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The Groundwater Project Foreword 

The Year 2022 marks an important year for groundwater because the United 

Nations Water Members and Partners have chosen the theme of this year’s March 22 World 

Water Day to be: “Groundwater: making the invisible visible”. The goal of the 

Groundwater Project (GW-Project) is in sync with this theme.  

The GW-Project, a registered charity in Canada, is committed to contributing to 

advancement in groundwater education and brings a unique approach to the creation and 

dissemination of knowledge for understanding and problem-solving. The GW-Project 

operates the website https://gw-project.org/ as a global platform for the democratization 

of groundwater knowledge, founded on the principle that:  

“Knowledge should be free and the best knowledge should be free knowledge.” Anonymous 

The mission of the GW-Project is to promote groundwater learning. This is 

accomplished by providing accessible, engaging, high-quality, educational materials, free-

of-charge online in many languages, to all who want to learn about groundwater. In short, 

providing essential knowledge tools for developing groundwater sustainably for humanity 

and ecosystems. 

This is a new type of global educational endeavor in that it is based on the 

volunteerism of professionals from different disciplines and includes academics, 

consultants and retirees. The GW-Project involves many hundreds of volunteers associated 

with more than 200 organizations from 27 countries and six continents, with growing 

participation.  

The GW-Project is an ongoing endeavor and will continue with hundreds of books 

being published online over the coming years, first in English and then in other languages, 

for downloading wherever the Internet is available. An important tenet of the GW-Project 

books is a strong emphasis on visualization via clear illustrations that stimulate spatial and 

critical thinking to facilitate the absorption of information. 

 The GW-Project publications also include supporting materials such as videos, 

lectures, laboratory demonstrations, and learning tools in addition to providing, or linking 

to, public domain software for various groundwater applications supporting the 

educational process. 

The GW-Project is a living entity, so subsequent editions of the books will be 

published from time to time. Users are invited to propose revisions. 

We thank you for being part of the GW-Project Community. We hope to hear from 

you about your experience with using the books and related material. We welcome ideas 

and volunteers! 

The Groundwater Project Steering Committee 

August 2022 

https://gw-project.org/
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Foreword 

As a hydrogeologic system, karst has great importance to humanity because it 

makes up about 10 percent of the earth's land surface and provides water for 10 percent of 

the global population. This book is about the Edwards Aquifer in Texas, United States of 

America, which is one of the world’s important aquifers. It supplies water to two million 

people, and is an exceptional example of a hydrogeologically complex aquifer with 

multiple land uses that is managed by several cooperating organizations who are 

challenged to balance diverse water uses that pose the threat of excessive pumping and 

pollution. Because of the great value of the water and land, this aquifer system has been 

subjected to intensive investigation and monitoring for more than a century. It is an 

example of governance that has resulted in a reasonably stable groundwater resource with 

regard to both quantity and quality.  

This book covers nearly all of the topics that make up modern hydrogeology in the 

context of the Edwards Aquifer including groundwater recharge, velocity, discharge, 

residence time, hydrochemistry, contamination and numerical modeling. Discussion of 

these topics is intertwined to explain how the Edwards Aquifer functions as a 

hydrogeologic system. Karst aquifers are commonly the host for ecological activity and a 

unique characteristic of the Edwards Aquifer is the great variety of organisms that live in 

the aquifer or are directly dependent upon flow from its springs.  

The Groundwater Project book, “Introduction to Karst” by Kuniansky and others 

(2022) is good background reading for this book. 

Dr. Jack Sharp is the Emeritus Carlton Professor of Geology at The University of 

Texas located on the Edwards Aquifer where he has been involved in matters concerning 

the Edwards Aquifer for many decades. Dr. Ronald Green is a senior scientist at the 

Southwest Research Institute in San Antonio, Texas, which is also on the Edwards Aquifer 

where he has spent most of his career involved in karst science.  

 

John Cherry, The Groundwater Project Leader 

Guelph, Ontario, Canada, August 2022 

  

https://gw-project.org/books/introduction-to-karst-aquifers/
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Preface 

The Edwards Aquifer in the State of Texas, United States of America (USA), is a 

very productive and highly studied karst aquifer. Karst terrains are created from 

dissolution of soluble rocks, principally limestone and dolomite. They are characterized by 

distinctive landforms (like springs, caves, sinkholes) and unique hydrogeology that results 

in aquifers that are highly productive but vulnerable to contamination. The Edwards 

Aquifer provides water for over 2 million people as well as for agriculture, industry, 

recreation, and environmental uses. However, its sustainable use is challenged by rapidly 

increasing urban population (expected to double in several decades), climate change 

(increased droughts and floods), urbanization and contamination, the need to protect 

groundwater ecosystems and their endangered species, and evolving water laws and 

policies. This book reviews various geologic units of the aquifer and its unique geologic, 

hydraulic, water quality, ecologic, legal, and environmental aspects. 

Despite over a century of study of the Edwards Aquifer, there remain significant 

challenges to the sustainable use of this aquifer. Better mapping, more detailed field data, 

improved numerical models, enhanced recharge, more optimal pumping strategies, and 

new technologies, including desalination and aquifer storage and recovery, will have to be 

implemented to meet the challenges of the Edwards Aquifer and karst aquifers globally. 
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1 Introduction 

The Edwards Aquifer ranks among the world's largest regional karst aquifers. It 

supplies 500 gigaliters/year (GL/year) of water (Mace, 2019) for over 2 million people and 

a wide variety of agricultural, municipal, industrial, environmental, and recreational uses 

in Texas, USA (Figure 1). Annual groundwater discharge is approximately 49 to 60 percent 

to springs, 27 to 32 percent to municipalities, 8 to 13 percent to irrigation, 3 to 4 percent for 

industrial/commercial uses, and 2 percent for domestic and livestock uses (e.g., EAA, 2008, 

2019a). The exact proportions vary with precipitation, drought conditions, and other 

factors. In the literature and common parlance, the Edwards Aquifer or, more precisely, the 

Edwards (Balcones Fault Zone) Aquifer, refers to the units along the Balcones fault system 

in the Uvalde-San Antonio-Austin-Salado area which is a part of the Edwards Aquifer 

System (Figure 2). This book focusses on this aquifer, which extends from east of Del Rio 

on the USA-Mexico border east through San Antonio, then northeast through Austin and 

Salado. It covers an area of 5,993 km2 (2,314 square miles) of which 4,040 km2 (1,560 square 

miles) are outcrop. The aquifer is the northwestward extent of the Gulf Coastal Plain and 

is separated from the Edwards Plateau (Figure 2) and the Texas Hill country by the 

Balcones Escarpment. 

 
Figure 1 - The Edwards Aquifer of Texas, USA (Balcones Fault Zone). The blue 
color is the unconfined or recharge zone and the light blue-green color is the 
confined or artesian zone, both zones are shown in Figure 2 at a larger scale. 
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Figure 2 - Map of the Edwards Aquifer strata: Balcones Fault Zone (BFZ); Edwards-Trinity Plateau; Rio Grande System; and, Washita Prairies (modified from 
Sharp et al., 2019b). Aquifer-equivalent strata extend down dip toward the Gulf of Mexico and into Mexico. Edwards equivalent strata beneath the High Plains of 
Texas are not shown here. Their location is presented by Mace (2019). 
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Mean annual temperature increases southward over the aquifer from 18 to 21 °C 

(Larkin and Bomar, 1983; TWDB, 2012). Mean annual precipitation over the aquifer north 

of San Antonio to Salado ranges between 800 and 920 mm/year (31 and 36 inches/year). 

From San Antonio westward, however, precipitation drops to 500 mm/year 

(20 inches/year). Likewise, annual precipitation varies considerably with extended 

droughts and occasional very large precipitation events (Slade and Patton, 2003; Henry, 

2011). Thus, aquifer management must plan for and adjust to future extreme weather 

situations. Traditional land use was ranching with irrigated agriculture over the confined 

zone west of San Antonio with urban areas in Austin and San Antonio. Population growth 

of approximately 20 percent in the Austin-San Antonio corridor over the past ten years, has 

greatly expanded urbanization along the Interstate Highway 35 from San Antonio north to 

Salado, although urbanization has been somewhat limited in aquifer recharge areas by 

municipal zoning and land purchases (Guerra and Debbage, 2021). 

Equivalent aquifer strata extend over a much larger area of the USA and into Mexico 

(Figure 2). North and west of the Balcones Fault Zone are the Edwards and Stockton 

Plateaus (Small and Ozuna, 1992; Kuniansky and Ardis, 2004). Aquifer strata also extend 

beneath the High Plains Aquifer (Fallin, 1989; TWDB, 2022) and north of the Balcones fault 

system in the Washita Prairies (Yelderman, 1987, 2019). These units can provide significant 

water to wells, but springs are generally not as large as springs along the Balcones Fault 

Zone (Figure 2). The formations that comprise the Edwards Aquifer also extend down dip 

to the Gulf of Mexico Basin and into Mexico (Rose, 1972, 2017; Sharp et al., 1991; Sprouse, 

2009).  

Prior to development in the area, springs were the major source of discharge from 

the aquifer and cities developed near them. Some of the major springs of the Edwards 

Aquifer are shown in Figure 3 through 11, starting from the westernmost to the 

northernmost, the spring and nearby town or landmark are as follows: 

• Las Moras (or Fort Clark) Springs, Bracketville (Figure 3); 

• San Antonio Springs at the head of the San Antonio River (Figure 4); 

• Hueco Springs, Canyon Lake (Figure 5); 

• Comal Spring 1, one of the Comal Springs, New Braunfels (Figure 6); 

• Comal River, New Braunfels (combined flow of all Comal Springs, Figure 7); 

• San Marcos Spring discharge, San Marcos (Figure 8); 

• Main Barton Spring (one of the four Barton Springs), Austin (Figure 9); 

• Eliza Spring (one of the four Barton Springs, Figure 10); and 

• Salado Springs, Salado (Figure 11). 
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Figure 3 – Las Moras (or Fort Clark) Springs, Brackettville (photo courtesy of Geary Schindel). 

 
Figure 4 – San Antonio Springs at the head of the San Antonio River (photo courtesy of Geary 
Schindel). 
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Figure 5 – Hueco Springs (photo courtesy of Geary Schindel). 
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Figure 6 – Comal Spring 1, one of the Comal Springs, New Braunfels (Sharp et al., 2019a). 

 
Figure 7 – The Comal River in New Braunfels carries the combined discharge of all Comal Springs. (photo by 
J.M. Sharp). 
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Figure 8 – San Marcos Spring discharge, San Marcos (Sharp et al., 2019a). 

 
Figure 9 – Main Barton Spring (one of the four Barton Springs), Austin (photo by J.M. Sharp). 
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Figure 10 – Eliza Spring (one of the four Barton Springs). 

 
Figure 11 – Salado Springs, Salado (photo courtesy of Ashley Trappe). 

https://www.austintexas.gov/blog/restoring-eliza-springs-stream
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In 1975, the Edwards Aquifer in the San Antonio area was the first in the USA to be 

designated as a sole source aquifer1 by the United States Environmental Protection Agency 

(EPA). The aquifer also hosts unique groundwater, cave, and spring ecosystems and is 

famous for the large springs that discharge from the aquifer along the Balcones Fault Zone 

(Figure 2 and Figure 12). The cities of Salado, Austin, San Marcos, New Braunfels, San 

Antonio, Uvalde, Brackettville, and Del Rio (west of the aquifer) developed along the 

Balcones Fault Zone near springs. 

 
Figure 12 – Edwards Aquifer contributing zone, unconfined (i.e., recharge) zone, confined zone and major 
springs (modified from Mahler and Musgrove, 2019). The Seco Creek (Valdina Farms) sinkhole recharge 
feature and the groundwater divides bounding the San Antonio segment are also shown. The dark line 
through San Antonio denotes the location of a cross section discussed in Section 4.2. 

 
1 A sole source aquifer as defined by the United States Environmental Protection Agency, EPA (2020), is: 1) 

one that supplies at least 50 percent of the drinking water for its service area, and 2) where there are no 

reasonably available alternative drinking water resources should the aquifer become contaminated. 
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In this book, we review the unique characteristics of the Edwards (Balcones Fault 

Zone) Aquifer, its stratigraphy and structure, flow systems, natural recharge and discharge, 

water chemistry, aquifer ecology and endangered species, as well as its legal and 

administrative systems. We also look at the challenges (including future pumping stresses, 

land use changes, emerging contaminants, climate change, and evolving technologies) that 

will affect the Edwards Aquifer. Detailed information on many of these topics is provided 

by Sharp and others (2019a, b). The uniqueness and importance of this aquifer to the general 

public, industry and the environment have been the subject of many discussions and 

reports (e.g., Technical Advisory Panel, 1990; Grubb, 1997; Sharp and Banner, 1997; Sharp, 

2002; Hardberger, 2019). The literature is vast and the reader is encouraged to refer to the 

cited sources to obtain details on particular subject areas of interest. 

The Edwards Aquifer has been recognized for over a century beginning with Hill 

(1890) and Hill and Vaughan (1898). Recently, Sharp and others (2019a) compiled a suite of 

summary papers, but even with a long history of research, there remain significant 

unknowns and uncertainties. More research is required to understand and manage the 

Edwards Aquifer successfully and sustainably in the face of significant challenges as Texas, 

and, in particular, central Texas is challenged with rapid growth and the ensuing aquifer 

overexploitation (Mace, 2019). 

Hill and Vaughan (1898) named the Edwards Limestone Formation, which refers to 

the firm, white, resistant, shelly, cherty, porous limestone and dolomite above the Glen 

Rose Formation and below the Georgetown, Del Rio Clay, or Buda formations (Rose, 1972). 

