water
comes from groundwater.

Direct evapotranspiration in low lands where the water level in the aquifer is
close to the surface will be evaluated from empirical formulas (see Section 1.3
and Appendix 1).

Recharge is also of paramount importance (see Sections 1.3 and 12.2.1 In
semiarid or arid zones it may sometimes be more important to assess the
variability of the recharge than the actual recharge in a given year: one often
finds that in such climates 80% or more of the average recharge over a
period may come from one "catastrophic" event, occurring every 20 or 30
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years. Recharge from rivers to an aquifer is often difficult to evaluate. In some
cases differential gauging can be used, or, if the river is "polluted" by a good
tracer, the dilution of this tracer can help estimate the recharge.

Piezometric heads will be required for calibration of the model. Piezometric
maps in a steady state (if there is one) or at several dates in transient state are
necessary and can be built by kriging. There is often a problem of precision in
these maps if the piezometers or wells are not precisely topographically
leveled. Some maps may be used as initial conditions. Piezometric records,
over several years if there are significant variations, are necessary at several
locations.

The nature and position of the boundary conditions must be determined
often by looking at the piezometric maps (see Section 6.3). For long-term
planning of aquifer development, it is essential that natural boundaries of the
aquifers be used. Taking artificial limits at some distance in an aquifer and
imposing an arbitrary condition (prescribed head or prescribed flux) will, in
general, lead to significant errors in the long term.

12.6.2. Choice of Parameters

This essentially concerns the sizeof the mesh and of the time step. It must be
realized that these parameters are completely independent of the quality and
availability of the data described in Section 12.6.1: they are only related to the
required precision in the solution of a discretized partial differential equation.
As all numerical models globally ensure mass balance, if the choice of the mesh
or of the time steps is poor, the global water balance in the system will still be
correct (input, output, storage); only the heads or velocities will be
approximated.

In order to define the mesh, one starts from the "center(s)" of the model, i.e.,
the areas where the head and velocitieshave to be known with precision. These
areas generally coincide with areas of development (wells, drainage, etc.)
where hydraulic gradients are variable. Given the type of problem, the
smallest mesh may represent a complete well field or, on the contrary, each
well will be included in a different mesh. Having then defined the position of
the actual boundaries of the aquifer, one must choose the rest of the mesh in
order (1) to fill the gap between the boundaries and the "center(s)"; (2)grad
ually increase the meash size, starting from these centers; (3) keep small
meshes in areas where the head gradient varies significantly (e.g., around rivers
acting as drains or sources), whereas large meshes can be used in areas of
uniform head gradient; and (4)keep the total number of meshes below a limit
fixed by the computer resources available (core storage and amount of CPU
time). An average number is a few thousands (from 500 to 10,000).
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In finite differences, nested squares, as shown in Section 12.2.4 or Section
11.8.2, are ideally suited to this purpose both in the plane and, in the case of
multilayered systems, in the vertical direction (see Section 12.2.8). They
eliminate the need for submodels, which are used to increase the precision on
the "centers." A "regional" model with coarse meshes would give the global
behavior of the aquifer. A local submodel would then represent each "center"
using prescribed head boundary conditions on its outer artificial limits. These
prescribed heads would come from the "regional" model. This technique is
feasible but very cumbersome.

If the natural limits of the aquifer are really impossible to reach because
they are extremely far away, one must sometimes use artificial limits and
boundary conditions, e.g., prescribed heads along a contour line of the
piezometric map or no-flow along a flow line. In such cases it is recommended
that one check the influence of the boundary conditions on the long-term
predictions of the model: change prescribed head to prescribed flux, and vice
versa. If the resulting changes are insignificant, the model is valid.

Note that one can sometimes use different meshes for the calibration and the
prediction phase of a model. There is, for instance, no point in having a finely
discretized "center" in the calibration phase if this center represents a well field
that does not yet exist. One must be able to change the discretization inside the
model easily without changing the numbering and other characteristics of an
the other meshes.

Finally, in case of uncertainty concerning the choice of the mesh, tests can
always be made with a finer mesh to check that the results are not greatly
modified.

The choice of the time step in a transient state follows roughly the same
rules. Small time steps must be used (if precision is required) each time there is
a change in the slope of oh/ot. In particular, each time a well (or well field) is
started, stopped, or its flow rate modified, small time steps must be used. They
can start at an hour, a day, a week, etc. depending on the mesh size, the
parameters, and the period of interest. A good order of magnitude for the
suitable time step is given by the "critical time step" Me of the explicit
formulation (see Section 12.2.6), even if an implicit or Crank-Nicholson
formulation is used. Each time a source term, boundary condition, etc. is
changed the time step to use is a fraction (lo,.!) or a multiple (2,10) of the
critical time step. In general, the time steps are then increased as a geometric
progression of ratio 1.2 to 1.5(J'l is often a good choice)until the next change
in the system requires one to start with small time steps again. Very often, the
geometric progression is stopped at a given length (e.g., a week, a month, a
year) in order to obtain outputs at regular intervals and use constant time
steps.
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One can compromise and use constant time steps all through the simulation
that are larger than the critical time step but short compared to the length of
the simulation. In this case a rule of thumb is that five time steps without
significant changes in the source/sink functions or boundary conditions are
required before the calculated head can be considered accurate.

Note that an explicit formulation should be used each time the time step is
shorter than I1tc and an implicit or Crank-Nicholson one in other cases. If
iterative methods of solution are used, a constant time step is helpful because
one can try to optimize the relaxation factor. A compromise can also be found
between the length of the time step and the number of iterations: in general,
the larger the former, the larger the latter.

It is always possible to check the suitability of the time steps by running the
simulation again with twice as many time steps of half the length to see if the
results are identical.

12.6.3. Calibration

This is the most important phase in the construction of the model. Most of
the time, the procedure used is called "trial and error." All the data and
parameters are introduced as described above. Then, one tries to calculate the
head for a period with available observed heads. Finally, one compares the
two. The model is said to be calibrated when the comparison is favorable, i.e.,
the differences between the two are considered negligible.

If this is not achieved, the parameters are modified in the appropriate
direction in order to improve the fitting, i.e., decrease this difference. Most of
the time the transmissivities are the least known parameters and thus are
considerably modified during these trials. If kriging has been used for
estimating T, the standard deviation of the estimation error provides a useful
guide to keep the modifications of T within the confidence interval, although
this is not an absolute rule. Often the initial estimations of leakage factors,
storativity, recharge and discharge, and boundary conditions must also be
modified: the model helps to find a compromise between the various
estimations of not-se-well-known independent parameters. The final maps of
parameters, after calibration, are therefore much more reliable than before.
However, calibration does not, in general, have a unique solution: different
sets of parameters may fit the model. Only the hydrogeologist's own
experience will tell which set has the most likelihood.

Concerning the observed heads, two types of calibration are possible:
steady or transient state. If a real steady state can be found in an aquifer, it
should certainly be simulated because then one of the unknown parameters



12.6. Use of a Model 401

drops out, the storativity, In this case one compares the observed and the
computed head maps. If kriging has been used for estimating the observed
head, the associated estimation error can also be used: it is only necessary that
the calculated heads fall inside the confidence interval of the 0 bserved heads. If
no true steady state can be found, it is always useful to select an approximate
steady state (e.g., "average" head or low-water head) and to use it for
calibration before continuing with transient fitting. An artificial source/sink
term can always be estimated and added to the recharge/discharge term to
represent S ah/at.