The Glen Rose, Georgetown, and Buda are carbonate rocks. The Del Rio is a swelling clay 

shale and acts as an efficient confining unit. Hill (1890, page 17) described “The Balcones” 

Escarpment as being “accompanied by faulting of several hundred feet” and elaborated that “The 

Spanish speaking people—ever ready with an appropriate descriptive geographical name—have 

called this scarp west of San Antonio ‘El Balcones’.” The scarp separates the Texas Hill Country 

from the Gulf Coastal Plain provinces (Bureau of Economic Geology, 1996). Hill (1890, 

page 18), describes the most distinctive feature of the aquifer associated with the scarp as: 

“… a line of springs which find their way to the surface through the fault and joints 

overhanging the line of disturbance. The most conspicuous of these are the springs 

of the Leona, the San Pedro springs at San Antonio, which are the immediate source 

of the San Antonio River; the springs at New Braunfels, and the spring of San 

Marcos. Near Austin, the Barton, Mormon, Sieders [Berry and others (2017) 

provide a current description], and a group of magnificent unnamed springs in 

the bluffs of the river, immediately west of the city, mark the line. North of the 

Colorado the springs of Round Rock, Georgetown, Salado, and those southwest of 

Dallas, mark the line. All of these are great gushing streams of water bursting 

suddenly from the rocks, and flowing off in large streams, discharging thousands of 

gallons per hour. They are natural artesian wells made by rents in the rock. It is an 
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interesting economic fact that anywhere within a few miles of these natural wells, 

artificial ones can be obtained by boring, as has been done at San Antonio, Fort 

Worth, Austin and Waco.” 

Classification of the Edwards Aquifer requires that its complexity be recognized. 

An aquifer is defined as a geologic formation, group of formations, or a part of a formation 

(i.e., a consolidated or unconsolidated geologic unit or set of connected units) that yields 

water of suitable quality to wells or springs in economically usable amounts (Meinzer, 1923; 

Sharp, 2017). A geologic formation is a body of rock strata that consists of a certain lithology 

or combination of lithologies (i.e., a lithologically mappable unit). It is advisable not to 

confuse the definition of a geologic formation and an aquifer. Aquifers are commonly 

defined by formation(s) rather than their hydrological connections, which can raise issues 

for aquifer management. Intra- and inter-aquifer connections remain fundamental research 

questions. 

The Edwards Aquifer is an aquifer system—a set of aquifers that are variably 

connected. However, we refer to it here as a singular aquifer, the Edwards Aquifer 

(Figure 2). The major components in the Edwards Aquifer system are the Edwards 

(Balcones Fault Zone) Aquifer, the Washita Prairies, the Edwards-Trinity Plateau, and the 

Rio Grande system (Table 1). Similar aquifer units extend into Mexico. By definition, this 

classifies the Edwards Aquifer system as a transboundary aquifer (Sprouse, 2009; Sanchez 

et al., 2016, 2018; Sanchez and Rodriguez, 2021). Each component is further classified or 

defined based on its particular attributes. 

Table 1 - The Edwards Aquifer system. 

Major Component Subclassification 

Balcones Fault Zone system Northern segment 

 Barton Springs segment 

 • Barton Springs pool 

 • Cold Springs pool 

 San Antonio segment 

 • San Antonio pool 

 • Uvalde pool 

 Kinney segment 

Washita Prairies  

Rio Grande system Devils River catchment 

 Del Rio pool 

Edwards-Trinity Plateau Edwards Plateau 

 Stockton Plateau 

 

The Edwards (Balcones Fault Zone) Aquifer includes three major segments—the 

San Antonio segment, the Barton Springs segment, and the Northern (north of the Colorado 

River) segment—and one minor segment, the Kinney segment. Segments are defined as 

subdivisions within an aquifer that are generally hydraulically independent, although 
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hydraulic connection under certain conditions may exist (Land et al., 2011). The Kinney 

segment is considered minor due to its limited spatial extent when compared with the other 

major segments. Historically, that portion of the Edwards Aquifer in Kinney County to the 

east of the groundwater divide located between Mud and Pinto creeks in Kinney County 

was included in the Uvalde pool of the San Antonio segment (e.g., Maclay, 1995). However, 

recent studies (Green et al., 2006, 2019c) indicate that this portion is a separate segment that 

is not hydraulically connected to the remainder of the San Antonio segment. For this 

reason, that portion of the Edwards Aquifer in Kinney County to the east of the Mud 

Creek/Pinto Creek groundwater divide is now designated as the Kinney segment. 

 The Edwards (Balcones Fault Zone) Aquifer has been further delineated into pools, 

which describe semi-detached groundwater basins within a segment (Figure 2 and 

Figure 12). The San Antonio segment is subdivided into two pools: the larger and more 

significant San Antonio pool (Green et al., 2019b) and the Uvalde pool (Green et al., 2019a) 

located to the west (Figure 12). The Barton Springs segment contains two pools, the main 

pool that primarily discharges to Barton Springs, and a smaller pool that discharges to Cold 

Springs and directly to the Colorado River (Hauwert et al., 2004; Hunt et al., 2019). Separate 

pools are not yet identified in the Northern segment. The Northern segment is separated 

from the Barton Springs segment by the Colorado River. The greater Colorado River 

watershed and the river itself do not recharge the Edwards Aquifer in any meaningful way. 

Hence, the Colorado River watershed is not identified as a contributing zone to the 

Edwards Aquifer (Figure 2 and Figure 12).  

The segments and aquifer boundaries are defined by: 

• where the aquifer rocks have been eroded; 

• where faults abut low-permeability strata (no-flow boundaries); 

• groundwater divides (generally treated as no-flow boundaries); 

• the Colorado River (separating the Barton Springs and Northern segments); 

and, 

• the bad-water (or saline-water) line2 (generally treated as a no-flow boundary), 

which is the southern and eastern border of the aquifer where the water is not 

potable and where water circulation is limited. The “line” is actually a zone 

(Figure 13), although in some cases it is delineated by faults. 

 
2 The bad-water line is also referred to as the saline water line. Here we retain the term “bad-water” because 

of its historical use (water beyond this line was not considered potable) and because these waters range from 

brackish to saline. Some of the brackish waters are suitable for irrigation and livestock. Furthermore, waters in 

the bad-water zone are being considered for desalination. 
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Figure 13 - Bad-water transition zone (Sharp and Smith, 2019) in the San Antonio segment. The 
dot in the upper right of the figure marks the location of a multiport well (Smith and Hunt, 2019). 
The transition zone is divided into slightly brackish (dark gray area between the 1,000 and 
3,000 milligrams per liter [mg/L] isocons) and brackish (darker gray areas between the 3,000 and 
10,000 mg/L isocons). 

Fault barriers may create abrupt changes in aquifer properties (Smith et al., 2017). 

In addition, although isocons (lines or surfaces of equal salinity) are shown as a single line 

on most maps, the salinity can vary vertically between aquifer units. Water salinity 

transitions from fresh to brackish (> 103 mg/L) or saline (> 104 mg/L) across this zone (Sharp 

and Smith, 2019, Figure 2 therein). Waters are also reducing in the bad-water zone. Bennett 

and Sayre (1962) were able to map the bad-water line by the absence of hydrogen sulfide 

(H2S) up dip of the line, which is also described in Bertetti and Adkins (2020). Although 

this last boundary is defined by water chemistry, it is also a physical boundary. The aquifer 

strata downdip have not been subjected to intense post-Miocene karstification. 

Consequently, there is a major decrease in permeability such that, in numerical models of 

groundwater flow, the bad-water line is commonly modeled as a no-flow boundary. 

The reasons for the increase in salinity are threefold: upwelling fluids from deeper 

coastward units with saline fluids, dissolution of evaporitic minerals along flow paths, and 

upward cross-formational flow from the underlying Trinity aquifers. Hoff and Dutton 

(2017) mapped equivalent freshwater heads in the confined zone and units down dip of the 

San Antonio segment (Sharp and Smith, 2019, Figure 4 therein) showing the flow of more 

saline fluids towards the aquifer that has also been inferred from geochemical analyses 

(e.g., Land and Prezbindowski, 1981; Sharp and Clement, 1988; Abongwa and Den, 2021). 

In addition, Smith and others (2017) showed that the potential groundwater flow directions 

for equivalent freshwater heads vary from out of or into the freshwater aquifer depending 

on wet versus drought conditions, respectively. Figure 14 shows the hydrochemical facies 

of the bad-water zone. In the northern part of the San Antonio segment and in the Barton 

Springs segment, the waters are a Na-Cl hydrochemical facies. In the western portion of 
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this segment, waters are a Ca-SO4 facies indicating the dissolution of gypsum and anhydrite 

as the major factor. In the Northern segment, upward cross-formational flow becomes 

increasingly important. Sharp and Clement (1988) and Oetting and others (1996) provide 

the chemical and isotopic differentiation of the hydrochemical facies of the bad-water zone 

(Sharp and Smith, 2019, Figure 1 therein). The location of the bad-water line has remained 

relatively constant despite droughts, high recharge events, and pumping stresses (Sharp 

and Smith, 2019). 

 
Figure 14 - Bad-water zone facies (modified from Sharp and Smith, 2019). Schoeller diagrams 
are in milliequivalents per liter (meq/L). Bad-water line (1,000 mg/L) is generalized. 

Aquifer boundary definitions are complicated for two reasons. 

• Groundwater divides can shift with variations in recharge and, in some cases, 

may disappear in droughts (Smith et al., 2012). 

• Tracing studies (Johnson et al., 2019) and multiport well tests (Smith and Hunt, 

2019) have shown that other formations are effectively part of the aquifer, 

particularly the underlying Upper Glen Rose Formation. In some locales, the 

Upper Glen Rose Formation (Upper Trinity Aquifer) is faulted against Edwards 

Aquifer strata in the recharge zone and is hydraulically part of the Edwards 

Aquifer (Johnson et al., 2010). Near Barton Springs, multiport well tests show 

the upper strata of the Glen Rose Formation are (vertically) hydraulically 

connected to the Edwards Aquifer in the confined zone (Smith and Hunt, 2019). 

Another example is a portion of the Cibolo Creek watershed (north of San 
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Antonio, Figure 12), comprised of the Lower Glen Rose (Trinity Aquifer), which 

is mapped as part of the Edwards Aquifer Recharge Zone due to its highly 

karstic nature and hydrologic connection to the adjacent and down-gradient 

Edwards Aquifer. 

The Edwards Aquifer includes three major hydrologic zones or domains (Figure 12 

and Figure 15) that are continually being refined with new data, especially geologic 

mapping and tracer tests (e.g., Johnson et al., 2010; Hunt et al., 2017; Hackett, 2019; Smith 

et al., 2020). The zones are important for understanding the hydrogeologic function of the 

aquifer system and have regulatory (land use) implications. The zones are shown in 

Figure 15 and are described here. 

• The catchment or contributing zone, which provides allogenic recharge (surface 

water from higher elevations areas that do not overlie the karst, that seeps into 

dolines or fractures overlying the karst aquifer) to the Edwards Aquifer and 

includes outcrops of the Trinity Aquifer. This zone is not part of the aquifer as 

defined by its boundaries, but the streams flowing out of it are the major source 

of aquifer recharge (Maclay, 1995; Passarello et al., 2012; Hauwert and Sharp, 

2014; Mahler and Musgrove, 2019). This area is underlain largely by Trinity 

geologic units and provides recharge to the Trinity aquifers. 

• The recharge (outcrop) zone where aquifer rocks are exposed at the surface and 

receive autogenic recharge (recharge that is derived from within the carbonate 

catchment) including both diffuse (from precipitation) and discrete (from 

losing steams) processes. 

• The confined (artesian) zone, which is generally overlain by the 

low-permeability Del Rio Clay as well as other low-permeability formations. 

 

 
Figure 15 - A generic cross section through the Edwards Aquifers. Major springs discharge in the towns of 
Uvalde, San Antonio, New Braunfels, San Marcos, Austin, Georgetown, and Salado. Most of the recharge 
occurs along losing streams in the recharge zone. More detailed, site-specific cross sections can be found in 
Hunt and others (2019), Johnson and others (2010), Jones (2019), Lindgren and others (2004), Scanlon and 
others (2001), and Toll and others (2019). 
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2 Stratigraphy and Structure 

The aquifer rocks were formed during the Early Cretaceous on a broad carbonate 

shelf, referred to as the Comanche shelf, flanked by deeper basins to the south and west 

(Rose, 1972, 2019; Abbott, 1975; Sharp, 1990), which included the lands northwest of the 

Stuart City reef (Figure 16). The Maverick and North Texas basins are separated by the San 

Marcos Platform. The Devils River Reef fringed the Maverick Basin. 

 
Figure 16 - Cretaceous depositional systems environments 
(Sharp, 1990; after Rose, 1972). 

Aquifer hydrostratigraphy varies over a wide area (Maclay, 1995). The 

hydrostratigraphy of all segments of the Edwards Aquifer is shown in Figure 17 and 

reflects the various Cretaceous depositional environments. The aquifer is composed 

principally of the Edwards Group south of the Colorado River and composed of the 

Edwards and Georgetown formations north of the Colorado River. The aquifers may 

include more formations than just the Edwards Group or Edwards Limestone. The aquifer 

strata generally range in thickness from 60 m (197 feet) to 210 m (689 feet) in the San 

Antonio and Kinney segments; are about 140 m (460 feet) in the Barton Springs segment; 

and about 105 m (345 feet) in the Northern segment (TWDB, 2021). The aquifer, unless 

fault-bounded, thins to zero along the northwestern aquifer boundary. 



The Edwards Aquifer Jack Sharp and Ron Green 

 

17 

The GROUNDWATER PROJECT ©The Authors Free download from gw-project.org 

Anyone may use and share gw-project.org links. Direct distribution of the book is strictly prohibited. 

 
Figure 17 - Hydrostratigraphic units of the geologic formations (in gray) that form the Edwards Aquifer 
(modified from Sharp et al, 2019b). Formation names are in capital letters; dashed lines separate formation 
members (modified from Rose, 1972, 2017; Ryder, 1996). 