If possible, transient fitting should always be made after the initial steady
state trials. The comparison can be made on several head maps at different
times or only on the piezometric records at selected observation wells. It
requires an evaluation of the variation with time of recharge and discharge
but, in general, it produces a much better calibration with much less
uncertainty than steady-state fitting.

In many cases the comparison can also be made on the calculated discharge
from the aquifer, e.g., in a river, a spring, or an underground excavation. This
greatly improves how representative the model is, because if no flow rates are
available the linearity of the flowequation makes it possible to compensate for
an error on T by an error on Q in a steady state without modifying the head.

Even if the fitting of the model is good, one must remember that the
parameters estimated by fitting in an area with little data will always be
questionable and that additional measurements must be made prior to any
development in such an area.

Automatic fitting of a model has been called "the inverse problem." There is
a great deal of literature on this topic, although very few models have actually
been fitted with automatic methods so far.

An important aspect of automatic fitting is how to define the gradient of the
objective function in the parameter space. When this objective function is the
integral (in time and/or space) of the squares of the differences between
observed and computed heads, Chavent et al. (1975) have shown that these
gradients can easily be calculated with the help of an adjoint state equation.
Neuman (1980) has also applied this technique. Solving the inverse problem is
nowadays seen as a multicriterion problem. One must fit the model (i.e.,
minimize the objective function) while maximizing the likelihood or plausi
bility of the parameters, especially the transmissivities. Many, but not all, of
the recently developed techniques rely on kriging to incorporate this
likelihood [see, for instance Emsellem and Marsily (1971), Cooley (1977,1979,
1982), Neuman (1973a, 1980), Neuman and Yakowitz (1979), Neuman et al.
(1980), Yeh et al. (1983), Marsily et al. (1984), Carrera (1984),and Townley and
Wilson (1985).J



402 12. Numerical Solutions of the Flow and Transport Equations

12.6.4. Predicting with a Model

Once a model is calibrated, it can be used for predictions. These may range
from extrapolations of existing conditions to the determination of the
influence of new developments or works. Very often these predictions will
require forecasts of the natural recharge of the aquifer. One may use an
"average" annual recharge or simulate passed climatic series (e.g., the last 20
years or selected episodes of floods or droughts).

Another possibility, if the model is linear, is to apply the principle of
superposition and to determine the drawdown due to a development in the
aquifer directly (see Section 7.1.b). This drawdown will then be subtracted
from the piezometric map of the record of any of the passed 20 years, for
instance, in order to givea range for the possible influence of the development.

Another very helpful consequence of the linearity of the flow equation is the
possibility of using linear programming in conjunction with a model in order
to optimize both the location and the flowrate of wells in an aquifer to meet a
given goal. In general, the objective function will depend on the total flowrate
extracted from the aquifer (e.g., maximize the extraction, maximize the
economic return from the extraction, minimize the pumping costs). The
drawdown and flowrates per well will be limited by physical reasons (e.g.,
maximum flow per well, maximum economical drawdown) and the relations
between extraction in one well and drawdown anywhere elsein the aquifer will
be linear and additive. This is, by definition, a linear programming problem.

The drawdown at any location for a unit extraction rate in a well is usually
called an influence coefficient.It can be calculated easilywith a model, either in
a steady state or as a function of time in a transient state. A whole matrix of
these coefficients is calculated: (1) locations where wells could be drilled and
(2) locations where the drawdown should be limited [which can be the
same location as (1)]. The result of the linear programming optimization is
(1) the location of the "optimal" wells within the possible locations and
(2) the "optimal" extraction rate in these wells.

This method is well described by IUangasekare and Morel-Seytoux (1982),
Marsily et al. (1978), and Maddock (1972). Additional developments can be
found in Morel-Seytoux et al. (1981) and Hubert (1984).



Appendix 1

Formulas for Estimating the
Potential Evapotranspiration

1. Thornthwaite's Formula

The potential evapotranspiration (ETp) per month or ten days is given

ET p = 16(108/1t x F(A.)

Here, ET p is given in millimeters per month.

8 mean temperature of the period in question (0C) measured under
shelter,

a 6.75 x 10-71 3 - 7.71 x 10-51 2 + 1.79 X 10-21 + 0.49239
1 annual thermal index, sum of twelve monthly thermal indexes i,

(8/5)1.514
F(A.) correction coefficient, function of the latitude and the month, given

by Table A.1.1.

2. Turc's Formula

Turc prefers different formulas according to whether the mean relative
humidity is above or below 50%. If Um > 50% (usual in temperate zones)

IfUm < 50%

8 [50 - U ]ETp (mm/Iud) = 0.13 8 + 15 (Rg + 50) 1 + 70 m

8 mean temperature of the period in question eC) measured under
shelter,

Rg overall solar radiation ~ 19J O.18 + 0.62h/H)
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TableA.l.l.
Correction Coefficient F(A) Depending on the Latitude and the Month"

Lat.N. J F M A M J J A S 0 N D

0 1.04 0.94 1.04 1.01 1.04 1.01 1.04 1.04 1.01 1.04 1.01 1.04
5 1.02 0.93 1.03 1.02 1.06 1.03 1.06 1.05 1.01 1.03 0.99 1.02

10 1.00 0.91 1.03 1.03 1.08 1.06 1.08 1.07 1.02 1.02 0.98 0.99
15 0.97 0.91 1.03 1.04 1.11 1.08 1.12 1.08 1.02 1.01 0.95 0.97
20 0.95 0.90 1.03 1.05 1.13 1.11 1.14 1.11 1.02 1.00 0.93 0.94
25 0.93 0.89 1.03 1.06 1.15 1.14 1.17 1.12 1.02 0.99 0.91 0.91
26 0.92 0.88 1.03 1.06 1.15 1.15 1.17 1.12 1.02 0.99 0.91 0.91
27 0.92 0.88 1.03 1.07 1.16 1.15 1.18 1.13 1.02 0.99 0.90 0.90
28 0.91 0.88 1.03 1.07 1.16 1.16 1.18 1.13 1.02 0.98 0.90 0.90
29 0.91 0.87 1.03 1.07 1.17 1.16 1.19 1.13 1.03 0.98 0.90 0.89
30 0.90 0.87 1.03 1.08 1.18 1.17 1.20 1.14 1.03 0.98 0.89 0.88
31 0.90 0.87 1.03 1.08 1.18 1.18 1.20 1.14 1.03 0.98 0.89 0.88
32 0.89 0.86 1.03 1.08 1.19 1.19 1.21 1.15 1.03 0.98 0.88 0.87
33 0.88 0.86 1.03 1.09 1.19 1.20 1.22 1.15 1.03 0.97 0.88 0.86
34 0.88 0.85 1.03 1.09 1.20 1.20 1.22 1.16 1.03 0.97 0.87 0.86
35 0.87 0.85 1.03 1.09 1.21 1.21 1.23 1.16 1.03 0.97 0.86 0.85
36 0.87 0.85 1.03 1.10 1.21 1.22 1.24 1.16 1.03 0.97 0.86 0.84
37 0.86 0.84 1.03 1.10 1.22 1.23 1.25 1.17 1.03 0.97 0.85 0.83
38 0.85 0.84 1.03 1.10 1.23 1.24 1.25 1.17 1.04 0.96 0.84 0.83
39 0.85 0.84 1.03 1.11 1.23 1.24 1.26 1.18 1.04 0.96 0.84 0.82
40 0.84 0.83 1.03 1.11 1.24 1.25 1.27 1.18 1.04 0.96 0.83 0.81
41 0.83 0.83 1.03 1.11 1.25 1.26 1.27 1.19 1.04 0.96 0.82 0.80
42 0.82 0.83 1.03 1.12 1.26 1.27 1.28 1.19 1.04 0.95 0.82 0.79
43 0.81 0.82 1.02 1.12 1.26 1.28 1.29 1.20 1.04 0.95 0.81 0.77
44 0.81 0.82 1.02 1.13 1.27 1.29 1.30 1.20 1.04 0.95 0.80 0.76
45 0.80 0.81 1.02 1.13 1.28 1.29 1.31 1.21 1.04 0.94 0.79 0.75
46 0.79 0.81 1.02 1.13 1.29 1.31 1.32 1.22 1.04 0.94 0.79 0.74
47 0.77 0.80 1.02 1.14 1.30 1.32 1.33 1.22 1.04 0.93 0.78 0.73
48 0.76 0.80 1.02 1.14 1.31 1.33 1.34 1.23 1.05 0.93 0.77 0.72
49 0.75 0.79 1.02 1.14 1.32 1.34 1.35 1.24 1.05 0.93 0.76 0.71
50 0.74 0.78 1.02 1.15 1.33 1.36 1.37 1.25 1.06 0.92 0.76 0.70