Formation members south of the Colorado River are shown only for the Person and 

Kainer Formations of the Edwards Group in Figure 17. To complicate matters, the Edwards 

Aquifer is highly karstified, with rapid turbulent flow occurring in conduits, caves, and 

other preferential flow pathways formed by dissolution processes in the carbonate rocks. 

Karstification occurred during two episodes: (i) during the Cretaceous before deposition of 

the Georgetown Formation and (ii) more significantly after uplift, faulting, and exposure 

during the Cenozoic. In some areas, faulting has juxtaposed overlying and underlying units 

so that they act as part of the aquifer. These include the underlying Upper Glen Rose 

Formation (Hunt et al., 2019), which is part of the Trinity Group, and down-dropped 

sections of the overlying Buda Limestone and Austin Chalk formations that are 

hydraulically part of the aquifer in the Uvalde pool (Green et al., 2019b). The underlying 

and up-gradient portions of the Trinity Group contribute water flow to the aquifer in some 

areas via cross-formational flow (Clement and Sharp, 1987, 1988; Oetting, 1996; Johnson et 

al., 2019) or where they are juxtaposed to the Edwards Aquifer by faulting. 

The Del Rio Clay is a gray, plastic clay, that was deposited in a shallow sea. It 

overlies the aquifer in the confined zone. It is an effective confining layer. The mineral 

composition is about 50 percent clay (10 percent smectite, 20 percent illite, 20 percent 

kaolinite), 10 percent quartz, 30 percent calcite and 10 percent amorphous material. 

Permeability data for the formation are lacking because the permeabilities are too low to be 

determined by most laboratory instruments. The Atterberg limits and swell potential in the 

Del Rio Clay are very high (Font, 1979; Font and Williamson, 1970), which is consistent with 

low-permeability clays and shales. The presence of flowing artesian wells, including some 

very large ones (such as the Catfish Farm well discussed in Section 4.1) over the confined 

zone of the highly permeable karst aquifer are also consistent with the Del Rio Clay having 



The Edwards Aquifer Jack Sharp and Ron Green 

 

18 

The GROUNDWATER PROJECT ©The Authors Free download from gw-project.org 

Anyone may use and share gw-project.org links. Direct distribution of the book is strictly prohibited. 

low permeability. Finally, numerical models do not require leakance through the Del Rio 

Clay because of its low permeability and the small area where upward cross-formational 

flow could occur.  

Cross-formational flow from the underlying Trinity Group can be significant. This 

is supported by water balance estimates, numerical modeling, and water chemistry 

analyses (Clement and Sharp, 1987, 1988; Sharp and Clement, 1988; Oetting et al., 1996). 

The geologic structure of the Edwards Aquifer is controlled by the Miocene-age 

Balcones Fault Zone (Hill and Vaughan, 1898; Weeks, 1945; Rose, 2019), which is an overall 

down-to-the-southeast system of normal faults associated with the transition between the 

Edwards Plateau and Gulf Coastal Plain province. The total structural offset can exceed 

350 m over a distance of up to 50 km (Weeks, 1945; Collins and Hovorka, 1997). The 

Balcones Fault Zone cuts and juxtaposes rocks of the Cretaceous carbonate platform and 

overlying section—part of a regionally extensive carbonate-dominated sequence that 

extends in outcrop from central to west Texas (Lozo et al., 1959; Bebout and Loucks, 1977; 

Smith et al., 2000; Rose, 2017; Ferrill et al., 2019). Faulting also controls the outcrop patterns 

of the Edwards Aquifer, part of the Trinity Aquifer, and flow pathways within these 

aquifers (George, 1952; Holt, 1956; Arnow, 1963; Ewing and Caran, 1982; Maclay and Small, 

1983; Maclay, 1989, 1995; Collins and Hovorka, 1997; Collins, 2000; Hovorka et al., 1998; 

Clark, 2000a; Ferrill et al., 2004, 2019). Regionally, the fault zone changes trend from nearly 

east-west between Del Rio and San Antonio to nearly north-south between Austin and 

Salado. 

Locally, faults provide natural pathways for groundwater discharge mostly via 

springs that discharge within the confined (artesian) zone (Ewing, 1996). Intrusive and 

extrusive igneous activity in the Uvalde County and Travis County volcanic fields (Sharp, 

1990, Figure 7 therein), that occurred approximately 82 to 80 and 74 to 72 million years ago 

(Miggins et al., 2004; Smith et al., 2008; Ewing, 2016), further complicate the regional 

structure (e.g., Clark et al, 2013). 

At the largest scale, faults control the position and geometry of the aquifer (e.g., 

contributing, recharge, and confined zones) and, combined with stratigraphy, define 

regional flow paths. At the broad regional scale, the contributing zone is the southeastern 

Edwards Plateau at an elevation of > 350 m, the recharge zone is represented primarily by 

the Edwards Group outcrop belt at average elevations of ~300 m and is coincident with the 

Balcones Fault Zone. The confined zone lies south and southeast of this beneath the Del Rio 

Clay and younger sedimentary strata of Cretaceous to Miocene age. Faults and extension 

fractures—in many cases with permeability enhanced by dissolution—localize recharge 

and flow and are abundant at all scales within the Balcones Fault Zone and into the 

subsurface of the confined zone (Ferrill et al., 2019). 

The juxtaposition of the Edwards Aquifer with other aquifers, especially the Trinity 

Aquifer, provides avenues for inter-aquifer communication (e.g., Ferrill et al., 2008; Johnson 
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et al., 2010). On the other hand, juxtaposition against low-permeability layers (Maclay and 

Small, 1983), concentrations of clay in the fault zones, or mineralization along faults and 

fractures locally produce seals for compartmentalization and confinement of the Edwards 

Aquifer. This juxtaposition can lead to communication between the aquifer and permeable 

layers above and below the confining zones. The hydrologic behavior of faults varies as a 

function of position along the fault with respect to fault displacement, fault segmentation, 

and stratigraphic position, as well as the role of subsequent dissolution. At all scales, 

aquifer permeability parallel to faults is enhanced when compared to that of un-faulted 

rock (Hauwert et al., 2004). 

Fault-block deformation including small faults and extension fractures also cause 

anisotropic permeability (i.e., permeability that varies with orientation). Faults and 

extension fractures localize recharge and flow. Groundwater flow and carbonate rock 

dissolution can enhance the permeability effects of fault and fracture systems. Fault 

displacements show a pattern of aquifer thinning that is likely to influence fault-block 

communication and flow paths. Flow-path constriction and tortuosity may be exacerbated 

by increased fault-segment connectivity associated with large displacements. Faulting over 

a range of scales can produce strong permeability anisotropy such that maximum 

permeability is sub-horizontal and parallel to fault-bedding intersections (Ferrill et al., 

2019). 

In rock layers like those that make up the Trinity and Edwards aquifers, 

groundwater flow and dissolution can enhance the permeability effects of fault systems. 

Fault zones commonly form relatively impermeable barriers to across-fault flow; form 

permeable pathways for along-fault flow; or form both barriers and pathways, often via 

relay ramps (Arnow, 1963; Caine et al., 1996; Knipe, 1997; Yielding et al., 1997; Ferrill and 

Morris, 2003a,b and 2007). Relay ramps transfer displacement from one fault to the next 

and can serve as unbroken groundwater flow pathways through a fault system where faults 

offset the aquifer or serve as flow barriers (Collins and Hovorka, 1997; Hovorka et al., 1998; 

Hunt et al., 2015). 
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3 Aquifer Properties 

The Edwards Aquifer, like most karstic carbonate aquifers, is a triple 

porosity/permeability system, as explained below. The porosity and, in particular, 

permeability can vary significantly, both spatially and temporally. As a consequence, the 

estimated residence times of waters produced from wells or spring discharge reflect 

mixtures of waters with varying age (Hunt et al., 2019). 

3.1 Porosity and Storativity 

There are three types of porosity for the Edwards: matrix, fractures, and karstic 

(conduits). Hovorka and others (1996) provide a comprehensive set of porosity data using 

over 300 core plugs and over 200 well-log analyses. The average total porosity was 

estimated at 18 percent.  

Matrix porosity is highly variable vertically from low values (4 to 12 percent) in 

dominantly subtidal high stand facies to high values (20 to 42 percent) in grainstones and 

leached, subtidal dolostones. Porosity can approach 45 percent in zones that have had 

dolomite dissolution. Hovorka and others (1996) show patterns of horizontal porosity 

gradation. 

Fracture porosity is more difficult to assess. Hovorka and others (1998) estimate 

fracture porosity of 1.41 percent based upon a 30 m-long survey transect. Aquifer-specific 

yields are controlled by fracture porosity. Scanlon and others (2001) report specific yield 

values ranging from 0.001 to 0.06 for fractured areas. Slade and others (1985) estimated a 

mean specific yield of 0.017 for the Barton Springs segment. Lindgren and others (2004), 

Maclay and Rettman (1973), and Maclay and Small (1984) give ranges of specific yield (0.025 

to 0.200) and storativity (10-5 to 810-4) for the San Antonio segment. 

Conduit (karstic) porosity is also highly variable and difficult to assess directly. 

Based upon karst feature distributions in outcrops, Hovorka and others (1998) calculated a 

range in porosity values of 0.5 to 9.43 percent with a median of 2.2 percent. However, it is 

unclear how well connected the karst voids are in these outcrops and how much they 

contribute to permeability. The interconnected karstic porosity may be small, but, as in 

conduits, commonly dominates the flow systems (Worthington, 1999). 

3.2 Permeability 

Similar to porosity, there are three sets of permeability3: matrix, fractures, and 

conduits (Halihan et al., 2000; Hovorka et al., 2004; Worthington 2004). Hovorka and others 

 

3 Permeability (k, units of L
2
) is a function of pore geometry, and describes the ease with which a medium can 

transmit fluid. It is related to hydraulic conductivity (K, units of LT
-1

) as defined by Darcy’s Law which describes 
the volumetric flow rate under a given hydraulic gradient by combining k with the fluid density and viscosity. 
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(1998) compiled the, then existing, hydraulic conductivity data (Figure 18). The median 

hydraulic conductivity estimated from 680 specific capacity tests was approximately 

3.510-5 m/sec (10 feet/day) but ranged over eight orders of magnitude. A few specific 

capacity tests reported zero drawdown reflecting extremely high permeability and were 

assigned small (minimal) drawdowns in order to calculate a permeability value. Matrix 

hydraulic conductivity from core plugs is shown in Figure 19. Median hydraulic 

conductivities of matrix core plugs were two orders of magnitude less than those calculated 

from specific capacity data, which shows that secondary porosity (fractures and karstic 

features) controls well yields. 

 

Figure 18 - Hydraulic conductivity for the Edwards Aquifer based on specific capacity data 

(modified from Hovorka et al., 1998). 1 m/sec = 2.8310
5
 ft/day = 1.15x10

-7
 m

2
. 
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Figure 19 - Matrix hydraulic conductivity for the Edwards Aquifer based on core plug data 
(modified from Hovorka et al., 1998). 

Halihan and others (1999) compiled permeability data from Hovorka and others 

(1993, 1995, and 1998), Mace (1997), and regional models (Klemt et al., 1979; Maclay and 

Land, 1988; Thorkildsen and McElhaney, 1992) to show permeabilities for the matrix 

(small-scale), wells (well-scale), and karstic conduits (regional scale). The data from 

well-scale (1,072 tests) and small-scale (493 tests) permeability tests approach log-normal 

distributions as indicated by the nearly straight line they form in Figure 20. The 

regional-scale permeabilities inferred from the numerical models are consistent with 

conduit flow. 
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Figure 20 - Permeability scale effect for the San Antonio segment (after Halihan 
et al., 1999, 2000; Hovorka et al., 1993 and 1995). The three, regional-scale 
studies (Klemt et al., 1979; Maclay and Land, 1988; Thorkildsen and McElhaney, 
1992) each estimated ranges of permeability. Permeability ranges for limestone, 
gravel, and karst (modified from Freeze and Cherry, 1979, page 29) are 
illustrated in boxes on the right for comparison. The cumulative-distribution 
function of a normal (i.e., Gaussian) distribution plots as a straight line on the 
probability scale, which is shown as percent on the horizontal axis. The 
cumulative-distribution function of the log permeability of the test data form a 
nearly straight line indicating they are nearly log-normally distributed. It is 
common for permeability of geologic formations to be log-normally distributed 
(e.g., Figure 18 and Figure 19). 

Halihan and others (1999) showed that the well-scale permeability distribution for 

this set of data could be replicated by 50 Monte Carlo realizations of fracture models using 

the cubic law and fracture aperture spacing data from Hovorka and others (1998). The 

regional-scale model permeability values were intermediate between those reflecting 

laminar conduit flow (greater than the regional-scale values) and fully turbulent conduit 

flow (less than the regional-scale values) as shown in Figure 21. Regional conduit flow is 

best modeled as turbulent, but is highly dependent on the local conduit geometry. 
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Figure 21 - Modeled permeabilities for Edwards Aquifer matrix (red), fractures (orange), 
and conduits (blue) compared to data (black) from Figure 20 (after Halihan et al., 1999, 
2000). Permeability ranges for the matrix, fractures, and for laminar and turbulent flow 
in conduits were calculated based on Gupta (1989) and Halihan and others (1999) from 
493 core plugs and roadcut measurements of 776 fracture apertures and 2785 conduit 
diameters (Hovorka et al., 1998). 