Lat. S.

5 1.06 0.95 1.04 1.00 1.02 0.99 1.02 1.03 1.00 1.05 1.03 1.06
10 1.08 0.97 1.05 0.99 1.01 0.96 1.00 1.01 1.00 1.06 1.05 1.10
15 1.12 0.98 1.05 0.98 0.98 0.94 0.97 1.00 1.00 1.07 1.07 1.12
20 1.14 1.00 1.05 0.97 0.96 0.91 0.95 0.99 1.00 1.08 1.09 1.15
25 1.17 1.01 1.05 0.96 0.94 0.88 0.93 0.98 1.00 1.10 1.11 1.18
30 1.20 1.03 1.06 0.95 0.92 0.85 0.90 0.96 1.00 1.12 1.14 1.21
35 1.23 1.04 1.06 0.94 0.89 0.82 0.87 0.94 1.00 1.13 1.17 1.25
40 1.27 1.06 1.07 0.93 0.86 0.78 0.84 0.92 1.00 1.15 1.20 1.29
42 1.28 1.07 1.07 0.92 0.85 0.76 0.82 0.92 1.00 1.16 1.22 1.31
44 1.30 1.08 1.07 0.92 0.83 0.74 0.81 0.91 0.99 1.17 1.23 1.33
46 1.32 1.10 1.07 0.91 0.82 0.72 0.79 0.90 0.99 1.17 1.25 1.35
48 1.34 1.11 1.08 0.90 0.80 0.70 0.76 0.89 0.99 1.18 1.27 1.37
50 1.37 1.12 1.08 0.89 0.77 0.67 0.74 0.88 0.99 1.19 1.29 1.41

a Thornthwaite's formula, from Brochet and Gerbier (1974).
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h actual amount of sunshine in hours per day,
H maximum possible amount of sunshine (astronomical length of the

day),
19a direct solar radiation at the top of the atmosphere,

1ga and H are tabulated according to the latitude and the date on Tables
A.1.2 and A.U.

Table A. 1.2.

Monthly I g• Values in Small Calories per em? of Horizontal
Surface Area and per Day"

Latitude North 30° 40° 50° 60°

January 508 364 222 87.5
February 624 495 360 215
March 764 673 562 432
April 880 833 764 676
May 950 944 920 880
June 972 985 983 970
July 955 958 938 908
August 891 858 800 728
September 788 710 607 487
October 658 536 404 262
November 528 390 246 111
December 469 323 180 55.5

a From Brochet and Gerbier (1974)

Table A.I.3.

Length of the Astronomical Day H (mean monthly values in hours
per day)"

Latitude North 30° 40° 50° 60°

January 10.45 9.71 8.58 6.78
February 11.09 10.64 10.Q7 9.11
March 12.00 11.96 11.90 11.81
April 12.90 13.26 13.77 14.61
May 13.71 14.39 15.46 17.18
June 14.07 14.96 16.33 18.73
July 13.85 14.68 15.86 17.97
August 13.21 13.72 14.49 15.58
September 12.36 12.46 12.63 12.89
October 11.45 11.15 10.77 10.14
November 10.67 10.00 9.08 7.58
December 10.23 9.39 8.15 6.30

a From Brochet and Gerbier (1974)
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3. Penman's Formula

1 Rn(F'8/y) 1
E = L 1 + (F'8/y) + E, 1 + (F'8/y)

L latent heat of water evaporation (59 cal/em" for 1 mm of equivalent
water),

R; net radiation, evaluated from the formula

Rn = IgJl - a)(0.18 + 0.62h/H) - 0"84(0.56 - 0.08)e)(0.10
+ 0.9h/H)

E; evaporating power of the air = (ew - e)0.26(1 + 0.4V),
y psychometric constant (y c::: 0.65),
a albedo of the evaporating surface (generally a = 0.25),

I ga direct solar radiation at the top of the atmosphere,
h actual amount of sunshine,

H astronomical length of the day,
8 air temperature under shelter (K),
0" 1.19 x 107 cal/cnr' x d x K,
e tension of the water vapor measured under shelter, in mbar

ew maximum tension of the water vapor in mbar for the temperature 8,
V mean wind velocity measured at 10 m above the evaporating

surface (m/s),
F'8 slope of the curve of maximum water vapor tension



Appendix 2

Commonly Used Physical Quantities

1. Measurement Units of the International System (SI)

1.1. Basic Units

There are seven basic units in the SI system given in Table A.2.1 with their
dimensions and abbreviations. In front of each unit, a prefix, given in Table
A.2.2, can be added to scale the unit. These prefixes are attached to the basic
symbols. For example, 1000 A = 1 kA.

1.2. Geometric Units

The following lists give the various units, their abbreviations, and conver
sion factors. See also, table A.2.3 for conversion factors.

Metric units

Length. The basic unit is the meter (m),
Micrometer (mm)
Angstrom (A)

English units

10-6 m,
10-1 0 m,

inch
foot
yard
mile
nautical mile

0.0254m,
0.3048 m,
0.9143 m,
1.609 x 103 m,
1.8532 x 103 m.

Surface area. The basic unit is the meter squared (m2
) .

Metric units

hectare (ha)
are (a)

407
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TableA.2.1

Basic SI Units

Unit

meter
kilogram
second
ampere
kelvin
candela
mole

Dimension

length
mass
time
electric current intensity
temperature
luminous intensity
quantity of matter

Abbreviation

m
kg
s
A
K
cd
mol.

English units

TableA.2.2

SI Prefixes

Factor by which the unit
Prefix Symbol is multiplied

exa E 1000 000 000 000 000 000 = 1018

peta P 1 000 000 000 000 000 = 1015
tera T 1 000 000 000 000 = 1012

giga G 1000000000 = 109

mega M 1000000 = 106

kilo k 1000 = 103

hecto h 100 = 102

deca da 10 = 10
deci d 0.1 = 10-1

centi c 0.01 = 10-2

milli m 0.001 = 10-3

micron f.l 0.000001 = 10-6

nano n 0.000 000 001 = 10-9

pico P 0.000 000 000 001 = 10-12

femto f 0.000 000 000 000 001 = 10-15

atto a 0.000 000 000 000 000 001 = 10-18

square foot (£12)
acre

9.29 X 10-2 m",
4.047 x 103 m '.

Volume. The basic unit is the meter cubed (m'].