3.3 Residence Times 

Calculating groundwater residence times in karst aquifers is challenging due to the 

variable mixture of young conduit flow water and potentially much older matrix water. In 

light of this limitation, groundwater residence times for the Edwards Aquifer have been 

calculated by numerical model simulations, isotopic age dating, and tracer tests. Residence 

times are relatively short in the aquifer but increase downdip into the brackish water zones 

(the bad-water zone) as described by Hunt and others (2019). In the freshwater zone, both 

confined and unconfined, water is recent with inferred ages ranging from days to a few 

thousand years. Musgrove and others (2019b) estimate mean groundwater ages ranging 
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from 7 to > 700 years. This large range in residence times is also observed in spring 

discharge, which is expected because of the three sets of permeability.  

For a given hydraulic gradient, flow rates can be expected to vary by orders of 

magnitude in the conduits, fractures, and matrix. The shortest residence times are found in 

the recharge zone where there is discrete recharge or along conduit flow paths (with the 

fastest groundwater flow velocities). Tracer testing is the best method for measuring the 

quickest rates of flow from a recharge feature to wells or springs. Traditional groundwater 

models may have difficulty estimating travel times in karst aquifers with well-developed 

conduit networks (Worthington et al., 2002; Smith et al., 2005b). Apparent ages in the 

bad-water zone are much older and it can be inferred that the ages of waters with total 

dissolved solids (TDS) over 4,000 mg/L are on the order of 20,000 years. Waters farther 

down dip in the Gulf of Mexico sedimentary basin are inferred to be still older (Sharp and 

Smith, 2019; Hoff and Dutton, 2017; Darling, 2016; Land and Prezbindowski, 1981). 

Traditional groundwater models are poor tools for estimating travel times in 

mature karst aquifers with well-developed conduit networks (Smith et al., 2005b). Based 

on model flow lines, Jagucki and others (2011) report that over 50 percent of the water from 

public-supply wells near San Antonio was less than two years old (Figure 22). 

 
Figure 22 - Mix of water ages for a public supply well near San 
Antonio (Jagucki et al., 2011). 

Lindgren and others (2011) used particle-tracking simulations to estimate travel 

times to 10 study wells. The simulated particle ages ranged from less than one day to more 

than 1,900 years. Their modeled particle ages for models calibrated to the observed tritium 

data gave residence times ranging from 2.5 to 15 years for the shallower and deeper wells, 

respectively. 

Kuniansky and others (2001, Table 1 therein) used head data from 1978 to 1979 to 

calculate ranges of travel times for flow from recharge areas near the Edwards Plateau to 

San Marcos and Comal springs. The shortest estimate was from 14 to 160 years for a flow 
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path from the Blanco River to San Marcos Springs and the longest was 350 to 4,300 years 

for a hypothetical flow path from the West Nueces River to Comal Springs. The models 

used matrix porosity values averaging 22 to 26 percent. If fracture porosity/permeability 

values had been used, the calculated travel times would have been shorter. In addition, 

these travel times were calculated with a porous-media model. Travel times calculated with 

a model that represented preferential flow paths would be shorter. 

3.3.1 Isotopic Ages 

Tritium (3H or T), 14C, and 3He isotopes have been used to infer groundwater age in 

the Edwards Aquifer. Campana and Mahin (1985) used a discrete-state computer model 

and tritium data to estimate mean ages for water in the confined zone of the San Antonio 

segment. The mean groundwater ages ranged from 16 to 132 years. Since the decay of the 

1963 tritium bomb pulse has become significant, the use of tritium in dating groundwater 

has become more difficult. Nonetheless, the presence of tritium indicates relatively young 

groundwater. Darling (2016) plotted 25 samples of water analyses of Edwards Aquifer 

waters that had both 14C and T data. Recently recharged (“young”) waters would have 

higher levels of T (in tritium units) and percent modern carbon (pmc, percent modern 14C) 

with the understanding that both isotopes decay, but at different rates. The linear 

regression between T and pmc is T = 2.50 – (100 percent - 3.47 pmc)/100. The data show 

mixing of young and older waters. If the pmc is less than 35 percent, then mixing cannot be 

calculated because the tritium is essentially gone. 

14C dating is complicated because the dissolution of carbonate minerals in the 

aquifer contributes dead (nonradiogenic) 13C. Thus, pmc decreases because of both 

radioactive decay and the introduction of dead C so that precise age dating is not possible. 

However, some general trends can still be discerned. Maclay and others (1980) provided a 

review of hydrochemical data for the San Antonio region, including samples from the 

brackish-water zone. For five waters with over 4,000 mg/L TDS, the apparent age dates 

were all over 26,000 years before present; a water with 1,220 to 1,280 mg/L gave an apparent 

age date of 12,000 years before present. These ages are consistent with the origin of the 

brackish waters in this area, which are upwelling from the Gulf of Mexico Basin (Sharp and 

Clement, 1988; Hoff and Dutton, 2017). 

Tritium (3H), 14C, and 3He were used by Hunt and others (2016) to infer groundwater 

ages in the Uvalde pool. These ages ranged from less than 2 years in the recharge zone to 

over 26 years in the vicinity of the brackish-water line and to the east in the direction of the 

regional flow. Many of their apparent ages showed mixing of modern (< 60 years old) and 

premodern waters. Mixing was most evident when waters approached 1,000 mg/L but 

mixing was also inferred in the unconfined zone based on excess helium concentration 

anomalies, which are consistent with subsurface discharge of premodern groundwater 

from the underlying Trinity Aquifer into the younger groundwater of the Edwards Aquifer. 
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Recent work by Musgrove and others (2019a,b) is consistent with the age ranges of these 

other studies (< 10 to > 700 years). Water in the San Antonio pool confined zone is a mix of 

older and younger waters (with the young ages between 24 to 30 years and the older ages 

variable depending on the depth/location in the aquifer).  These ages and mixtures are 

consistent with rapid recharge, rapid flow in the karst aquifer that is attested to by tracer 

tests, the triple porosity (matrix, fracture, conduit) aquifer system, and inflows of older 

water from underlying and downdip units. 

3.3.2 Tracer Tests 

Johnson and others (2019) reviewed tracer test results for the Edwards Aquifer. 

These test results showed very high flow velocities. In the Barton Springs segment, tracer 

tests delineated flow paths in separate pools (groundwater basins). Groundwater velocities 

ranged from 915 to 9,150 m/day (Hauwert et al., 2004). Hunt and others (2019) reported 

flow rates of 110 to 4,931 m/day to Barton Springs. Water-chemistry data for Barton Springs 

indicate that discharge is a mix of waters from several different flow paths. 

In the San Antonio segment, Rothermal and Ogden (1987) measured straight-line 

flow velocities of 640 m/day to Hueco Springs. Smith and others (2012) calculated 

straight-line velocities ranging from < 1 to 3,600 m/day to San Marcos and Barton springs. 

In Bexar County, tracer tests indicate that the Upper Trinity Aquifer was in direct hydraulic 

connection with the Edwards Aquifer. Tracers injected into the Trinity Aquifer traveled 

toward the Edwards Aquifer with straight-line tracer velocities ranging from 13 to 

5,300 m/day (Johnson et al., 2010). In Kinney County, 13 tracer tests indicated slow to rapid 

(up to 1,350 m/day) groundwater velocities (Johnson and Schindel, 2015). 

3.4 Water Chemistry 

Water quality in the aquifer is generally excellent. Few contaminant concentrations 

ever exceed human health-based benchmarks (Bush et al., 2000; Lindsey et al., 2009; 

Tremallo et al., 2016; Smith et al., 2001, Musgrove et al., 2019b). The waters are less than 

1000 mg/L total dissolved solids (TDS) and generally less than 500 mg/L (Figure 23), and 

are a calcium-magnesium-bicarbonate hydrochemical facies (e.g., Welder and Reeves, 1962; 

Guyton and Associates, 1979; Groschen, 1996; Hunt et al., 2019, Jones, 2019). A few wells 

show sulfate or chloride as the most common anion, but these are nearly always associated 

with the saline-water transition zone or have contributions from underlying aquifers. 

Nonetheless, detectable concentrations of contaminants indicate that anthropogenic 

activities on the land surface affect the aquifer (Bush et al., 2000; Jagucki et al., 2011; Mahler 

and Musgrove, 2019a). Despite intense utilization of the aquifer and urbanization over the 

recharge zone, water quality has remained good, mostly attributable to dilution due to high 

flow rates although a few wells show elevated levels of pathogens and nitrate. Urbanization 

and land cover are important factors affecting aquifer vulnerability (Opsahl et al., 2018). 

Leaks of sewage in the recharge zone have created local, short-lived E. coli contamination 
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in wells and in Barton Springs (Mahler et al., 2011), which may be closed for several days 

after heavy rainfall events. Jagucki and others (2011) documented that pesticide 

compounds (atrazine, deethylatrazine, and simazine) and volatile organic compounds 

(tetrachloroethene [PCE], chloroform, bromoform, and dibromochloromethane) can occur 

in untreated water at concentrations “much less than established drinking-water standards, 

where such standards exist.” In the vicinity of the bad-water line, groundwater becomes 

brackish (> 1000 mg/L) to saline (> 10,000 mg/L) with naturally-occurring elevated levels of 

sodium, chloride, and sulfate (Figure 14 and Figure 23). 

 
Figure 23 - Total dissolved solids in the Edwards Aquifer (modified from TWDB, 2016). 

The bad-water zone has been relatively stable over time with six hydrochemical 

facies identified, which are created by different combinations of dissolution of evaporite 

and other minerals, mixing with basinal brines, dedolomitization, and cross-formational 

flow from underlying formations. The bad-water line on the maps approximates the 

1000 mg/L isocon but is actually a transition zone (Figure 13). Flow in this zone is restricted, 

the waters are reducing, and recent studies (e.g., Engel, 2007; Abongwa and Den, 2021) 

suggest that microbes play important chemical and physical roles. However, the bad-water 

zone has sufficient water in storage and sufficient permeability so desalination or aquifer 

storage and recovery (ASR) could render it a viable water source option in the future (Smith 

et al., 2017).  
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4 Flow Systems 

Numerical models have been used to simulate groundwater flow, changes in 

groundwater storage (water levels), and significantly, spring flow from the Edwards 

Aquifer. Estimating water budgets has been a central objective of numerical modeling. A 

key outcome of the conceptual and numerical modeling is the nearly one-to-one 

relationship between increases in pumping and decreases in spring flow under low-flow 

conditions (Brune and Duffin, 1983; Smith and Hunt, 2004; Hunt et al., 2011). Water 

resource managers rely on these groundwater flow models to characterize 

groundwater-flow conditions in the Edwards Aquifer to serve as the basis for predicting 

the effects of water-resource management decisions, particularly on spring flow. There are 

recognized limitations and shortcomings in all numerical groundwater models, such as the 

particular modeling software selected, uncertainty about the underlying conceptual model 

and its implementation in the ensuing numerical model. Nonetheless, models are the 

preferred tool for groundwater resource management (De Marsily, 1986; Anderson and 

Woessner, 2015; Scanlon et al., 2003; Hartmann et al., 2014; Green et al., 2019d). 

The Edwards Aquifer is regional in scale with properties and characteristics that 

vary spatially and often temporally. Capturing these extreme heterogeneities imposes a 

large cost with regard to computation time and data-input requirements. At the same time, 

aquifer management concerns are usually defined at the local scale, requiring sufficient 

high resolution to account for local-scale characteristics of the aquifer. For these reasons 

and others, no single numerical model has been developed to simulate flow for the entirety 

of the Edwards Aquifer. Numerical models have been developed for segments and subsets 

of the Edwards Aquifer, including the San Antonio segment (Maclay and Land, 1988; 

Lindgren et al., 2004; Fratesi et al., 2015; Liu et al., 2017), the Barton Springs segment 

(Scanlon et al., 2001; Winterle et al., 2009; Hutchison and Hill, 2011), Kinney County 

(Hutchison et al., 2011a), and the Devils River watershed (Toll et al., 2017). In addition, 

there are regional-scale models, referred to as Groundwater Availability Models, which 

span large areas of the Edwards Aquifer and related aquifers, such as the Edwards-Trinity 

and Trinity aquifers (Anaya and Jones, 2004, 2009; Hutchison et al., 2011b; Jones et al., 2009). 

Although lumped-parameter (Wanakule and Anaya, 1993; Barrett and Charbeneau, 1996; 

Loáiciga et al., 2000) and solute-transport (Lindgren et al., 2011) models of the Edwards 

Aquifer have been developed, this discussion focuses on distributed groundwater-flow 

models. Post-2000 models of the greater Edwards Aquifer area were mostly developed as 

part of the Texas Water Development Board’s (TWDB) Groundwater Availability Model 

(GAM) program (Mace et al., 2008). 
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4.1 Discharge and Recharge 

4.1.1 Discharge 

It has long been recognized that natural aquifer discharge is primarily due to the 

large springs that characterize the Edwards Aquifer, with well pumpage as the second 

major discharge. In some cases, springs discharge directly into alluvial systems (e.g., Leona 

Springs) or as base flow to major streams or rivers (e.g., Medina River in the San Antonio 

pool (Green et al., 2019a). Some discharge from the Cold Springs pool to the Colorado River 

(Hauwert et al., 2004; Hunt et al., 2019). There is also limited cross-formational flow to other 

aquifers, which has dropped significantly as well yields increased and potentiometric 

surfaces lowered. There are fewer flowing artesian wells than in the time of Hill (1890) and 

upward cross-formational flow is a minor source of the discharge because of the 

effectiveness of the Del Rio Clay as a confining unit. 

There is (or was because of lower heads due to well pumping) the potential for 

upward cross-formational flow. Many wells in the Edwards Aquifer confined zone are (or 

were) free flowing, particularly during periods of greater rainfall. An extreme example of 

this is the Catfish Farm well (Figure 24), which was one of the world’s largest free-flowing 

wells capable of flowing on the order of 2.5 m3/sec (40,000 gallons per minute). This well is 

now closed, but this video demonstrates both the great productivity resulting from the 

high permeability and some of the political issues that arise when dealing with the Edwards 

Aquifer. 

 
Figure 24 - Catfish farm well (Photo by Greg Eckhardt, 1995). 

On a regional scale, cross-formational flow as a process of natural discharge has not 

been quantified, but it is small. This is supported quantitatively by numerical model 

simulations. 

https://www.youtube.com/watch?v=pXq0a_39WDQ
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4.1.2 Recharge 

Recharge to the aquifer can be estimated in two ways: indirect and direct. The 

indirect (lumped system) method is to assume steady-state flow for years so that recharge 

from all sources must equal the measured or estimated long-term discharge. This method 

depends on the accuracy of discharge data and does not address spatial or temporal 

variations or analyze different sources of recharge that are important for understanding 

hydrogeological processes and for aquifer management. 

Direct estimates generally show that the largest source of recharge is from losing 

streams that flow over the contributing and recharge zones. The second-largest source of 

direct recharge is from precipitation on the recharge zone as diffuse recharge (e.g., Hauwert 

and Sharp, 2014). Cross-formational flow from The Edwards-Trinity Aquifer is another 

form of recharge. Although there are no direct measurements of cross-formational flow, the 

current model of the San Antonio Segment of the Edwards Aquifer (Liu et al., 2017) uses a 

value of 74,000 acre-feet/year (91.2 GL/year) and the Texas Water Development Board’s 

Trinity model (Jones et al., 2009) uses a value 110,000 acre-feet/year (136 GL/year). That 

would account for 10 to 20 percent of the average input to the Edwards Aquifer. Smaller 

amounts come from anthropogenic sources (urbanization, artificial recharge, and irrigation 

return flow (Garcia-Fresca, 2004; Passarello et al., 2012 and 2014). 

Estimates of recharge from losing streams are based on stream gaging and estimates 

of precipitation in contributing zone watersheds. Puente (1978) established the basic 

method of estimating recharge from losing streams by stream gaging above and below the 

recharge zone. The difference was the calculated recharge. Puente’s estimates are shown in 

Table 2. 

Table 2 - Estimated recharge from losing streams for the San Antonio and Kinney segments 
of the Edwards Aquifer by basin (after Puente, 1978). 1 GL is one-million cubic meters. 

River basin acre-feet/year GL/year 

Nueces and West Nueces Rivers 102,200 126 

Frio and Dry Frio Rivers 98,700 122 

Sabinal River 35,400 44 

Between the Sabinal and Medina Rivers 86,000 106 

Medina Lake 55,800 69 

Between Medina River and Cibolo Creek 64,200 79 

Cibolo and Dry Creeks 95,000 117 

Blanco River 34,700 43 

 

Puente’s method forms the basis for direct stream-loss recharge calculation, but it 

has had to be modified because of several factors. First, the great variability in rainfall at 

local scales along the Balcones Escarpment (e.g., Nielsen-Gammon, 2013; Nielsen et al., 

2015) makes prediction of stream flow and subsequent recharge from losing streams 

difficult when using broad-scale precipitation measurements. Second, geological mapping 

and tracer tests have led to revised delineations of the recharge zone. Tracer tests in Bexar 
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County (Johnson et al., 2019) show that the Upper Glen Rose Formation is more 

hydraulically similar to the Edwards Aquifer than the rest of the Trinity Aquifer. 

Accordingly, the upper Glen Rose Formation acts as part of the Edwards Aquifer recharge 

zone (Figure 17). Supporting this conceptualization are multiport well data in the Barton 

Springs segment that show that the Edwards Aquifer and the Upper Glen Rose Formation 

function as a single aquifer (Smith and Hunt, 2019). The long-accepted basic aquifer 

framework that negligible recharge to the Edwards Aquifer occurs in the contributing zone 

can be expected to be modified to reflect this finding and thus result in refined 

conceptualizations in the future. 

Finally, stream-gaging data have shown that infiltration along the losing stream 

reaches is not uniform spatially (e.g., Slade et al., 2002) or temporally. Zahm (1998) found 

that infiltration in the losing reaches along Barton Creek was not uniform but concentrated 

in a limited number of locations. Stream-gaging studies on the Nueces River (Kromann, 

2015: Hackett, 2019) and the Blanco River (Hunt et al., 2017) show that the location of losing 

and gaining reaches in rivers that cross the recharge zones are not fixed but may vary with 

time. Consequently, the precise location of river gages and use of only a few gages can bias 

estimates of recharge. 

Direct recharge from precipitation occurs on the recharge zone as autogenic 

recharge. This has also been estimated indirectly by subtracting the estimated recharge 

from losing streams from total discharge (spring flows and wells). This should give a 

general estimate, but in some early cases before the pools in the segments were clearly 

defined, this calculation method caused significant underestimation of direct recharge 

(Hauwert and Sharp, 2014). Direct aquifer recharge is best estimated from water-balance 

analysis using precipitation, surface runoff, and evapotranspiration data. Hauwert and 

Sharp (2014) compiled existing data from central Texas flux towers (Figure 25) to show that 

water available for recharge is a function of total annualized precipitation. In dry years, 

most precipitation infiltrating the land surface is lost to evapotranspiration. 
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Figure 25 - Central Texas evapotranspiration flux tower data and annual precipitation (from Hauwert and 
Sharp, 2014). 

In wetter years, direct recharge is greater. Hauwert’s (2009) data for the Barton 

Springs segment recharge zone on two control plots with internal drainage (i.e., no surface 

runoff to streams) indicated that, during the period of study (2005 to 2006), about 30 percent 

of the precipitation was available for aquifer recharge, which is in the typical range for karst 

aquifer outcrop areas in sub-humid environments (Hauwert, 2009, Table 3 therein). 

There are other minor sources of recharge such as the effects of urbanization 

(Passarello et al., 2012, 2014; Sharp, 2019), including water losses from water and sewage 

lines, irrigation return flow, and artificial recharge. Artificial recharge is where 

groundwater is recharged by redirecting water across the land surface through canals, 

infiltration basins, or ponds; adding irrigation furrows or sprinkler systems; maintaining 

streamflow in losing streams; or injecting water directly into the subsurface through 

injection wells, injection galleries, or sinkholes. Artificial recharge has been considered as a 

strategy for the Edwards Aquifer to maintain critical spring flows to preserve endangered 

aquatic species, specifically by injection wells or galleries near Comal and San Marcos 

springs (McKinney and Sharp, 1995; Uliana and Sharp, 1996), but has never been 

implemented. Consideration has also been given to retention dams in the contributing zone 

that would preserve high flood flows and then release flows gradually to the recharge zone, 

but, these have only been implemented to a limited degree. The Edwards Aquifer Authority 



The Edwards Aquifer Jack Sharp and Ron Green 

 

34 

The GROUNDWATER PROJECT ©The Authors Free download from gw-project.org 

Anyone may use and share gw-project.org links. Direct distribution of the book is strictly prohibited. 

(EAA) has, however, developed the Seco Creek Sinkhole (Figure 12), see the video here , 

to receive high stream flows via a diversion ditch from Seco Creek. 

The Barton Springs Edwards Aquifer Conservation District (BSEACD) has 

constructed a concrete structure over a cave in the bed of Onion Creek in south Austin, 

which directs water in the creek into the Edwards Aquifer (Smith et al., 2011). This system 

was designed to automatically close a valve during periods of stormwater flow so that the 

high-turbidity stormwater doesn’t enter the aquifer. When the water quality in Onion 

Creek improves, the valve opens allowing the better-quality water to recharge the aquifer. 

This decreases the amounts of contaminants entering the aquifer during flood events and 

increases recharge to the aquifer by preventing the cave from getting clogged with debris. 

In areas where there is irrigation on the recharge zone, the possibility exists that 

there is recharge from irrigation return flow to the Edwards Aquifer. However, this has 

been considered minimal because many irrigated lands are found in the confined zone 

where direct recharge to the Edwards Aquifer is negligible. However, recharge due to 

urbanization (leaky water and sewer systems as well as over-irrigation of parks and lawns) 

may be significant in large metropolitan areas and areas of expansion such as along the I-35 

corridor (Garcia-Fresca, 2004; Passarello et al., 2012 and 2014). This is especially true during 

periods of very low rainfall. Passarello and others (2012) show that, in the Barton Springs 

segment, during times of drought urban recharge may be the largest component. Average 

annual recharge estimates for all four segments are given in Table 3. 

Table 3 - Average annual recharge. 

Segment 
Acre-feet/ 

year 
m

3
/s GL/year Source 

Kinney 69,800 2.71 85.4 Green and Bertetti (2010) 

San Antonio 636,200 24.66 778.1 Edwards Aquifer Authority (2019b) 

Barton Springs 

39,300 1.52 48.1 Scanlon et al. (2001) 

49,300 1.91 60.3 Hunt et al. (2019) 

Northern 80,000 3.10 97.8 Jones (2003) 

4.2 Segment Flow Systems 

The Colorado River in Austin creates the lowest topographic point in the aquifer. It 

separates the Northern and Barton Springs segments. As illustrated in Figure 12, the 

Colorado River and its contiguous channel are characterized as hydraulically isolated from 

the Edwards Aquifer. In Austin, the river receives flow from Barton and Cold Springs on 

the southern bank and Deep Eddy Springs (northern bank) as well as smaller springs and 

streams, but the Colorado River does not recharge the aquifer in a meaningful way. Hence, 

surface water and groundwater flow in the greater Colorado River watershed are 

hydraulically separate from the Edwards Aquifer. In times of severe drought, the 

https://www.facebook.com/watch/?v=170771556358206
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groundwater divide between the San Antonio and Barton Springs segments can disappear 

and the two segments essentially become one (Smith et al., 2012). 

To the west of the San Antonio and Kinney segments, the Devils River watershed 

discharges from the Edwards-Trinity Aquifer via major springs in the Devils River channel 

and elsewhere (San Felipe) and to the Rio Grande (Green et al., 2019c). Goodenough Spring, 

historically the third largest spring in Texas (Brune, 1975; Kamps et al., 2009), is an example 

of the springs that discharge to the Rio Grande. Springs that are not associated with the 

Devils River catchment are considered part of the Del Rio pool. 

The following subsections summarize the flow systems of the four segments as 

defined in Figure 2 and Figure 12. 

4.2.1 The San Antonio Segment 

This segment is the largest of the four segments and extends from a groundwater 

divide in Kinney County in the west to the groundwater divide with the Barton Springs 

segment in Hays County (Schindel, 2019). There are two defined pools in the San Antonio 

segment: the Uvalde and San Antonio pools (Figure 26). More detailed descriptions of the 

San Antonio segment are provided by Lindgren and others (2004) as well as Green and 

others (2019a,b). Surface water and groundwater in the San Antonio segment eventually 

discharge to rivers that flow to the Gulf of Mexico. Surface water and groundwater to the 

west of the San Antonio segment, including the Kinney segment, discharge to the Rio 

Grande which also ultimately flows into the Gulf of Mexico. 

 
Figure 26 - Conceptual model of sources of groundwater input and loss for the San Antonio and Kinney 
segments of the Edwards Aquifer (Green et al., 2019a). 
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Domains of the San Antonio segment numerical groundwater models (Klemt et al., 

1975; Maclay and Land, 1988; Lindgren et al., 2004; Lindgren, 2006; Liu et al., 2017) included 

the recharge and confined zones of the Edwards Aquifer whereas the model domain by 

Fratesi and others (2015) included the contributing zone of the Edwards Aquifer. Although 

models of the San Antonio segment (i.e., Klemt et al., 1979; Maclay and Land, 1988; 

Lindgren et al., 2004; Fratesi et al., 2015; Liu et al., 2017) and the Edwards-Trinity Aquifer 

(Anaya and Jones, 2004, 2009; Young et al., 2009; Hutchison et al., 2011b) covered at least 

part of the Edwards Aquifer in Kinney County, only the model by Hutchison and others 

(2011a) was developed exclusively for the Kinney County portion of the Edwards Aquifer. 

Groundwater flow in the contributing and recharge zones of the San Antonio 

segment has been characterized as essentially north-south in the Uvalde and western San 

Antonio pools but shifts to northwest-southwest in the central San Antonio pool and to 

west-east in the eastern San Antonio pool. The Groundwater Availability Model for this 

segment (Lindgren et al., 2004; Liu et al., 2017) shows groundwater flow in the recharge 

zone is essentially downdip (Figure 27 and Figure 28), although the direction of flow varies 

to some degree among the fault blocks. Groundwater flow in the confined zone of the San 

Antonio segment is essentially parallel to the fault strikes—from west-east in the western 

and central portions of the San Antonio pool to southwest-northeast in the eastern portion 

of the segment. 

.
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Figure 27 - Simulated flow system for the San Antonio segment for above-normal rainfall conditions (modified from Lindgren et al., 
2004). Red lines are simulated karstic conduits. 
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Figure 28 – A cross section through the Edwards Aquifer, Bexar County, showing that the Upper Glen Rose acts as part of the Edwards Aquifer in this area 
(Johnson et al., 2010). The location of this cross section is shown in Figure 12.
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4.2.2 Barton Springs Segment 

The Barton Springs segment extends from the groundwater divide with the San 

Antonio segment in Hays County to the Colorado River. Detailed descriptions are found 

in Scanlon and others (2001) and Hunt and others (2019). The domains of the Barton Springs 

segment numerical groundwater models by Scanlon and others (2001, 2003), Smith and 

Hunt (2004), Winterle and others (2009), and Hutchison and Hill (2011) were essentially the 

same. All were porous media models except Winterle and others (2009) who attempted to 

account for karst conduit/diffuse flow using MODFLOW-DCM (Painter et al., 2007). 