Metric units

The liter (0.001 m 3) must not be used instead of the dm 3 when extremely
precise results are desired.
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English units

liquid ounce
ft3

US gal
UK gal
barrel of oil

2.95412 X 10-5 m",
2.832 x 10-2 m",
3.785 x 10-3 m ',
4.546 x 10-3 m ',
0.156 m".

Plane angle. The basic unit is the radian (rad). The degree is equal to nl180
rad, and the grad is equal to nl200 rad.

Solid angle. The basic unit is the steradian (sr).It is the solid angle with its
apex in the center of a sphere and subtending an area on the surface of the
sphere equal to that of a square with side the length of the radius of the sphere.

1.3. Units of Mass and Matter

Mass

Metric units. The basic unit is the kg.
metric ton (t) 1,000 kg (also written Mg)
quintal (q) 100 kg,

English units

ounce (oz)
pound (lb)
ton (short) (tn.s)
ton (long) (tn.l)

2,835 X 10-2 kg,
0.4536 kg,
0.907 x 103 kg,
1.016 X 103 kg.

Mass per unit volume. The basic unit is the kilogram per cubic meter
(kg/m").

Quantity of matter. The basic unit is the mole (mol). This is the quantity of
matter in a system containing the same amount of elementary entities as there
are atoms in 0.012 kg of carbon 12 (the nature of the entities must be specified).

Concentration. The basic unit is the mol per cubic meter (mol/m'),
Volumetric concentrations in kg/m 3 and mas sic concentrations in kg/kg are
also used. (See also the introduction of Chapter 10 for other concentration
units.)

1.4. Mechanical Units

Velocity. The basic unit is the meter per second (m/s), In navigation,
1 knot = 0.514444 m/s.



TableA.2.3

SI-English, English-SI Conversion Table

Units English-» SI SI -> English

Length linch = 2.54 em lcm = 0.3937 inch
1ft = 0.3048 m 1m = 3.281 ft
l mi = 1.609 km lkm = 0.6215 mi

Area 1 inch" = 6.4516 em? 1 em? = 0.155 inch"
lfe = 0.0929 m2 1 m2 = 10.76ft2
1 acre = 0.4047 ha 1 ha = 2.471 acres

= 0.4047 x 104 m 2 1 km 2 = 0.3861 mi '
ImP = 2.590 km 2

Volume 1 US fl oz = 29.54 em" 1 cm' = 3.385 x 10- 2 Fl.oz

~ 1 ft3 = 2.832 X 10-2 m 3 11 = 3.531 X 10- 2ft3
0 = 28.32 liter 11 = 0.2642 US gal

1 US gal = 3.785 x 10-3 m ' 11 = 0.2200 UK gal
= 3.785 liter 1 m ' = 264.2 US gal

1 UK gal = 4.546 x 10- 3 m ' 1 m ' = 220.0 UK gal
= 4.546 liter 1 m" = 28.38 US bushel

1 US bushel = 3.524 x 10-2 m ' 1 m ' = 6.41 oil barrel
= 35.24 liter

1 oil barrel =0.156m3

= 156 liter

Flow rate 1 cubic ft/s = 2.832 X 10-2 m 3/s 1 m 3/s = 35.311 ft3/S
= 28.32liter/s lI/s = 0.0353 ft3/S

1 US gal/min = 6.309 x 10- 5 m 3/s lI/s = 10- 3 m 3/s

= 6.309 x 1O-2liter/s lI/s = 15.85 US gal/min
1 UK gal/min = 7.576 x 10- 5 m 3/s lI/s = 13.20UK gal/min

= 7.576 x 10-2 liter/s



Table A.2.3 (Continued)

Units English ....SI SI ....English

Mass loz = 28.35 g 1 g = 3.257 X 1O-2oz

1 Ibm = 0.4536 kg 1 kg = 2.205 Ibm
1 s. ton = 907 kg 1 metric ton = 1,000kg
11. ton = 1,016 kg 1 metric ton = 1.103 s. ton

1 metric ton = 0.984 I. ton

Mass per unit volume Ilbm/ft
3 = 16.02 kg/m 3 1 kg/m ' = 6.242 x 1O-2Ib

m/ft
3

= 16.02 g/liter = 1 g/liter

Force Ilb f = 4.448 N IN = 0.22481bf

Stress and pressure Ilbf/fooe = 47.88 Pa 1 Pa = 2.089 x 1O-2Ib
f/ft

2

1 psi = 6.895 x 103 Pa 1 Pa = 1.450 x 10- 4 psi

;!: 1 atm = 1.013 x 105 Pa 1 Pa = 10- 5 bars
...... I bar = 105 Pa 1 MPa = 10 bars

= 0.1 MPa

Work or energy 1 ft lbf = 1.356J IJ =0.7374ftlbf
1 calorie = 4.185 J 1 J = 0.2389 calorie
1 BTU = 1.055 x 103 J 1 J = 9.479 X 10- 4 BTU

Temperature xOF = ~(x - 32j"C xOC= tx + 32°F
- 459.69°F = 0 K - 273.15°C = 0 K

Hydraulic conductivity 1 ft/s = 0.3048 m/s 1 ta]« = 3.281 ft/s
I US gal/day fe = 4.720 x 10- 7 ta]« 1 m/s = 2.119 x 106 US gal/day ft2

Transmissivity 1 fe/s = 9.290 x 10- 2 m2/s 1 m2/s = 10.76ft2/S

1 US gal/day ft = 1.438 X 10- 7 m2/s 1 m2/s = 6.954 x 106 US gal/day ft

Intrinsic permeability 1 ft2 = 9.290 X 10- 2 m2 1 m2 = 10.76 ft2

= 9.412 X 1010 darey 1 m' = 1.013 x 1012darey
1 darcy = 0.987 )( 10- 12m'
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Thermodynamic temperature. The kelvin (K) is the basic unit. The celsius
degree (0C)is the same unit of temperature, but the Celsius scale has its zero at
273.15 K.

Electric inductance. The basic unit is the henry (H). It is the electric
inductance of a closed circuit in which a potential difference of 1V is produced
when the current going through the circuit varies uniformly at a rate of 1A/s.

Magnetic flux. The basic unit is the weber (Wb). It produces a potential
difference of 1V through a circuit of one single coil, if it is reduced to zero in 1 s
by uniform decrease.

Heat conductivity A. The basic unit is W/m K [MLT- 3K - 1]. The
kcal/s m °C = 4.18 X 103 W/m K is also used.

Massie heat capacity c. The basic unit is J/kg K [UT-2K - 1]. The
kcaljkg °C = 4.18 X 103 J/kg K is also used.

Volumetric heat capacity pc. The basic unit is J/m 3 K [ML-IT-2K - 1].

The kcal/m' °C = 4.18 X 103 J/m 3 K is also used.

Heat diffusivity AIpc. The basic unit is m 2/s [L2T- 1].

1.6._Electric Units

Intensity of electric current. The basic unit is the ampere (A).

Electric charge. The basic unit is the coulomb (C). It is the quantity of
electricity transported in one second by a current of 1 ampere.

Electrical potential. The basic unit is the volt (V). It is the difference in
potential that dissipates a power of 1 W for a constant current of 1 A.