Groundwater flow in the Barton Springs segment has been extensively characterized using 

tracer testing as shown in Figure 29 (Hauwert, 2004; Johnson et al., 2012; Hunt et al., 2019, 

and Zapitello et al., 2019). Flow in the contributing and recharge zones is generally 

west-east and, like the San Antonio segment, is essentially downdip. Similarly, flow in the 

confined zone is essentially from the south and west to the northeast, parallel to fault 

strikes, where it discharges primarily to four springs: Barton Springs Main (Figure 9); 

Upper Barton Springs ; Eliza Springs(video and Figure 10); and Old Mill Springs. Tracing 

studies have delineated flow systems shown in Figure 29. The Cold Springs pool receives 

most of its recharge from the Barton Creek catchment and discharges to the Colorado River 

at Cold Springs. Other smaller springs discharge an undetermined small amount directly 

to the Colorado River. The Sunset Valley system discharges at Main and Upper Barton 

springs and perhaps also at Cold Springs. The Manchaca system discharges to all four of 

the Barton Springs. The location of the groundwater divide separating the Barton Springs 

segment from the San Antonio segment has been characterized as variable. It migrates 

between Onion Creek and the Blanco River depending on local head conditions (Smith et 

al., 2012). 

https://www.facebook.com/AustinWatershed/videos/eliza-spring/442843253211176/
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Figure 29 - Barton Springs segment pools and flow paths defined by tracer tests 
(Zapitello et al., 2019). The Cold Spring pool doesn’t discharge directly to Barton 
Springs, whereas the Sunset Valley and Manchaca pools do. The boundary 
(groundwater divide) between the Barton Springs and San Antonio segments 
shifts under different aquifer conditions and in some cases disappears. The 
dashed flow paths represent groundwater tracing results that crossed the 
boundary. The divides between all the pools may also shift under different aquifer 
conditions (Hauwert, 2009). 
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4.2.3 Northern Segment 

The Northern segment extends from the Colorado River in the south to Bell County 

in the north where the aquifer strata thin out (Figure 2 and Figure 12). The Northern 

segment of the Edwards Aquifer is not hydraulically contiguous with the Washita Prairies 

Aquifer located farther to the north (Yelderman, 2019). Jones (2003, 2019) provides more 

detailed descriptions of the Northern segment. Similar to the Barton Springs segment, 

groundwater flow in the contributing and recharge zones of the Northern segment is 

west-east as shown in Figure 30 (Senger et al., 1990; Jones, 2006). Once recharged, flow in 

the confined zone in the northern portion of the segment discharges at Salado Springs and 

other springs. Groundwater flow in the southern portion of the segment discharges to the 

Colorado River. One of the defining characteristics of the Northern segment is the fact that 

recharge occurs in the uplands and minor streams, while major streams are often sites of 

spring discharge (Kreitler et al., 1987; Smith et al., 2005a). 

 
Figure 30 - Steady-state water-level elevations for the Northern segment flow system 
showing major springs (modified from Jones, 2003). The shaded area is the confined zone 
(modified from Jones, 2003). 1 mile = 1.6 kilometers. 
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4.2.4 Kinney Segment 

The Kinney segment extends from a groundwater divide located between Mud 

Creek and Pinto Creek on the west to an effective structural, hydraulic barrier near the 

Kinney County and Uvalde County line (Figure 2 and Figure 12). The barrier is a result of 

natural dewatering of the permeable portion of the Edwards Aquifer (i.e., Salmon Peak) in 

eastern Kinney County due to structural uplift. Consistent with the geologic structure and 

supported by tracer testing (Johnson and Schindel, 2015), groundwater flow within the 

segment is northeast-southwest as shown in Figure 31. Differences in magnesium 

concentrations (Figure 32) and other constituents (e.g., sulfate) in groundwaters in Kinney 

and Uvalde counties support the interpretation that groundwater in the Kinney segment is 

distinct from the Uvalde pool. Based mostly on water chemistry and geologic structure, it 

is expected that during periods of low to average groundwater elevation groundwater in 

the Edwards Aquifer will not flow from Kinney County to Uvalde County, but limited flow 

from west to east may be possible when groundwater elevations are high. Natural 

discharge from the Kinney segment occurs as spring discharge and underflow through the 

floodplains of Pinto and Las Moras creeks at the southern (downdip) boundary of the 

segment. 

 
Figure 31 - Potentiometric surface of the western Edwards Aquifer in January/February 2006 (Green et al., 
2019d). Coordinates are in Universal Transverse Mercator (UTM) Zone 14, North American Datum 1983 
(NAD 83); msl is mean sea level; EAA denotes Edwards Aquifer Authority. 
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Figure 32 - Map showing the approximate location of the Kinney Pool and measured concentrations of 
magnesium in Edwards Aquifer wells in mg/L (Green et al., 2019d). Coordinates are in Universal 
Transverse Mercator (UTM) Zone 14, North American Datum 1983 (NAD 83). 

4.3 Associated Edwards Aquifers 

There are additional aquifers with similar genesis and lithology to the Edwards 

(Balcones Fault Zone) Aquifer. Due to a multitude of commonalities, these aquifers are 

treated in a manner similar to the Edwards Aquifer because society relies on these resources 

and these aquifers face the same threats. The associated aquifers include the 

Edwards-Trinity (Plateau) and the Washita Prairies aquifers (Figure 2 and Table 1). The 

following subsections provide brief descriptions of these aquifers. 

4.3.1 Edwards-Trinity (Plateau) Aquifer 

The Edwards-Trinity (Plateau) Aquifer is a karstic carbonate aquifer that extends 

across the uplifted Edwards Plateau in west-central Texas. The plateau west of the Pecos 

River is referred to as the Stockton Plateau. Key studies of the Edwards-Trinity Aquifer 

have been conducted by the U.S. Geologic Survey (Kuniansky, 1989; Kuniansky and 

Holligan,1994; Barker et al., 1994; Barker and Ardis, 1996), the Texas Water Development 

Board (Walker, 1979; Rees and Buckner, 1980; Mace et al., 2000; Jones and Anaya, 2009, 

2019; Mace and Angle, 2004; Jones et al., 2011; Hutchison et al., 2011), and Green and Bertetti 

(2010). The combined groundwater flow system of the Edwards-Trinity (Plateau) Aquifer 

and the Hill Country portion of the Trinity Aquifer covers about 100,000 km2 (39,000 square 

miles). The aquifers are the primary source of water for the Edwards Plateau and the Texas 

Hill Country and sustain numerous springs and streams in the region. The sensitivity of 
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the aquifers to drought and well discharge has raised concerns over the availability of water 

from these aquifers. 

Studies of the Edwards-Trinity (Plateau) Aquifer and Hill Country portion of the 

Trinity aquifers indicate that groundwater discharge takes the form of: 

• flow to streams and springs;  

• evapotranspiration;  

• pumpage from wells; and, 

• cross-formational flow through the Balcones Fault Zone boundary to the 

Edwards (Balcones Fault Zone) Aquifer and underlying parts of the Trinity 

Aquifer.  

Recharge to these aquifers occurs by diffuse and discrete infiltration through the aquifer 

outcrops. 

4.3.2 Washita Prairies 

The Washita Prairies Aquifer (Figure 2) is a shallow, unconfined aquifer that 

provides water to small perennial springs, rural households, and livestock (Cannata, 1988; 

Collins, 1989; Myearick, 1989; Bernhardt, 1991; Legg, 1995; Clark, 2000b; and Yelderman, 

1987, 2019). This aquifer is relatively thin (< 50 m). The Georgetown and Edwards 

formations form the aquifer similar to the Northern segment of the Edwards Aquifer. 

Permeability is less than other Edwards aquifers discussed above. Because the aquifer is 

west of the Balcones Fault Zone, there is less fracturing and less karstification. Weathering 

created higher effective porosity and permeability in the uppermost aquifer strata. Fracture 

permeability controls the flow system. The water-table elevation mimics surface 

topography and responds rapidly to precipitation. Most discharge occurs in local 

second-order streams. 
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5 Aquifer Ecology and Endangered Species 

One of the unique characteristics of the Edwards Aquifer is the great variety of 

organisms that live in the aquifer (called stygofauna) or are directly dependent upon flows 

from its springs. With 91 described stygobite species and at least another 14 awaiting 

taxonomic description, the subterranean aquatic fauna of Texas is globally renowned 

(Longley, 1981; Culver and Sket, 2000). The Edwards Aquifer species diversity ranks among 

the highest recorded for any aquifer worldwide. The Edwards (Balcones Fault Zone) 

Aquifer contains significant diversity, including at least 65 described species (Krejca and 

Reddell, 2019, Table 1 therein), 34 described species at the artesian well in San Marcos, and 

14 described species at nearby Ezell’s Cave. The Edwards-Trinity Plateau Aquifer has the 

second greatest diversity in Texas aquifers. 

Aquifer development created the opportunity for a splendid variety of aquatic 

fauna to invade the subsurface. The carbonates were deposited in a shallow sea. Marine 

invertebrates of those seas were the first precursors to stygobite fauna. With uplift and 

erosion, some of these marine species stayed with the land. Some adapted to living in caves 

and to life in freshwater. Marine invertebrates [e.g., isopods (Cirolanidae), amphipods 

(Hadziidae, Ingolfiellidae, and Sebidae), shrimp-like species (Bogidiellidea), worm-like 

crustaceans (Bathynellacea), and crustaceans found in thermal springs (Thermosbanacea)] 

were some of the earliest stygobites in Texas (Krejca and Reddell, 2019). During and after 

uplift and karstification, freshwater invertebrates, including crangonyctid amphipods, 

asellid isopods, palaemonid shrimp, copepods, ostracods, snails, fish, flatworms, 

arachnids, and insects including elmid and dytiscid beetles, were introduced. 

In addition to this variety of species available for cave adaptation, the history of 

uplifts, faulting, karstification, stream incision, and springs formed many ecological niches 

within the aquifer as well as barriers to communication. For instance, stream incision by 

the Colorado River divides the Barton Springs and the Northern segments. In the recharge 

zone of the San Antonio segment, the evolutionary development of cave spiders is a 

function of when fault blocks became available as vadose zone habitats (White et al., 2009). 

These barriers isolate subterranean populations and create the opportunity for speciation 

and endemism (Krejca, 2005). 

The aquifer’s remarkable biological diversity also includes two groups of highly 

troglomorphic (cave-adapted) vertebrates, Eurycea salamanders (13 species, including some 

spring and some cave forms) and Ictalurid catfish (three species). Given this diversity, it is 

surprising how little is known about the biology of the species. The invertebrates, in 

particular, span the range of taxa, including snails, flatworms, ostracods, copepods, 

amphipods, isopods, shrimp, mites, beetles, and even an unstudied and perhaps the 

world’s only aquifer-adapted leech (Mooreobdella species). Many of these groups lack 

taxonomic experts to describe new species or assign names to the existing collections 
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(Krejca and Reddell, 2019). There is concern that spring ecosystems might fail before 

taxonomists can describe the species present (Gary et al., 2019; Smith et al., 2020), with the 

looming issues of water quality and quantity essential to the continued survival of these 

ecosystems. The known endangered species of the aquifer (discussed in Section 5.1) create 

challenges to the future development and management of the aquifer. Payne and others 

(2019) discuss the efforts to maintain habitat for endangered species in Comal and San 

Marcos springs. In addition, the microbial ecosystems of the aquifer have only recently 

started to receive attention. Some of them are unique, such as those along the aquifer’s 

brackish-water line, which is discussed in Section 5.2. 

5.1 Endangered Species 

Krejca and Reddell (2019, Table 2 therein) list 66 threatened, endangered, and 

petitioned spring and cave species in the state of Texas, which are either state-listed, 

federally-listed, or have been petitioned for listing as endangered. Table 4 lists the nine 

federally-listed endangered species that live in the Edwards Aquifer or its major springs. 

Of these, the Peck’s Cave amphipod, the Comal Springs dryopid beetle, and the Texas and 

Austin blind salamanders are stygobites that are living in the aquifer. The others live 

primarily in spring discharge systems. The EAA (2020) is also considering three additional 

species that have been petitioned for endangered species status in its habitat conservation 

plan, the Edwards Aquifer diving beetle, the Comal Springs salamander, and the Texas 

troglobitic water slater. The EAA has established two refugia for the breeding and 

maintenance of endangered species should re-introduction to the spring systems be 

necessary. 

Table 4 – Federally-listed endangered species in the Edwards Aquifer. 

Common name Species name Group 

Texas wild rice Zinzania texana plant 

Peck’s Cave amphipod Stygobromus pecki invertebrate 

Comal Springs riffle beetle Hetereimus comalensis invertebrate 

Comal Springs dryopid beetle Stygoparnus comalensis invertebrate 

Fountain darter Etheostoma fonticola fish 

San Marcos gambusia Gambusia georgei fish 

Texas blind salamander Eurycea rathbuni amphibian 

Barton Springs salamander Eurycea sosorum amphibian 

Austin blind salamander Eurycea waterlooensis amphibian 

 

Two other fishes are listed as threatened by the State of Texas, the toothless blindcat 

fish (Trogloglanis patersoni) and the wide-mouthed blindcat (Satan eurystomas). The latter 

has not been observed since 1978 (Krejca and Reddell, 2019; Hendrickson, 2019). It may be 

extinct, but the wells in the limited area south of downtown San Antonio, where the fish 

was known to occur, are now part of the San Antonio city water system and are no longer 

accessible for sampling. Another fish species, the San Marcos gambusia, was last collected 

https://www.edwardsaquifer.org/habitat-conservation-plan/about-eahcp/faqs/
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in 1983 and is now listed as extinct (EAA, 2020). The endangered species listing will 

continue to evolve. Figure 33 shows some of the endangered species. 

 
Figure 33 - Endangered species of the Edwards Aquifer (figure provided by Juliana 
Apolonio): a) Texas wild rice; b) Peck’s Cave amphipod; c) Comal Springs riffle beetle; 
d) Comal Springs dryopid beetle; e) Fountain darter; f) the now extinct San Marcos 
gambusia; g) Texas blind salamander; h) Barton Springs salamander (photo provided 
by Nathan Bendik); and, i) Austin blind salamander. 