Electric resistance. The basic unit is the ohm (0). It is the resistance of a
conductor where 1 A circulates under a difference of potential of 1 V. The
siemens (S) is the conductance (the inverse of the resistance) of a conductor
with a resistance of 1 O.

Electric capacitance. The basic unit is the farad (F). It is the capacitance
of a condensor that becomes charged with 1 C under a difference of potential
of 1 V.

1 J/s, dimension [MUT- 3 ] ,

103 W; 1 MW = 106 W; 1 GW = 109 W,
736W,
10-7 W,
1.055 X 103 W.

watt (W)
1kW
horsepower
erg/s.
BTUls

Power

t Dimensions are given in brackets with capital letters. M = mass, L = length, T = time,
K = temperature.

1.5. Energy Units

Work or quantity of heat. The basic unit is the joule (J). It is the work done
by a force of 1 N moving its point of application through 1 m (dimension
[ML2T-2]). The erg is equal to 10-7 J, the kWh to 3.6 x 106 J, the calorie
(small) to 4.185 J. The calorie is the energy required to increase the/
temperature of 1 g of water by 1°C. The kilocalorie (or large calorie) is
4.185 x 103 J, the therm (103 kilocalories) is 4.185 x 106 J, and the BTU
(British Thermal Unit) is 1.055 x 103 J.

Acceleration. The basic unit is the meter per second squared (m/s"), The
acceleration due to gravity is g = 9.80665 m/s 2

•

Angular velocity. The basic unit is the radian per second (rad/s).

Frequency. The basic unit, the hertz (Hz), is equal to 1 cycle/s.

Force. The basic unit is the newton (N). It is the force which gives a body
with amass of 1 kg an acceleration of 1m/s 2

, dimension [MLT-2]. t The dyne
is equal to 10-5 N. Gravity produces a force of 9.80665 N on a mass of 1 kg.

Moment of a force. The basic unit is newton meter (N m).

Stress and pressure. The basic unit is the pascal (Pa) produced by a force of
1 N applied over an area of 1 m ', dimension [ML-IT-2]. The megapascal
(MPa), i.e., 106 Pa, is used more frequently. The bar (105 Pa) and the millibar
(102 Pa) are also used.

Do not use

standard atmosphere 1.0133 bar = 1.0133 x 105 Pa,
mm of mercury 1.33322 x 102 Pa,
m of water at 4°C 9.80638 x 103 Pa,
dyne/em? 0.1 Pa,
psi (pound per square inch) 6.895 x 103 Pa,
kg/ern? 0.981 x 105 Pa.

Dynamic viscosity (f1,). The basic unit is the pascal second (Pa s) dimension
[ML-IT- 1]. The poise is equal to 0.1 Pa s.

Kinematic viscosity (v = pip). The basic unit is the meter squared per
second (m2/s). The stokes is equal to 10-4 m 2/s.
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Thermodynamic temperature. The kelvin (K) is the basic unit. The celsius
degree (0C)is the same unit of temperature, but the Celsius scale has its zero at
273.15 K.

Electric inductance. The basic unit is the henry (H). It is the electric
inductance of a closed circuit in which a potential difference of 1V is produced
when the current going through the circuit varies uniformly at a rate of 1A/s.

Magnetic flux. The basic unit is the weber (Wb). It produces a potential
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1.6._Electric Units

Intensity of electric current. The basic unit is the ampere (A).

Electric charge. The basic unit is the coulomb (C). It is the quantity of
electricity transported in one second by a current of 1 ampere.

Electrical potential. The basic unit is the volt (V). It is the difference in
potential that dissipates a power of 1 W for a constant current of 1 A.

Electric resistance. The basic unit is the ohm (0). It is the resistance of a
conductor where 1 A circulates under a difference of potential of 1 V. The
siemens (S) is the conductance (the inverse of the resistance) of a conductor
with a resistance of 1 O.

Electric capacitance. The basic unit is the farad (F). It is the capacitance
of a condensor that becomes charged with 1 C under a difference of potential
of 1 V.

1 J/s, dimension [MUT- 3 ] ,

103 W; 1 MW = 106 W; 1 GW = 109 W,
736W,
10-7 W,
1.055 X 103 W.

watt (W)
1kW
horsepower
erg/s.
BTUls

Power

t Dimensions are given in brackets with capital letters. M = mass, L = length, T = time,
K = temperature.

1.5. Energy Units

Work or quantity of heat. The basic unit is the joule (J). It is the work done
by a force of 1 N moving its point of application through 1 m (dimension
[ML2T-2]). The erg is equal to 10-7 J, the kWh to 3.6 x 106 J, the calorie
(small) to 4.185 J. The calorie is the energy required to increase the/
temperature of 1 g of water by 1°C. The kilocalorie (or large calorie) is
4.185 x 103 J, the therm (103 kilocalories) is 4.185 x 106 J, and the BTU
(British Thermal Unit) is 1.055 x 103 J.

Acceleration. The basic unit is the meter per second squared (m/s"), The
acceleration due to gravity is g = 9.80665 m/s 2

•

Angular velocity. The basic unit is the radian per second (rad/s).

Frequency. The basic unit, the hertz (Hz), is equal to 1 cycle/s.

Force. The basic unit is the newton (N). It is the force which gives a body
with amass of 1 kg an acceleration of 1m/s 2

, dimension [MLT-2]. t The dyne
is equal to 10-5 N. Gravity produces a force of 9.80665 N on a mass of 1 kg.

Moment of a force. The basic unit is newton meter (N m).

Stress and pressure. The basic unit is the pascal (Pa) produced by a force of
1 N applied over an area of 1 m ', dimension [ML-IT-2]. The megapascal
(MPa), i.e., 106 Pa, is used more frequently. The bar (105 Pa) and the millibar
(102 Pa) are also used.

Do not use

standard atmosphere 1.0133 bar = 1.0133 x 105 Pa,
mm of mercury 1.33322 x 102 Pa,
m of water at 4°C 9.80638 x 103 Pa,
dyne/em? 0.1 Pa,
psi (pound per square inch) 6.895 x 103 Pa,
kg/ern? 0.981 x 105 Pa.

Dynamic viscosity (f1,). The basic unit is the pascal second (Pa s) dimension
[ML-IT- 1]. The poise is equal to 0.1 Pa s.

Kinematic viscosity (v = pip). The basic unit is the meter squared per
second (m2/s). The stokes is equal to 10-4 m 2/s.
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Magnetic flux density. The basic unit is the tesla (T). It is the uniform
magnetic flux density that produces a total magnetic flux of 1 Wb across a
normal plane surface of 1 m 2 over which it is uniformly distributed.

Magnetic motive force. The basic unit is the ampere (A). It is the magnetic
motive force that corresponds to a current of 1 A in a single coil.

Intensity of the magnetic field. The basic unit is the ampere per meter
(Aim). It is the intensity of the magnetic field created at the center of a circuit
with a diameter of 1 m by the passing of a current of 1 A through the circuit,
which is constituted by a conducting wire of negligible cross-section area.

1.7. Radiological Units

Radionuclear activity. The basic unit is the becquerel (Bq), It corresponds
to one disintegration per second of a radioactive body; the curie (Ci)is equal to
37 GBq (gigabecquerel).

Half-life. This is the length of time needed for one-half of the initial mass
of the radioactive element to disappear by radioactive decay.