5.2 Bad-water Line 

The Edwards Aquifer freshwater system interfaces with down-dip anoxic, 

sulfide-rich brackish (TDS > 103 mg/L) to saline (> 104 mg/L) “bad water.” The interface 

between these two waters has sulfur-reducing bacteria that form the base of a 

chemolithoautotrophic ecosystem at great depths (100 to 600 m) in which organisms can 

obtain the necessary carbon for metabolic processes from carbon dioxide in the 

environment (Engel, 2007). This autochthonous system (energy derived from within) is 

unlike normal cave systems and supports a greater species richness than adjacent sites, 

which are allocthonous (where nutrients enter the aquifer from the surface). It is inferred 

that small-scale dissolution is enhanced along the bad-water interface. To date, these 

findings are restricted to the San Antonio area, but the nutrients generated along the 

brackish-water line may support ecosystems over a broader range of the aquifer. 

The Edwards Aquifer ecosystem is complex and highly varied. Understanding of 

the system has evolved with the examination of microbial processes (e.g., along the 

brackish-water line) and DNA analyses of aquatic organisms (e.g., Devitt, 2019). It should 

be expected that new organisms that are dependent on the aquifer will be discovered. Loss 

of spring flows during droughts is a major threat to the ecosystem. This threat led to new 

water laws and management policies. Lowering water tables and increased water pollution 

are threats to species that have limited habitat ranges.  
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6 Legal and Administrative Systems 

Hardberger (2019) summarizes the development of Texas water law as it pertains 

to groundwater in general, and to the Edwards Aquifer in particular. In Texas, 

groundwater and surface water are managed by separate doctrines. Surface water is 

state-owned and governed by the doctrine of prior appropriation (i.e., water rights are 

determined by priority of beneficial use). Groundwater law has been evolving and is based 

on a series of court cases and legislative actions. In Texas, like soil, groundwater is the 

property of the surface landowner. The 1904 East case confirmed the absolute ownership 

of water or the “rule of capture” for beneficial use, limited only by the exception that 

malicious use and, later, subsidence of adjoining properties, were not permitted. The Texas 

Supreme Court has indicated that rule-of-capture might not be an appropriate doctrine but 

left the doctrine in place. Since the 1990s, there have been three major changes:  

• Groundwater Conservation Districts (GCDs) were designated as the preferred 

method for groundwater management, emphasizing that local control and 

protection of endangered species in the Edwards Aquifer springs necessitated 

pumping restrictions. GCDs are required to develop and implement effective 

management plans for the groundwater resources in their designated areas. In 

addition, the state established Groundwater Management Areas (GMAs) 

(Texas Water Development Board) to provide for conservation, protection, 

recharging, preventing waste of groundwater and “groundwater reservoirs” 

(i.e., aquifers) as well as controlling subsidence caused by groundwater 

withdrawal. Many GCDs are defined by county boundaries. GMAs incorporate 

a number of adjoining GCDs. 

• Recent court decisions ruled that landowners have a vested property right in 

the groundwater below their land prior to its capture (the Day case) and that 

restricting pumping of groundwater was a “taking” that required 

compensation of the land owner (the Bragg case). Legal constraints will be an 

important factor in determining the future development of the Edwards 

Aquifer and associated water resources. 

• Habitat conservation plans have been developed to protect ecosystems at 

Comal, San Marcos, and Barton springs (BSEACD, 2018). Payne and others 

(2019) summarize the Habitat Conservation Plan developed for the San 

Antonio Segment in this video. 

6.1 Numerical Models for Developing Management Strategies 

The State of Texas and other government entities have developed groundwater 

models for the major Texas aquifers that have provided new insights into the 

groundwater resources on which much of the state relies. Several regional-scale 

https://www.twdb.texas.gov/
https://www.edwardsaquifer.org/habitat-conservation-plan/
https://vimeo.com/709268740
https://www.twdb.texas.gov/groundwater/aquifer/major.asp
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groundwater flow models cover parts of the Edwards Aquifer (Green et al., 2019d). 

Post-2000 models were mostly developed as part of the Texas Water Development Board’s 

Groundwater Availability Model (GAM) program (Mace et al., 2008). These models target 

portions of the Edwards Aquifer: Northern segment (Jones, 2003), Barton Springs segment 

(Scanlon et al., 2001, 2003; Smith and Hunt, 2004; Winterle et al., 2009; Hutchison and Hill, 

2011), and the Edwards (Balcones Fault Zone Aquifer) San Antonio segment (Klemt et al., 

1979; Maclay and Land, 1988; Lindgren et al., 2004; Lindgren, 2006; Fratesi et al., 2015; Liu 

et al., 2017). The GAMs are implemented within Texas’ unique system of Groundwater 

Conservation Districts (GCDs) and Groundwater Management Areas (GMAs) to assist in 

establishing desired future conditions and management strategies to ensure adequate 

water resources for the future of the state (Mace et al., 2008). 

In addition, there are GMAs for the Edwards-Trinity Aquifer (Anaya and Jones, 

2004, 2009; Young et al., 2009; Hutchison et al., 2011b) and the Hill Country Trinity Aquifer 

(Mace et al., 2000; Jones et al., 2009), although the focus of these models included the Trinity 

Aquifer. There was also a U.S. Geological Survey Regional System Aquifer Analysis model 

that targeted the Edwards Plateau, but also covered the western portions of the Edwards 

Aquifer (Kuniansky and Holligan, 1994; Kuniansky, 1995). 

The Edwards Aquifer is also managed by two GMAs and is near another. GMA 

10 covers the Edwards Aquifer from the previously designated groundwater divide at Las 

Moras Springs in Kinney County to the Colorado River. GMA 10 includes nine overlapping 

GCDs all of which overlie the Edwards Aquifer. GMA 8 includes a much broader area 

including the counties north of the Colorado River where the Edwards Aquifer is present 

as well as also large areas to the north and west of the aquifer. GMA 8 includes 24 GCDs, 

only one of which covers the Edwards Aquifer (i.e., the Clearwater GCD in Bell County). 

GMA 9 does not include the Edwards Aquifer but manages the Trinity Aquifer which is 

juxtaposed with the Edwards Aquifer by faulting. As a result, the Trinity Aquifer provides 

cross-formational flow and baseflow that subsequently recharge the Edwards Aquifer. 

Two agencies are specifically responsible for managing the Edwards Aquifer: the 

Edwards Aquifer Authority, which was established under a different law and is not a GCD, 

and the Barton Springs Edwards Aquifer Conservation District (BSEACD). 

6.2 Edwards Aquifer Authority 

The EAA succeeded the Edwards Underground Water District (EUWD), which 

was formed after the 1951-1956 drought of record (Illgner and Schindel, 2019). The EAA 

was established in 1996 after lawsuits for protecting endangered species in Comal and San 

Marcos springs revealed the need for aquifer management. Several events set the stage for 

water management in Texas and the creation of the EAA, but the EAA was eventually 

granted regulatory responsibilities including issuing permits for wells, setting limits on 

http://www.twdb.texas.gov/groundwater/management_areas/
https://edwardsaquifer.org/
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groundwater pumpage, and developing a habitat conservation plan (Payne et al., 2019) to 

protect endangered species. 

The period of 1951 to 1956 is recognized officially as the drought of record (DOR) 

for central Texas. For the San Antonio segment, the mean annual recharge from 1934 to 

2015 was estimated at over 700,000 acre-feet (860 GL), but annual recharge for the DOR was 

only slightly more than 163,000 acre-feet (200 GL). Spring flows declined during the DOR. 

Comal Springs, which had an average discharge of 286 cubic feet per second (cfs) which is 

approximately 8,100 liters per second (lps), did not flow for 144 days during the summer 

of 1956 (EAA, 2012). The combination of no spring flow and rapidly increasing 

groundwater pumping led to a study to create a GCD for the San Antonio segment of the 

aquifer. However, the City of San Antonio insisted that rule-making authority be removed 

from the enabling legislation and the EUWD became the fourth GCD in Texas (there are 

currently over 100 GCDs), but the first without regulatory authority. This prevented the 

EUWD from regulating pumping from the aquifer or protecting flow at Comal and San 

Marcos springs. Nonetheless, the EUWD established a comprehensive groundwater data 

collection program, conducted research on aquifer hydrogeology, and developed a 

conservation plan, which included a leak-detection program. 

With the passage of the Endangered Species Act (ESA) in 1973, species in both 

Comal and San Marcos springs have been listed as endangered. A 1991 lawsuit filed by the 

Sierra Club asserted that the U.S. Fish and Wildlife Service (FWS) was negligent in 

providing sufficient safeguards for the endangered aquatic species in Comal and San 

Marcos springs. In November 1992, the judge ruled in favor of the Sierra Club in response 

to which the Texas legislature created the EAA. 

The EAA Act abolished the EUWD, addressed the EUWD regulatory deficiencies, 

and added other regulatory powers to the newly formed EAA. Its boundaries were also 

revised to reflect areas that receive water from the aquifer, not just land directly overlying 

the aquifer. The EAA covers all or parts of eight counties (map available) including 

Uvalde, Medina, Atascosa, Bexar, Comal, Guadalupe, Hays, and Caldwell counties. 

Directives in the enabling legislation included: 

• setting the maximum amount of pumping permits to be issued; 

• setting guaranteed minimums for each permit category (municipal, industrial, 

and agricultural); 

• only applicants with historical use during a defined historical period qualified 

for a permit; 

• a filling deadline for permit claims was set; 

• all permitted wells were required to have flow meters; 

• the EAA has a lifetime responsibility for meter costs for irrigation wells; 

• the EAA must have a drought plan; and, 

• the EAA must have a conservation plan. 

https://www.edwardsaquifer.org/science_docs/edwards-aquifer-system-map/
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Governance of the EUWD and the EAA were markedly different. The EUWD had 

been governed by a 12-member elected board. The EAA’s proposed governance was a 

nine-person appointed board. This delayed startup as the Department of Justice did not 

accept replacing an elected board with an appointed board in Texas. Consequently, the 

Legislature followed up in 1995 with an amendment by adding a 15-member elected board 

from single-member districts.  

To protect the endangered species, maintain spring habitats, and optimize use of 

the aquifer, the EAA has instituted several policies. One is establishing critical drought 

period triggers (based on 10-day averages) with mandated reductions in water 

withdrawals (Table 5) to sustain spring flows in periods of drought. 

Table 5 – Triggers for critical period stages (based on 10-day averages) and withdrawal (pumping) 
reductions for the San Antonio segment (EAA, 2021). Index well water elevations are in feet above mean 

sea level (amsl) and spring flows are in cubic feet per second. 100 cfs ≈ 2.83 m
3
/s. Stage 5 for Comal 

Springs has two triggers a 10-day and a 3-day rolling average of 45 and 40 cfs, respectively. 

Trigger Stage I Stage II Stage III Stage IV Stage V 

San Antonio Pool 

Index well J-17 (msl) < 660 < 650 < 640 < 630 < 625 

San Marcos Springs flow (cfs) < 96 < 80 - - - 

Comal Springs flow (cfs) < 225 < 200 < 150 <100 < 45/40 

Withdrawal reduction   20%   30%   35%   40%   44% 

Uvalde Pool 

Index well J-27 (msl) - < 850 < 845 < 842 < 840 

Withdrawal reduction -    5%   20%   35%   44% 

 

In addition, the EAA and various municipal authorities (e.g., the San Antonio Water 

System) have sought additional water supplies from other aquifers, river systems and 

desalination; created an aquifer storage and recovery system (EAA, 2019c); and, instituted 

a regional water conservation program to encourage municipal water conservation and a 

Voluntary Irrigation Suspension Program (VISPO). VISPO authorizes financial 

compensation to eligible holders of irrigation rights to suspend pumping when water levels 

fall to a critical level defined as 193.55 m (635 feet) amsl at index well J-17 (Payne et al., 

2019). 

6.3 Other GCDs 

Other active GCDs managing the Edwards Aquifer are the Barton Springs Edwards 

Aquifer Conservation District (BSEACD), the Clearwater Underground Water 

Conservation District (CUWCD), and the Kinney County Groundwater Conservation 

District (KCGCD). Other overlapping GCDs manage the overlying (Carrizo-Wilcox and 

alluvial) and underlying (Trinity) aquifer systems (map available). 

The BSEACD was established in 1987 to serve the municipalities in portions of 

Hays, Travis, Caldwell, and Bastrop counties that depend on the aquifer. It is also 

https://www.twdb.texas.gov/mapping/doc/maps/GCDs_8x11.pdf?d=9991.200000286102
https://bseacd.org/
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responsible for portions of the underlying Trinity Aquifer. The BSEACD has established a 

set of drought status stages for curtailing pumping (Table 6). These restrictions are 

intended to preserve the endangered species that appear in all four of the springs and are 

based on an index well close to the springs. The well stages are correlated to spring 

discharge (e.g., a well water level of 141.0 m (462.7 feet) above mean sea level corresponds 

to spring discharge of 0.566 m3/s (20 ft3/s). An additional index well (the Lovelady well) is 

situated in the transition zone between the fresh and brackish Edwards Aquifer about 6 km 

(3.8 miles) south of Barton Springs. Water levels in the Lovelady well are more stable than 

spring discharge as local rainfall can cause short-term fluctuations in spring discharge. 

Table 6 – Drought status stages and pumping reductions for the Barton Springs segment (BSEACD, 
2021a, b). Index well water elevations are in feet above mean sea level (msl) and spring flows are in 

cubic feet per second (cfs). 100 cfs = 2.83 m
3
/sec. 