Quantity of x or y radiation. The basic unit is the coulomb per kilogram
(Crkg). It is the quantity of x or y radiation that is such that the corpuscular

Table A.2.4

Specific Weight Mass per Dynamic Kinematic Latent heat of
Temperature (kN/m 3

) , unit volume, P viscosity, /l viscosity, v(= /lIP) vaporization
(0C) y = pg (kg/m') (103/Pa s) (10- 6 m 2/s) (Jig)

0 9.805 999.8 1.781 1.785 2500.3
5 9.807 1000.0 1.518 1.519 2488.6

10 9.804 999.7 1.307 1.306 2476.9

15 9.798 999.1 1.139 1.139 2465.1

20 9.789 998.2 1.002 1.003 2453.0
25 9.777 997.0 0.890 0.893 2441.3
30 9.764 995.7 0.798 0.800 2429.6
40 9.730 992.2 0.653 0.658 2405.7

50 9.689 988.0 0.547 0.553 2381.8

60 9.642 983.2 0.466 0.474 2357.6

70 9.589 977.8 0.404 0.413 2333.3
80 9.530 971.8 0.354 0.364 2308.2

90 9.466 965.3 0.315 0.326 2282.6

100 9.399 958.4 0.282 0.294 2256.7
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emission associated with it in 1 kg of air produces ions in the air that transport
a quantity of electricity (of either sign) equal to 1 C; the roentgen is equal to
2.58 x 10-4 C/kg.

Absorbed dose of ionizing radiation. The basic unit is the gray (Gy), It
corresponds to an absorbed energy equal to 1J/kg; the rad is equal to 0.01 Gy.

Effective biological dose. The basic unit is the sievert (Sv), It is the dose
caused by an ionizing radiation that has an effect equal to that of x or y
radiation of 200 to 250 kV; the rem is equal to 0.01 Sv. The International
Commission for Radiological Protection (ICRP) recommended dose limits
are

0.05 Sv/yr for workers in the nuclear industry
0.005 Sv/yr for members of the public, from all possible sources
0.001 Sv/yr for members of the public, for long term exposure.

1.8. Optical Units

Luminous intensity. The basic unit is the candela (cd), It is the luminous
intensity in a given direction from a source that emits monochromatic rays of a
frequency of 540 THz and has an energy intensity in this direction of 1/683
watt per steradian.

Properties of Pure Water

Coefficient of
Absolute volume trial Specific Heat

vapor Young's heat expansion, mass Heat diffusivity,
pressure Compressibility modulus o: = d(ln p)/dT heat, C conductivity, A

(kPa) (10- 10 Pa-i) (10 6 kPa) (10- 6 K) (Jykg K) (W/mK)

0.61 5.098 2.02 -68 4217.4 0.564 13.4

0.87 4.928 2.06 16
1.23 4.789 2.10 88 4191.9 0.578 13.8

1.70 4.678 2.15 151
2.34 4.591 2.18 207 4181.6 0.598 14.2
3.17 4.524 2.22 257
4.24 4.475 2.25 303 4178.2 0.607 14.6

7.38 4.422 2.28 385 4178.3 0.628 15.2
12.33 4.417 2.29 458 4180.4
19.92 4.450 2.28 523 4184.1 0.652 15.8
31.16 4.515 2.25 584 4189.3
47.34 4.610 2.20 641 4196.1 0.669 16.4-
70.10 4.734 2.14 696 4204.8

101.33 4.890 2.07 750 4215.7 0.671 16.6
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Luminance. The basic unit is the candela per square meter (cd/m2).It is the
luminance of a source with an area of 1 m 2 emitting with a luminous intensity
of 1 cd. The stilb (sb) is equal to 104 cd/m",

Luminous flux. The basic unit is the lumen (1m). It is the luminous flux
emitted in the solid angle of 1 sr by a uniform point source placed at the apex
of the solid angle and having a luminous intensity of 1 cd.

Illumination. The basic unit is the lux (lx),It is the illumination of an area
which receives with normal incidence the flux of 1 lm/m? uniformly
distributed. The phot (ph) is equal to 104 lux.

Vergence of optical systems. The basic unit is the diopter (b). It is the
refractive power of an optical system with a focal distance of 1 m in a medium
with a refractive index of 1.

2. Values of Common Hydrogeological Quantities

2.1. Properties of pure water

These are given in Table A.2.4.

2.2. Properties of Ice at -5°C

Mass per unit volume, p
Latent heat of fusion
Specific heat, c
Heat conductivity, A

2.3. Properties of Saltwater (NaCl):

Table A.2.5

917 kg/m"
334 X 103 J/kg
2075 J/kg K
2.3 W/mK

Properties of Seawater at 34 kg/m'

Temperature
°C

o
5

10
15
20
25

Mass per unit
volume, P
(kg/m")

1027.32
1026.91
1026.19
1025.22
1024.02
1022.61

Specific heat, c
(J/kgK)

3989
3992
3995
3997
4000
4002

Kinematic
viscosity, v
(106 ml/s)

1.8
1.6
1.4
1.2
1.1
0.94
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Table A.2.6

Properties of Saltwater at Various Concentrations

Mass of Nacl Mass per unit
per mass of volume of

Concentration solution at the solution Specific heat
of Nacl 20°C at lYC The same at at 20°C
(kg/m 3) (%) (kg/m ') 20°C (J/kgK)

0 0 999.13 998.23 4182
10 0.995 1006.30 1005.30 4127
20 1.976 1013.39 1012.29 4075
30 2.943 1020.41 1019.22 4024
40 3.898 1027.35 1026.07 3975
50 4.841 1034.25 1032.88 3929
60 5.772 1041.05 1039.60 3884
70 6.690 1047.83 1046.32 3841

2.4. Properties of Soils and Rocks

See the following page references for definitions of these properties.
Porosity, see p. 36; specific surface, p. 22; grain size, p. 21; suction potential,

see p. 30; layer of adhesive water, see p. 23; hydraulic conductivity, see p. 78;
hydraulic conductivity of a fracture, see p. 68; electro-osmotic permeability,
see p. 83; compressibility, see p. 98,102; compressibility of the solid grains, see
p. 108; storage coefficient, see p. 111; tortuosity, see p. 233; dispersivity, see
p. 239, 244-245, 247; heat conductivity, see p. 281; heat capacity, see p. 281;
partition coefficient for sorption of organics, see p. 262-264.
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A

Adsorption, 23, 220, 253, 260, 265, 272
Adsorption isotherm, 256, 258, 264
Adsorption kinetics, 257, 258, 276
Advection, seeConvection
Air bubbles, 26, 31, 212
Air entry pressure, 31, 218
Air pressure, 29, 213, 215
Air viscosity, and mass per unit volume, 61,

210
Alternate directions, 385
Anisotropy (of permeability), 62, 69, 87,

109, 145, 178, 194,224,236,372
Aquiclude, 131
Aquifer, 115

alluvial, 121, 153, 170, 198
arid zones, 120
artesian, 125, 128, 191
coastal, 221
confined, 100, 109, 128, 132
geothermal, 129,277
glacial, 124
multilayered, 129, 362
perched, 122
phreatic, 118
reserves, 132
unconfined (or water table), 1, 86, 116,

132, 149, 194,361
valley, 116, 198
volcanic, 127, 244

Aquitard, 131, 180, 187,362,397
Archie's formula, 34
Arid zones, 120
Arithmetic mean, 81, 82, 334

Bacteria, 122,226,252,253,265
Base level (karstic systems), 126
Bedrock, 86, 89, 116, 138, 160, 164
Boulton's leakage solution, 186
Boundary between two media, 16, 138
Boundary conditions

flow equation, 135, 151, 152, 166, 169,
199,241,349,372,379

transport equation, 241
Boundary elements, 340
Bretjinski's formula, 62
Brownian motion, 232, 272, 393
Buoyancy, 91