Drought status stage 
Lovelady index well 

(msl) 

Barton Springs flow 

(cfs) 

Pumping reductions 

A, B, C&D wells 

No drought > 478.4 > 38 * 

Stage II Critical 462.7 - 478.4 20 - 38 20, 50, 100% 

Stage III Critical 457.1 - 462.7 14 - 20 30, 75, 100% 

Stage IV Critical 453.4 - 457.1 10 - 14 50, 100, 100% 

Emergency response < 453.4 < 10 > 50, 100, 100% 

*Voluntary conservation is encouraged from May through September even under no drought status. 

Pumping reductions do not apply to small domestic and livestock water wells. Most other (mostly 

municipal and industrial) wells are type A. Well classes are defined in BSEACD (2021b). 

 

The CUWCD was established in 1989 and is responsible for groundwater 

management in Bell County. Its mission is to develop and implement effective 

groundwater management to protect the water resources in the county. The KCGCD’s 

goal is to balance conservation and preservation, as well as efficient and beneficial use of 

groundwater, along with protection of the private property rights of landowners for the 

benefit of present and future citizens of the county. 

  

https://cuwcd.org/
http://www.kinneycountygcd.org/
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7 Conclusion 

The Edwards Aquifer ranks as one of the great karst aquifers of the world 

supporting over 2 million people and agricultural, municipal, industrial, and recreational 

uses in a region of rapid population growth. It hosts unique groundwater, cave, and spring 

ecosystems. The aquifer has its own unique legal and management systems. The aquifer 

has been used sustainably but faces challenges. 

7.1 Sustainability 

The Edwards Aquifer water quality has remained suitable even with increased 

pumpage and the effects of urbanization, agriculture, and industry. This is because most of 

the agricultural irrigation is over the confined zone, which supports better soils, and 

because intense recharge events dilute and disperse local contamination sources and 

events. In terms of water quantity, the aquifer has remained stable since 1934, based on 

data from the San Antonio segment (Figure 34). These data show there are times of low 

recharge and low spring flows, but periods of high recharge essentially refill the aquifer. 

Estimates of total recharge from 1934 to 2019 approximately equal the estimated total 

discharge. Pumpage has remained relatively stable since the 1960s despite population 

growth because of conservation, use of other water resources, and drought-triggered 

withdrawal reductions specified by the EAA and the BSEACD (Table 5 and Table 6). This 

demonstrates that management policies now being implemented have achieved a good 

deal of success. 

 
Figure 34 - Recharge and discharge by wells and springs for the San Antonio and Kinney segments, 1934 to 
2019 (Edwards Aquifer Authority 2019a,b). Red is total discharge, orange is pumpage, green is spring flow, 
blue is total recharge. 

The Edwards Aquifer is sustainable in the long term, but pumping will have to be 

reduced during periods of low recharge and spring flow, and severe consequences could 

develop for water-supply wells and endangered species during extended periods of 

extreme drought. Different areas are addressing sustainability with different approaches 

and differing degrees of success. The BSEACD, for example, is advocating sustainable 
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management of the Barton Springs segment of the Edwards Aquifer. However, the paradox 

of the karstic Barton Springs segment is that rapid recharge allows this segment of the 

aquifer to be sustainable in the long-term, but the aquifer is vulnerable and has limited 

groundwater availability during drought periods (Hunt et al., 2019). 

7.2 Challenges 

Challenges to future development and sustainable use of this aquifer include the 

following (Sharp et al., 2019a). 

• Increased demand for water: The area overlying the aquifer from San Antonio 

to Austin to Waco is one of the fastest-growing metropolitan areas in the USA 

(Mace, 2019). The population of this area is predicted to nearly double by 2050 

(Potter and Hoque, 2014). 

• Effects of urbanization on groundwater systems (Sharp, 2019; Beal et al., 2020): 

Most of the growth is expected to be urban and suburban, expanding over the 

recharge and contributing zones. This creates the potential for contamination 

and changing rates and locations of recharge. 

• Effects of projected climate change (Loáiciga and Schofield, 2019): Projections 

are for higher temperatures and greater variations in precipitation and, 

therefore, variation of recharge. Groundwater extraction will have to be 

adapted to these fluctuations and trends. 

• New, emerging types of contaminants (Mahler and Musgrove, 2019): 

Numerous chemicals are used in our urban society and the Edwards Aquifer, 

like most karst aquifers, is highly vulnerable to contamination. This raises 

questions about its use both as a water resource and for the well-being of 

aquifer/spring-dependent species. 

• Accommodating surface-water/groundwater interactions and conduit/matrix 

flow dynamics in numerical models (Scanlon et al., 2003; Hartmann et al., 2014): 

Studies of the Edwards Aquifer revealed spatial and temporal variations in 

aquifer properties and processes. These have long been issues for groundwater 

models that are important for quantitative understanding the aquifer system. 

• Managing aquifers in the context of evolving Texas water law and 

administrative policies (Hardberger, 2019; Payne et al., 2019): Management 

practices need to evolve not only as laws and policies evolve but also as our 

understanding of the aquifer’s endangered species, conduit flow systems, and 

basic hydrogeology evolves. For instance, intra- and inter-aquifer connections 

and delineation of recharge areas continue to be topics of research. 

The regional water planning groups have identified and recommended several 

water management strategies (George et al., 2011). These include drilling new wells to meet 

increased water demand, constructing small dams along streambeds to enhance aquifer 
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recharge, and reallocating supplies from irrigation to municipal users. They have also 

recommended expanding existing aquifer storage and recovery (ASR) facilities, such as the 

one that stores water from the Edwards Aquifer in the Carrizo-Wilcox Aquifer in southern 

Bexar County. 

Finally, the adaptation of new technologies will be needed for future 

characterization, development, and management of the aquifer. These include: 

• new ASR projects (Smith et al., 2017; Deeds and Blumberg, 2019) in the 

underlying Trinity Aquifer and the brackish/saline Edwards Aquifer; 

• desalination of brackish water including from the bad-water zone (Mancha and 

Walker, 2019); 

• surface geophysics to characterize the system (Saribudak, 2019); 

• tracer testing for define flow paths more accurately (Johnson et al., 2019); 

• multiport wells to understand vertical variations in hydraulic properties (Smith 

and Hunt, 2019); and, 

• the use of DNA in characterization of aquifer ecology (Devitt, 2019).  

Continued hydrogeologic study, including detailed aquifer vulnerability mapping 

and flow path delineation, is needed to improve understanding of the Edwards Aquifer 

and how it can meet the demands of society. Water laws and management policies must be 

able to adapt to meet these challenges in light of growing knowledge of the Edwards 

Aquifer and growing demand for water. 
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8 Exercises 

Exercise 1 

How might climate changes affect water availability for the projected population 

growth in areas using the Edwards Aquifer? What policies or infrastructure might 

ameliorate any anticipated negative effects of climate change? 

Click for solution to Exercise 1 

Exercise 2 

How will increasing urbanization likely affect the Edwards Aquifer? What policies 

or infrastructure might ameliorate any anticipated negative effects of urbanization? 

Click for solution to Exercise 2 

Exercise 3 

What are the major unanswered hydrogeological questions about the Edwards 

Aquifer? 

Click for solution to Exercise 3 

Exercise 4 

Briefly describe Texas water law. Is the Edwards Aquifer adequate to support future 

water needs? Why or why not? 

Click for solution to Exercise 4 

Exercise 5 

How well do the numerical models represent the triple porosity/permeability 

Edwards Aquifer? Under what conditions or for what purposes are current models useful? 

Click for solution to Exercise 5 

Exercise 6 

What is the history or evolution of porosity/permeability development in the 

Edwards Aquifer? 

Click for solution to Exercise 6

Exercise 7 

How can the spatial distribution of stygobites species, especially those that are 

entirely within the aquifer (e.g., Trogloglanis patersoni and Satan eurystomas) be determined? 

Click for solution to Exercise 7 
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Exercise 8 

What controls the location of groundwater divides in the Edwards Aquifer? 

Click for solution to Exercise 8 

Exercise 9 

How is a karst aquifer fundamentally different from a clastic aquifer (i.e., the High 

Plains Aquifer)? How is a karst aquifer fundamentally different from a crystalline rock 

aquifer (i.e., a fractured igneous or metamorphic rock aquifer)? 

Click for solution to Exercise 9 

Exercise 10 

How do we simulate flow in a karstic conduit? What are some of the key variables 

required for simulating groundwater flow in karst? 

Click for solution to Exercise 10 
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10 Exercise Solutions 

Solution Exercise 1 

Higher temperatures will increase evapotranspiration over the contributing and 

recharge zones. Precipitation changes are as yet unclear. Net precipitation may increase or 

decrease. However, more extensive droughts and more high rainfall events are predicted. 

These suggest there will be times when the aquifer cannot meet the water needs of a 

growing population. 

Public policies could include restrictions on population growth (which does not 

seem possible today), mandatory conservation measures, elimination of irrigated 

agriculture which has a high consumptive use, and conjunctive use (using surface water in 

times of high stream flow and the aquifer in times of low stream flow). 

Infrastructure options might include aquifer storage and recovery, desalination of 

brackish waters (Texas has abundant brackish waters), and importation of water from 

distant sources. 

Return to Exercise 1 

Solution Exercise 2 

There are both groundwater quantity and quality aspects of urbanization.  

The growing population will require more water for domestic, industrial, and 

irrigation (lawns and gardens). Leaky water mains and sewage lines as well as 

over-irrigation may increase recharge in the recharge zone whereas increased impervious 

cover has the opposite effect. Flooding intensity will increase because of impervious ground 

surface cover and additional storm sewers. 

Water quality will be threatened because of leaky sewer systems, spills, and 

accidents. These can release raw sewage and many different contaminants into the 

environment and possibly affect spring-dependent ecosystems. 

Restriction of urban sprawl over the recharge zones is a possible solution. Quality 

control of streams flowing from the catchment areas that recharge losing streams is another. 

Urban planning could consider the possible changes to the groundwater flow systems to 

increase recharge and control water quality. 

Return to Exercise 2 
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Solution Exercise 3 

Your answer might involve: 

• lack of knowledge of: 

o specific aquifer properties, including aquifer extent, conduit permeability, 

formation facies, among others; 

o aquifer ecology and endemic species; 

• the effects of urbanization; 

• new sources of contamination; and, 

• the possible effects of climate change. 

Return to Exercise 3 

Solution Exercise 4 

Surface water is owned by the state; use of water for purpose other than domestic 

and livestock use must be permitted. Groundwater is under the English Doctrine in which 

land owners may pump as much as they desire unless it causes subsidence and consequent 

inundation of adjacent properties or is done with malicious intent. 

Texas emphasizes local control of the groundwater through GCDs. These have a 

variety of water management actions, including restricting pumping during droughts or 

because of loss of spring flow habitats. Recently, Texas courts have ruled that groundwater 

is a property right and restricting one’s ability to pump (during droughts) is not 

constitutional.  

Adequacy of the aquifer to support future needs is an open question. 

Return to Exercise 4 

Solution Exercise 5 

Current numerical models poorly represent the triple porosity/permeability of the 

aquifer because the location of the conduits and their permeability as well as the fracture 

permeability, are not well documented. 

The models may give useful estimates of aquifer water budgets and when properly 

calibrated may predict spring flows and heads within the aquifer. They cannot predict 

precise flow paths and rates of contaminant transport. 

Return to Exercise 5 
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Solution Exercise 6 

Description of the evolution of porosity/permeability development in the Edwards 

Aquifer should include karstification in the Cretaceous period and, more importantly, since 

uplift after the Miocene; the development of fractures; and the formation of karstic 

conduits. More detailed answers might include the effects of mixing of allogenic recharge 

waters with water in equilibrium with the aquifer, the effects of mixing along the bad-water 

line and epikarst processes. 

Return to Exercise 6 

Solution Exercise 7 

Spatial distribution of stygobites species can be determined via detailed sampling 

of wells and spring outlets. New DNA analyses of the groundwater may also help. 

Return to Exercise 7 

Solution Exercise 8 

  Location of groundwater divides in the Edwards Aquifer are controlled by location 

of losing streams, temporal and spatial distributions of both recharge and pumping, aquifer 

offsets (for the Kinney-San Antonio segment divide), fault system permeability, and the 

Colorado River (which is not a divide but separates the Barton Springs and Northern 

segments). 

During droughts, divides may shift or even disappear, but can reform with 

increased recharge. 

Return to Exercise 8 

Solution Exercise 9 

In describing how a karst aquifer is fundamentally different from a clastic aquifer, 

the response should note that, compared to other aquifer types, karst aquifers generally 

have triple porosity and permeability fields (matrix, fractures, and conduits). Permeability 

can be highly anisotropic, very high, and range over many orders of magnitude. Recharge 

in karstic units commonly has both discrete and diffuse components. Discrete recharge 

through sinkholes and fractures is characteristic of many karst aquifers. Losing streams are 

common in karstic units. Clastic aquifers may be strongly controlled by variations in 

bedding facies. 

In describing how a karst aquifer is fundamentally different from a crystalline rock 

aquifer, the response should indicate that crystalline rock aquifers tend to be shallow, have 

very low storativity, and their permeability is dominated by fracture sets. 

Return to Exercise 9 
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Solution Exercise 10 

Flow in the conduits is probably turbulent at times and Darcy’s Law may not apply 

in karstic conduits and fractures. Flow in a karstic conduit is often diffusively represented 

by an equivalent porous media model. However, it is beneficial to include discrete features 

in the simulation that can account for pipe or open channel flow within the conduits under 

laminar and turbulent conditions. Inclusion of discrete features requires a lot of computer 

processing that is likely to exceed available computing resources and be prohibitively 

expensive. 

Conduit variables include conduit location, effective diameter, roughness, and 

connectivity with other conduits.  

Flow in the matrix is probably laminar with the key variables being permeability, 

storativity, and strata thickness.  

Fracture variables include hydraulic aperture and fracture spacing, orientation and 

connectivity. 

Return to Exercise 10 
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