C

Calibration of a model, 400
Capillary fringe, 31, 32
Capillary pressure, 28, 210, 215, 218
Capillary retention, 26, 32, 35, 276
Capillary rise, 29, 31
Capillary tubes, 55, 236
Cation exchange capacity, 254
Chapeau functions, 375
Characteristic curve, of a well, 155
Choleski's algorithm, 381
Chott, 120
Clay, 21, 23, 30, 73, 78,233, 252,255
Coefficient of molecular diffusion, see

Diffusion
Co-kriging, 324
Colloids, 253, 270, 274
Compaction, seeConsolidation
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Compressibility coefficient
gas, 210
water, 40, 102

Compressibility of a porous medium, 45,
96,98, 103, 112,210

Concentration, 228
Condensation, 12
Conditional simulation, 287, 336
Conductivity, thermal, 277, 281
Confidence interval, 297, 322
Consolidation, 90, 94, 97, 112
Consolidation stress, 98
Continuity equation, 40, 41, 50, 87, 97,

100,101,208,214,215,345
Convection, 230,244, 281
Convective cells, 282
Conversion factors, 407, 410
Coupled processes, 83
Covariance, 18,288,292,297,315,327,331
Crank- Nicholson's approximation (finite

differences), 359
Critical time step, explicit approximation,

358,399
Crystalline rocks, 78, 127
Current number, 395

D

Dams, 120
Darcy's law, 52, 56, 58, 73, 74, 83, 101,

208,213
Data collection, 396
Dead-end pores, 24, 32
Denitrification, 122
Desorption, 256, see alsoAdsorption
Development ofa well, 126, 156
Diffusion, 232, 272, 279
Diffusion equation, 85, 89, 97, 107, 109,

112, 141, 146, 161,211,214,332
Diffusivity (of aquifer), 112, 162, 198, 199,

220, 397
Dirichlet's condition, 135
Dispersion, 234

numerical,241,389
Dispersion coefficients (longitudinal and

transversal), 236, 238, 242
Dispersion tensor, 236, 249, 276
Dispersion variance, 291
Dispersivities, 238, 244, 247, 278
Distribution coefficient, 256, 260, 267

Index

Ditch, 155
Double ring infiltration test, 219
Doublet (of wells), 151, 160
Drainage, 31, 35, 211
Drawdown, 144, 156, 168,226
Dufour's effect, 83
Dupuit-Forscheimer's formula, 150
Dupuit's hypothesis, 87, 118, 164
Dupuit's solution, 147, 159

E

Effective grain size diD' 20, 62, 220, 237
Effective stress, 90

unsaturated medium, 99
Electro-osmosis, 83
Electrophoresis, 83
Ensemble average, 17, 80, 82, 287
Equation of state, 40, 96, 102, 209
Equipotential line (or surface), 116
Equivalent per liter, 229
Ergodicity (ofa random function), 19, 300
Error function, 199
Error of estimation, 296
Error of measurement, 299, 304
Eskers, 124
Estimation of a variable, see Kriging
ETp , ETR , 6, 403
Eulerian coordinates, 40, 102
Evaporation, 3, 8
Evaporites, 126
Evapotranspiration, 4, 6, 403
Exchange capacity, seeCation exchange

capacity
Explicit approximation (finite differences),

358

F

Fault, 136
Fick's law, 83, 232
Field capacity, 27
Filter coefficient, 273, 275
Filtration,251,252,270
Fingering, 212
Finite differences, 339, 342, 388
Finite elements, 340, 368, 394
Fixation, seeAdsorption
Flow lines, 116
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How path, see Streamline
Formation factor, 34, 233
Fourier's condition, 135, 138, 365
Fourier's law, 83, 227
Fractures

associated matrix, 71, 245
flow, 14,53,65,68,79, 125, 127, 197,

202,243,266,271
orientation, 70

Free surface, see Water table

G

Galerkin's approximation, 374
Gamma logging, 34
Geochemical interaction, in porous media,

252,255,260
Geometric mean, of permeability, 82, 308
Geothermal energy, 129,277
Ghyben- Herzberg principle, 223
Gir's approximation (finite differences), 360
Glacial till, 78, 124
Grain size distribution, 19,20,21,36,220,

237
Gravel, 21, 78, 277
Gravel pack, 156
Gravity (forces of), 56, 59
Green and Ampt's infiltration equation, 217
Groundwater divide, 118

H

Hantush's leakage factor, 181,397
Harmonic mean of permeability, 81, 82, 332
Hazen's formula, 62
Head, 50, 52,60,160,213,324,332
Heat capacity, seeSpecific heat
Heat transfer, in porous media, 277
Homogeneity (of a random process), 19,288
Horner's diagram, 167, 177
Houpeurt-Pouchan's method, 167, 177
Hydraulic conductivity, 58, 60, 203, 213,

219,220
values, 78

Hydraulic diameter, 66
Hydraulic gradient, 58,65,73,74
Hydrocarbons, 207, 225, 230, 262
Hydrodynamic chromatography, 271
Hydrologic cycle, 8, 9, 10
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Hydrophobic theory, 260
Hysteresis (of capillary pressure), 31, 211,214

I

Ice, see Snow and ice
Images, method, 151, 169
Imbibition, 31, 211
Implicit approximation (finite differences),

359
Infiltration, 2, 7, 10, 118, 120, 198,216,

219, 366, 397
Initial conditions, 142
Intercepted rain, 10
Interface,

air-water, 29, 213
fluid-solid, 22, 47, 101,259
salt water-fresh water, 221, 415
two fluids, 207, 220

Interfacial tension, 28, 30, 210
Interpolation, see Kriging
Intrinsic hypothesis, 291, 312
Intrinsic random functions, 312
Inverse problem, see Calibration of a mode!
Ion, 229, 253, 255,264
Ion exchange, 253
Irreducible saturation, 28, 32, 209
Iterative methods, for solving linear systems,

382

J

Jacob and Lohman's artesian solution, 191
Jacob's logarithmic function, 163, 168
Jacobian function, 147, 378

K

Kaolinite, 21, 254
Karstic systems, 79, 125
Kinematic dispersion, 234
Koseny -Carman's formula, 62
Kriging, 286, 310, 318, 324, 396

L

Lagrangian coordinate system, 102, 108,
112,248

Laminar flow, 65
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Laplace's solution, 162
Leakage flux, 110, 115, 123, 131, 179, 186,

187,363, 397
Lefranc's test, 201
Leibnitz' rule, 46
Limestone, 78, 116, 125
Line source, 157
Lugeon's test, 202

M

Mass per unit volume
buoyant soil, 92
dry soil, 91
saturated soil, 91, 100
solid grains, of a porous medium, 91, 253
water, 39, 40, 44, 223, 239, 240, 281, 416

Material derivative, 102, 108
Measurement errors, see Error of

measurement
Meniscus, 29, 211, 212
Method of characteristics, 391
Mobility, 209
Moisture capacity, specific, 214
Moisture content, 1, 5,26, 32, 132,213,

216,219,276
Molality, 229
Molarity, 228
Molecular diffusion, see Diffusion
Monte-Carlo method, seeSimulation
Montmorillonrte,21, 22, 233,254,255
Moving neighborhood, 306, 317
Multiphase flow, 207, 225

N

Natural convection, 281
Navier-Stokes equations, 40, 52, 55, 56,

57,59,63,75
Nested meshes, 351, 399
Network optimization, 308
Neuman's anisotropic unconfined solution,

194
Neumann's condition, 135
Neutron logging, 34,219
Newtonian fluid, 39
Nonlinear problems (finite differences or

elements), 361, 387
Nugget effect, 304, 316
Numerical dispersion, 389

Index

o
Octanol, 261
Ohm's law, 83
Oil, 207, 225, 230
Onsager's matrix, 83
Organic carbon, 264
Organics, 260
Osmosis (chemical or thermal), 83
Ostrogradski's formula, 41
Outcrop, 136, 137

p

Papadopoulos and Cooper's well capacity
solution, 190

Parlange's infiltration equation, 216
Particles in cell, 392
Partition coefficient, see Distribution

coefficient
Peclet number, 237, 279, 389, 394, 395
Peltier's effect, 83
Penetration of a well, 157, 164, 188, 197
Percolation theory, 71
Permafrost, 9, 125
Permeability

coefficient of, 58
composition (average), 81, 308, 332, 354
directional, 65, 67, 69
electro-osmotic, 83
intrinsic, 60, 208
measurements, 75
relative, 208
tensor, 62, 69, see alsoAnisotropy
variance, 80, 82

Perturbation method, 334
Petroleum products, 207, 225, 230
Phenols, 225, 264
Philip's infiltration equation, 216
Piezometer, 37, 51, 117
Piezometric map, 118, 119,323
Piezometric surface, 128
Pingo,125
Plaster blocks, 38
Pocket test, seeLefranc's test
Poiseuille's formula, 55, 234, 271
Poisson's ratio, 103
Pollution, 122, 225, 228, 267
Porosity

drainage, seeSpecific yield
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kinematic, 24, 25, 32, 50, 101,230,240,
259,273

measurements, 33
packing of spheres, 19
surface, 20, 50
total, 14,32,62, 101, 133,210,233,239,

259,273,278,281
values, 36
variation, 96

Potential, of flow, 71, 145, 157,224
Pressure gauge, 37
Principal directions of anisotropy, 64, 69,

146, see alsoAnisotropy
Properties of soils and rocks, 417
PSOR (or Frankel-Young's method), 383
Pumping test, 156, 168, 178, 186, 187, 190,

191, 194, 197,201,203

Q

Quadratic loss in a well, 155
Quicksands, 93

R

Radial coordinate system, 147, 162,203
Radioactivity, 265, 414
Radius of action ofa well, 150, 165, 181
Rainfall, 2,8,9, 118, 121,286
Random function (RF), 17,49, 80,285,

287,312
Random process, 17,285
Random walk method, 393
Rayleigh number, 283
Realization, of a random function, 17, 287,

335
Recharge, see Infiltration
Recovery curve, of a well test, 167, 177
Regionalized variables, 285
Relative roughness, of a fracture, 66
Representative elementary volume (REV),

15,42
Resistivity, electric, 34
Retardation factor, 256, 260, 267
Retention, seeAdsorption
Reynold's number, 65, 74
Richard's equation (unsaturated flow), 214
Rotation in cartesian coordinates, 63, 70, 372
Roughness of a fracture, 66
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Rouss' effect, 83
Runoff, 3, 120

s
Salt flat, 120
Saltwater, properties, 415, 417
Saltwater encroachment, 221
Sand, 21, 30, 78, 118,233,275
Saturation, 26, 207, 215, 276
Scaling (of soil properties), 220
Seawater, see Saltwater
Sebkha, 120
Sedimentation current, 83
Seepage face, 141, 150
Seepage force, 92
SI system, 407
Sichardt's formula, 74
Silt, 21, 78
Simulation, 287, 335
Sinkhole, 125
Skin effect, 156
Slattery's formula, 47
Slug test, 203
Snow and ice, 8, 9, 125,415
Soils and rocks, properties, 417
Soret's effect, 83
Sorption, seeAdsorption
Source/sink term, 49, 88, 111, 139, 144,

157,162,342,367
Spatial integration, of a property, of a

porous medium, 16,41, 59, 298,
308,354

Specificcapacity, 156,318
Specific heat, 278, 281
Specific storage coefficient, 107, 363, 364
Specificsurface, 22, 62
Specificweight, 91
Specificyield, 27,32,88, 132, 164, 195,

361, 396
Spectral method, 331
Spherical coordinate system, 157,206
Spring, 123, 125, 126
State variable, 17, 287, 335
Stationarity, ofa random function, 18,288,

309, 331
Statistical inference, 287,300,315
Steady state, 144, 343, 370, 376
Storage coefficient, 111, 113, 133, 164, 169,

177,195,356,361,396
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Stream function, 158
Streambed, sealing, 120, 122, 139,270,274,

365
Streamline, 116, 158,224,248
Streltsova's leakage solution, 187
Sublimation, 8, 10
Subsidence, 99, see alsoConsolidation
Substantial derivative, 102
Suction, 32,213,218,219
Suction potential, 30, 214
Superposition, principle, 143, 166

T

Temperature, 12,39,40,61,277,286,403,
413

Tensiometer, 37, 206, 219
Tensor, second order, 63
Terzaghi's theory, 90
Theis'solution, 162, 171, 176, 181, 187,

192, 195 .
Thermal conductivity, 277, 281
Thermal expansion, of water, 283
Thermal filtration, 83
Thiem's formula, seeDupuit's solution
Thiessen polygons, 353
Thomas' algorithm, 386
Thomthwaite's formula, 403
Tide, 221
Tortuosity, 233
Tota! stress, 90
Tracers, 25, 77, 240, 248, 278, 398
Transient state, 161, 356, 373, 379
Transmissivity, 72,89, 110, 131, 145, 147,

164,308,318,330,337,354,396
Transpiration of plants, see

Evapotranspiration
Transport equation, 230-240, 267, 272,

335,387
Trapped air, 31, 211, 212
Triangularization of a matrix, 381
Tunnels (for water drainage), 127
Turbulent flow, 65

U

Ultrafiltration, 83
Units, 407
Unsteady state, see Transient state

Index

V

Variogram,292,300, 309, 321, 327
Velocity potential, 157
Velocity

Darcy's, seeVelocity, filtration
filtration,41,49,58,230,239,273
mean microscopic, 50, 77, 239, 240,

256,271,278
solid,47, 100, 112
total (in two-phase flow), 215

Viscosity
dynanilc, 40, 59, 61,240,281
kinematic, 40
volume, 40

Void ratio, 14
Voronoi polygons, 353

w
Wadi, 120
Water

adhe~ve, 22, 28, 32, 234,259,276
connate, 12
fossil, 12
free, 23, 24
funicular or gravitational, 26
hygroscopic (seealsowater, adhesive), 28
juvenile, 12
molecules, 22
pendular, 27
pressure, 29, 90, 108,214,220
properties, 416
thermal, 12, 129,277
vapor, 9
volume of reserves, 9

Water table, 1,5, 32, 52, 86, 116, 120, 123,
132, 139,225

Watershed (underground), 118
Wedge, salt water-fresh water, 222, 415
Well, 126, 147, 150, 151, 153, 155, 163,367
Well capacity effect, 190
Well line, 153
Well screen, 156
Well test, see Pumping test
Wetting, 31, 211
Wetting fluid, 29
Wetting front, 5, 216
Wilting point, 30

y

Young's modulus, 103
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